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Abstract

This article is focused on the performance evaluation of linear codes

under maximum-likelihood (ML) decoding. Though the ML decoding

algorithm is prohibitively complex for most practical codes, the analysis

of linear codes under ML decoding allows to predict their performance

without resorting to computer simulations. In this article, upper and

lower bounds on the error probability of linear codes under ML decod-

ing are surveyed and applied to codes and ensembles. For upper bounds,

we discuss various bounds where focus is put on Gallager bounding

techniques and their relation to a variety of other reported bounds.

Within the class of lower bounds, we address de Caen’s based bounds

and their improvements, and also consider sphere-packing bounds with

their recent improvements targeting codes of moderate block lengths.
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1

A Short Overview

Overview : Upper and lower bounds on the error probability of linear

codes under maximum-likelihood (ML) decoding are shortly surveyed

and applied to ensembles of codes on graphs. For upper bounds, we

focus on the Gallager bounding techniques and their relation to a

variety of other known bounds. Within the class of lower bounds, we

address de Caen’s based bounds and their improvements, and sphere-

packing bounds with their recent developments targeting codes of mod-

erate block lengths. This serves as an introductory section, and a

comprehensive overview is provided in the continuation of this tutorial.

1.1 Introduction

Consider the classical coded communication model of transmitting

one of equally likely signals over a communication channel. Since the

error performance of coded communication systems rarely admits exact

expressions, tight analytical upper and lower bounds serve as a useful

theoretical and engineering tool for assessing performance and for gain-

ing insight into the effect of the main system parameters. As specific

good codes are hard to identify, the performance of ensembles of codes

1



2 A Short Overview

is usually considered. The Fano [71] and Gallager [82] bounds were

introduced as efficient tools to determine the error exponents of the

ensemble of random codes, providing informative results up to the ulti-

mate capacity limit. Since the advent of information theory, the search

for efficient coding systems has motivated the introduction of efficient

bounding techniques tailored to specific codes or some carefully cho-

sen ensembles of codes. A classical example is the adaptation of the

Fano upper bounding technique [71] to specific codes, as reported in

the seminal dissertation by Gallager [81] (to be referred to as the 1961

Gallager-Fano bound). The incentive for introducing and applying such

bounds has strengthened with the introduction of various families of

codes defined on graphs which closely approach the channel capacity

limit with feasible complexity (e.g., turbo codes [24], repeat-accumulate

codes [1, 54], and low-density parity-check (LDPC) codes [124, 156]).

Clearly, the desired bounds must not be subject to the union bound

limitation, since for codes of large enough block lengths, these ensem-

bles of turbo-like codes perform reliably at rates which are considerably

above the cutoff rate (R0) of the channel (recalling that union bounds

for long codes are not informative at the portion of the rate region

above R0, where the performance of these capacity-approaching codes

is most appealing). Although maximum-likelihood (ML) decoding is in

general prohibitively complex for long codes, the derivation of upper

and lower bounds on the ML decoding error probability is of interest,

providing an ultimate indication of the system performance. Further,

the structure of efficient codes is usually not available, necessitating effi-

cient bounds on performance to rely only on basic features, such as the

distance spectrum and the input-output weight enumeration function

(IOWEF) of the examined code (for the evaluation of the block and bit

error probabilities, respectively, of a specific code or ensemble). These

latter features can be found by analytical methods (see e.g., [127]).

In classical treatments, due to the difficulty in the analytic charac-

terization of optimal codes, random codes were introduced ([71], [82],

[83]). This is also the case with modern approaches and practical cod-

ing techniques, where ensembles of codes defined on graphs lend them-

selves to analytical treatment, while this is not necessarily the case for

specifically chosen codes within these families. A desirable feature is to
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identify efficient bounding techniques encompassing both specific codes

and ensembles.

In Sections 2–4, we present various reported upper bounds on the

ML decoding error probability, and exemplify their improved tightness

as compared to union bounds. We demonstrate in Sections 3 and 4 the

underlying connections that exist between these bounds whose com-

putation is solely based on the distance spectrum or the IOWEFs of

the codes. The focus of this presentation is directed towards the appli-

cation of efficient bounding techniques on ML decoding performance,

which are not subject to the deficiencies of the union bounds and there-

fore provide useful results at rates reasonably higher than the cutoff

rate. In Sections 2–4 and references therein, improved upper bounds are

applied to block codes and turbo-like codes. In addressing the Gallager

bounds and their variations, we focus in [183] (and more extensively in

Section 4) on the Duman and Salehi variation which originates from the

standard Gallager bound. A large class of efficient recent bounds (or

their Chernoff versions) is demonstrated to be a special case of the gen-

eralized second version of the Duman and Salehi bounds. Implications

and applications of these observations are addressed in Section 4.

In Sections 5 and 6, we address lower bounds on the ML decoding

error probability and exemplify these bounds on linear block codes.

Here we overview a class of bounds which are based on de Caen’s

bound and its improved version. We also review classical sphere-packing

bounds and recent improvements for finite length codes.

We note that every section is self-contained and consequently, nota-

tions may (slightly) change from one section to another.

1.2 General approach for the derivation of

improved upper bounds

In Sections 3–4, we present many improved upper bounds on the ML

decoding error probability which are tighter than the union bound.

The basic concept which is common to the derivation of the upper

bounds within the class discussed in Sections 3 and 4 is the following:

Pr(error) = Pr(error,y ∈ R) + Pr(error,y /∈ R)

≤ Pr(error,y ∈ R) + Pr(y /∈ R) (1.1)



4 A Short Overview

where y is the received signal vector, and R is an arbitrary region

around the transmitted signal point which is interpreted as the “good

region”. The idea is to use the union bound only for the joint event

where the decoder fails to decode correctly, and in addition, the received

signal vector falls inside the region R (i.e., the union bound is used for

upper bounding the first term in the right-hand side (RHS) of (1.1)).

On the other hand, the second term in the RHS of (1.1) represents

the probability of the event where the received signal vector falls out-

side the region R. This term which is typically the dominant one for

low SNR, is not part of the event for which the union bound is used.

We note that in the case where the region R is the whole observa-

tion space, the basic approach which is suggested above particularized

to the union bound. However, since the upper bound in (1.1) is valid

for an arbitrary region R in the observation space, various improved

upper bounds can be derived by an appropriate selection of this region.

These bounds could be therefore interpreted as geometric bounds (see

[50] and [183]). As we will see, the choice of the region R is very signif-

icant in this bounding technique; different choices of this region have

resulted in various different improved upper bounds which are consid-

ered extensively in Sections 3 and 4. For instance, the tangential bound

of Berlekamp [22] used the basic inequality in (1.1) to provide a con-

siderably tighter bound than the union bound at low SNR values. This

was achieved by determining the region R as a boundary of a plane. For

the derivation of the sphere bound [90], Herzberg and Poltyrev have

chosen the region R in (1.1) to be a sphere centered at the transmitted

signal vector, and optimized the radius of the sphere in order to get

the tightest upper bound within this form. The bound of Divsalar [50]

is another simple and tight bound which relies on the basic inequality

(1.1). The geometrical region R in his bound was chosen to be a sphere

whose center does not necessarily coincide with the transmitted signal

vector, so its radius and the location of its center are jointly optimized

in order to provide the tightest bound within this form. Finally, the

tangential-sphere bound (TSB) which was proposed for binary linear

block codes [152] and for M-ary PSK block coded-modulation schemes

[91] selected R as a circular cone whose central line passes through the

origin and the transmitted signal vector. It is one of the tightest upper
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bounds known to-date for linear codes which are modulated by equi-

energy signals and whose transmission takes place over a binary-input

AWGN channel (see Fig. 1.1 and [168, 170, 223]).

We note that the bounds mentioned above are only a sample of

various bounds reported in Section 3; all of these bounds rely on the

inequality (1.1) where the geometric region R characterizes the result-

ing upper bounds on the decoding error probability. After providing the

general approach, we outline some connections between these bounds

and demonstrate a few possible applications.
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Fig. 1.1 Various bounds for the ensemble of rate− 1
3

turbo codes whose compo-
nents are recursive systematic convolutional codes with generators G1(D) = G2(D) =[
1, 1+D4

1+D+D2+D3+D4

]
. There is no puncturing of the parity bits, and the uniform inter-

leaver between the two parallel concatenated (component) codes is of length 1000. It is
assumed that the transmission of the codes takes place over a binary-input AWGN channel.
The upper bounds on the bit error probability under optimal ML decoding are compared

with computer simulations of the iterative Log-MAP decoding algorithm with up to 10
iterations.
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1.3 On Gallager bounds: Variations and applications

In addressing the Gallager bounding techniques and their variations,

we focus in Section 4 on variations of the Gallager bounds and their

applications.

In the following, we present shortly the 1965 Gallager bound [82].

Suppose an arbitrary codeword xm (of length-N) is transmitted over

a channel. Let y designate the observation vector (of N components),

and pN (y|xm) be the channel transition probability measure. Then, the

conditional ML decoding error probability is given by

Pe|m =
∑

y: {∃ m′ 6=m: pN (y|xm′
)≥pN (y|xm)}

pN (y|xm).

If the observation vector y is such that there exists m′ 6= m so that

pN (y|xm′
) ≥ pN (y|xm), then for arbitrary λ,ρ ≥ 0, the value of the

expression 


∑

m′ 6=m

(
pN (y|xm′

)

pN (y|xm)

)λ



ρ

is clearly lower bounded by 1, and in general, it is always non-negative.

The 1965 Gallager bound [82, 83] therefore states that

Pe|m ≤
∑

y

pN (y|xm)




∑

m′ 6=m

(
pN (y|xm′

)

pN (y|xm)

)λ



ρ

, λ, ρ ≥ 0 .

This upper bound is usually not easily evaluated in terms of basic

features of particular codes, except for example, orthogonal codes and

the special case of ρ = 1 and λ = 1
2 (which yields the Bhattacharyya-

union bound).

An alternative bounding technique which originates from the 1965

Gallager bound is the second version of the Duman and Salehi (DS2)

bound (see [60, 183]). This bound is calculable in terms of the distance

spectrum, not requiring the fine details of the code structure. A similar

upper bound on the bit error probability is expressible in terms of the

IOWEFs of the codes (or the average IOWEFs of code ensembles). By

generalizing the framework of the DS2 bound, a large class of efficient
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bounds (or their Chernoff versions) is demonstrated to follow from this

bound. Implications and applications of these observations are pointed

out in [183], including the fully interleaved fading channel, resorting to

either matched or mismatched decoding. The proposed approach can

be generalized to geometrically uniform non-binary codes, finite state

channels, bit-interleaved coded-modulation systems, parallel channels

[122], and it can be also used for the derivation of upper bounds on

the conditional decoding error probability. In Section 4, we present the

suitability of variations on the Gallager bounds as bounding techniques

for random and deterministic codes, which partially rely on insightful

observations made by Divsalar [50]. Focus is put in [183] on geometric

interpretations of the 1961 Gallager-Fano bound (see [71] and [81]).

The interconnections between many reported upper bounds are illus-

trated in Section 4, where it is shown that the generalized DS2 bound

particularizes to these upper bounds by proper selections of the tilt-

ing measure. Further details, extensions and examples are provided in

Section 4.

The TSB [152] happens often to be the tightest reported upper

bound for block codes which are transmitted over the binary-input

additive white Gaussian noise (AWGN) channel and ML decoded (see

e.g., [168] and [170]). However, in the random coding setting, it fails

to reproduce the random coding error exponent (see [152]), while the

DS2 bound does. In fact, also the Shulman-Feder bound [187] which is

a special case of the latter bound achieves capacity for the ensemble

of fully random block codes. This substantiates the claim that there is

no uniformly best bound. However, we note that the loosened version

of the TSB [50] (which involves the Chernoff inequality) maintains the

asymptotic (i.e., for infinite block length) exponential tightness of the

TSB of Poltyrev [152], and it is a special case of the DS2 bound.

In the following, we exemplify the use of the DS2 bounding tech-

nique for fully interleaved fading channels with faulty measurements of

the fading samples.

Example 1.1. The Generalized DS2 bound for the Mismatched

Regime. In [183], we apply the generalized DS2 bound to study the
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robustness of a mismatched decoding that is based on ML decoding

with respect to the faulty channel measurements. We examine here the

robustness of the decoder in case that a BPSK modulated signal is

transmitted through a fully interleaved Rayleigh fading channel. For

simplicity, the bounds are applied to the case of perfect phase estima-

tion of the i.i.d fading samples (in essence reducing the problem to a

real channel). We also assume here that the estimated and real mag-

nitudes of the Rayleigh fading samples have a joint distribution of two

correlated bivariate Rayleigh variables with an average power of unity.
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Fig. 1.2 A comparison between upper bounds on the bit error probability for the ensemble
of turbo codes considered in Example 1.1 where the transmission of these codes takes place
over a fully interleaved Rayleigh fading channel with mismatched decoding. The bounds

are based on the combination of the generalized DS2 bound and the tight form of the union
bound applied to every constant Hamming-weight subcode. These bounds are plotted for
Eb

N0
= 2.50,2.75,3.00 and 3.25 dB, as a function of the correlation coefficient between the

actual i.i.d Rayleigh fading samples and their Rayleigh distributed estimations.

The bounds in Fig. 1.2 refer to the ensemble of uniformly interleaved

rate −1
3 turbo codes whose components are recursive systematic con-
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volutional codes: G1(D) = G2(D) =
[
1, 1+D4

1+D+D2+D3+D4

]
without punc-

turing of parity bits, and an interleaver length of N = 1000. Since for a

fully interleaved Rayleigh fading channel with perfect side information

on the fading samples, the matched channel cutoff rate corresponds to
Eb
N0

= 3.23 dB then, according to the upper bounds depicted in Fig. 1.2,

the ensemble performance of these turbo codes (associated with the ML

decoding) is sufficiently robust in case of mismatched decoding, even in

a portion of the rate region exceeding the channel matched cutoff rate.

The proposed upper bounds depicted here were efficiently implemented

in software, thus indicating their feasible computational complexity.

1.4 Lower bounds on the decoding error probability

1.4.1 De Caen inequality and variations

D. de Caen [42] suggested a lower bound on the probability of a finite

union of events. While an elementary result (essentially, the Cauchy-

Schwartz inequality), it was used to compute lower bounds on the

decoding error probability of linear block codes via their distance

distribution (see [108] for the binary symmetric channel (BSC), and

[182] for the Gaussian channel). In [39], Cohen and Merhav improved

de Caen’s inequality by introducing an arbitrary non-negative weight-

ing function which is subject to optimization. The concept of this

improved bound is presented in the following statement and, like de

Caen’s inequality, it follows from the Cauchy-Schwartz inequality.

Theorem 1.2. [39, Theorem 2.1] Let {Ai}i∈I be an arbitrary set of

events in a probability space (Ω,F ,P ), then the probability of the union

of these events is lower bounded by

P

(
⋃

i∈I
Ai

)
≥

∑

i∈I





(
∑

x∈Ai

p(x)mi(x)

)2

∑

j∈I

∑

x∈Ai∩Aj

p(x)mi(x)2




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where mi is an arbitrary non-negative function on Ω such that the sums

in the RHS converge. Further, equality is achieved when

mi(x) = m∗(x) ,
1

deg(x)
, ∀ i ∈ I

where for each x ∈ Ω

deg(x) , |{i ∈ I | x ∈ Ai}|.

The lower bound on the union of events in Theorem 1.2 particular-

izes to de Caen’s inequality by the particular choice of the weighting

functions mi(x) = 1 for all i ∈ I, which then gives

P

(
⋃

i∈I
Ai

)
≥

∑

i∈I

P (Ai)
2

∑

j∈I
P (Ai ∩ Aj)

.

Cohen and Merhav relied on Theorem 1.2 for the derivation of improved

lower bounds on the decoding error probability of linear codes under

optimal ML decoding. They exemplified their bounds for BPSK mod-

ulated signals which are equally likely to be transmitted among M

signals, and the examined communication channels were a BSC and

an AWGN channel. In this context, the element x in Theorem 1.2 is

replaced by the received vector y at the output of the communication

channel, and Ai (where i = 1,2, . . . ,M − 1) consists of all the vectors

which are closer in the Euclidean sense to the signal si rather than

the transmitted signal s0. Following [182], the bounds in [39] get (after

some loosening in their tightness) final forms which solely depend on

the distance spectrum of the code. Recently, two lower bounds on the

ML decoding error probability of linear binary block codes were derived

by Behnamfar et al. [16] for BPSK-modulated AWGN channels. These

bounds are easier for numerical calculation, but are looser than Cohen-

Merhav bounds for low to moderate SNRs.

Note that de Caen’s based lower bounds on the decoding error prob-

ability (see [16], [39], [108] and [182]) are applicable for specific codes

but not for ensembles; this restriction is due to the fact that Jensen’s

inequality does not allow to replace the distance spectrum of a linear

code in these bounds by the average distance spectrum of ensembles.
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1.4.2 Sphere-packing bounds revisited for
moderate block lengths

In the asymptotic case where the block length of a code tends to infinity,

the best known lower bound on the decoding error probability for dis-

crete memoryless channels (DMCs) with high levels of noise is the 1967

sphere-packing (SP67) bound [184]. Like the random coding bound of

Gallager [82], the sphere-packing bound decreases exponentially with

the block length. Further, the error exponent of the SP67 bound is

a convex function of the rate which is known to be tight at the por-

tion of the rate region between the critical rate (Rc) and the channel

capacity; for this important rate region, the error exponent of the SP67

bound coincides with the error exponent of the random coding bound

[184, Part 1]. For the AWGN channel, the 1959 sphere-packing (SP59)

bound was derived by Shannon [185] by showing that the error prob-

ability of any code whose codewords lie on a sphere must be greater

than the error probability of a code of the same length and rate whose

codewords are uniformly distributed over that sphere.

The reason that the SP67 bound fails to provide useful results for

codes of small to moderate block length is due to the original focus

in [184] on asymptotic analysis. In their paper [204], Valembois and

Fossorier have recently revisited the SP67 bound in order to make it

applicable for codes of moderate block lengths, and also to extend its

field of application to continuous output channels (e.g., the AWGN

channel which is the communication channel model of the SP59 bound

of Shannon [185]). The motivation for the study in [204] was strength-

ened due to the outstanding performance of codes defined on graphs

with moderate block length. The remarkable improvement in the tight-

ness of the SP67 bound was exemplified in [204] for the case of the

AWGN channel with BPSK signaling, and it was shown that in some

cases, the improved version of the SP67 bound presents an interesting

alternative to the SP59 bound [185].





2

Union Bounds: How Tight Can They Be?

Overview : Union bounds are shortly reviewed in this section, and their

limited tightness for ensembles of turbo-like codes is addressed.

2.1 Union bounds

Union bounds are based on the trivial inequality which states that the

probability of a union of events is upper bounded by the sum of the

probabilities of the individual events. Let {Ai}M
i=1 designate a set of M

events, then we get the inequality

Pr

(
M⋃

i=1

Ai

)
≤

M∑

i=1

Pr(Ai). (2.1)

It is evident that (2.1) turns to be an equality if these events are disjoint.

Otherwise, it could be a very loose bound on the probability of a union

of events (for instance, the RHS of (2.1) may exceed unity which makes

the union bound useless).

Let us consider a binary linear code C whose transmission takes

place over a memoryless, binary-input and output-symmetric (MBIOS)

channel. Since the linearity of the code and the symmetry of the channel

13
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imply that the error probability under ML decoding does not depend

on the transmitted codeword, then the average decoding error probabil-

ity is equal to the conditional error probability given that the all-zero

codeword was transmitted. Let {c0, c1, . . . , cM−1} be the set of code-

words of the code C where M is the number of codewords, and let c0

be the all-zero codeword which without loss of generality is assumed

to be the transmitted codeword. Let Pr(c0 → ci) be the pairwise error

probability, i.e., the probability for deciding that another codeword ci

of the code C (where 1 ≤ i ≤ M − 1) is more likely to be the trans-

mitted codeword than the codeword c0 which was actually transmitted

(the decision is based on the received signal vector at the output of

the channel demodulator). Then it follows immediately from the union

bound in (2.1) that

Pr(error) ≤
M−1∑

i=1

Pr(c0 → ci). (2.2)

The looseness of the union bound stems from the fact that intersections

of half-spaces related to codewords other than the transmitted one, are

counted more than once. For a discussion on the asymptotic accuracy

of the union bound, the reader is referred to [13]. A possible expurga-

tion of the union bound for linear block codes is based on eliminating

codewords which are not neighbors to the transmitted codeword (see

[2, 3, 6, 25]). This issue is considered in Section 3.2.9

For simplicity, we consider here the case where the codewords are

BPSK modulated before their transmission through the channel. The

input-output weight distribution of an (N,K) binary linear block code

C, designated by AC
w,h, is the number of codewords which are encoded

by K information bits whose (input) Hamming weight is equal to w,

and the (output) Hamming weight of the N -bit codeword is h (where

0 ≤ w ≤ K and 0 ≤ h ≤ N). The weight distribution of the code C, call

it SC
h , denotes the number of codewords of the code C which have a

Hamming weight h (the weight distribution is also called the distance

spectrum of the code C, and clearly SC
h =

∑K
w=0 AC

w,h). Based on the

Bhattacharyya bound, the pairwise error probability between any two

codewords differing in h positions is upper bounded by zh where z
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stands for the Bhattacharyya constant, i.e.,

z ,

∫ ∞

−∞

√
p(y|X = 1) p(y|X = 0) dy (2.3)

and p(y|x) is the pdf of the MBIOS channel. From (2.2) and the

Bhattacharyya bound, union bounds on the block error probability

(Pe) and the bit error probability (Pb) of the code C get the form

Pe ≤
N∑

h=1

K∑

w=1

AC
w,hzh , (2.4)

Pb ≤
N∑

h=1

K∑

w=1

w

K
AC

w,hzh . (2.5)

In order to write the union bound in a compact form, let us define the

two-variable polynomial

AC(W,Z) ,

N∑

h=0

K∑

w=0

AC
w,hWwZh (2.6)

which designates the input-output weight enumerator function

(IOWEF) of C.1 Then, the union bounds on the block error probability

(2.4) and the bit error probability (2.5) are expressed as

Pe ≤ AC(1, z) − 1 , Pb ≤ 1

K

∂AC(W,Z)

∂W

∣∣∣∣
W=1, Z=z

(2.7)

where z designates the Bhattacharyya constant in (2.3). The substrac-

tion of 1 in the upper bound on the block error probability follows from

the fact that the all-zero codeword contributes an addition of one to

the IOWEF of the linear code C.

For the binary-input AWGN channel, the Bhattacharyya constant

is equal to z = e
− Es

N0 where Es
N0

stands for the energy per symbol to the

one-sided spectral noise density. Clearly, Es
N0

= REb
N0

where R = K
N is the

rate of the code C, and Eb
N0

stands for the energy per information bit

1 A general technique for the calculation of IOWEFs of convolutional codes was proposed

by McEliece [127]. For analytical methods to calculate the weight distribution of binary
linear block codes, we refer the reader to [38, 45, 46, 112, 190, 216] and references therein.
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to the one-sided spectral noise density. The pairwise error probability

between two BPSK modulated codewords differing in h positions and

coherently detected over the AWGN channel is equal to Q
(√

2hREb
N0

)

where

Q(x) =
1√
2π

∫ ∞

x
e−

t2

2 dt (2.8)

is the probability that a random Gaussian variable with zero mean and

unit variance exceeds the value x. Since Q(x) ≤ 1
2 e−

x2

2 for x ≥ 0, then

it follows that for the AWGN channel, multiplying the Bhattacharyya

bound in (2.7) by a factor of one-half still gives a valid exponential

upper bound. A tighter upper bound on the bit error probability is

derived by using Craig’s identity [40, 188]

Q(x) =
1

π

∫ π
2

0
e−

x2

2sin2 θ dθ , x ≥ 0 . (2.9)

With the aid of (2.9), we obtain the following upper bounds on the

block and bit error probabilities of a binary linear block code C

Pe ≤
1

π

∫ π
2

0
AC(W,Z) − 1

∣∣∣∣
W=1, Z=e

− REb
N0 sin2 θ

dθ , (2.10)

Pb ≤ 1

πK

∫ π
2

0

∂AC(W,Z)

∂W

∣∣∣∣
W=1, Z=e

− REb
N0 sin2 θ

dθ (2.11)

replacing the upper bounds

Pe ≤
1

2

[
AC

(
1,e

−REb
N0

)
− 1

]
, Pb ≤ 1

2K

∂AC(W,Z)

∂W

∣∣∣∣
W=1, Z=e

−REb
N0

which are obviously looser.

As a consequence of the conceptual weakness of union bounds, it is

natural to expect that they become useless for linear block codes whose

dimension is large. The weakness of union bounds is pronounced at low

SNR values (they even exceed unity at low SNR, as is later exemplified

in Section 3.2.11). For codes of large enough block lengths, the union

bound becomes useless at the rate portion between the cutoff rate and

the channel capacity, where the performance of capacity-approaching

codes (e.g., turbo codes [24, 23] and LDPC codes [124, 156]) is most
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appealing (see also the tutorial paper [73] which considers coding

techniques for linear Gaussian channels, and the drawback of union

bounds). This clearly motivates the need for introducing improved

upper bounds on the decoding error probability which are considered

in the continuation of this tutorial.

Another theoretical property which is related to the looseness of the

union bounds is presented in [74]. Consider the case of BPSK modula-

tion and transmission over a binary-input AWGN channel. The mini-

mal value of Eb
N0

for which the union bound on the ML decoding error

probability is dominated by the minimum distance term was evaluated

in [74]; this value is referred to as the critical point of the code under

ML decoding. For the ensemble of fully random block codes (which are

known to achieve the Gilbert-Varshamov distance), this critical point

is equal to

1

R
ln

(
1

h−1(1 − R)
− 1

)

while the corresponding error probability decreases exponentially with

the block length N for values of Eb
N0

exceeding this critical point. In

the above expression, h−1 stands for the inverse of the binary entropy

function to the base 2.

2.2 Union bounds for turbo-like codes

For long enough block codes, union bounds are not informative at

rates exceeding the cutoff rate of the channel. The reader is referred

to various contributions exploring the ensemble performance of turbo-

like codes via the union bounding technique, e.g., union bounds on

the ensemble performance of uniformly interleaved parallel and serially

concatenated (turbo) codes with fixed component codes are studied in

[19, 20, 18, 17, 29, 31, 30, 32, 53, 55, 54, 63, 59, 61, 58, 89, 101, 110, 111,

134, 137, 138, 139, 140, 141, 142, 143, 145, 144, 154, 197, 208, 213, 221].

Union bounds on the ensemble performance of uniformly interleaved

turbo-like codes whose components are time-varying recursive system-

atic convolutional codes are studied in [171, 193], and coding theorems

for turbo-like ensembles which rely on union bounds are introduced

in [54, 104, 198]. In general, union bounds are not informative at low
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signal to noise ratios; they only provide some insight about the inter-

leaver gain which is obtained by various ensembles of turbo-like codes.

In the sequel, we will present numerical results for union bounds as a

benchmark in order to exemplify the improvement in the tightness of

various upper bounds over union bounds.

Example 2.1. In order to exemplify the weakness of union bounds,

let us consider the ensemble of uniformly interleaved repeat-accumulate

(RA) codes [54]. This ensemble is defined as follows: the encoder repeats

q times the information block of length N , the bits are then permuted

by a uniform interleaver of size qN (i.e., it is a probabilistic interleaver

which is chosen uniformly at random over all possible interleavers of

this size), and finally, the interleaved bits are encoded by an accumulate

code (i.e., a truncated rate-1 recursive convolutional encoder with a

transfer function 1/(1 + D)). The encoder of this ensemble is shown in

the upper plot of Fig. 2.1.

The ensemble [RAq(N)] is defined to be the set of (qN)!
(q!)NN !

differ-

ent RA codes when considering the different possible permutations of

the interleaver.2 The average input-output weight distribution (i.e., the

average number of codewords whose information bits are of Hamming

weight w and the Hamming weight of these codewords is h) for the

ensemble of uniformly interleaved RA codes RAq(N) was originally

derived in [54, Section 5], and is given by

A
RAq(N)
w,h =

(
N
w

)(qN−h
b qw

2
c
)(

h−1
d qw

2
e−1

)

(
qN
qw

) .

Therefore, the average distance spectrum of this ensemble is given by

S
RAq(N)
h =

min(N,b 2h
q
c)∑

w=1

(
N
w

)(qN−h
b qw

2
c
)(

h−1
d qw

2
e−1

)

(
qN
qw

) ,
⌈q

2

⌉
≤ h ≤ qN −

⌊q

2

⌋

(2.12)

2 There are (qN)! ways to place qN bits. However, permuting the q repetitions of any of

the N information bits does not affect the result of the interleaving, so there are
(qN)!

(q!)N

possible ways for the interleaving. Strictly speaking, by permuting the N information bits,

the vector space of the code does not change, which then yields that there are
(qN)!

(q!)N N !

distinct RA codes of dimension k and number of repetitions q.
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Fig. 2.1 Uniformly Interleaved repeat-accumulate (RA) codes: the upper plot refers to the
encoder which forms a serial concatenation of a repetition code with a differential encoder,
separated by a uniform interleaver [54]. The lower plot refers to the average distance spec-

trum of the ensemble, as given in (2.12), for an information block length of N = 1024 bits
and a number of repetitions of q = 4.

and S
RAq(N)
0 = 1 since the all-zero vector is always a codeword for any

possible choice of the interleaver.

In the following, we compare the union bound with an improved

upper bound, the tangential-sphere bound, which is presented in

Section 3. This comparison exemplifies the looseness of the union bound

at rates exceeding the cutoff rate of the channel. Specifically, for the

binary-input AWGN channel, the value of the energy per bit to spectral

noise density which corresponds to the cutoff rate is given by

Eb

N0
= − ln(21−R − 1)

R
.

For R = 1
4 bits per channel use (which refers to the code rate of the

ensemble depicted in Fig. 2.2), the value of Eb
N0

which corresponds to
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Fig. 2.2 Uniformly Interleaved repeat-accumulate (RA) codes: the union bound is compared
with the tangential-sphere bound to be presented in Section 3 and to simulation results

under iterative message-passing decoding with 10 iterations. The comparison refers to an
RA code with a specific interleaver where the information block length is N = 1024 bits
and the number of repetitions is q = 4 (i.e., the length of the interleaver is qN = 4096).

the cutoff rate is equal to 1.85 dB. As is observed in Fig. 2.2, the union

bound is useless for values of Eb
N0

below 1.85 dB. On the other hand,

the tangential-sphere bound which is shown in the same figure demon-

strates a remarkable improvement over the union bound for lower values

of Eb
N0

. In order to exemplify the weakness of the union bound as com-

pared to the performance of these codes with a sub-optimal and prac-

tical decoder, we combine the compared bounds with simulated results

of RA codes under iterative decoding (referring to the sum-product

decoding algorithm with 10 iterations). The reason for the improve-

ment of the performance in the error floor region (as compared to the

bounds) is due to a specific choice of the interleaver which happens

to be better than a uniform interleaver. However, as can be observed

from the performance of the iterative decoder, RA codes possess good

performance at a certain portion of the rate region between the cutoff

rate and the channel capacity (as was first indicated in [54]), where on

the other hand, the union bound is useless.
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Improved Upper Bounds for Gaussian and

Fading Channels

Overview : In this section, we present various reported upper bounds

on the maximum-likelihood (ML) decoding error probability (includ-

ing Berlekamp, Divsalar, Duman-Salehi, Engdahl-Zigangirov, Gallager,

Hughes, Poltyrev, Sason-Shamai, Shulman-Feder, Viterbi, Yousefi-

Khandani and others), and demonstrate the underlying connections

that exist between them; the bounds are based on the distance spectra

or the input-output weight enumerators of the codes. The focus of

this section is directed towards the application of efficient bounding

techniques on ML decoding performance, which are not subject to the

deficiencies of the union bounds and therefore provide useful results at

rates reasonably higher than the cutoff rate, where union bounds are

usually useless. We apply improved upper bounds to block codes and

turbo-like codes.

3.1 The methodology of the bounding technique

In this section, we present a variety of improved upper bounds which

are tighter than the union bound. Let y be the received signal vector

and let R be an arbitrary region around the transmitted signal point.

21



22 Improved Upper Bounds for Gaussian and Fading Channels

Then the basic concept which is common to all of the improved upper

bounds in this section is the following inequality which forms an upper

bound on the decoding error probability:

Pr(error) ≤ Pr(error,y ∈ R) + Pr(y /∈ R). (3.1)

The region R in (3.1) is interpreted as the “good region”. The idea

is to use the union bound on the probability of the joint event where

the decoder fails to decode correctly, and in addition, the received sig-

nal vector falls inside the region R (i.e., the union bound is used for

upper bounding the first term in the RHS of (3.1)). On the other hand,

the second term in the RHS of (3.1) represents the probability of the

event where the received signal vector falls outside the region R; this

probability is typically the dominant term for very low SNR, and is

calculated only one time (since it is not part of the event where the

union bound is used). We note that in the case where the region R
is the whole observation space, the basic approach which is suggested

above provides the union bound. However, since the upper bound in

(3.1) is valid for an arbitrary region R in the observation space, many

improved upper bounds can be derived by an appropriate selection of

this region. As we will see, the choice of the region R is very signif-

icant in this bounding technique; different choices of this region have

resulted in various different improved upper bounds which are consid-

ered in the continuation of this section. For instance, considering the

binary-input AWGN channel, the tangential bound of Berlekamp [22]

(which is presented in Section 3.2.3) used the basic inequality in (3.1)

to provide a considerably tighter bound than the union bound at low

SNR values. This was achieved by separating the radial and tangential

components of the Gaussian noise with a half-space as the underlying

region R. For the derivation of the sphere bound [90], Herzberg and

Poltyrev have chosen the region R in (3.1) to be a sphere around the

transmitted signal vector, and optimized the radius of the sphere in

order to get the tightest upper bound within this form. The Divsalar

bound [50] is another simple and tight bound which relies on the basic

inequality (3.1) (the bound is presented in Section 3.2.4). The geomet-

rical region R in the Divsalar bound was chosen to be a sphere; in

addition to the optimization of the radius of this sphere, the center of



3.2. Improved upper bounds for the Gaussian channel 23

the sphere which does not necessarily coincide with the transmitted sig-

nal vector was optimized as well. Finally, the tangential-sphere bound

(TSB) which was proposed for binary linear block codes by Poltyrev

[152] and for M -ary PSK block coded-modulation schemes by Herzberg

and Poltyrev [91] selected R as a conical region. It is one of the tightest

upper bounds known to-date, and we therefore choose to present it in

detail in Section 3.2.1.

We note that the bounds mentioned above are only a sample of

the various bounds reported in this section, where all of them rely

on the basic inequality (3.1). We have therefore introduced the gen-

eral approach for the derivation of these bounds before going into the

details of the different bounds. In what follows, we present each bound,

show connections between these bounds and demonstrate their possible

applications.

3.2 Improved upper bounds for the Gaussian channel

3.2.1 The tangential-sphere bound

The TSB was originally derived by Poltyrev [152], and re-derived by

Herzberg and Poltyrev who applied the bound to the performance eval-

uation of PSK block coded modulation schemes [91]. In the following,

we present the TSB and discuss its geometrical interpretation (on this

occasion, we wish to correct a few printing typos which appear in the

derivation of this bound in [91, 152], and enhance the lucidity of its

presentation).

Consider a binary linear block code C, and assume that its code-

words are mapped to signals with constant energy. Let n and R be

the block length and the rate of the code C, respectively, and let Eb

and Es designate the energy per information bit and per coded symbol,

respectively. By assumption, all the transmitted signals can be inter-

preted as points on an n-dimensional sphere with center at the origin

and radius rc =
√

nEs where Es = REb. Since the channel is binary-

input, output-symmetric and memoryless, and the code C is binary

and linear, then without any loss of generality, one can assume that

the all-zero codeword c0 = (0,0, . . . ,0) is transmitted (i.e., the condi-

tional error probability does not depend on the transmitted codeword).
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We therefore assume in our analysis that s0 is the transmitted signal

over the AWGN channel.

Referring to Fig. 3.1, let Cn(θ) designate an n-dimensional circu-

lar cone with a half-angle θ whose central line passes through the

origin and the transmitted signal (s0). Let z = (z1, z2, . . . , zn) desig-

nate an n-dimensional noise vector which corresponds to n orthogonal

Fig. 3.1 The geometric interpretation of the TSB [91, 152].
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projections of the AWGN. Let z1 be the radial component of z (see

Fig. 3.1), so the other n − 1 components of z are orthogonal to its radial

component. Since z is a Gaussian vector and its components are un-

correlated, then the n components of z are i.i.d., and each component

has a zero mean and variance σ2 = N0
2 . From Fig. 3.1, we obtain that

r =
√

nEs tanθ

rz1 =
(√

nEs − z1

)
tanθ

βk(z1) =
(√

nEs − z1

)
tanζ =

√
nEs − z1√
nEs − δ2

k
4

δk

2
. (3.2)

The random variable Y ,
∑n

i=2 z2
i is χ2 distributed with n − 1 degrees

of freedom, so its pdf is

fY (y) =
y

n−3
2 e−

y

2σ2 U(y)

2
n−1

2 σn−1 Γ
(

n−1
2

)

where the function U designates the unit step function, i.e., it is equal

to 1 for non-negative arguments, and is zero otherwise. The function Γ

designates the complete Gamma function

Γ(x) =

∫ ∞

0
tx−1e−t dt, Real(x) > 0. (3.3)

Conditioned on the value of the radial component of the noise, z1,

let E(z1) be the event of deciding erroneously (under ML decoding) on

a codeword which is different from the transmitted codeword. Given

the radial component of the noise, z1, let Ek(z1) designate the event

of deciding under ML decoding in favor of any other signal (si) whose

Euclidean distance from the transmitted signal (s0) is equal to δk.

Let y = s0 + z be the received vector at the output of the binary-

input AWGN channel. Given the value of the radial component of the

noise vector, z1, the conditional error probability satisfies

Pr
(
E(z1)| z1

)
≤ Pr

(
E(z1), y ∈ Cn(θ) | z1

)
+ Pr

(
y /∈ Cn(θ) | z1

)

(3.4)

and from the union bound

Pr
(
E(z1), y ∈ Cn(θ) | z1

)
≤

∑

k

Sk Pr
(
Ek(z1), y ∈ Cn(θ) | z1

)
(3.5)
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where Sk designates the number of the constant-energy signals (si)

in the considered signal set so that their Euclidean distance from the

transmitted signal (s0) is δk. We note that for BPSK modulated signals

where s =
(
2c − (1,1, . . . ,1)

)√
Es, the Euclidean distance between the

two signals si and s0 is directly linked to the Hamming weight of the

codeword ci. Let the Hamming distance between the two codewords

be k (i.e., wH(ci) = k), then the Euclidean distance between the two

BPSK modulated signals is equal to δk = 2
√

kEs. In the latter case, Sk

is the number of codewords of the code C with Hamming weight k (i.e.,

{Sk} is the distance spectrum of the linear code C).

The combination of Eqs. (3.4) and (3.5) gives

Pr
(
E(z1)| z1

)
≤

∑

k

{
Sk Pr

(
Ek(z1), y ∈ Cn(θ) | z1

)}

+Pr
(
y /∈ Cn(θ) | z1

)
. (3.6)

The second term in the right hand side of (3.6) is easily handled:

Pr(y /∈ Cn(θ)| z1) = Pr(Y > r2
z1
| z1)

=

∫ +∞

r2
z1

fY (y)dy

=

∫ +∞

r2
z1

y
n−3

2 e−
y

2σ2

2
n−1

2 σn−1 Γ
(

n−1
2

) dy.

This integral is expressible in terms of the incomplete Gamma function

γ(a,x) ,
1

Γ(a)

∫ x

0
ta−1e−t dt, a > 0, x ≥ 0 (3.7)

so we obtain that

Pr
(
y /∈ Cn(θ)| z1

)
= 1 − γ

(
n − 1

2
,

r2
z1

2σ2

)
. (3.8)

Let z2 be the tangential component of the noise vector z which is on

the plane defined by the two signals s0, si and the origin, and where z2

is orthogonal to the radial component z1 (see Fig. 3.1). Referring to the

first term in the right hand side of (3.6), it follows from the geometry
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in Fig. 3.1 that

Pr
(
Ek(z1), y ∈ Cn(θ) | z1

)
= Pr

(
Ek(z1),Y ≤ r2

z1
| z1

)

= Pr
(
βk(z1) ≤ z2 ≤ rz1 ,Y ≤ r2

z1
| z1

)
.

Let V ,
∑n

i=3 z2
i , then V = Y − z2

2 , and

Pr
(
Ek(z1), y ∈ Cn(θ) | z1

)
= Pr

(
βk(z1) ≤ z2 ≤ rz1 ,V ≤ r2

z1
− z2

2 | z1

)
.

The random variable V is χ2 distributed with n − 2 degrees of freedom,

so its pdf is equal to

fV (v) =
v

n−4
2 e−

v
2σ2

2
n−2

2 σn−2 Γ
(

n−2
2

) , v ≥ 0

and since the random variables z2 and V are statistically independent,

then

Pr
(
Ek(z1), y ∈ Cn(θ) | z1

)
=

∫ rz1

βk(z1)

e−
z2
2

2σ2

√
2πσ

∫ r2
z1

−z2
2

0
fV (v) dv dz2. (3.9)

The calculation of the statistical expectation of both sides of (3.6) with

respect to the radial noise component z1 gives

Pe = Ez1

[
Pr

(
E(z1)| z1

)]

≤
∑

k:βk(z1)<rz1

{
Sk Ez1

[
Pr

(
Ek(z1), y ∈ Cn(θ) | z1

)]}

+Ez1

[
Pr

(
y /∈ Cn(θ) | z1

)]

where the condition βk(z1) < rz1 in the above sum follows directly from

the condition ζ < θ (based on the geometry in Fig. 3.1 on p. 24), and

therefore is independent of z1. From (3.8) and (3.9), we obtain the fol-

lowing upper bound on the block error probability under ML decoding

which only depends on the distance spectrum of the code:

Pe ≤
∫ +∞

−∞

e−
z2
1

2σ2

√
2πσ

{
∑

k:
δk
2

<αk

{
Sk

∫ rz1

βk(z1)

e−
z2
2

2σ2

√
2πσ

∫ r2
z1

−z2
2

0
fV (v) dv dz2

}

+ 1 − γ

(
n − 1

2
,

r2
z1

2σ2

)}
dz1. (3.10)
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The determination of the indices k which are taken into account in the

summation in the RHS of (3.10) relies on the equivalence between the

inequalities βk(z1) < rz1 and δk
2 < αk where

αk , r

√

1 − δ2
k

4nEs
. (3.11)

The upper bound (3.10) on the ML decoding error probability is

valid for all positive values of r. Hence, the optimal radius r (in the

sense of achieving the tightest upper bound) is determined by setting

to zero the partial derivative of the right side in (3.10) with respect to

rz1 . After tedious but straightforward algebra, we obtain the following

optimization equation1 for the optimal value of the radius r of the TSB:





∑

k :
δk
2

<αk

Sk

∫ ϕk

0
sinn−3 φ dφ =

√
πΓ

(
n−2

2

)

Γ
(

n−1
2

)

ϕk , cos−1
(

δk
2αk

)
(3.12)

where αk is given in (3.11). The nice property of (3.12) is that the

optimized value of r does not depend on the signal to noise ratio, but

only on the distance spectrum of the code. This enables to calculate the

optimal value of r for a specific binary linear block code, and then to

calculate the TSB in (3.10) for different values of Eb
N0

. We note that the

integrals in the left hand side of the optimization equation (3.12) can

be handled by invoking the identities in [86, Eqs. (2.511.2) & (2.511.3)

(see p. 159)]. It is evident that the optimized TSB does not exceed 1

(since if we let θ → 0, then the n-dimensional cone Cn(θ) tends to an

empty set; the second term of the RHS in (3.4) tends therefore to 1,

which implies the trivial bound Pe ≤ 1). This is in contrast to the union

bound which diverges at low values of Eb
N0

. A proof for the existence

and uniqueness of a solution r to the optimization equation (3.12) was

provided in [170, Appendix B], together with an efficient algorithm to

1 We note that in [152], the
√

π in the first equation of (3.12) was written by mistake in the

denominator instead of the numerator, which yields a sub-optimal choice of r in (3.17),
and hence a looser upper bound in the final form (3.10) of the TSB.
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solve this equation numerically. Sason and Shamai have adapted the

TSB to obtain upper bounds on the bit error probability of a binary

linear code C (see [170, Appendix C]). To this end, one replaces the

Euclidean distance spectrum {Sk} in the RHS of (3.10) by

S′
k =

K∑

w=1

( w

K

)
Aw,k , k = dmin, . . . ,n (3.13)

where K designates the dimension of the linear code C, and Aw,k desig-

nates the number of the codewords which are encoded by information

bits whose Hamming weight is w and mapped to signals of Euclidean

distance δk from the transmitted signal.2 By this replacement, the right

hand side of (3.10) becomes an upper bound on the bit error probability

of the code C. Since

Sk =
K∑

w=1

Aw,k , k = dmin, . . . ,n (3.14)

then it immediately follows from (3.13) and (3.14) that S′
k ≤ Sk for all

integer values of k, so the resulting upper bound on the bit error prob-

ability is clearly smaller than the upper bound on the block error prob-

ability, as could be expected. For further observations on the derivation

of the TSB-based upper bound on the bit error probability, we refer

the reader to [170, Appendix C].

In the following, we suggest a slightly looser upper bound which is

considerably easier to calculate. The inner integral in the RHS of (3.9)

can be upper bounded with the aid of the incomplete Gamma function,

as follows:

Pr
(
Ek(z1), y ∈ Cn(θ) | z1

)

=

∫ rz1

βk(z1)

1√
2πσ

e−
z2
2

2σ2 γ

(
n − 2

2
,
r2
z1

− z2
2

2σ2

)
dz2

2 We note that for BPSK modulated signals, Aw,k designates the number of codewords of
Hamming weight k which are encoded by a block of information bits of Hamming weight w.
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≤ γ

(
n − 2

2
,
r2
z1

− β2
k(z1)

2σ2

) ∫ rz1

βk(z1)

1√
2πσ

e−
z2
2

2σ2 dz2

= γ

(
n − 2

2
,
r2
z1

− β2
k(z1)

2σ2

)[
Q

(
βk(z1)

σ

)
− Q

(rz1

σ

)]
. (3.15)

This suggested upper bound circumvents the need to compute numer-

ically the inner integral which appears inside the sum of the RHS of

(3.10) (such a numerical computation is required for every integer k for

which δk < αk
2 and Sk 6= 0). Finally, we obtain from (3.10) and (3.15)

that the slightly looser version of the TSB upper bound on the block

error probability (Pe) is only based on the Euclidean distance spectrum

{Sk}, and it reads:

Pe ≤
∫ +∞

−∞

dz1√
2πσ

e−
z2
1

2σ2





1 − γ

(
n − 1

2
,

r2
z1

2σ2

)

+
∑

k:
δk
2

<αk

Sk

[
Q

(
βk(z1)

σ

)
− Q

(rz1

σ

)]

·γ
(

n − 2

2
,
r2
z1

− β2
k(z1)

2σ2

)





+ Q

(√
2nREb

N0

)

(3.16)

where 



σ2 =
N0

2

rz1 =

(
1 − z1√

nEs

)
r

βk(z1) =
rz1√

1 − δ2
k

4nEs

· δk

2r

(3.17)

and αk is given in (3.11). We note that the need for the last summand

in the RHS of (3.16) was explained in [170, Appendix A]; it is due to

the possibility that the radial component of the noise vector (z1) is

large enough so that we refer to the second side of the cone (i.e., if

z1 >
√

nEs). This term didn’t appear in the original derivation of the
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TSB in [91, 152], but it has typically a negligible effect on the upper

bound (see [170, Appendix A]).

In order to significantly reduce the complexity which is involved

with the calculation of the TSB and paying a very minor loss in the

tightness of this bound, we refer in the continuation to the form of the

TSB in (3.16) and the optimization equation in (3.12).

We emphasize that the TSB is not limited to binary linear codes

(see e.g., [66] where the TSB is applied to the performance analysis of

Reed-Solomon codes). The single property of the coding scheme which

is required for the validity of the bound is the equal-energy property, so

that the signals are represented by points on an n-dimensional sphere

(see Fig. 3.1 on p. 24). We note that the constellation is not restricted

to be geometrically uniform; in this case, if the signal set is still of equal

energy, then one can use the proposed bounding technique to evaluate

the conditional error probability given a particular transmitted signal,

provided that the Euclidean distance spectrum with respect to that

signal point is available.

In [223], Yousefi and Khandani generalize the derivation of the TSB.

To this end, they choose to consider geometrical regions R in (3.1)

which have an azimuthal symmetry with respect to the radial compo-

nent of the noise. For equal-energy (sphere) signals, they prove that the

optimal geometrical region is the conical region of the TSB, and there-

fore the generalized TSB is equal to the TSB of Poltyrev. This proves

the optimality of the cones as geometrical regions with azimuthal sym-

metry, and therefore the geometrical interpretation of the TSB justifies

its tightness. We note however that by the relaxation of the azimuthal

symmetry of the region R, the tightness of the bound in (3.1) can be

improved. As an example for this possible improvement, we refer to the

Shulman and Feder bound [187] which is considered in the next section;

it is shown that the geometrical region R which is associated with this

bound does not possess this azimuthal symmetry. However, it repro-

duces the random coding error exponent of Gallager [82], and therefore

achieves capacity for the ensemble of fully random block codes, in con-

trast to the TSB.

In many communication systems, data is divided into different

importance levels, and unequal error protection is desirable for taking
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into account their different error sensitivities. In [7], the TSB is applied

to obtain performance bounds on the ML decoding error probability

when binary linear block codes are transmitted over an AWGN channel

and the bits are unequally error protected. These bounds are applied

to uniformly interleaved turbo codes under ML decoding, and com-

pared with computer simulation results under iterative decoding; this

comparison shows a good match, also at a portion of the rate region

between the cutoff rate and the channel capacity.

The TSB happens often to be one of the tightest reported upper

bounds for block codes which are transmitted over a binary-input

AWGN channel and ML decoded (see e.g., [50, 90, 91, 142, 152, 168,

170, 169, 211, 225]). However, in the random coding setting, it fails

to reproduce the random coding exponent (especially for high code

rates) while the 1965 Gallager bound [82] (which is introduced in

Section 4.2.1) achieves the channel capacity for fully random block

codes. For further details on the random coding error exponent of the

TSB over the binary-input AWGN channel, we refer the reader to [152,

Section 5] and [199] (to be discussed later in Section 3.2.10.1).

3.2.2 Improvements on the tangential-sphere bound

Zangl and Herzog [225] improved the TSB on the bit error probabil-

ity which was derived earlier by Sason and Shamai [170] (as explained

in Section 3.2.1). The improvement in [225] refers to the term of the

TSB which corresponds to the case where the noise is large enough so

that the received signal vector falls outside the conical region around

the transmitted signal vector (see Fig. 3.1). The basic idea used for

the derivation of the improved upper bound of Zangl and Herzog is to

replace the worst case assumption (which assumes that if the received

signal vector falls outside the conical region, then all the decoded infor-

mation bits are wrong) by a more refined calculation which takes into

account the actual fraction of information bits which are decoded incor-

rectly in the latter case. We note that for the parallel and serial concate-

nated codes which are exemplified in [225], the improvement achieved

by the new bound is rather small.
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Yousefi and Khandani [224] derived a new upper bound on the block

error probability of binary linear block codes whose transmission takes

place over a binary-input AWGN channel, and where they are coher-

ently detected and ML decoded. To this end, they used a Bonferroni-

type inequality of the second degree [79, 100] (instead of the union

bound) to get an upper bound on the joint probability of decoding

error and the event that the received signal vector falls within the cor-

responding conical region around the transmitted signal vector. The

basic idea in [224] relies on the inequality which states that if {Ai}M
i=1

designates a set of M events, and AC
i designates the complementary of

the event Ai, then

Pr

(
M⋃

i=1

Ai

)

= Pr(A1) + Pr(A2 ∩ AC
1 ) + . . . + Pr(AM ∩ AC

1 . . . ∩ AC
M−1)

≤ Pr(A1) +
M∑

i=2

Pr(Ai ∩ AC
î
). (3.18)

where the indices î ∈ {1,2, . . . , i − 1} are chosen arbitrarily for 2 ≤
i ≤ M . Clearly, inequality (3.18) gives a tighter bound on the probabil-

ity of a union of events than the union bound in (2.1). The concept of

the inequality in (3.18) is applied to the first term in the right hand side

of (3.4) (instead of the union bound in (3.5) which gives a looser upper

bound on the joint probability of decoding error and the event where

the received signal vector is inside the corresponding conical region in

Fig. 3.1). Since the resulting upper bound in [224, Eq. (25)] cannot be

calculated in terms of the distance spectrum of the code (or ensem-

ble of codes), the upper bound is loosened in a way which makes it

dependent solely on the distance spectrum. From the final form of the

bound in [224, Eqs. (28), (30)–(33)] which involves the enlargement

of the original codebook by all n-tuples of Hamming weight w (the

parameter w is optimized numerically in the final form of the bound),

it is not clear that the latter bound is uniformly better than the TSB.

Yousefi and Khandani claim that their new bound is tighter than the

TSB [224], but it seems that proving such a claim is not trivial. We

note that for two short BCH codes, it was shown numerically that the
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TSB is slightly worse than the new bound in [224], but a general proof

for this claim is missing. Moreover, the upper bound in [224] is more

complex for calculation than the TSB because of the introduction of

the additional parameter (w) in the former bound which is optimized

numerically (due to the enlargement of the original codebook by all

vectors of Hamming weight w).

Recently, Mehrabian and Yousefi proposed in [131] an improved

version of the TSB. The derivation of their proposed bound follows

along the lines of the bound derived in [224], and the numerical results

provided by the authors shows that the resulting improvement of the

new bound as compared to the TSB is very marginal, but in parallel

its computational complexity as compared to the TSB is significantly

higher. It was recently demonstrated in [199] that these improvements

over the TSB do not have any implication on the error exponent.

A closed form expression for this error exponent, as well as its com-

parison with the error exponents which are associated with the union

bound and the Gallager bound [82], are exemplified in Section 3.2.10.1.

3.2.3 The tangential bound

The tangential bound was derived by Berlekamp [22, pp. 572–574]. It

can be seen as a particular case of the TSB (see Section 3.2.1) where

we let the radius r of the cone in Fig. 3.1 (see p. 24) tend to infinity.

The derivation of the bound relies on the inequality

Pe ≤ Pr(error, z1 ≤ γ0) + Pr(z1 > γ0) (3.19)

where z1 is the radial component of the noise vector (see Fig. 3.1), and

γ0 is an arbitrary constant which is later optimized, so as to obtain

the tightest bound within this form. To proceed, a union bound like

the one in (3.5) (see p. 25) is invoked in order to obtain an upper

bound on the first term in the RHS of (3.19). The second term in the

RHS of (3.19) is easy to calculate: since z1 ∼ N(0,σ2), then Pr(z1 >

γ0) = Q
(γ0

σ

)
. Referring to Fig. 3.1, we obtain the following inequality

from (3.19):

Pe ≤
∑

k

{
Sk Pr

(
z1 ≤ γ0, z2 ≥ βk(z1)

)}
+ Q

(γ0

σ

)
(3.20)
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and then from (3.2) (see p. 25) and (3.20), we obtain that

Pe ≤
∑

k



Sk

∫ γ0

−∞
Q




√
nEs − z1√
nEs − δ2

k
4

δk

2σ


 1√

2πσ
e−

z2
1

2σ2 dz1



 + Q

(γ0

σ

)
.

(3.21)

The particular choice of r →∞ in Fig. 3.1 is sub-optimal for the min-

imization of the TSB (i.e., this choice does not necessarily lead to the

tightest upper bound in (3.16)). It therefore follows that the tangen-

tial bound is inherently looser than the TSB (as was proved in [91,

Lemma 2]). The optimal value of γ0 in the RHS of (3.21) is calculated

by setting its partial derivative with respect to γ0 to zero, which gives

the following equation:3

∑

k



Sk Q




√
nEs − γ0√
nEs − δ2

k
4

δk

2σ






 = 1. (3.22)

In the following, we derive a slightly looser bound which is easier to

calculate than the tangential bound in (3.21). Let

u = z1 sinζ + z2 cosζ, v = −z1 cosζ + z2 sinζ (3.23)

be the noise components which are received by rotating z1 and z2,

respectively, in the clockwise direction by an angle ξ , π
2 − ζ; it is

evident from Fig. 3.1 that sinζ = δk

2
√

nEs
. The condition for an erroneous

pairwise ML decoding in Fig. 3.1 is equivalent to the satisfiability of

the condition u ≥ δk
2 . It is therefore easy to verify from (3.23) that if

the ML decoder decides in favor of si (instead of the transmitted signal

point s0) and z1 ≤ γ0, then

u ≥ δk

2
, v ≥

δ2
k
4 − γ0

√
nEs√

nEs − δ2
k
4

. (3.24)

Since the random variables u and v in (3.23) are un-correlated and

jointly Gaussian distributed with zero mean and variance σ2, then they

3 Due to the monotonicity of the Q function, the existence and uniqueness of a solution

γ0 in the implicit equation (3.22) is always insured; the monotonicity property makes the
numerical solution of γ0 in (3.22) an easy task (e.g., by using the bisection method).
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are statistically independent. Based on (3.20) and (3.24), we obtain the

following upper bound on the ML decoding error probability:

Pe ≤
∑

k



Sk Q

(
δk

2σ

)
Q




δ2
k
4 − γ0

√
nEs√

nEs − δ2
k
4 σ






 + Q

(γ0

σ

)
(3.25)

The bound stated in (3.25), together with the corresponding optimized

γ0 (computed by setting to zero the partial derivative of the function

in the RHS of (3.25) with respect to γ0), form a simplified version of

the tangential bound. Although the tangential bound (and hence, its

simplified version) are always looser than the TSB, they are both uni-

formly tighter than the union bound (as was proved in [91, Lemma 1]).

This statement is easily proved by letting γ0 in the simplified version of

the tangential bound (3.25) tend to infinity; if γ0 →∞, then we obtain

from (3.25) that Pe ≤
∑

k Sk Q
(

δk
2σ

)
which coincides with the union

bound, and therefore shows that the simplified version of the tangen-

tial bound (3.25) (and hence, the tangential bound in (3.21) and (3.22))

is always tighter than the union bound. We note that in the case where

γ0 → −∞, then (3.25) gives the trivial bound Pe ≤ 1; this shows that

similarly to the TSB (but in contrast to the union bound), the tan-

gential bound and its simplified version do not diverge at low SNR

values.

3.2.4 The Divsalar bound

In [50], Divsalar derived a simple upper bound on the ML decod-

ing error probability of linear block codes whose transmission takes

place over an AWGN channel. The simplicity of the bound stems from

the fact that it is given in closed form, and its calculation does not

involve numerical integration and parameter optimization. It is there-

fore widely used for calculating bounds on the thresholds of turbo-like

code ensembles under ML decoding, and for assessing the decoding

error probability of linear block codes which are communicated over a

binary-input AWGN channel (see, e.g., [1, 50, 52, 102, 103, 117, 118,

123, 174, 183]).

In the following, we present the Divsalar bound [50]. In the deriva-

tion of the bound here, we prove the final expressions of the Chernoff
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bounds in [50, Eqs. (14)–(17)] (their proofs are missing in [50]); on the

other hand, we skip the technical details related to the derivation of

the final closed form expressions for the optimized parameters in this

bound, and refer the reader to [50].

Consider an (n,k) binary linear code C with rate R = k
n , and let {Sd}

designate its distance spectrum. Suppose the code is BPSK modulated

and transmitted over an AWGN channel. Let ci ∈ C be an arbitrary

codeword, and let xi designate the vector where zeros and ones in the

codeword ci are mapped to +1 and −1, respectively (due to the BPSK

modulation). Let ci and y be an arbitrary transmitted codeword and

the corresponding n-dimensional vector at the output of the channel,

respectively. By scaling the vector y = (y1,y2, . . . ,yn), its components

satisfy for all j the equality

yj = γ xi(j) + nj

where γ ,

√
2REb
N0

, xi(j) is the j-th component of xi, and nj is a zero

mean and unit-variance Gaussian RV which is due to a scaling of the

noise sample. Due to the symmetry of the channel and the linearity

of the code, the conditional error probability does not depend on the

transmitted codeword, so we assume that the all-zero codeword (c0) is

the transmitted codeword. An error occurs under ML decoding if there

exists i ∈ {1,2, . . . ,2nR − 1} such that
∑n

j=1 yj xi(j) >
∑n

j=1 yj x0(j).

Now, let Cd (for d = 1,2, . . . ,n) designate the subset of all the codewords

of c ∈ C whose Hamming weight is d; the size of the subset Cd is clearly

equal to Sd. We designate by Ed the error event where there exists a

codeword c ∈ Cd which is chosen by the ML decoder in preference to

c0 (the all-zero codeword). Based on the union bound, the decoding

error probability is bounded by Pe ≤
∑

d>0 Pr
{
Ed|x0

}
. Divsalar relied

on the inequality

Pr
{
Ed|x0

}
≤ Pr

{
Ed,y ∈ R| x0

}
+ Pr

{
y /∈ R| x0

}
(3.26)

which was used earlier for the derivation of the TSB and the tangential

bound, and where (3.26) holds for any region R in the n-dimensional

observation space. Referring to Fig. 3.2, Divsalar defined the region R
to be an n-dimensional sphere with radius

√
nR2 (R is later optimized).

The center of that sphere is at ηγx0, a point along the line connecting
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O

R
√

nR

ηγx0

γxi

γx0

||xi − x
0||2 = 4d

y

√
nγ

Fig. 3.2 The geometric interpretation of the Divsalar bound [50].

the origin to the transmitted codeword x0 (see Fig. 3.2). Based on the

union bound and the choice of R in Fig. 3.2, we obtain the inequality

Pr
{
Ed|x0

}

≤
∑

ci∈Cd

Pr





n∑

j=1

yjx
i(j) ≥

n∑

j=1

yjx
0(j),

n∑

j=1

(
yj − ηγx0(j)

)2 ≤ nR2|x0





+ Pr





n∑

j=1

(
yj − ηγx0(j)

)2
> nR2|x0



 . (3.27)

Let

Z =
n∑

j=1

yj

(
xi(j) − x0(j)

)
, W =

n∑

j=1

(
yj − ηγx0(j)

)2 − nR2

then, based on the Chernoff bounds

Pr {Z ≥ 0,W ≤ 0} ≤ E
{
etZ+rW

}
, ∀ t ≥ 0, r ≤ 0 (3.28)
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and

Pr {W > 0} ≤ E
{
esW

}
, ∀ s ≥ 0 (3.29)

Divsalar obtained in [50] Chernoff upper bounds for the two terms in

the RHS of (3.27). We derive here the two Chernoff bounds. To this

end, one relies on the equality which states that if X ∼ N(m,σ2), then

E
[
esX2

]
=

e
m2s

1−2σ2s

√
1 − 2σ2s

, ∀ s <
1

2σ2
. (3.30)

Since it is assumed that the all-zero codeword is transmitted, then

x0 = (1,1, . . . ,1), and from (3.29) and (3.30) we obtain that

Pr





n∑

j=1

(
yj − ηγx0(j)

)2
> nR2 | x0





≤ E

[
e
s

(∑n
j=1

(
yj−ηγx0(j)

)2
−nR2

)

| x0

]
s ≥ 0

= e−nsR2
(
f1(γ,s,η)

)n
, e−nsR2

A , 0 ≤ s <
1

2
(3.31)

where

f1(γ,s,η) =
e

(1−η)2γ2s
1−2s

√
1 − 2s

. (3.32)

For ci ∈ Cd, there are d indices j ∈ {1,2, . . . ,n} where xi(j) = −1, and

for the other indices of j: xi(j) = 1. We therefore obtain from the

Chernoff bound in (3.28) and the moment generating function in (3.30)

that for an arbitrary codeword ci ∈ Cd, and for arbitrary t ≥ 0 and r ≤ 0

Pr





n∑

j=1

yj xi(j) ≥
n∑

j=1

yj x0(j),
n∑

j=1

(
yj − ηγx0(j)

)2 ≤ nR2 | x0





≤ E

[
e
t(

∑n
j=1 yjxi(j)−

∑n
j=1 yjx0(j))+r

(∑n
j=1

(
yj−ηγx0(j)

)2
−nR2

)

| x0

]

= e−nrR2
(
f1(γ,r,η)

)n−d


e

r
1−2r [(1−η)γ− t

r ]
2−2ηγt− t2

r

√
1 − 2r




d

. (3.33)
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The minimization of the exponent in (3.33) with respect to t gives that

t =
γ

2
(1 − 2rη)

(t is indeed non-negative, since r ≤ 0), so the substitution of t in (3.33)

yields that for all codewords ci ∈ Cd

Pr





n∑

j=1

yj xi(j) ≥
n∑

j=1

yj x0(j),
n∑

j=1

(
yj − ηγx0(j)

)2 ≤ nR2 | x0





≤
(
f1(γ,r,η)

)n−d (
f2(γ,r,η)

)d
e−nrR2

(3.34)

where the function f1 is introduced in (3.32) and

f2(γ,r,η) =
e−

γ2(1−2rη2)
2√

1 − 2r
. (3.35)

Eqs. (3.34) and (3.35) yield therefore the inequality

∑

ci∈Cd

Pr





n∑

j=1

yj xi(j) ≥
n∑

j=1

yj x0(j),
n∑

j=1

(
yj − ηγx0(j)

)2 ≤ nR2 | x0





≤ Sd

(
f1(γ,r,η)

)n−d (
f2(γ,r,η)

)d
e−nrR2

, e−nrR2
B, r ≤ 0. (3.36)

From (3.27), (3.31) and (3.36), the minimization of the resulting upper

bound on Pr
{
Ed|x0

}
with respect to R gives

e−nR2
=

(
−Br

As

) 1
s−r

and the substitution of this optimized value in this upper bound gives

Pr
{
Ed|x0

}
≤ 2h( s

s−r ) A− r
s−r B

s
s−r , 0 < s <

1

2
, r ≤ 0

where h(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy

function to the base 2. Instead of the parameters s,r and η, Divsalar

introduced in [50] the three new parameters

ρ =
s

s − r
, β = ρ(1 − 2r), ξ = ρ(1 − 2rη) (0 ≤ ρ ≤ 1, β ≥ 0, ξ ≥ 0).

(3.37)
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Let us define c , Es
N0

, the normalized Hamming weight as δ , d
n , and

the growth rate of the distance spectrum as rn(δ) ,
lnSd

n . The resulting

upper bound gets the form

Pr
{
Ed|x0

}
≤ 2h(ρ) e−nE(c,δ,β,ρ,ξ)

where

E(c,δ,β,ρ,ξ) = −ρ rn(δ) − ρ

2
ln

(
ρ

β

)
− 1 − ρ

2
ln

(
1 − ρ

1 − β

)

+ c

[
1 − (1 − δ)

ξ2

β
− (1 − ξ)2

1 − β

]
. (3.38)

The parameters ρ, ξ and β were optimized in [50, pp. 6–7] in order

to get the maximal error exponent in (3.38) (and hence, the tightest

upper bound within this form). Their optimal values are

ρ =
β

β + (1 − β)e2rn(δ)
, ξ =

β

β + (1 − β)(1 − δ)

where the optimal value of β is given by

β =

√
c(1 − δ)

δ

2

1 − e−2rn(δ)
+

(
1 − δ

δ

)2 [
(1 + c)2 − 1

]

− 1 − δ

δ
· (1 + c) (3.39)

and c , Es
N0

= REb
N0

.

Let dmin and dmax designate, respectively, the minimal and the max-

imal Hamming weight (d) so that Sd 6= 0. The final form of the Divsalar

bound on the block error probability is

Pe ≤
dmax∑

d=dmin

min

{
e
−nE(δ,β, Es

N0
)
,Sd Q

(√
2dEs

N0

)}
(3.40)

where

E(δ,β,
Es

N0
) = −rn(δ) +

1

2
ln

(
β + (1 − β)e2rn(δ)

)

+
βδ

1 − (1 − β)δ

Es

N0
(3.41)
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and β is given in (3.39). We note that if β = 1, the bound in (3.40)

reduces to the union bound, so since β in (3.39) is the optimized

value, then it follows immediately that the Divsalar bound is inher-

ently tighter than the union bound. To compute an upper bound

on the bit error probability, the distance spectrum Sd is replaced by∑nR
w=1

{(
w
nR

)
Aw,d

}
where Aw,d designates the number of codewords

whose Hamming weight is equal to d, and which are encoded by infor-

mation bits of Hamming weight w (i.e., Aw,d designates the input-

output weight enumerator of the code C).

The Divsalar bound provides a closed-form upper bound on the

threshold of the signal to noise ratio which yields vanishing block error

probability under ML decoding. By letting the block length tend to

infinity, the upper bound on the Eb
N0

threshold [50, Eq. (33)] is given by
(

Eb

N0

)

threshold

≤ 1

R
max
0<δ<1

(1 − δ)(1 − e−2r(δ))

2δ
(3.42)

where r(δ) = limn→∞ rn(δ) designates the asymptotic growth rate of

the distance spectrum.

3.2.5 Sphere upper bound

Herzberg and Poltyrev derived the sphere upper bound [90, Section 2A].

This bound relies on the basic inequality in (3.1) where the region R
is chosen to be a sphere whose center coincides with the signal point

(s0) which represents the transmitted signal. It is therefore a particular

instance of the Divsalar bound (see Section 3.2.4) where the value of

η in Fig. 3.2 is set to one (i.e., the case where the center of the sphere

coincides with the signal point which represents the transmitted code-

word).

Let z designate the AWGN vector, then we obtain from the (3.1)

and the union bound with respect to the sphere region that

Pe ≤ Pr(error, ||z|| ≤ r) + Pr(||z|| > r)

≤
∑

k

{
Sk · Pr(Ek, ||z|| ≤ r)

}
+ Pr(||z|| > r) (3.43)

where Ek is the error event at the output of the ML decoder for which

the Euclidean distance between the signal corresponding to the ML
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decision and the transmitted signal s0 is δk, and Sk designates the num-

ber of signal points at distance δk from s0. Since the joint probability

Pr(Ek, ||z|| ≤ r) is equal to zero for r < δk
2 , then the summation in

(3.43) can be restricted to values of k such that r ≥ δk
2 . Let δ1, δ2, . . . , δk

be the sequence of Euclidean distances from s0 which are ordered in an

increasing order, and let N(r) designate the maximal positive integer

k so that r > δk
2 . Then, we obtain from (3.43) that

Pe ≤ min
r>0

{
N(r)∑

k=1

{
Sk · Pr(Ek, ||z|| ≤ r)

}
+ Pr(||z|| > r)

}
(3.44)

Referring to Fig. 3.2, the sphere bound is obtained for the particular

case where η = 1, but the calculations of the probabilities in the RHS

of (3.44) are done exactly, without the need for Chernoff bounds. It is

also easily observed that in the limit where r →∞, the sphere bound

in (3.43) coincides with the union bound, so the sphere bound with the

optimized radius r in (3.44) cannot be worse than the union bound. On

the other hand, in the limit where r → 0, the sphere bound becomes

the trivial bound of unity (where on the other hand, the union bound

may exceed unity at low signal to noise ratios).

Let z1 be the component of the noise vector z in the direction of

the line connecting s0 with sk, and let Y ,
∑n

i=1 z2
i be the square of

the magnitude of the noise vector z. Due to the spherical symmetry

of the AWGN, we obtain that

Pr(Ek, ||z|| ≤ r)
}

= Pr

(
δk

2
≤ z1 ≤ r, Y ≤ r2

)

=

∫ r2

0

∫ r

δk
2

pz1,Y (z1,y)dz1dy (3.45)

where

pz1,Y (z1,y) =
(y − z2

1)
n−3

2 e−
y

2σ2 U(y − z2
1)√

π2
n
2 σnΓ

(
n−1

2

) (3.46)

is the joint probability density function of z1 and Y ; since z1 and

Y − z2
1 =

∑n
i=2 z2

i are i.i.d. the pdf in (3.46) is calculated by multi-

plying the normal pdf of z1 and the pdf of Y − z2
1 (which is a χ2

distribution with n − 1 degrees of freedom). The functions U and Γ in
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(3.46) are the unit step function and the complete Gamma function

(see (3.3)), respectively. Similarly, since the random variable Y is χ2

distributed with n degrees of freedom, then we obtain that the second

probability in the RHS of (3.44) is equal to

Pr(||z|| > r) = Pr(Y > r2)

=

∫ ∞

r2

y
n−2

2 e−
y

2σ2

2
n
2 σn Γ

(
n
2

) dy

= 1 − γ

(
n

2
,

r2

2σ2

)
(3.47)

where γ designates the incomplete Gamma function introduced in (3.7).

Finally, the sphere upper bound follows by the substitution of (3.45)–

(3.47) into (3.44). The optimization of the radius r in the sphere upper

bound (3.44) is obtained by a numerical solution of the equation

N(r)∑

k=1

Sk

∫ θk

0
sinn−2 φ dφ =

√
π Γ

(
n−1

2

)

Γ
(

n
2

) (3.48)

where

θk , cos−1

(
δk

2r

)
, k = 1,2, . . . ,N(r).

3.2.6 The Engdahl and Zigangirov bound

In [67], Engdahl and Zigangirov derived new upper bounds on the bit

and burst error probabilities for a convolutional code transmitted over

an AWGN channel. For the analysis, they consider simple error events

(i.e., a trellis which does not contain any shorter trellises which start

and end in the all-zero state). The derivation of their bounds is based

on partitioning the set of simple error events according to the length l

of the trellis path. Considering an antipodal modulation of the binary

symbols (where 0 and 1 are mapped to +
√

Es and −√
Es, respectively),

it is assumed w.o.l.g. that the all zero sequence is transmitted. Let us

assume that the convolutional code is of rate Rc = b
c , and let y

t
=

(y
(1)
t ,y

(2)
t , . . . ,y

(c)
t ) designate the received symbols at the output of the
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AWGN channel at time t. In order to analyze the probability of an

error event of length l, we introduce the random variable

X(l) =
l−1∑

t=0

c∑

i=1

y
(i)
t , l = m + 1,m + 2, . . .

where m is the memory length of the convolutional encoder (note that

m + 1 is the shortest possible error event). Since the all-zero codeword

is transmitted, X(l) is Gaussian distributed, and X(l) ∼ N(cl
√

Es,
clN0

2 ).

Let D be the set of indices (t, i) referring to the code symbols in the

relevant error event which are non-zero (where t = 0,1, . . . , l − 1 and

i = 1,2, . . . , c), and let

Y =
∑

(t,i)∈D
y

(i)
t .

The ML decoder (a Viterbi decoder) favors the error event sequence

referring to the above indices {t, i}, and therefore makes an erroneous

decision if and only if Y < 0. The Engdahl and Zigangirov bounds on

the bit and burst error probabilities of convolutional codes are based

on the basic inequality in (3.1) where the “good region” R which in

general depends on the length l corresponds to the case where the

random variable X(l) is above a certain threshold ul. This value ul is

later optimized individually for every l.

Since we consider the Gaussian channel, the conditional and

un-conditional pairwise error probabilities for an arbitrary value of

l (conditioned on the value of the random variable X(l)) are calcu-

lated exactly without the need for Chernoff bounds. The Engdahl and

Zigangirov bounds on the burst and bit error probabilities are stated

in [67, Theorems 1 and 2], and these bounds are uniformly tighter than

the respective union bounds on the burst and bit error probabilities.

We note that Craig’s identity (2.9) for the Q-function (see [40])

can be very useful in expressing the Engdahl and Zigangirov bound

in terms of the weight enumerator of the convolutional code, if such

a function is available. This approach provides an exact upper bound,

instead of the truncation which is used for the numerical calculation

of the bound in [67, Section 4]. In this respect, we note that McEliece

derived a general technique for calculating the weight enumerators of
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convolutional codes (see [127]). Finally, we note that the adaptation of

the bounding technique of Engdahl and Zigangirov in order to obtain

upper bounds on the block and bit error probabilities of linear block

codes is straightforward, and even leads to simpler bounds; for linear

block codes, there is no need to sum over all the possible lengths of

unmerged paths in the trellis diagram (as all the codewords have the

same block length). For linear block codes, it yields upper bounds which

are subject to one parameter optimization, and in fact, this optimized

parameter can be computed numerically as the single root of a related

optimization equation.

Consider the case where the codewords of a binary linear block

code are BPSK modulated and transmitted over a binary-input AWGN

channel. The concept of the derivation of the Engdahl and Zigangirov

bound in [67] yields a conceptually similar bound where the region

R in (3.1) forms a plane in the n-dimensional Euclidean space, where

the “good region” is associated with the case where the correlation

between the received vector and the transmitted codeword exceeds a

certain threshold (to be optimized in order to obtain the tightest bound

within this form). The resulting final form of this bound is the following:

Pe ≤
n∑

d=1

{
Sd

√
Es

πnN0

∫ ∞

η
Q

(√
2Es

N0

d

n(n − d)
t

)

·exp

(
−Es

N0

(t − n)2

t

)
dt

}
+ Q

(√
2Es

N0

n − η√
n

) (3.49)

where the optimal value of the parameter η, associated with the thres-

hold for the correlation between the received vector and the transmit-

ted codeword which determines in this case the region R in (3.1), is

calculated by solving numerically the equation

n∑

d=1

Sd Q

(√
2Es

N0

d

n(n − d)
η

)
= 1. (3.50)

The last equation is equivalent to [67, Eq. (27)]. We note that in [67],

Engdahl and Zigangirov obtained (3.50) in a different approach, but

their choice for η happens to yield the optimal value.

Since the geometrical regions R in (3.1) which correspond to the

Engdahl and Zigangirov bound and the tangential bound are both
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planes in the n-dimensional Euclidean space whose free parameter is

optimized in order to minimize the resulting upper bound, they actu-

ally can be shown to yield an equivalent bound [120]. The novelty in

the derivation of the Engdahl and Zigangirov bound in [67] is in the

adaptation of their bounding technique for obtaining upper bounds on

the bit error probability and burst error probability of ML decoded

convolutional codes (where on the other hand, the tangential bound

was derived by Berlekamp [22] as an upper bound on the block error

probability of binary linear block codes).

3.2.7 The 1966 Viterbi bound

The 1966 Viterbi bound was derived in [206, Section 8]. The general

idea of this bound is that the decoding error probability of a code

becomes worse by increasing the correlation between the codewords.

Hence, if we define ρmax to be the maximal correlation between any

two codewords of the code, then the decoding error probability of the

code is upper bounded by the error probability which results in if the

correlation between any two codewords of the code was equal to ρmax.

If the communication takes place over an AWGN channel, then we get

the following bound on the decoding error probability

Pe ≤ 1 − 1√
2π

∫ +∞

−∞
e−

x2

2

·


1 − Q


x +

√
2nREb(1 − ρmax)

N0







M−1

dx

(3.51)

where n and R are the block length and the rate of the code, and

M = 2nR is the number of codewords. If we assume that the codewords

of a binary linear block code C are BPSK modulated, then the maximal

correlation between any two codewords of C is directly linked to the

minimum distance (dmin) of the code, and satisfies the simple relation

ρmax = 1 − 2dmin

n
. (3.52)

The bound is actually the exact decoding error probability for binary

linear block codes with fixed composition (i.e., codes whose all code-

words (except the all-zero codeword) have constant Hamming weight)
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and in particular, it gives the exact decoding error probability for

bi-orthogonal codes and the dual of Hamming codes.

We note that if X is a zero mean, unit-variance, normal random

variable, then the following equality holds (see [205, Eq. (3.66)])

E
[
Q(µ + λX)

]
= Q

(
µ√

1 + λ2

)
, ∀ µ,λ ∈ R

and by setting λ = 1 in the latter equality, we obtain that
∫ ∞

−∞

1√
2π

e−
x2

2 Q(x + µ) dx = Q

(
µ√
2

)
, ∀ µ ∈ R.

Since from Jensen’s inequality

E
[
1 − (1 − y)M−1

]
≤ 1 −

(
1 − E[y]

)M−1

then, similarly to the approach in [99], we obtain from the Viterbi

bound (3.51) a looser but a simplified upper bound on the ML decoding

error probability:

Pe ≤ 1 −


1 − Q




√
nREb(1 − ρmax)

N0







M−1

. (3.53)

The bound in (3.53) is useful for the case of a small error probability,

and it circumvents the need for the numerical integration in (3.51).

3.2.8 Hughes’ bound

In [98], Hughes derived an upper bound on the ML decoding error prob-

ability for any signal set which is communicated over the AWGN chan-

nel. As opposed to upper bounds presented earlier in this section, note

that the transmitted signals in this case are not necessarily expected

to have equal energy, but are only assumed to be equally probable.

Let the signal set be represented by the signal points s0,s1, . . . ,sM−1

where M designates the cardinality of the signal set. The basic idea in

the derivation of the bound stems from the geometry of the decision

regions under ML decoding; each decision region is a polyhedron which

is formed by at most M − 1 supporting hyper-planes. Now, the com-

plementary of the decision region which corresponds to the transmitted
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signal is decomposed into a disjoint union of M − 1 truncated polyhe-

dral cones with vertices at the transmitted signal point (s0) (see [98,

Section 2]). Then, it is shown that the conditional error probability is

increased by replacing these M − 1 polyhedral cones by M − 1 circu-

lar cones with the same solid angles, and with positive axes which are

coincident with the rays from s0 through si (where i = 1,2, . . . ,M − 1).

Since the exact geometry of the decision regions is not available in gen-

eral, then the upper bound on the conditional ML decoding error prob-

ability is finally obtained by maximizing over all feasible solid angles

of the circular cones.

In order to state the bound explicitly, let n be the number of coor-

dinates of each signal point si (i = 0,1, . . . ,M − 1), and let us define

the function

Bn(θ,x) ,
Γ

(
n
2

)
√

π Γ
(

n−1
2

)
∫ θ

0
sinn−2 φ ·

(
1 − γ

(
n

2
,
x2 sec2 φ

2

))
dφ

(3.54)

where Γ(x) designates the Gamma function in (3.3), and γ(a,x) des-

ignates the incomplete Gamma function in (3.7). Intuitively, Bn(θ,x)

represents the probability that an n-tuple of i.i.d. Gaussian random

variables with zero mean and unit variance, lies in a circular cone of

half-angle θ truncated at distance x from the origin (we refer here to

the resulting infinite circular cone whose axis is the ray connecting the

two signal points s0 and si, and which starts at distance x from s0).

Useful recursive formulas for the calculation of the function Bn(θ,x)

are provided in [98, Section 3].

Let δi , ||si − s0|| be the Euclidean distance between si and s0

(where i = 1,2, . . . ,M − 1). The final form of the upper bound on the

conditional error probability is stated in [98, Proposition 2], and it

reads:

Pe|0 ≤
M−1∑

i=1

An

(
δi

α0
,

δi

2σ

)
(3.55)

where α = α0 is the unique positive solution of the equation

M−1∑

i=1

An

(
δi

α0
,0

)
= 1 (3.56)
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and

An(x,y) , Bn

(
Θ(x),y

)
, Θ(x) ,





cos−1(x) , |x| ≤ 1 ,

0 , |x| > 1 .

A nice property which follows easily from (3.56) is that the value of α0

does not depend on the noise variance σ2, so the value of α0 needs to

be calculated only one time for a particular code. It is also noted in

[98] that any value of α for which
∑M−1

i=1 An

(
δi
α ,0

)
≥ 1 yields a valid

upper bound in (3.55).

The bound of Hughes is always tighter than the union bound.

Hughes noted in [98] that his bound provides a significant improve-

ment over the union bound if M À n (i.e., when the cardinality of the

signal set is much larger than the block length of the code). In light of

this, the improvement of his bound over the union bound seems to be

primarily useful for lattice codes which are densely packed (the reader

is referred to the examples in [98, Section 4]).

3.2.9 Voronoi regions for binary linear block codes and
expurgated bounds

Consider a set of M points in R
n, C = {c1, c2, . . . , cM}, and the distance

measure d(u,v) = ||u − v||. If all vectors in R
n are grouped together

according to which of the points in C they are closest to, then the

Euclidean space R
n is partitioned into Voronoi regions. The Voronoi

region of a point ci ∈ C (say Ωi) is defined as the set of vectors in R
n

which are closest to this point, i.e.,

Ωi ,
{
x ∈ R

n | d(x,ci) ≤ d(x,c), ∀ c ∈ C
}

. (3.57)

In case of a tie between two or more points in C, the vectors belong

to more than one Voronoi region, but no vector belongs to the interior

of more than one Voronoi region. The Voronoi regions of a block code

govern many aspects of the code performance on an AWGN channel,

and they play a central role in the performance analysis of soft-decision

decoding algorithms. A Voronoi region, as defined by the set of inequal-

ities in (3.57), is the intersection of M − 1 half-spaces, and is there-

fore a convex region in n dimensions. It has usually fewer facets than
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M , which means that part of the inequalities in (3.57) are redundant.

In this case, the region Ωi can be represented by a subset of these

inequalities, i.e., there exists a subset Ni ⊆ C such that

Ωi ,
{
x ∈ R

n | d(x,ci) ≤ d(x,c), ∀ c ∈ Ni

}
(3.58)

and the minimal set Ni for which the RHS of (3.58) is equal to the

Voronoi region in (3.57) is called the set of the Voronoi neighbors of

ci. An equivalent definition of Voronoi neighbors which is given in [2]

states that the two points ci, cj ∈ C are neighbors if

∃ x ∈ R
n : d(x,ci) = d(x,cj) < d(x,c) , ∀ c ∈ C\{ci, cj} (3.59)

which means that the Voronoi regions of ci and cj have an (n − 1)-

dimensional facet in common. A related concept which is considered

in [2] is Gabriel neighborhood which depends in general on a looser

condition. These two points are said to be Gabriel neighbors if the

condition in (3.59) is satisfied for the vector x which is the halfway

between ci and cj , i.e., if

d(mi,j , ci) = d(mi,j , cj) < d(mi,j , c) , ∀ c ∈ C\{ci, cj} (3.60)

where mi,j , 1
2 (ci + cj). The geometrical interpretation of a pair of

Gabriel neighbors is that the straight line connecting these two points

goes directly from one Voronoi region to the other, without touching a

third Voronoi region. By comparing (3.59) and (3.60), it follows that

Gabriel neighbors are also Voronoi neighbors. The central theorem in

[2] states that all Voronoi neighbors of a codeword in a binary linear

block code are also its Gabriel neighbors. The proof of this theorem

relies on both the linearity of the code and its binary alphabet. Next,

it is shown in [2] that for a binary code, the condition for two code-

words to be Gabriel neighbors depends only on the positions where both

codewords have the same values; two codewords are Gabriel neighbors

if and only if there is no other codeword which has the same values in

these positions. Therefore, a codeword c is a Gabriel neighbor of the

all-zero codeword if and only if there is no other codeword having zeros

where c has zeros. Since for a binary linear block code whose transmis-

sion takes place over an AWGN channel, one can assume without any
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loss of generality that the all-zero codeword is the transmitted code-

word, then we can use the latter property to determine all the Gabriel

neighbors of the all-zero codeword. The obvious way to perform this

test for the Gabriel neighborhood of an arbitrary codeword c to the

all-zero codeword is to generate all the codewords in the code, compar-

ing each one of them to c and checking if there exists a codeword with

zeros in all the positions where c has zeros. The computational com-

plexity of this approach is O(2kn) which is not so feasible for practical

codes. A more efficient algorithm for binary linear block codes is pre-

sented in the appendix of [2]. The general concept of this algorithm is

that instead of generating all codewords, the algorithm finds the num-

ber of codewords having zeros in certain positions; it is done by linear

row operations of the generator matrix G of the code. This matrix is

brought into another valid generator matrix of the same code, and it

includes two parts: the last r rows contain codewords with the specified

zero pattern, and the first k − r rows of the new generator matrix are

such that no linear combination of these rows gives this zero pattern.

Then, a total of 2r codewords, including the all-zero codeword and the

codeword c, contain the specified zero pattern. According to the test

above for Gabriel neighborhood, the codeword c is a neighbor of the

all-zero codeword if and only if r = 1. The computational complexity

of this algorithm for deciding if a single codeword is a neighbor of the

all-zero codeword is O(n2k), which forms a considerable reduction in

complexity unless the dimension (k) of the code is very small. There-

fore, because of the equivalence between Gabriel neighbors and Voronoi

neighbors for a binary linear block code, the computational complex-

ity which is involved with this algorithm for the determination of the

Voronoi region of the all-zero codeword is O(2k · n2k). A further simpli-

fication in the characterization of the Voronoi neighbors of the all-zero

codeword stems from the observation in [2] that all the codewords of

Hamming weight up to 2dmin − 1 (where dmin designates the minimum

distance of the binary linear block code) are necessarily neighbors of the

all-zero codeword. It is also proved in [3] that for a general binary linear

block code, all codewords of Hamming weight above n − k + 1 are nec-

essarily not neighbors of the all-zero codeword; this yields that for the

AWGN channel, the union bound (or any improved upper bound on the
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ML decoding error probability which relies on the distance spectrum

of the code) can be truncated so that codewords of Hamming weight

above n − k + 1 are not taken into consideration.

The distance spectrum (or weight distribution) of a binary linear

code served earlier in this section for the derivation of upper bounds

on the ML decoding error probability. Since the set of neighbors of a

codeword may be smaller than the total number of codewords, then it

is useful to look at the set of neighbors N0 of the all-zero codeword (see

Eq. (3.58)), and define the local distance spectrum to be the cardinality

of the codewords in the set N0 as a function of their Hamming weights.

For a binary linear block code C, let

Sd , |{c ∈ C : wH(c) = d}| , d = 0, . . . ,n (3.61)

and

Ld , |{c ∈ N0 : wH(c) = d}| , d = 0, . . . ,n (3.62)

designate the (full) distance spectrum and the local distance spectrum

of the code C, respectively, where wH(x) stands for the Hamming

weight of a vector x. Clearly, Ld ≤ Sd for d = 0,1, . . . ,n. Since all code-

words of Hamming weight up to 2dmin − 1 are neighbors of the all-zero

codeword, then the equality Ld = Sd holds for d = 0,1,2, . . . ,2dmin − 1.

Finally, since all the codewords of Hamming weight above n − k + 1

are not neighbors of the all-zero codeword, then Ld ≡ 0 for d = n − k +

2,n − k + 3, . . . ,n.

Relations between the local distance spectrum of a binary linear

block code, its extended code and its even weight subcode are presented

in [220]. Using these relations, the local distance spectra of some BCH

and Reed-Muller codes have been precisely derived in [220].

The expurgated union bound of a binary linear block code which is

BPSK modulated and transmitted over the AWGN channel gets the

form (see [3, Eq. (10)])

Pe ≤
n−k+1∑

d=dmin

Ld Q

(√
2dREb

N0

)
. (3.63)

Even without knowing the exact set of neighbors of the all-zero code-

word, since the expurgated union bound does not include codewords of
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Hamming weight above n − k + 1, then the error probability is upper-

bounded by

Pe ≤
n−k+1∑

d=dmin

Sd Q

(√
2dREb

N0

)
(3.64)

which is still a better upper bound than the original (i.e., the non-

expurgated) union bound.

Considering the Voronoi regions for binary linear block codes, it

is natural to ask what is the fraction of codewords of a binary linear

block code which are neighbors of a certain codeword (e.g., the all-zero

codeword). This question is especially interesting for sufficiently long

codes where it is of interest to characterize the asymptotic fraction of

the codewords which are neighbors of the all-zero codeword. For an

arbitrary binary linear block code C, the fraction of codewords which

are neighbors of the all-zero codeword is called the neighbor ratio, and

following the notation in [3], it is designated here by Γ(C). According to

[3, Theorem 5], for any binary linear block code C whose rate satisfies

the inequality R > 1
2 + 1

n (i.e., its rate is only slightly above one-half),

the neighbor ratio is upper bounded by

Γ(C) ≤
(

R − 1

2
− 1

n

)−2 1

4n

so if R > 1
2 and we let the block length tend to infinity, then the

neighbor ratio tends to zero. On the other hand, it was proved in

[3, Theorem 8] that if R < 1
2 and ε > 0 (ε can be chosen arbitrarily

small), then the fraction of binary linear block codes of length n and

rate R whose neighbor ratio is above 1 − ε tends to 1 as n →∞. These

observations show the nice property that R = 1
2 forms a threshold with

respect to the asymptotic neighbor ratio of binary linear block codes;

for code rates above this threshold, the neighbor ratio tends asymp-

totically to zero, and for code rates below this threshold, the neighbor

ratio tends asymptotically to unity with probability 1. Therefore, the

expurgated upper bounds on the ML decoding error probability are

expected to be especially effective for high code rates.

The characterization of the local distance spectra of random linear

block codes, Hamming codes and the second-order Reed Muller codes is
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presented in [6, Theorems 2.2, 2.7 and 2.9]. For the ensemble of random

q-ary linear block codes whose parity-check matrices have independent

and equiprobable entries, the average local distance spectrum is given

in [6, Theorem 2.2], and it reads

Ld =





(
n
d

) (q−1)d

qn−k

∏d−2
i=0 (1 − q−(n−k−i)) for d ≤ n − k + 1,

0 otherwise.

(3.65)

The average distance spectrum of this ensemble can be easily derived.

Since the probability that a given vector satisfies a random parity-check

equation is 1
q , then the probability that this vector is contained in a

random linear block code with n − k parity-check equations is q−(n−k),

and the average distance spectrum of such an ensemble is therefore

given by

Sd =

(
n

d

)
(q − 1)d

qn−k
. (3.66)

In the continuation of this section, we consider the effect of such an

expurgation on the tightness of the upper bounds on the error proba-

bility, and compare the tightness of the expurgated union bound to the

expurgated TSB. From these comparisons between the union bound

and the TSB with and without expurgation, one can study how much

of the gain is due to the expurgation of non-neighbor codewords, and

how much is gained due to the improvement in the tangential-sphere

bounding technique as compared to the union bound. The effect of

both improvements is expected to be more pronounced in the low SNR

region, as shown in Figs. 3.3 and 3.4.

In Fig. 3.3, we refer to ensembles of random binary linear block

codes with fixed block length (n) and rate (R), and whose parity-check

matrices have independent and equiprobable entries. The average local

distance spectrum of random binary linear block codes is given in (3.65)

for q = 2, so we rely on this result for the evaluation of the expurgated

union bound and the expurgated TSB. From the two plots in Fig. 3.3,

it follows that for both bounds (i.e., the union bound and the TSB), the

expurgation of non-neighbor codewords of the all-zero codeword pro-

vides a certain improvement on their tightness. Consider the ensemble

of binary linear block codes of length n = 100 and code rate R = 0.95
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Fig. 3.3 Comparison between upper bounds on the block error probability under soft-
decision ML decoding. The performance is evaluated for the ensemble of random binary lin-

ear block codes whose parity-check matrices have independent and equiprobable entries. The
codes are BPSK modulated, transmitted over a binary-input AWGN channel, and coher-
ently detected. The union bounds are compared to the tangential-sphere bounds (TSBs)
with and without expurgation (i.e., with respect to the local and full distance spectrum,

respectively). We refer to the ensembles of codes whose block length is n = 100 bits and the
rate is R = 0.95 bits per channel use (upper plot), and the ensemble whose block length is
n = 1000 bits and the rate is R = 0.995 bits per channel use (lower plot).
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Fig. 3.4 A comparison between two upper bounds which refer to the ensemble performance
of serially concatenated codes where the outer code is the primitive (127, 99, 29) RS code,

and the inner code is a random binary linear (8, 7) block code. The encoded bits are BPSK
modulated, transmitted over the AWGN channel and coherently detected. The decoding is
done in two stages: the (8, 7) binary linear block code is soft-decision ML decoded, and the
output of its decoder is provided to the RS decoder for a hard-decision ML decoding. The

looser bound is based on a union bound with respect to the inner code, and the improvement
is achieved by expurgating the union bound.

bits per channel use. For a block error probability of 0.1, the expur-

gated TSB and the expurgated union bound provide a gain of 0.07 dB

and 0.10 dB over their non-expurgated versions, respectively (see the

upper plot in Fig. 3.3). At a block error probability of 10−2, the expur-

gated bounds give a gain of 0.02 dB as compared to the non-expurgated

bounds (it is shown in this figure that the TSB and the union bound

coincide at a block error probability of 10−2, and the only improvement

on the tightness of these bounds is made by the expurgation of the dis-

tance spectrum). For the ensemble of random binary linear block codes

of length n = 1000 and code rate R = 0.995 bits per channel use, then

even at a high block error probability (e.g., a block error probability

of 0.1), the union bound and the TSB coincide (see the lower plot in

Fig. 3.3); however, the expurgated bounds provide a gain of 0.08 dB

over the non-expurgated bounds at a block error probability of 0.1.
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We note that for linear block codes, the expurgation of the distance

spectrum yields an improvement on the tightness of the upper bounds

only for high rate codes; to this end, for longer binary linear block

codes, their rate should be made closer to 1 (in Fig. 3.3, we consider

the case where the number of the redundant bits in both ensembles is

equal to 5).

Fig. 3.4 presents a possible application of the concept of expur-

gation. Let us consider an ensemble of serially concatenated codes

where the outer code is a primitive Reed-Solomon (RS) code with sym-

bols from the Galois field GF (2m) (so, its block length is N = 2m − 1

symbols), and the inner code is chosen at random from the ensemble

of binary linear block codes which extend every symbol of m bits to

a codeword of m + 1 bits (we set the dimension of the inner code to

m bits, and the block length of this inner code is equal to m + 1).

Let us choose m = 7, so the block length of the primitive RS code is

N = 127 symbols, and we set the dimension of this code to K = 99. In

this way, we obtain a 14-error-correcting RS code, and the inner code of

the ensemble of serially concatenated codes is chosen at random from

the ensemble of (8, 7) binary linear block codes. We assume that the

encoded bits are BPSK modulated, transmitted over the AWGN chan-

nel and coherently detected. The decoding is done in two stages: the

(8, 7) binary linear block code which is soft-decision ML decoded, and

then the output of the inner decoder is forwarded to the RS decoder

for a hard-decision ML decoding (hence, the RS decoder can correct up

to t = bdmin−1
2 c = bN−K

2 c = 14 symbols). We use here the union bound

on the decoding error probability of the inner code which then serves

as an upper bound on the a-priori error probability of the symbols of

the RS code. The decoding error probability of the considered ensemble

of serially concatenated codes therefore satisfies

Pe ≤ 1 −
t∑

i=0

(
N

i

)
pi(1 − p)N−i (3.67)

where p designates the value of the union bound which refers to the

inner code under soft-decision ML decoding. We compare here the

bound in (3.67) with the regular union bound with respect to the inner

code, and an improved bound which is obtained by combining (3.67)
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with the expurgation of the union bound. The local distance spectrum

of the ensemble of random binary linear block codes is provided by

in (3.65) for q = 2, and we use this result (as before) for the calcula-

tion of the expurgated union bound. The improved bound in Fig. 3.4,

which relies on the expurgated union bound, provides a gain of 0.17 dB,

0.12 dB and 0.10 dB for a block error probability of 10−2, 10−3 and

10−4, respectively.

3.2.10 Error exponents of the Chernoff versions of
various upper bounds

In his paper [50], Divsalar derived simplified Chernoff versions of some

upper bounds on the ML decoding error probability. In Section 4,

these bounds are demonstrated to be some particular cases of the 1961

Fano-Gallager bounding technique. These simplified versions include

the Chernoff version of the tangential-sphere bound (TSB) of Poltyrev,

the Chernoff version of the tangential bound and the Chernoff ver-

sion of the sphere bound. It is demonstrated in this sub-section that

the Chernoff versions of the tangential bound and the sphere bound

incur error exponents which are looser than the error exponent of the

simple bound of Divsalar, and that the error exponent of the TSB actu-

ally coincides with the error exponent of the simple bound of Divsalar

[50]. The former result actually indicates that for ensembles of codes

with large block lengths, the bound of Divsalar is significantly tighter

that the tangential bound and the sphere bound, and the latter result

indicates that the TSB and the Divsalar bound possess the same expo-

nential behavior when we let the block length tend to infinity.

3.2.10.1 Error exponent of a simplified TSB and its

connection to Divsalar’s bound

In [50, Section 4.D], Divsalar derived a simplified TSB which is based

on the Chernoff bounding technique, and he showed that the error

exponent of the simplified TSB coincides with the error exponent of his

bound (see Section 3.2.4 here). The derivation of the simplified TSB

and the comparison between its error exponent and the error exponent



60 Improved Upper Bounds for Gaussian and Fading Channels

of the Divsalar bound are outlined in [50, Section 4.D]; due to the

importance of this result, we prove it here in detail.

For the derivation of a simplified TSB, we calculate Chernoff bounds

on the two types of probabilities in the RHS of (3.6). We note that

these probabilities are calculated exactly in Section 3.2.1, but the final

form of the TSB in (3.16) involves numerical integrations and also a

numerical solution of an associated optimization equation (3.12), so it

is therefore not expressed in closed form.

We start now the derivation of a Chernoff version of the TSB. Let

us substitute c , Es
N0

and η , tan2(θ). Based on the geometrical inter-

pretation of the TSB in Fig. 3.1 (see Section 3.2.1), we obtain that

Pr
(
y /∈ Cn(θ)

)
= Pr

(∑n
i=2 z2

i > r2
z1

)

≤ E
[
es′(

∑n
i=2 z2

i −r2
z1

)
]

s′ ≥ 0

=
∏n

i=2 E
[
es′z2

i

]
· E

[
e−s′r2

z1

]

(a)
=

(
1√

1−2σ2s′

)n−1
· E

[
e−s′r2

z1

]

(b)
=

(
1√

1−2σ2s′

)n−1
· E

[
e−s′η(z1−

√
nEs)

2]

(c)
=

(
1√

1−2σ2s′

)n−1
· e

− nηEss′
1+2ησ2s′√
1+2ησ2s′

=
(

1√
1−2s

)n−1
· e

−nηEss/σ2

1+2ηs√
1+2ηs

s , σ2s′ ≥ 0

=
(

1√
1−2s

)n−1
· e

− 2nηcs
1+2ηs√
1+2ηs

=
√

1−2s
1+2ηs

(
1√

1−2s

)n
e
− 2nηcs

1+2ηs

where equality (a) follows from (3.30) and since zi ∼ N(0,σ2) for

i = 1,2, . . . ,n (where σ2 = N0
2 ), equality (b) follows from (3.2) and

the substitution η = tan2(θ), and equality (c) follows from (3.30) and

since z1 − √
nEs ∼ N(−√

nEs,
σ2

2 ). We therefore obtain the following

Chernoff upper bound on the probability that the received vector y
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falls outside the cone Cn(θ) in Fig. 3.1

Pr
(
y /∈ Cn(θ)

)
≤

√
1 − 2s

1 + 2ηs
· e−nE1(c,s,η) (3.68)

where

E1(c,s,η) ,
2ηcs

1 + 2ηs
+

1

2
ln(1 − 2s) , 0 ≤ s <

1

2
. (3.69)

Based on the notation in Section 3.2.1 and Fig. 3.1, the Chernoff

bounding technique gives the following upper bound on the joint prob-

ability:

Pr
(
Ek(z1),y ∈ Cn(θ)

)

= Pr

(
βk(z1) ≤ z2,

n∑

i=2

z2
i ≤ r2

z1

)

= Ez1

[
Pr

(
βk(z1) ≤ z2,

n∑

i=2

z2
i ≤ r2

z1
|z1

)]

≤ Ez1

[
es′(z2−βk(z1))+t′(

∑n
i=2 z2

i −r2
z1

)|z1

]
s′ ≥ 0, t′ ≤ 0

= E
[
e−s′βk(z1)−t′r2

z1

]
E

[
es′z2+t′z2

2

] n∏

i=3

E
[
et′z2

i

]
. (3.70)

Since zi ∼ N(0,σ2), then we obtain from (3.30) that

E
[
es′z2+t′z2

2

]
= e−

(s′)2
4t′ E

[
et′(z2+ s′

2t′ )
2
]

= e−
(s′)2
4t′ · e

(
s′
2t′

)2
t′

1−2σ2t′

√
1 − 2σ2t′

=
1√

1 − 2σ2t′
· e

σ2(s′)2
2(1−2σ2t′) (3.71)

and

E[et′z2
i ] =

1√
1 − 2σ2t′

i = 3,4, . . . ,n, t′ ≤ 0. (3.72)
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By substituting (3.71) and (3.72) into (3.70), we obtain that for t′ ≤ 0

and s′ ≥ 0

Pr
(
Ek(z1),y ∈ Cn(θ)

)
≤ E

[
e−s′βk(z1)−t′r2

z1

]

·
(

1√
1 − 2σ2t′

)n−1

e
σ2(s′)2

2(1−2σ2t′) (3.73)

so it only remains to calculate the statistical expectation with respect

to z1 ∼ N(0,σ2) for the term appearing in the RHS of (3.73). Let us

define δ , k
n as the normalized Hamming weight of a competitive code-

word (where we assume without any loss of generality that the all-zero

codeword is transmitted). For BPSK modulated signals, the Euclidean

distance between the considered pair of codewords is δk = 2
√

kEs, and

with the substitution η , tan2(θ), we obtain from (3.2) that

βk(z1) =

√
δ

1 − δ
(
√

nEs − z1) , rz1 =
√

η (
√

nEs − z1). (3.74)

Substituting (3.74) in the RHS of (3.73) gives

−s′βk(z1) − t′r2
z1

= −t′η(z1 − A)2 + B

where

A ,
s′

2t′η

√
δ

1 − δ
+

√
nEs , B ,

(s′)2

4t′η
δ

1 − δ
(3.75)

and then, the use of (3.30) gives the equality

E
[
e−s′βk(z1)−t′r2

z1

]
=

e
B− A2ηt′

1+2ησ2t′

√
1 + 2ησ2t′

1 + 2ησ2t′ > 0. (3.76)

From (3.73) and (3.76), we obtain the Chernoff upper bound

Pr
(
Ek(z1),y ∈ Cn(θ)

)
≤ 1√

1 + 2ησ2t′

(
1√

1 − 2σ2t′

)n−1

· e
B− A2t′η

1+2ησ2t′ +
σ2(s′)2

2(1−2σ2t′) (3.77)

where t′ ≤ 0, s′ ≥ 0, 1 + 2ησ2t′ > 0, and the parameters A and B are

given in (3.75). We now calculate the optimal value of s′ ≥ 0 which
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achieves a minimal value for the upper bound in (3.77). By substitut-

ing A and B in (3.75) into the exponent in the RHS of (3.77), and

introducing the new parameter v , σ2t′, we obtain that the following

equality holds

B − A2t′η
1 + 2ησ2t′

+
σ2(s′)2

2(1 − 2σ2t′)
= α(s′)2 − βs′ − γ (3.78)

where 



α , σ2

2

(
1

1+2vη
δ

1−δ + 1
1−2v

)

β , 1
1+2vη

√
δ

1−δ

√
nEs

γ , nEs
σ2

vη
1+2vη .

(3.79)

We note that since v ≤ 0 and 1 + 2vη > 0, then α,β > 0. Hence, the

minimal value of the parabola in the RHS of (3.78) is achieved at

s′ = β
2α ≥ 0, and the value of the parabola at this point is equal to

−β2

4α
− γ = −nc

(
2vη + δ

1−δ (1 − 2v)

1 + 2vη + δ
1−δ (1 − 2v)

)
, c ,

Es

N0
. (3.80)

From Eqs. (3.77), (3.78) and (3.80), we obtain the Chernoff upper

bound

Pr
(
Ek(z1),y ∈ Cn(θ)

)
≤

√
1 − 2v

1 + 2vη

(
1√

1 − 2v

)n

·e
−nc·

(
2vη+ δ

1−δ
(1−2v)

1+2vη+ δ
1−δ

(1−2v)

)

.

The first term in the RHS of (3.6) (see p. 26) therefore satisfies the

inequality

Sk Pr
(
Ek(z1),y ∈ Cn(θ)

)
≤

√
1 − 2v

1 + 2vη
e−nE2(c,v,δ,η) (3.81)

where




E2(c,v,δ,η) , −rn(δ) + 1
2 ln(1 − 2v) + c ·

(
2vη+ δ

1−δ
(1−2v)

1+2vη+ δ
1−δ

(1−2v)

)

δ , k
n , rn(δ) ,

ln(Sk)
n

.

(3.82)
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The constraints on the exponents E1 and E2 in (3.69) and (3.82),

respectively, are

s ≥ 0, v ≤ 0, 1 − 2s > 0, 1 + 2vη > 0. (3.83)

Rather than taking the derivative with respect to η in order to minimize

the upper bound, for large n, Divsalar simply solved the equation

E1(c,s,η) = E2(c,v,δ,η) (3.84)

where the two exponents E1 and E2 are introduced in (3.68) and (3.81),

respectively.

In order to simplify the calculations in the continuation of the anal-

ysis, a new set of four parameters (ρ,β,ξ and d) is introduced to replace

the previous set of four parameters (s,v,η and δ):

ρ ,
s

s − v
, β , ρ(1 − 2v), ξ ,

1

1 + 2sη
, d ,

δ

1 − δ
. (3.85)

From (3.83), the following constraints on the new set of parameters

follow easily

0 ≤ ρ ≤ 1, 0 ≤ β ≤ 1,
1

1 + η
≤ ξ ≤ 1, 0 ≤ d ≤ η (3.86)

where the constraint on d follows from the fact that the parameter δ

(i.e., the normalized Hamming weight) appears only in the exponent

E2 in (3.82); this exponent corresponds to the case where rz1 ≥ βk(z1),

so that the inequality d ≤ η follows directly from (3.74). Armed with

the new set of parameters in (3.85), it is straightforward to show that

the exponents E1 and E2 in (3.69) and (3.82), respectively, are trans-

formed to

E1(c,β,ρ,ξ) = c − cξ +
1

2
ln

(
1 − β

1 − ρ

)
(3.87)

and

E2(c,β,ρ,ξ,d) = c − cρξ

(1 + βd)ξ − (1 − ρ)
+

1

2
ln

(
βe−2rn(δ)

ρ

)
.

(3.88)
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From (3.84), (3.87) and (3.88), it is straightforward to show that

cξ − cρξ

(1 + βd)ξ − (1 − ρ)
+ a = 0, a ,

1

2
ln

(
β(1 − ρ)e−2rn(δ)

ρ(1 − β)

)
.

(3.89)

By solving the quadratic equation in ξ, its value ξ (which should be

non-negative) is

ξ =
c − (1 + βd)a +

√(
c − (1 + βd)a

)2
+ 4c(1 − ρ)(1 + βd)a

2c(1 + βd)
(3.90)

This implies the coincidence of the two exponents in (3.87) and (3.88)

(i.e., the requirement in (3.84) is fulfilled for this value of ξ).

The optimization of the parameter ρ is obtained by maximizing the

exponent E1 in (3.87) with respect to ρ, and showing that ∂E1
∂ρ = 0 if

a = 0 (where a is introduced in (3.89)). This implies that the optimal

value of ρ is given by

ρ =
βe−2rn(δ)

1 − β + βe−2rn(δ)
. (3.91)

Since the optimization with respect to ρ yields that a = 0, then we

obtain from (3.90) that ξ = 1
1+βd , and it follows from (3.85) and (3.87)

that

E1 =
cβd

1 + βd
+

1

2
ln

(
1 − β + βe−2rn(δ)

)
, d ,

δ

1 − δ
. (3.92)

Finally, the maximization of the exponent E1 with respect to β (which

follows by solving the equation ∂E1
∂β = 0) gives

β =
1 − δ

δ

[√
c

c0(δ)
+ (1 + c)2 − 1 − (c + 1)

]
,

c0(δ) ,

(
1 − e−2rn(δ)

) (
1 − δ

2δ

)
. (3.93)

Surprisingly, this yields that the error exponent of the Chernoff ver-

sion of the TSB in (3.92) is equal to the error exponent of the Divsalar

bound in (3.41); this is true since also the optimized values of β in

(3.39) and (3.93) coincide. This insightful result was made by Divsalar
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in [50, Section 4.D], and provides a closed form expression for the error

exponent of the TSB. This error exponent is given by (3.92) with the

parameters introduced in (3.93). For the error exponent in the limit

where we let the block length tend to infinity, rn(δ) is replaced by its

asymptotic limit, i.e.,

r(δ) , lim
n→∞

rn(δ).

For the ensemble of fully random binary linear block codes of rate

R and block length n, the asymptotic growth rate of the distance spec-

trum is given by

r(δ) = h(δ) − (1 − R) ln2

where h designates the binary entropy function to the natural base.

Fig. 3.5 shows the error exponents associated with the random coding

bound of Gallager [82] (to be presented in Section 4.2.1), the TSB and

the union bound. It is clear from this figure that as the value of the

code rate is increased, the gap between the error exponents of the TSB

and the random coding bound of Gallager becomes more pronounced.

The random coding error exponent of Gallager is positive for all the

values of Eb
N0

above the value which corresponds to the channel capacity;

according to the plots in Fig. 3.5, the error exponent of the TSB does

not have this desired property of achieving capacity for fully random

block codes.

3.2.10.2 Error exponent of a simplified tangential bound

In [50, Section 4.B], Divsalar derived the error exponent of the Chernoff

version of the tangential bound. The error exponent of this simplified

bound is of the form

E(c,δ,ρ) = −ρ rn(δ) +
δρc

1 − δ + δρ
, c ,

Es

N0
, 0 ≤ ρ ≤ 1 (3.94)

where δ is the normalized Hamming weight, and rn(δ) is the normalized

logarithm of the distance spectrum (see (3.82)). The optimal value of

ρ which maximizes the error exponent is given by

ρ =





1, 0 ≤ rn(δ)
c ≤ δ(1 − δ) ,

√
(1−δ)c
δ rn(δ) − 1−δ

δ , δ(1 − δ) ≤ rn(δ)
c ≤ δ

1−δ .
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Fig. 3.5 Comparison between the error exponents for fully random block codes. These
error exponents are based on the union bound (UB), the tangential-sphere bound (TSB)

of Poltyrev [152] (which, according to [199], the error exponent of the TSB is identical to
the error exponents of Divsalar’s bound [50], the improved TSB and AHP bounds [224]),
and the random coding bound (RCE) of Gallager [82] (see Section 4.2.1). The upper and
lower plots refer to code rates of 0.5 and 0.9 bits per channel use, respectively, considering

transmission over a binary-input AWGN channel. The error exponents are plotted versus
the reciprocal of the energy per bit to the one-sided spectral noise density.
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Finally, the substitution of the optimal value of ρ into (3.94) gives the

error exponent of the simplified tangential bound

E(c,δ) =





cδ − rn(δ), 0 ≤ rn(δ)
c ≤ δ(1 − δ) ,

(√
c −

√
rn(δ) (1−δ)

δ

)2

, δ(1 − δ) ≤ rn(δ)
c ≤ δ

1−δ .

(3.95)

We note that the error exponent in (3.95) coincides with the error

exponent of the Viterbi & Viterbi bound [209] (to be presented in

Section 4.4.2).

In the asymptotic case where the block length goes to infinity, we

obtain from (3.95) the following upper bound on the threshold under

ML decoding
(

Eb

N0

)

threshold

≤ 1

R
max
0<δ<1

(1 − δ) r(δ)

δ
(3.96)

where r(δ) , limn→∞ rn(δ). Since 1 − e−x < x for x > 0, we obtain that

the upper bound given in (3.42) is tighter than the one in (3.96). There-

fore, the common upper bound on the threshold which is provided

by the simplified TSB and Divsalar’s bound is tighter than the cor-

responding upper bound which follows from the simplified tangential

bound.

3.2.10.3 Error exponent of a simplified sphere bound and

comparison with Divsalar bound

Referring to Fig. 3.2, the sphere bound refers to the geometrical region

R which is a sphere whose center is at γx0. Based on the notation

in Fig. 3.2, then η = 1 for the sphere bound, and the optimization is

only with respect to the radius of the sphere R. Since η = 1, then we

obtain from (3.37) that ξ = β, and therefore the error exponent in (3.38)

becomes

E(c,δ,β,ρ) = −ρrn(δ) − ρ

2
ln

(
ρ

β

)

− 1 − ρ

2
ln

(
1 − ρ

1 − β

)
+ δβc, c ,

Es

N0
. (3.97)
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The maximization of the error exponent in (3.97) with respect to ρ

gives the optimized value

ρ =
1

1 +
(

1−β
β

)
e2rn(δ)

and by substituting the optimized value of ρ in (3.97), we obtain the

error exponent

E = −rn(δ) +
1

2
ln

(
β + (1 − β)e2rn(δ)

)
+ δβc. (3.98)

Finally, the maximization of the error exponent in (3.98) gives the

optimized value of β

β∗ =
2δc −

[
1 − e−2rn(δ)

]

2δc
[
1 − e−2rn(δ)

] .

We note that β ≥ 0 in (3.37), and the error exponent in (3.98) vanishes

at β = 0 and ∂E
∂β > 0 for 0 < β < β∗. Therefore, in order to have a pos-

itive error exponent, we need that β∗ > 0, or equivalently

c > max
0<δ<1

1 − e−2rn(δ)

2δ
.

In the asymptotic case where the block length goes to infinity, we obtain

an upper bound on the threshold under ML decoding which follows

directly from the lower bound on c, and is given by

(
Eb

N0

)

threshold

≤ 1

R
max
0<δ<1

1 − e−2r(δ)

2δ
(3.99)

where r(δ) , limn→∞ rn(δ). From the comparison of the upper bounds

on the threshold values in (3.42) and (3.99), we see that the Divsalar

bound yields a tighter upper bound on the threshold then the Chernoff

version of the sphere bound (due to the factor of 1 − δ which appears

in the RHS of (3.42)). This improvement is attributed to the extra

free parameter η in Fig. 3.2 which is optimized in the derivation of the

Divsalar bound [50] (see Section 3.2.4), in contrast to the case with the

sphere bound where the value of η is chosen a-priori to be 1.
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3.2.11 Numerical results on the error probability of ML
decoded binary linear block codes

We present in this section upper bounds on the decoding error prob-

ability of specific binary linear block codes and structured ensembles

of turbo-like codes (e.g., regular LDPC codes [80, 81] and regular RA

codes [54]).

For short block codes, we compare the upper bounds with the exact

performance of these codes under ML decoding, so as to provide an

indication about the tightness of the improved upper bounds, and the

coding gain they provide as compared to union bounds (see Fig. 3.6).

The performance of the (24,12,8) Golay code under soft-decision ML

decoding is estimated by computer simulations (i.e., the decoder decides

on the codeword which corresponds to the largest correlation among

the 212 = 4096 matched filters). The exact performance of the (63, 6,

32) bi-orthogonal code is calculated from (3.51), since it is known that

the 1966 Viterbi bound holds in equality for binary linear block codes

with fixed composition, such as orthogonal or bi-orthogonal codes (see

[206, Section 8] and Section 3.2.7 here).

The upper and lower plots in Fig. 3.6 rely on the distance spectrum

of the (24, 12, 8) Golay code and the (63, 6, 32) bi-orthogonal code,

respectively. We note that the distance spectra of the binary (23, 12,

7) Golay code (which is a perfect code) and the extended (24, 12, 8)

Golay code are well-known and given for example in [207, Table 2.2].

The (63, 6, 32) bi-orthogonal code includes 26 = 64 codewords; except

of the all-zero codeword, all the other 63 codewords of this code have a

Hamming weight of 32. From the two plots in Fig. 3.6, one can see that

the TSB bound is very tight, and it provides a significant improvement

over the union bound. Although the error exponent of the Chernoff

version of the TSB and the error exponent of the Divsalar bound coin-

cide (see Section 3.2.10), it is obvious from Fig. 3.6 that especially for

short codes, the TSB bound is significantly better than the Divsalar

bound. Note that for these short block lengths, the tangential bound

also outperforms the Divsalar bound, even though we have shown that

the latter bound possess a superior exponent over the former bound.
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Fig. 3.6 Comparison between upper bounds on the decoding error probability of binary

linear block codes with short length. The (24, 12, 8) Golay code and the (63, 6, 32) bi-
orthogonal code are examined. Their transmission takes place over a binary-input AWGN
channel, and the codes are ML decoded with soft-decision. The union bound, Divsalar’s
bound, the tangential bound and the tangential-sphere bound (TSB) are compared. The
upper bounds on the block error probability for the two codes are compared with the exact
decoding error probability. For the (24, 12, 8) Golay code, we obtain simulation results
of a soft-decision ML decoder. For the bi-orthogonal code, the exact error probability is
calculated from Eqs. (3.51) and (3.52) (see Section 3.2.7). The union and Divsalar bounds

coincide in these two plots.
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Fig. 3.7 Comparison between upper bounds on the decoding error probability of binary
linear block codes with moderate length. The (128, 64, 22) extended BCH code (upper
plot) and the third order (512, 130, 64) Reed-Muller code (lower plot) are examined. Their

transmission takes place over a binary-input AWGN channel, and the codes are ML decoded
with soft-decision. The union bound, Divsalar’s bound, tangential bound and the tangential-
sphere bound (TSB) are compared.

Upper bounds on the decoding error probability of the extended

(128, 64, 22) BCH code and the third-order (512, 130, 64) Reed-Muller

code are depicted in Fig. 3.7; it is assumed that the codes are BPSK

modulated, transmitted over the AWGN channel, coherently detected
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and ML decoded. The plots in Fig. 3.7 rely on the distance spectra of

the extended (128, 64, 22) BCH code and the third-order (512, 130,

64) Reed-Muller code which are provided in [46] and [190], respectively

(see also [112]).

Upper bounds on the performance of ML decoding for some ensem-

bles of (n,j,k) LDPC codes with rate one-half are presented in Fig. 3.8.

The effect of the block length n on the gap to the Shannon capacity

limit is also demonstrated. The error bounds are based on Gallager’s

upper bound on the ensemble distance spectrum of regular LDPC codes

(see [81, Theorem 2.3]). Based on the upper sub-matrices of the parity-

check matrices of Gallager’s ensembles (see [81, Fig. 2.1]), it follows

directly that the Hamming distance of all codewords of these ensem-

bles should be even; the average distance spectra of these ensembles

is therefore equal to zero for all the Hamming weights which are odd.

In order to obtain upper bounds on the performance of these ensem-

bles, Gallager’s upper bound on the distance spectrum is combined

here with two possible upper bounds on the ML decoding error prob-

ability: the TSB, and the union bound in its Q-form. It is also evi-

dent from the lower plot in Fig. 3.8 that for large block lengths, the

union bounds are essentially useless at rates above the cutoff rate (for

a binary-input AWGN channel and a transmission rate of one-half bit

per channel use, the cutoff rate corresponds to Eb
N0

= 2.45 dB). In both

plots of Fig. 3.8, the same values of j and k (i.e., the degree of the

variable nodes and the degree of the parity-check nodes, respectively)

are compared for ensembles of (n,j,k) LDPC codes with block lengths

of n = 1 K and 10 K coded bits; it reflects the significant improve-

ment that results by increasing n by a factor of 10. For example, for

the case of j = 6, k = 12, the values of Eb
N0

required by the TSB for

achieving a block error probability of 10−4 are 1.80 dB and 0.73 dB

for n = 1 K and 10 K bits, respectively (while the Shannon capacity

limit corresponds in this case to 0.19 dB). The considerable advantage

of the tangential sphere bounding technique over the union bounds

(especially for large block lengths) is demonstrated in Fig. 3.8 (see also

[168, 170]). For example, the gain achieved for a block error probability

of 10−5 is 1.72 dB in the case that n = 10 K bits, j = 6 and k = 12.

As exhibited in Fig. 3.8, there is only a slight improvement in the
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Fig. 3.8 Upper bounds on the block error probability of ML decoding for ensembles of

(n,j,k) regular LDPC codes in a binary-input AWGN channel where n = 1008 (upper plot)
and n = 10000 (lower plot), j = 3,4,5,6 and k = 2j (rate of one half). The upper bounds
are based on Gallager’s upper bound on the ensemble distance spectrum of (n,j,k) LDPC
codes and the TSB. Union bounds in Q-form appear for comparison.
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ensemble performance of (n,j,k) LDPC codes, by increasing the value

of j above 6 (while keeping k = 2j for maintaining the code rate fixed).

Therefore, the ML block error probabilities of ensembles of (n,j,k)

LDPC codes, are investigated here for j = 6 for a variety of rates and

block lengths of n = 5 K, 10 K, 20 K and 40 K bits. The results of

this comparison are summarized in Table 3.1 (see p. 77), demonstrat-

ing the impressive potential performance of ensembles of LDPC codes

of length in the range 5 K–40 K bits. This table is created by compar-

ing an upper bound on the value of required Eb
N0

for achieving a block

error probability of 10−5 by ML decoding with a lower bound on the

Shannon capacity (as R is lower bounded by 1 − j
k [81], the value of

Eb
N0

that corresponds to the channel capacity with this lower bound on

the code rate, is actually a lower bound on the Shannon capacity that

corresponds to the exact code rate. However, for large block length n,

this lower bound on the rate is very tight). Fig. 3.9 presents results

for ensembles of (n,j,k) LDPC codes of rate 0.250. For example in the

case of j = 6, k = 8 and n = 40 K, an upper bound on the value of Eb
N0

required to achieve a block error probability of 10−5 with ML decoding

is −0.46 dB, that is only 0.33 dB away from the channel capacity (see

also Table 3.1).

The ensemble performance of uniformly interleaved repeat-

accumulate (RA) codes was considered by Divsalar, Jin and McEliece

[54]. The structure of these codes and the expressions for the input-

output weight enumerator function (IOWEF) of such ensembles of

codes is introduced in [54] (see the upper plot in Fig. 2.1). The average

number of codewords in the ensemble of uniformly interleaved (qN,N)

RA codes having an information weight w and an overall Hamming

weight ` is

A
(N)
w,` =

(
N
w

) ( qN−`
bqw/2c

)(
`−1

dqw/2e−1

)
(
qN
qw

) (3.100)

where 0 ≤ w ≤ N , 0 ≤ ` ≤ qN , and bxc, dxe denote the maximal

and minimal integers, respectively, satisfying the inequality bxc ≤
x ≤ dxe.
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Fig. 3.9 Upper bounds on the block error probability of some ensembles of (n,j,k) regular
LDPC codes whose rate is 1

4
bit per channel use (where j = 6 and k = 8). The transmission

of the codes takes place over a binary-input AWGN channel, and the bounds refer to ML

decoding. The upper bounds are based on Gallager’s upper bound on their ensemble distance
spectrum [81, Section 2.2] and the TSB of Poltyrev. The figure refers to block lengths of
n = 5 K,10 K,20 K and 40 K bits.

Based on the IOWEF of uniformly interleaved RA codes in (3.100),

the distance spectra of some ensembles of (qN,N) RA codes, are illus-

trated in the upper plot of Fig. 3.10, versus the normalized Hamming

weight of the codewords (the normalization is with respect to the block

length qN), where N = 1024 and q = 2,3,4. It is observed in the upper

plot of Fig. 3.10 that for a fixed value of N , the number of codewords

with relatively low Hamming weights is reduced by increasing the value

of q (note that the overall number of codewords (2N ) remains constant).

Therefore, it is reasonable (as indicated in the lower plot of Fig. 3.10)

that the ensemble performance of the uniformly interleaved and seri-

ally concatenated RA codes is improved by increasing the value of q; by

increasing the value of q, the interleaver length (qN) is increased which

enhances the interleaver gain of such an ensemble of interleaved and

serially concatenated codes, but also decreases the code rate. Upper

bounds on the block and bit error probability of uniformly interleaved
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Table 3.1 The value of energy per bit to noise spectral density
(

Eb

N0

)
required for an upper

bound on the block error probability of 10−5 with soft-decision ML decoding for the Gallager
ensemble of (n,j,k) regular LDPC codes with j = 6. The bounds are based on the TSB.

The gaps (in dB) between the values of Eb

N0
achieving an upper bound on the block error

probability of 10−5 to the Shannon capacity of a binary-input AWGN channel are written

in parenthesis.

The number of ones (k)
in each row of the parity
matrix H of the ensemble

of codes and a tight lower k = 8 k = 12 k = 24
bound on the rate (R). R = 0.250 R = 0.500 R = 0.750

The block length n The value of Eb

N0
(and the gap to capacity)

n = 5 K bits 0.20 dB 1.00 dB 2.57 dB

(0.99 dB) (0.81 dB) (0.94 dB)

n = 10 K bits −0.11 dB 0.79 dB 2.39 dB
(0.68 dB) (0.60 dB) (0.76 dB)

n = 20 K bits −0.31 dB 0.64 dB 2.26 dB
(0.48 dB) (0.45 dB) (0.63 dB)

n = 40 K bits −0.46 dB 0.54 dB 2.18 dB
(0.33 dB) (0.35 dB) (0.55 dB)

RA codes under soft-decision ML decoding are illustrated in the lower

plot of Fig. 3.10. The usefulness of the TSB is demonstrated at rates

considerably above the channel cutoff rate: for q = 3,4 (the code rate of

the RA code is 1
3 or 1

4 , respectively), the cutoff rate of the binary-input

AWGN channel corresponds to Eb
N0

= 2.03 dB and 1.85 dB, respectively.

From the lower plot of Fig. 3.10, we obtain that for q = 3, the TSB on

the bit error probability [170] is equal to 10−5 at Eb
N0

= 1.58 dB (i.e.,

0.45 dB below the value of Eb
N0

that corresponds to the channel cut-

off rate). For q = 4, the TSB is equal to 10−5 at Eb
N0

= 0.79 dB (i.e.,

1.06 dB below the value of Eb
N0

which corresponds to the cutoff rate,

and 1.59 dB above the value of Eb
N0

which corresponds to the chan-

nel capacity). It is also shown in the lower plot of Fig. 3.10 that the

union bounds in Q-form are useless at rates beyond the cutoff rate

of the channel, as expected for long enough block codes (since the

interleaver length for these RA codes is 3072 and 4096 for q = 3,4,

respectively).
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Fig. 3.10 Distance spectra and performance bounds of uniformly interleaved RA codes [54]
under ML decoding (see the upper plot of Fig. 2.1 on p. 19). The upper plot shows the
distance spectra of some ensembles of (qN,N) RA codes versus the normalized Hamming
weights of their codewords (the normalization is with respect to the block length qN) where

N = 1024 and q = 2,3,4. The lower plot shows upper bounds on the block and bit error
probabilities of the two ensembles with q = 3,4. The considered upper bounds are the TSB
and the union bound in Q-form.
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3.3 Improved upper bounds for fading channels

In this section, we present rigorous analytical upper bounds on the

ML decoding error probability of binary linear block codes, operat-

ing over fading channels (for a tutorial paper on fading channels, the

reader is referred to [26]). We mainly focus in this section on fully inter-

leaved (memoryless) Rician fading channels. These bounds are applied

to several ensembles of turbo-like codes, demonstrating their significant

advantage over the union bounds in a portion of the rate region above

the channel cutoff rate (R0). Throughout this section, we assume a per-

fect side information on the channel i.i.d. fading samples which are also

available to the receiver. The theoretical implications of this assump-

tion are discussed in [114]. The model of block-fading channels and

related bounds are shortly addressed at the end of this section.

3.3.1 Fully interleaved fading channels: System model,
channel capacity and cutoff rate, and union bounds

3.3.1.1 The system model

The model of the communication system is the following: the informa-

tion bits are encoded, fully interleaved and BPSK modulated. The mod-

ulated signal is transmitted through a frequency non-selective fading

channel. We discuss in this section fully interleaved Rician fading

channels and also Rayleigh fading channels where the latter is combined

with space diversity of order L, based on the maximum ratio combin-

ing (MRC) principle. As a consequence of a perfect channel interleaver

(which clearly differs from the interleaver of the code), the fading sam-

ples which correspond to the interleaved coded bits are assumed to

be i.i.d. The noise is an AWGN with a zero mean and a double-side

spectral density of N0. At the receiver, assumed to be equipped with

perfect channel state information (CSI) of the realizations of the fad-

ing values, we assume that the fading samples received by these L

antennas are statistically independent. The received signal is coherently

detected. Finally, the demodulated bits are deinterleaved (according to

the inverse permutation of the channel interleaver) and ML decoded.
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Considering a turbo code, we assume a termination to the all-zero state

at the end of each frame (block). Clearly, no termination is required

for block codes in general and for LDPC codes and RA codes in par-

ticular.

3.3.1.2 The capacity and cutoff rate of binary-input fully

interleaved fading channels

We denote the pdf of the non-negative4 fading a by p(a). Clearly, with

a (ideally given to the receiver) interpreted as part of the measurements

and independent of the transmitted signals, then

p0(y,a) = 1√
2π

exp

[
−1

2

(
y − a

√
2Es
N0

)2
]
· p(a)

p1(y,a) = 1√
2π

exp

[
−1

2

(
y + a

√
2Es
N0

)2
]
· p(a)

,
−∞ < y < ∞

a ≥ 0

(3.101)

where Es
N0

stands for the energy per symbol to the spectral noise density.

For MBIOS channels in (3.101), the capacity-achieving distribu-

tion is clearly symmetric: Pr(x = 0) = Pr(x = 1) = 1
2 . A straightfor-

ward calculation of the channel capacity (C) of the fully interleaved

fading channels in (3.101) gives that

C =
1√
2π

∫ ∞

−∞

∫ ∞

0
p(a) exp


−1

2

(
y + a

√
2Es

N0

)2



· log2




2

1 + exp

(
2ay

√
2Es

N0

)


dady (3.102)

in units of bits per channel use.

4 The effect of the phases of the fading measurements is eliminated at the receiver and the
fades during each symbol are treated as non-negative random variables.
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For a fully interleaved Rician fading channel, the probability density

function of the amplitudes of the i.i.d. fading samples is

p(a) =

{
2a(K + 1)exp(−(K + 1)a2 − K)I0

(
2
√

K(K + 1)a
)

, a ≥ 0

0 a < 0
(3.103)

where the Rician parameter K stands for the power ratio of the direct

to the diffused received path of the fading channel, and I0(x) designates

the Modified Bessel function of order zero:

I0(x) =
1

π

∫ π

0
exp(xcosθ)dθ , x ∈ R.

The probability density function of the i.i.d. fading samples of a fully

interleaved Rayleigh fading channel with MRC diversity of order L

admits the form

p(a) =





2LLa2L−1 exp(−La2)

(L − 1)!
a ≥ 0

0 a < 0

.

Clearly, for coded communications: Es = REb where Es and Eb des-

ignate the energies per coded symbol and per information bit, respec-

tively, and R is the rate of the code (in bits per channel use). The

value of Eb
N0

which corresponds to the channel capacity for a certain

code rate R is calculated numerically by solving the implicit equation

C = R, where C is expressed in (3.102), associated with the appropriate

expression for the probability density function p(a) of the i.i.d. fading

samples.

When the bit error probability is restricted not to exceed a cer-

tain value Pb, then by applying the rate-distortion theory with the

Hamming distance between two binary codewords as a distortion mea-

sure, the minimal theoretical value of Eb
N0

is found by solving numeri-

cally the implicit equation C = R
(
1 − h(Pb)

)
where h(x) designates

the binary entropy function to the base 2, and the capacity C of gen-

eral fully interleaved fading channels is expressed in (3.102), assuming

perfect CSI of the i.i.d. fading samples at the receiver.

The cutoff rate (in bits per channel use) of a fully interleaved

Rayleigh fading channel with MRC space diversity of order L admits
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the form

R0 = 1 − log2

(
1 +

(
1 +

Es

LN0

)−L
)

or alternatively, the value of Eb
N0

which corresponds to the cutoff rate is

expressed in terms of the code rate R and the order of diversity L by

the equality
Eb

N0
=

L

R

[
(21−R − 1)−

1
L − 1

]
. (3.104)

For a fully interleaved Rician fading channel, the cutoff rate is given by

R0 = 1 − log2(1 + z) (3.105)

bits per channel use, where z stands for the Bhattacharyya constant

of this channel. By conditioning on the magnitude of the fading a, the

value of the Bhattacharyya constant (2.3) is exp(−a2Es
N0

), and averaging

with respect to a gives

z =

∫ ∞

0
exp(−a2Es

N0
) p(a)da

where p(a) is given by (3.103). An alternative expression for this inte-

gral is given in [172, Eq. (8)].

3.3.1.3 The pairwise error probability and union bounds

For a fully interleaved Rician fading channel with a Rician factor K, the

expression of the pairwise ML decoding error probability for two code-

words which differ in d symbols was derived in [188]. This derivation

relied on Craig’s identity for the Q-function in (2.9).

Under the assumptions in Section 3.3.1.1, the following expressions

for the pairwise error probability refer to the case where the Hamming

distance between the transmitted codeword (x) and another compet-

itive codeword (x̂) is d. For a fully interleaved Rician fading channel

whose Rician factor is equal to K, the expression for the pairwise error

probability follows from combining [188, Eqs. (25), (30)]:

Pr(x → x̂ | WH(x, x̂) = d)

=
1

π

∫ π
2

0

(
1 + K

1 + K + Es/N0

sin2 θ

)d

e

− Kd

1+
(1+K)sin2 θ

Es/N0 dθ (3.106)
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where WH(x, x̂) designates the Hamming distance between the binary

codewords x and x̂. We note that an alternative expression for the

pairwise error probability of fully interleaved Rayleigh fading channels

with perfect CSI is given in [101] (hence, it is an alternative expression

to (3.106) for the particular case where K = 0).

For fully interleaved Rayleigh fading channels with MRC space

diversity of order L (where the fading samples received by the L anten-

nas are assumed to be i.i.d.), the expression for the pairwise ML decod-

ing error probability results in by substituting K = 0 in (3.106), and

by also replacing Es and d in the left hand side of (3.106) with Es
L and

dL, respectively:

Pr(x → x̂ | WH(x, x̂) = d) =
1

π

∫ π
2

0




1

1 +
Es/N0

Lsin2 θ




dL

dθ . (3.107)

The union bound on the block error probability for an ML decoded

linear and binary block code admits the form

Pe ≤
n∑

d=dmin

Sd Pr
(
x → x̂ | WH(x, x̂) = d

)
(3.108)

where dmin denotes the minimal Hamming weight of the nonzero code-

words of the code C, and the expressions of the pairwise error probabil-

ity for the fully interleaved fading channels are provided in (3.106) and

(3.107). Here, Sd is the appropriate coefficient of the distance spectrum

of the code, which designates the number of codewords whose Hamming

weight equals d.

Similarly, the union bound on the bit error probability admits the form

Pb ≤
n∑

d=dmin

S′
d Pr

(
x → x̂ | WH(x, x̂) = d

)
(3.109)

where S′
d is introduced in (3.13).

Union bounds on the ML decoding error probability of binary linear

codes whose transmission takes place over fully interleaved fading chan-

nels with perfect CSI at the receiver are considered in [5, 89, 101]; these

bounds are exemplified there for various ensembles of turbo codes.



84 Improved Upper Bounds for Gaussian and Fading Channels

3.3.2 Generalization of the Engdahl and Zigangirov bound
for fully interleaved fading channels

The Engdahl and Zigangirov bound in [67] provides an upper bound

on the ML decoding error probability when the communications takes

place over the AWGN channel (see Section 3.2.6). Sason and Shamai

generalized the Engdahl and Zigangirov bound for fully interleaved fad-

ing channels [172, Section 3.B]. In the following, we present the guide-

lines for the derivation of the generalized bound. For further details,

we refer the reader to [172, Section 3.B and Appendices B and C].

Let’s assume a binary linear block code C of length n and dimension

k which is BPSK modulated, and transmitted over a fully interleaved

fading channel. As noted in Section 3.3.1, we assume here that a per-

fect channel side information (CSI) is available at the receiver. Let the

vector a = (a1,a2, . . . ,an) denote the perfect measurements of the i.i.d.

fading samples, where E
[
a2

i

]
= 1. We assume that the symbols 0 and 1

are mapped by the BPSK modulator to +
√

Es and −√
Es, respectively.

As before, we also assume without any loss of generality that the all-

zero codeword is transmitted (due to the linearity of the code and the

symmetry of the channel). The components of the demodulated signal

(y) are

yi = ai

√
Es + νi , i = 1,2, . . . ,n

where {ai}n
i=1 are the i.i.d fading samples, and {νi}n

i=1 are the i.i.d.

zero-mean Gaussian noise samples with variance E[ν2
i ] = N0

2 . Let us

define the random variable (RV)

z ,

n∑

i=1

ai yi =
n∑

i=1

(
a2

i

√
Es + ai νi

)
. (3.110)

We now partition the binary and linear block code C into constant

Hamming weight subcodes (Cd), where the subcode Cd (d = 1,2, . . . ,n)

includes all the codewords of C with a Hamming weight d and also

includes the all-zero codeword.

The fading samples of the channel are i.i.d. RVs, so the pairwise ML

decoding error probability doesn’t change for all the competitive code-

words of the same Hamming weight (d). Since we consider an MBIOS
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channel, then we assume without any loss of generality that a com-

petitive codeword of Hamming weight d differs from the transmitted

all-zero codeword in its first d coordinates, i.e, the first d coordinated

of the competitive codeword are ones and the succeeding n − d com-

ponents are zeros.

Let Wd (where d = 1,2 . . . n) be the RV

Wd ,

d∑

i=1

ai yi =
d∑

i=1

(
a2

i

√
Es + ai νi

)
.

If Wd < 0, then such a codeword of Hamming weight d is preferred

by the ML decoder (rather than the all-zero codeword which was

transmitted).

The case where z is small enough may yield an unreliable decision

of the ML decoder (it may happen, for example, when the channel

undergoes a severe fade). We therefore introduce a threshold ηz, to

be optimized in order to derive the tightest upper bound among the

following family of upper bounds on the ML decoding error probability:

Pe ≤
n∑

d=1

{
Sd · Pr

(
Wd < 0 , z ≥ ηz

)}
+ Pr

(
z < ηz

)
(3.111)

where {Sd}n
d=0 is the distance spectrum of the block code C. We note

that (3.111) follows as a particular case of the general inequality in

(3.1) where the region R in the latter inequality is chosen to be a

half-space (see (3.110)), and where we apply the union bound to the

first term in the RHS of (3.1). We also note that in the limit where

ηz → −∞, the upper bound in (3.111) turns to be the well known

union bound in (3.108). Therefore, an optimization of the RHS of

(3.111) over the parameter ηz yields an upper bound which is uni-

formly tighter than the union bound, and also cannot exceed unity

(since in the limit where ηz →∞, we get the trivial bound Pe ≤ 1.

The final version of this bound is expressed explicitly in [172, Eq. (38)]

(with some algebraic simplifications in [172, Appendix C], and the opti-

mized free parameter of this bound is given implicitly as a solution to

the optimization equation [172, Eq. (39)]. Note that the existence and

uniqueness of a solution to the latter equation for the optimized free
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parameter in (3.111) is proved in [172, Appendix B]. In particular, it is

shown in [172, Section III.B] that the generalization of the Engdahl and

Zigangirov bound for fully interleaved fading channels particularizes to

the Engdahl and Zigangirov bound in [67] (see Section 3.2.6) for the

case of a binary-input AWGN channel.

An upper bound on the bit error probability for an ensemble of

linear, binary block codes results in by simply replacing the average

distance spectrum {Sd}n
d=0 of the ensemble of codes by the sequence

{S′
d}

n
d=0, as defined in (3.13).

The generalization of the Engdahl and Zigangirov bound is applied

in the sequel to ensembles of turbo-like codes whose transmission takes

place over fully interleaved fading channels, and the tightness of this

bound is compared to other reported bounds (see Section 4.7.2).

In the block-fading channel model, an n-length codeword is affected

by a number (M) of independent fading gains. In this case, an n-length

codeword is split into M blocks where M divides n; over each block,

the channel fading is so highly correlated that it is considered to be

constant. The Engdahl and Zigangirov bound was recently generalized

for the performance analysis under ML decoding of block codes whose

transmission takes place over block-fading channels. For further details,

the reader is referred to [218]. For small values of M , the generaliza-

tion of the Engdahl and Zigangirov bound for block-fading channels

shows an improvement over previously reported bounds (see, e.g., the

Malkamaki-Leib bound in [126]).

3.3.3 Generalization of the Viterbi and Viterbi bound

The Viterbi and Viterbi bound is an upper bound on the ML decoding

error probability of binary linear block codes operating over a binary-

input AWGN channel [209]. A generalization of this bound for fully

interleaved Rician fading channels with perfect CSI at the receiver was

derived in [173] (see Section 2 and the Appendix in [173] where the gen-

eralization of the Viterbi and Viterbi bound for fully interleaved Rician

fading channels was derived in two alternative ways). The generalized

bound admits the form

Pe ≤
∑

d

Pe(d)
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where

Pe(d) ≤ (Sd)
ρ

(
1 + K

1 + K + β1

)dρ

· exp

(
− Kβ1 dρ

1 + K + β1

)

·
(

1 + K

1 + K + β2

)(n−d)ρ

· exp

(
−Kβ2(n − d)ρ

1 + K + β2

)

·
(

1 + K

1 + K + β3

)n(1−ρ)

· exp

(
−Kβ3n(1 − ρ)

1 + K + β3

)

and

β1 =
Es

N0
, β2 =

Es

N0
·
[
1 −

(
1 + ζ(1 − ρ)

)2
]
,

β3 =
Es

N0
·
[
1 − (1 − ζρ)2

]
.

The optimization of the bound is performed with respect to the two

parameters ρ and ζ where 0 ≤ ρ ≤ 1, and 1 + K + βi > 0 for i = 1,2,3.

For a binary-input AWGN channel, since K →∞, it can be verified

(see [173]) that the generalized bound above reduces to the Viterbi and

Viterbi bound in [209] for the optimal value ζ = δ
1−δ+δρ where δ , d

n is

the normalized weight of codewords with Hamming weight d and block

length n.

We note that the generalization of the Viterbi and Viterbi bound

for fully interleaved fading channels with perfect CSI, as reported in

[11, 10], seems to be problematic. Our reservation stems from the fact

that the Viterbi and Viterbi bounding technique in [209] is invali-

dated once the parameter H = exp(−Es
N0

) (which is the Bhattacharyya

constant for a binary-input AWGN channel) is replaced by the one

corresponding to fast Rician fading channels (see [11, Eq. (12)]). The

specific correlations in the derivation of the bound in [209] demand spe-

cial care when generalized to fading channels. The problem with the

generalization in [11, 10] is that in contrast to the particular case of a

binary-input AWGN channel, for fully interleaved fading channels, we

obtain that the covariance between the outputs of the two correlators

which correspond to the all-zero codeword and to an arbitrary code-

word of Hamming weight d does not depend only on d (i.e., as a result
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of the i.i.d. fading samples, this covariance does not stay constant with

respect to all the codewords of Hamming weight d). A generalization of

the Viterbi and Viterbi bound for fully interleaved fading channels with

imperfect CSI at the receiver is considered in [186]. Again, the deriva-

tion in [186] is problematic since it relies on the arguments of [11, 10],

when now H is replaced by the one corresponding to imperfect CSI.

We note that the generalized Viterbi and Viterbi bound for fully

interleaved Rician fading channels is derived in [173, Section 2] as a

particular case of the Gallager-type bounds; these bounds are discussed

extensively in the next section.

Bounds on the ML decoding error probability for fully interleaved

fading channels which are presented in this section, and some variations

of the Gallager bounds which are particularized to fading channels are

applied to various ensembles of codes in Section 4.7.2.

3.3.4 Improved bounds for block fading channels

The block-fading channel model is introduced for modelling slowly-

varying fading. It is particularly relevant in wireless communications

where slow time-frequency hopping or multi-carrier modulation using

orthogonal frequency division multiplexing (OFDM) are considered.

This model is a particular case of parallel channels which are con-

sidered in the next section (see Sections 4.6 and 4.7.5). For various

upper bounds on the ML decoding error probability of linear codes

whose transmission takes place over block-fading channels, the reader

is referred to [9, 27, 70, 96, 109, 119, 122, 126, 219, 218, 227, 228] and

references therein.

3.4 Concluding comments

We introduce in this section rigorous upper bounds on the block and

bit error probabilities of ML decoded linear codes. The performance

analysis here refers to Gaussian and fading channels.

For modulated signals of constant energy whose transmission takes

place over an AWGN channel, the tangential-sphere bound of Poltyrev

[152] happens to be one of the tightest known upper bounds on the

ML decoding error probability; however, this bound fails to reproduce
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the random coding error exponent for ensembles of fully random

block codes.

Performance bounds are reviewed in this section for both fully inter-

leaved and block-fading channels, and other bounds are also considered

in the following section. The reader is referred to [78, 105, 116] which

address performance bounds for correlated fading channels.

All the improved upper bounds introduced in this section are not

subject to the deficiencies of the union bound (see Section 2). They

therefore provide useful results at rates exceeding the cutoff rate, where

union bounds are usually useless. These bounds solely depend on the

distance spectra of the considered linear codes. We exemplify the use

of these upper bounds for block codes and ensembles of turbo-like

codes. Along their presentation, the underlying connections which exist

between these bounds are also demonstrated.

The dependence of the various upper bounds considered in this

section on the distance spectra and input-output weight enumerators

of the codes is a pleasing property; this makes the bounds attractive

for their application to the performance evaluation of various linear

codes and ensembles. The reader is referred to the literature which

considers various methods for the calculation of the distance spectra

and input-output weight enumerators of codes and ensembles (see [14,

38, 45, 46, 66, 155, 190, 216, 220] for the calculation of the distance

spectra of algebraic block codes, [37, 75, 107, 112, 127, 146, 147, 168,

174, 207, 222] for convolutional codes, [43, 162] for trellis codes, [19, 18,

17, 28, 56, 92, 97, 142, 151, 159, 161, 160, 163, 171, 174, 191, 208, 217]

for turbo codes, [21, 34, 47, 48, 49, 68, 81, 95, 121, 202] for regular

and irregular LDPC codes, [36, 65, 196, 195] for product codes, and

[1, 54, 87, 93, 117, 118, 123, 150, 148, 166, 211] for accumulate-based

codes, and [51, 72] for protograph LDPC codes).





4

Gallager-Type Upper Bounds: Variations,

Connections and Applications

Overview : In addressing the Gallager bounds and their variations, we

focus on the Duman and Salehi variation which originates from the

standard Gallager bound. A large class of efficient recent bounds (or

their Chernoff versions) is demonstrated to be a particular instance of

the generalized second version of the Duman and Salehi bounds. Impli-

cations and applications of these observations are pointed out, includ-

ing the fully interleaved fading channel, resorting to either matched

or mismatched decoding. The proposed approach can be generalized

to geometrically uniform non-binary codes, finite state channels, bit

interleaved coded modulation systems, and to upper bounds on the

conditional decoding error probability.

4.1 Introduction

The Fano [71] and Gallager [82] upper bounds were introduced as effi-

cient tools to determine the error exponents of the ensemble of random

codes, providing informative results up to the ultimate capacity limit.

Since the advent of information theory, the search for efficient coding

systems has motivated the introduction of efficient bounding techniques

91
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tailored to specific codes or some carefully chosen ensembles of codes.

A classical example is the adaptation of the Fano upper bounding tech-

nique [71] to specific codes, as reported in the seminal dissertation by

Gallager [81] (to be referred to as the 1961 Gallager-Fano bound).

In continuation to the previous section, we consider here various

reported upper bounds on the ML decoding error probability and

demonstrate the underlying connections that exist between them; the

bounds are based on the distance spectra or the input-output weight

enumerators of the considered codes. In the following, we consider varia-

tions on the Gallager bounds, and, in particular, we focus on the second

version of the recently introduced bounds by Duman and Salehi ([62],

[60]) whose derivation is based on the 1965 Gallager bounding tech-

nique ([82], [83]). Though originally derived for binary signaling over

an additive white Gaussian noise (AWGN) channel, we demonstrate

here its considerable generality and show that it provides the natu-

ral bridge between the 1961 and 1965 Gallager bounds ([81], [82]). It is

suitable for both random and specific codes [50], as well as for either bit

or block error probability analysis. It is also demonstrated here that a

large class of efficient recent bounds or their Chernoff versions are spe-

cial cases of the generalized second version of the Duman and Salehi

(DS2) bound. We exemplify the use of this generalized bound in various

settings, such as the fully interleaved fading channel ([172],[173]). In an

important contribution, Divsalar [50] has introduced some efficient and

easily applicable bounds, and has also provided insightful observations

on the Duman and Salehi bounding technique ([62], [60]) in view of

other bounds. In our setting, we shall rely on some of the interesting

observations in [50].

The section is organized as follows: The 1965 Gallager bound ([82],

[83]) and the DS2 bound [60] are presented in Section 4.2. These two

upper bounds form the underlying bounding technique in this section,

as we rely on them throughout. In Section 4.3, the 1961 Gallager-Fano

bound [81] is presented, and some interconnections among the Gallager

bounds and the DS2 bound are demonstrated. It is shown in Section 4.3

that the DS2 bound provides the natural bridge between the 1961 and

1965 Gallager bounds. In Section 4.4, it is demonstrated that many

reported bounds on the ML decoding error probability (which were
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originally derived independently) can be considered as special cases of

the DS2 bound. The 1965 Gallager random coding bound is extended

in Section 4.5 to the mismatched decoding regime, where the decoder

operates in a ML fashion, but may use a mismatched metric. These

Gallager-type bounds which are derived for the mismatched decod-

ing regime can be applied to deterministic codes and ensembles. Some

reported results ([85], [106], [132]) are derived in Section 4.5, based

on an alternative approach which appropriately limits the code ensem-

ble. Some applications and examples of these bounds are presented in

Section 4.7, which include fully interleaved fading channels and mis-

matched metrics. Finally, Section 4.8 concludes the section.

4.2 Gallager bounds for symmetric memoryless channels

4.2.1 The 1965 Gallager bound

Suppose an arbitrary codeword xm (of length-N) is transmitted over

a channel. Let y designate the observation vector (of N components),

and pN (y|xm) be the channel transition probability measure. Then, the

conditional ML decoding error probability is given by

Pe|m =
∑

y: {∃ m′ 6=m: pN (y|xm′
)≥pN (y|xm)}

pN (y|xm).

If the observation vector y is such that there exists m′ 6= m so that

pN (y|xm′
) ≥ pN (y|xm), then for arbitrary λ,ρ ≥ 0, the value of the

expression 


∑

m′ 6=m

(
pN (y|xm′

)

pN (y|xm)

)λ



ρ

(4.1)

is clearly lower bounded by 1, and in general, it is always non-negative.

The 1965 Gallager bound [82, 83] therefore states that

Pe|m ≤
∑

y

pN (y|xm)




∑

m′ 6=m

(
pN (y|xm′

)

pN (y|xm)

)λ



ρ

, λ, ρ ≥ 0 . (4.2)

The upper bound (4.2) is usually not easily evaluated in terms of basic

features of particular codes, except for example, orthogonal codes and
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the special case of ρ = 1 and λ = 1
2 (which yields the Bhattacharyya-

union bound).

For discrete, memoryless and output-symmetric channels, the upper

bound (4.2) is not directly applicable for actual code performance calcu-

lation, since it cannot be factored into single-letter expressions (because

of the ρth power which operates on the inner summation of (4.2)).

Therefore, the bound does not lend itself to code performance calcula-

tion in terms of the distance spectrum of the ensemble of codes. This

difficulty could be circumvented had the ρth power in (4.2) been taken

over the expression
∑

y



pN (y|xm)

∑

m′ 6=m

(
pN (y|xm′

)

pN (y|xm)

)λ


 (instead of

its actual location in the inner summation of the bound (4.2)).

For ensembles of random block codes, where the codewords are inde-

pendently selected with an arbitrary probability distribution qN (x),

Gallager derived an upper bound on the average ML decoding error

probability (where the average is over the randomly and independently

selected codewords). By setting λ = 1
1+ρ in (4.2), we obtain that for

ρ ≥ 0, the average ML decoding error probability satisfies

Pe|m ≤
∑

x1

. . .
∑

xM

{
qN (x1) . . . qN (xM )

·
∑

y

pN (y|xm)
1

1+ρ




∑

m′ 6=m

pN (y|xm′
)

1
1+ρ




ρ }
.

Without any loss of generality, it is assumed that m = 1 (since all the

codewords are chosen randomly and independently according to the

same input distribution qN (x)), so by changing the order of summation

in the last inequality, we obtain that

Pe ≤
∑

y

∑

x1

qN (x1)pN (y|x1)
1

1+ρ

∑

x2

. . .
∑

xM

qN (x2) . . . qN (xM )

·
(

M∑

m′=2

pN (y|xm′
)

1
1+ρ

)ρ

, ρ ≥ 0.
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By invoking the Jensen inequality in the last inequality, E[zρ] ≤ (E[z])ρ

for 0 ≤ ρ ≤ 1, we obtain that for 0 ≤ ρ ≤ 1

Pe ≤
∑

y

∑

x1

qN (x1)pN (y|x1)
1

1+ρ




∑

x2

. . .
∑

xM

qN (x2) . . . qN (xM )

·
M∑

m′=2

pN (y|xm′
)

1
1+ρ

)ρ

=
∑

y

∑

x1

qN (x1)pN (y|x1)
1

1+ρ




M∑

m′=2

∑

xm′

qN (xm′
)pN (y|xm′

)
1

1+ρ




ρ

=
∑

y

∑

x1

qN (x1)pN (y|x1)
1

1+ρ

(
(M − 1) ·

∑

x

qN (x)pN (y|x)
1

1+ρ

)ρ

.

The 1965 Gallager random coding bound therefore reads

Pe ≤ (M − 1)ρ
∑

y

(
∑

x

qN (x)pN (y|x)
1

1+ρ

)1+ρ

, 0 ≤ ρ ≤ 1 (4.3)

where Pe designates the average decoding error probability, and M is

the number of the codewords. For the particular case of a memoryless

channel
(
pN (y|x) =

N∏

i=1

p(yi|xi)
)

and a memoryless input distribution

(
qN (x) =

N∏

i=1

q(xi)
)
, the Gallager random coding bound (4.3) admits

the form

Pe ≤ e−N ·Er(R,q) (4.4)

where R = lnM
N is the code rate (in nats per channel use) and the

associated error exponent is

Er(R,q) = max
0≤ρ≤1

{E0(ρ,q) − ρR} (4.5)

where

E0(ρ,q) , − ln




∑

y

(
∑

x

q(x)p(y|x)
1

1+ρ

)1+ρ

 . (4.6)
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This error exponent is known as the correct exponential dependence

of the decoding error probability for code rates above the critical rate

[184, Part I] (see Section 5). In [84], Gallager derived an asymptotic

expression for the average decoding error probability, and proved that

the random coding error exponent is tight for the average code. The

result in [84] shows that the weakness of the random coding bound

at rates below the critical rate is due to the fact that the best codes

are much better than the average at low rates (and not because of the

upper bounding technique for the ensemble average).

From the Gallager random coding bound, ensembles of fully random

block codes achieve the channel capacity with an optimal soft-decision

ML decoder. Moreover, the randomness of the codewords is not crucial

for proving the channel coding theorem, and a requirement of pairwise

independence of the codewords is sufficient. The latter condition holds,

e.g., for multilevel codes when the encoding at each level is performed

independently. Using multiuser information theory, it is proved in [212,

Section 3] that ensembles of multilevel codes achieve the channel capac-

ity with an ML decoder (see [212, Section 3]). The random coding error

exponent (4.5) serves as an efficient design rule for multilevel codes; it

serves for properly selecting the rates of the component codes at each

level (see [212, Section 4]).

4.2.2 The DS2 bound

The bounding technique of Duman and Salehi [62, 60] originates from

the 1965 Gallager bound. Let ψm
N (y) designate an arbitrary probability

measure (which may also depend on the transmitted codeword xm).

The 1965 Gallager bound (4.2) then yields that

Pe|m ≤
∑

y

ψm
N (y) ψm

N (y)−1 pN (y|xm)




∑

m′ 6=m

(
pN (y|xm′

)

pN (y|xm)

)λ



ρ

=
∑

y

ψm
N (y)


ψm

N (y)
− 1

ρ pN (y|xm)
1
ρ

∑

m′ 6=m

(
pN (y|xm′

)

pN (y|xm)

)λ



ρ

∀ λ,ρ ≥ 0.
(4.7)
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By invoking the Jensen inequality in (4.7), the DS2 bound results

Pe|m ≤




∑

m′ 6=m

∑

y

pN (y|xm)
1
ρ ψm

N (y)
1− 1

ρ

(
pN (y|xm′

)

pN (y|xm)

)λ



ρ

,

0 ≤ ρ ≤ 1, λ ≥ 0. (4.8)

Let Gm
N (y) be an arbitrary non-negative function of y, and let the prob-

ability density function ψm
N (y) be

ψm
N (y) =

Gm
N (y) pN (y|xm)

∑

y

Gm
N (y) pN (y|xm)

. (4.9)

The functions Gm
N (y) and ψm

N (y) are referred to as the unnormal-

ized and normalized tilting measures, respectively. The substitution of

(4.9) into (4.8) yields the following upper bound on the conditional ML

decoding error probability

Pe|m ≤




∑

y

Gm
N (y) pN (y|xm)




1−ρ

·





∑

m′ 6=m

∑

y

pN (y|xm) Gm
N (y)1−

1
ρ

(
pN (y|xm′

)

pN (y|xm)

)λ




ρ

,

0 ≤ ρ ≤ 1 , λ ≥ 0. (4.10)

The upper bound (4.10) was also derived in [50, Eq. (62)].

For the case of memoryless channels, and for the choice of ψm
N (y)

as ψm
N (y) =

N∏

i=1

ψm(yi) (recalling that the function ψm may depend on

the transmitted codeword xm), the upper bound (4.8) is relatively eas-

ily evaluated (similarly to the standard union bounds) for linear block

codes. In that case, (4.8) is calculable in terms of the distance spectrum

of the code, not requiring the fine details of the code structure. More-

over, (4.8) is also amenable to some generalizations, such as for the

class of discrete memoryless channels with arbitrary input and output

alphabets.
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4.2.2.1 A generalization

As a possible generalization to the above Gallager-based bounding tech-

nique, let m be the index of the transmitted codeword, and partition the

set of the indices {m′ : m′ 6= m} into an arbitrary number J of disjoint

subsets {Sm(j)}J
j=1. Then, as a starting point for utilizing Gallager-

based bounds, one may consider replacing the function in (4.1) with

the generalized function

J∑

j=1




∑

m′∈Sm(j)

(
pN (y|xm′

)

pN (y|xm)

)λm(j)



ρj

, λm(j),ρj ≥ 0

which as required, is lower bounded by 1 if there is m 6= m so that

pN (y|xm′
) ≥ pN (y|xm), and is otherwise lower bounded by zero. This

yields the following generalized version of (4.8):

Pe|m ≤
J∑

j=1




∑

m′∈Sm(j)

∑

y

ψm
N (y;j)

1− 1
ρj pN (y|xm)

1−λm(j)ρj
ρj pN (y|xm′

)λm(j)




ρj

where {ψm
N (y;j)}J

j=1 is an arbitrary set of J probability tilting

measures.

Let us consider the particular choice where the disjoint subsets

{Sm(j)}J
j=1 are selected in a way so that each subset includes all

the indices m′ of the codewords xm′
whose Hamming distance from

the codeword xm is constant. In the case where the all-zero code-

word is transmitted, this gives a partitioning to constant Hamming

weight subcodes; therefore, it reduces in this specific case to the union

bound used with respect to the constant Hamming weight subcodes

(see (4.45)), and the Gallager-based bound applied for each of these

subcodes separately.

4.2.3 The 1961 Gallager-Fano bound

In his monograph on LDPC codes [81], Gallager introduced an upper

bound on the ML decoding error probability for block codes operating
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over an arbitrary MBIOS channel (see [81, Section 3]). This bound

depends on the average distance spectrum of the block code (or ensem-

ble of codes), and therefore, it can be applied to ensembles as well as

specific codes (as opposed to the 1965 Gallager bound which applies

essentially to the ensemble of random block codes). The derivation of

this bound is based on Fano’s 1961 bounding technique [71] for ran-

dom codes, which is adapted in [81] to specific codes. The concept

of this bound is detailed in the following. Let C be a block code of

length N which is communicated over an MBIOS channel, and let xm

be the transmitted codeword (where m ∈ {0,1, . . . ,M − 1}). We define

the tilted metric

Dm(xm′
,y) , ln

(
fm

N (y)

pN (y|xm′)

)
(4.11)

where xm′
is an arbitrary codeword of the code C and y is the

received vector (of length N) at the output of the channel, pN (y|x) =∏N
i=1 p(yi|xi) is the conditional transition probability of the MBIOS

channel, and fm
N (y) is an arbitrary function which is positive if

pN (y|xm′
) is positive for any m′ (and may also depend on the transmit-

ted message). Note that the metric Dm is in general not computable at

the receiver; it is used here as a conceptual tool to evaluate the upper

bound on the decoding error probability. If ML decoding is applied,

then an error occurs if there exists m′ 6= m so that

Dm(xm′
,y) ≤ Dm(xm,y).

By increasing the value of Dm(xm,y), then if the above condition holds,

it is likely to hold for more than a single value of m′ (where m′ 6= m).

The union bound which upper bounds the probability of the union of

events by the sum of the probabilities of the individual events does not

therefore yield a tight upper bound, since it counts one decoding error

many times in the bound. Gallager therefore chose to separate the set of

the observation vectors (of length N), YN , into two disjoint subsets: the

good subset (YN
g ) corresponds to the case where the value of Dm(xm,y)

is not larger than a certain threshold which was chosen to be linearly
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proportional to the block length N (say Nd, where d ∈ R is arbitrary),

and the bad subset (YN
b ) corresponds to the case where the value of

Dm(xm,y) is larger than Nd. In the derivation of his bound, Gallager

applied the union bound only to the case where the received vector is

inside the good region (i.e., if y ∈ YN
g ). Therefore, we obtain that

YN = YN
g

⋃YN
b

YN
g ,

{
y ∈ YN : Dm(xm,y) ≤ Nd

}

YN
b ,

{
y ∈ YN : Dm(xm,y) > Nd

}
(4.12)

where d is an arbitrary real number. The parameter d is later optimized,

so as to get the tightest upper bound within this family.

The conditional ML decoding error probability can be expressed as

a sum of two terms

Pe|m = Pr(error ,y ∈ YN
b ) + Pr(error ,y ∈ YN

g ) (4.13)

which leads to the following upper bound:

Pe|m ≤ Pr(y ∈ YN
b ) + Pr(error ,y ∈ YN

g ) (4.14)

which resembles the methodology as introduced by Fano [71].

The arbitrary function fm
N in (4.11) has clearly no effect on the RHS

of (4.13) because it does not affect which codeword is decoded when xm

is transmitted. However, the function fm
N affects the upper bound on the

conditional ML decoding error probability in (4.14). As was explained

in Section 3.1, an inequality like (4.14) forms the starting point of

many efficient bounds, e.g., the tangential bound of Berlekamp [22] (see

Section 3.2.3 here), Hughes’ bound [98] (see Section 3.2.8 on p. 48), the

TSB of Poltyrev [152] (see Section 3.2.1 on p. 23), and the bound of

Engdahl and Zigangirov [67] (see Section 3.2.6 in p. 44). In the Gallager-

Fano approach, the regions YN
g , YN

b are related to the choice of the arbi-

trary function fm
N in (4.11). At this stage, Fano [71] proceeded with

the Chernoff bounding technique and the random coding approach,

while the Gallager bound [81] is better suited to treat particular

codes.
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Based on the Chernoff bound

Pr(y ∈ YN
b ) ≤ E(esW ) , s ≥ 0 (4.15)

where

W , Dm(xm,y) − Nd = ln

(
fm

N (y)

pN (y|xm)

)
− Nd. (4.16)

The second term in (4.14) is also upper bounded by a combination of

the union and the Chernoff bounds, which then yields

Pr(decoding error, y ∈ YN
g )

= Pr
(
Dm(xm′

,y) ≤ Dm(xm,y) for some m′ 6= m, y ∈ YN
g

)

≤
∑

m′ 6=m

Pr
(
Dm(xm′

,y) ≤ Dm(xm,y) , Dm(xm,y) ≤ Nd
)

≤
∑

m′ 6=m

E
(
exp(t Zm′ + r W )

)
, ∀ t,r ≤ 0 (4.17)

where, based on (4.11)

Zm′ , Dm(xm′
,y) − Dm(xm,y) = ln

(
pN (y|xm)

pN (y|xm′)

)

and W is defined in (4.16). In [81], Gallager considered the case where

the functions fm
N (y) can be expressed in the product form

fm
N (y) =

N∏

i=1

f(yi) (4.18)

(where the function f does not depend here on the index i). For simpli-

fying the derivation of the 1961 Gallager-Fano bound [81], it was also

assumed that the non-negative function f is even, i.e., f(y) = f(−y)

for all y ∈ Y. Let px(y) , p(y|x) be the probability transition measure

of the MBIOS channel (so p1(y) = p0(−y) for all y ∈ Y).

Let Nm(l) be the number of codewords in the code C with Hamming

distance l from the transmitted codeword xm (where l ∈ {0,1, . . . ,N}).
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For ensembles of block codes, we refer to the expected number of code-

words with Hamming distance l from the transmitted codeword, where

the expectation is taken over all the codes from this ensemble. We note

that for geometrically uniform block codes (e.g., linear block codes or

fully random block codes), the value of Nm(l) does not depend on the

index of the codeword m. For the general case, let Sl , 1
M

∑M−1
m=0 Nm(l)

be the average distance spectrum of the code (or ensemble) C. Based

on (4.14)–(4.17) and by optimally setting t = r−1
2 , the 1961 Gallager-

Fano bound on the average ML decoding error probability (see [81,

Eqs. (3.28)–(3.30)]) reads

Pe ≤ g(s)N exp(−Nsd) +
N∑

l=0

{
Sl [h(r)]l [g(r)]N−l

}
exp(−Nrd)

(4.19)

where s ≥ 0, r ≤ 0 and d ∈ R. The term in (4.19) for l = 0 accounts for

the pathological possibility that another codeword in C is identical to

the transmitted codeword; S0 is the (average) number of codewords in

C, other than the transmitted codeword, which are identical to it.

From the symmetry of the channel, and since the function f is

assumed to be even, Gallager obtained with the Chernoff bound-

ing technique (see (4.15)–(4.17)) that the functions g and h may be

expressed as

g(s) =
∑

y∈Y
p0(y)1−s f(y)s

=
1

2

∑

y∈Y

{(
[p0(y)]1−s + [p1(y)]1−s

)
f(y)s

}

h(r) =
∑

y∈Y

{
[p0(y) p1(y)]

1−r
2 f(y)r

}
(4.20)

and where the sums above are replaced by integrals when the output

alphabet is continuous. The upper bound (4.19) on the ML decoding

error probability depends on the distance spectrum of the considered

block code, and it therefore applies to fixed codes and also structured

ensembles of codes. It can be verified (though not mentioned in [81])

that the optimization of the parameter d in (4.19) yields that
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e−Nd =

(
−r

s

1

[g(s)]N

N∑

l=0

Sl[h(r)]l [g(r)]N−l

) 1
s−r

(4.21)

and by the substitution of (4.21) in the RHS of (4.19), one obtains that

the tightest bound within this family gets the expression

Pe ≤ 2H(ρ) [g(s)]N(1−ρ)

(
N∑

l=0

Sl [h(r)]l [g(r)]N−l

)ρ

, 0 ≤ ρ ≤ 1.

(4.22)

Here ρ , s
s−r (so it follows that 0 ≤ ρ ≤ 1, since s ≥ 0 and r ≤ 0), and

H(ρ) , −ρ log2(ρ) − (1 − ρ) log2 (1 − ρ) is the binary entropy function

to the base 2. The optimization of the function f in (4.19) yields an

implicit solution (as indicated in [81, Eq. (3.40)]). The following approx-

imation to the optimal non-negative and symmetric function f was

proposed by Gallager (see [81, Eq. (3.41)]):

f(y) = k





[
p0(y)

1−r
2 + p1(y)

1−r
2

]2

p0(y)1−s + p1(y)1−s





1
s−r

(4.23)

where the constant k in (4.23) is arbitrary and cancels out in the

bound. For the ensemble of fully random binary block codes where

all the binary block codes of a fixed rate and a fixed block length are

equiprobable, Gallager noted in his tutorial (see [81, p. 30]) that the

function f in (4.23) is indeed the optimal one (so in this case, it is not

just an approximation); the optimality of the function f is in the sense

of minimizing the 1961 Gallager-Fano upper bound in (4.19) among

all the non-negative and even functions (since these properties on the

arbitrary function f were required for the derivation of this bound).

The optimality of the function f in (4.23) is proved rather easily with

calculus of variations, starting from Eqs. (4.19) and (4.20); to this end,

one relies on the distance spectrum of the ensemble of fully random

binary block codes with rate R bits per channel use and block length

N , which is given by

Sl = 2−N(1−R)

(
N

l

)
, l = 0,1, . . . ,N.
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4.3 Interconnections between bounds

4.3.1 The random coding version of the DS2 bound

We show here that the random coding version of the DS2 bound coin-

cides with the well known 1965 Gallager bound for random codes. For

the ensemble of random codes, where the N -length codewords are ran-

domly and independently selected with respect to the input distribu-

tion qN (x), the DS2 bound yields the following upper bound on the

conditional decoding error probability:

Pe|m ≤ (M − 1)ρ




∑

y

pN (y|xm)Gm
N (y)




1−ρ

·





∑

y

pN (y|xm)Gm
N (y)

1− 1
ρ

∑

x′

qN (x′)

(
pN (y|x′)

pN (y|xm)

)λ




ρ

,

0 ≤ ρ ≤ 1, λ ≥ 0. (4.24)

The optimal non-negative function Gm
N (y) minimizing (4.24) is

Gm
N (y) =




∑

x′

qN (x′)

(
pN (y|x′)

pN (y|xm)

)λ



ρ

. (4.25)

The substitution of (4.25) into (4.24) gives

Pe|m ≤ (M − 1)ρ
∑

y



pN (y|xm)




∑

x′

qN (x′)

(
pN (y|x′)

pN (y|xm)

)λ



ρ
 .

(4.26)

After averaging over the transmitted codeword xm, which is randomly

selected with respect to the input distribution qN (xm), (4.26) yields

the following upper bound on the ML decoding error probability:

Pe ≤ (M − 1)ρ
∑

y





(
∑

x

qN (x)pN (y|x)1−λρ

)

·




∑

x′

qN (x′)pN (y|x′)λ




ρ
 . (4.27)
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Letting λ = 1
1+ρ , the standard random coding Gallager bound [82]

results. It is hence demonstrated that in the standard random cod-

ing setting, no penalty is incurred for invoking the Jensen inequality in

the optimized DS2 bound (see the bound in (4.8) which is subject to

the optimization of the probability tilting measure ψm
N ).

4.3.2 Relations to the 1961 Gallager-Fano bound

In this subsection we study the relation of the 1961 Gallager-Fano

bound [81] to the DS2 bound.

Let us assume that a codeword xm was transmitted. From the

Chernoff inequality in Eqs. (4.15) and (4.16) we obtain that for arbi-

trary s ≥ 0 and d ∈ R:

Pr(y ∈ YN
b ) ≤

∑

y

pN (y|xm) exp
(
s (Dm(xm,y) − Nd)

)

= e−Nsd
∑

y

pN (y|xm)

(
fm

N (y)

pN (y|xm)

)s

. (4.28)

Similarly, we obtain from the Chernoff upper bound in (4.17) that

given that the codeword xm was transmitted, then the conditional joint

probability of having the observation vector in the good region which is

associated with the 1961 Gallager-Fano bound (i.e., the event that the

received vector y is inside YN
g ), and also that the ML decoder makes an

error, satisfies the following inequality for arbitrary t,r ≤ 0 and d ∈ R:

Pr(decoding error,y ∈ YN
g )

≤
∑

m′ 6=m

pN (y|xm) exp(tZm′ + rW )

= e−Nrd
∑

m′ 6=m

∑

y

pN (y|xm)

(
pN (y|xm)

pN (y|xm′)

)t (
fm

N (y)

pN (y|xm)

)r

. (4.29)

Based on the upper bound on the conditional ML decoding error prob-

ability (4.14), and from Eqs. (4.28), (4.29), we obtain that
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Pe|m ≤ e−Nsd
∑

y

pN (y|xm)

(
fm

N (y)

pN (y|xm)

)s

+ e−Nrd
∑

m′ 6=m

∑

y

pN (y|xm)

(
pN (y|xm)

pN (y|xm′)

)t (
fm

N (y)

pN (y|xm)

)r

where s ≥ 0, r ≤ 0, t ≤ 0, and d ∈ R. In a similar way to the opti-

mization of the parameter d in Section 4.2.3, by doing the same

kind of optimization in the bound above, and by substituting ρ = s
s−r

(0 ≤ ρ ≤ 1) in the resulting optimized bound (with respect to the

parameter d), one obtains the following upper bound on the condi-

tional ML decoding error probability:

Pe|m ≤ 2H(ρ)




∑

y

pN (y|xm)

(
fm

N (y)

pN (y|xm)

)s



1−ρ

·




∑

m′ 6=m

∑

y

pN (y|xm)

(
pN (y|xm)

pN (y|xm′)

)t (
fm

N (y)

pN (y|xm)

)s

(
1− 1

ρ

)


ρ

,

0 ≤ ρ ≤ 1 (4.30)

as was first indicated by Divsalar [50, Eqs. (71), (72)].

Divsalar [50] has renamed −t by λ (where t ≤ 0 is introduced in

(4.17), so λ ≥ 0 as required in (4.10)), and has also set

Gm
N (y) =

(
fm

N (y)

pN (y|xm)

)s

(4.31)

deriving then the DS2 bound (4.10) with an additional factor of 2H(ρ)

(where 1 ≤ 2H(ρ) ≤ 2). This demonstrates the superiority of the DS2

bound over the 1961 Gallager-Fano bounding technique when applied

to a particular code or ensemble of codes. It has been demonstrated

in [167] that the 1961 Gallager-Fano bound equals the 1965 Gallager

random coding bound (4.27) up to the 2H(ρ) coefficient, where as shown

before, the latter bound agrees with the optimized DS2 bound.

For the derivation of the 1961 Gallager-Fano bound for arbitrary

MBIOS channels, the function fm
N (y) was assumed to be expressible in
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the product form of (4.18) (see [81, Section 3]). From the interesting

connection between the DS2 bound and the 1961 Gallager-Fano bound,

we arrive to the following conclusion with respect to the application of

these two bounds to MBIOS channels. Since the un-normalized tilting

measure Gm
N (y) in the DS2 bound (4.10) is an arbitrary non-negative

function, and also based on the relation in (4.31), then we conclude that

the one-dimensional function f in the RHS of (4.18) should not be in

fact an even function (but should be only a non-negative function);

this therefore makes the general form of the DS2 bound when applied

to MBIOS channels valid under wider conditions, as compared to the

1961 Gallager-Fano bound.

4.3.3 Geometric interpretation of the
Gallager-type bounds

The connections between the Gallager-Fano tilting measure and the

Duman and Salehi normalized and un-normalized tilting measures

(which are designated here by fm
N (y), ψm

N (y) and Gm
N (y), respectively)

are indicated in (4.9) and (4.31). We will see that these connections

also provide some geometric interpretations of various reported bounds.

The measure fm
N (y) in the 1961 Gallager-Fano bound, which in general

does not imply a product form, entails a geometric interpretation asso-

ciated with the conditions in the inequalities (4.12), specifying the dis-

joint regions YN
g , YN

b ⊆ YN . The geometric interpretation of the 1961

Gallager-Fano bound is not necessarily unique, as measures fm
N (y) of

different functional structure may imply equivalent conditions in the

inequality

ln

(
fm

N (y)

pN (y|xm)

)
≤ Nd. (4.32)

The non-uniqueness of the measures fm
N (y) in this respect is due to

the shifting and factoring invariance of inequality (4.32), and since the

parameter d in (4.19) is subjected to optimization. We demonstrate

here the connection between the non-unique measure fm
N (y) and its

associated decision region, and exemplify the non-uniqueness property

by focusing on the Divsalar bound [50] (see also Section 3.2.4 on p. 36).
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The conditional pdf for the binary-input AWGN channel is

pN (y|xm) =

N∏

l=1

{
1√
2π

exp

[
−1

2
(yl − γ xm(l))2

]}
(4.33)

where γ ,

√
2REb
N0

. Here xm(l) designates the l-th symbol of the m-th

codeword, where 0 and 1 are mapped to 1 and −1, respectively.

Divsalar bound [50] is specified by the associated decision region

YN
g =

{
y |

N∑

l=1

(
yl − ηγ xm(l)

)2 ≤ N r2

}
(4.34)

which is an N -dimensional sphere whose center that is located along the

line connecting the origin to the codeword xm (see Fig. 3.2 on p. 38).

The parameters r,η are analytically optimized in Divsalar bound [50].

It can be verified that the following Gallager-Fano tilting measures in

(4.32) imply the same decision region in (4.34):

fm
N (y) =

N∏

l=1

{
exp

(
(1 − η)y2

l

2η

)}
, (4.35a)

fm
N (y) =

N∏

l=1

{
exp

(
γ (1 − η)xm(l)yl

)}
, (4.35b)

fm
N (y) =

N∏

l=1

{
exp

(
θ
(
yl − φxm(l)

)2
)}

(4.35c)

where φ , γ
(
η +

η − 1

2θ

)
, θ > −1

2
.

This can be done by examining the geometrical regions associated

with the tilting measures fm
N (y) in (4.35)–(4.35c). As an example, we

show that the measure fm
N (y) in (4.35c) yields the geometrical region

in (4.34).
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Proof. From Eqs. (4.33) and (4.35c), we get

ln

(
fm

N (y)

pN (y|xm)

)

= ln




N∏

l=1

{
exp

(
θ
(
yl − φxm(l)

)2
)}

N∏

l=1

{
1√
2π

exp
(
−1

2

(
yl − γ xm(l)

)2
)}




=
N

2
ln(2π) +

N∑

l=1

{
θ
(
yl − φxm(l)

)2
+

1

2

(
yl − γxm(l)

)2
}

=

(
θ +

1

2

) N∑

l=1

y2
l − (2θφ + γ)

N∑

l=1

xm(l) yl

+ N

(
θφ2 +

γ2

2
+

ln(2π)

2

)

=

(
θ +

1

2

) N∑

l=1

(
yl −

2θφ + γ

2θ + 1
· xm(l)

)2

+ N

[
θφ2 +

γ2

2
+

ln(2π)

2
− (2θφ + γ)2

2(2θ + 1)

]
. (4.36)

The equivalence between the geometrical regions defined in (4.32) and

(4.34) is invariant to a shift in the value of the parameter d in (4.32),

and to factoring by a positive constant in (4.34). The reason for this

invariance is because the two parameters d and r in (4.32) and (4.34),

respectively, are subjected to optimizations. This implies that we need

θ + 1
2 to be positive, and by comparing (4.34) with (4.36), then we also

require the following equation to be satisfied:

2θφ + γ

2θ + 1
= γη

which yields the conditions in (4.35c).

We note that although the three tilting measures fm
N (y) in (4.35a)–

(4.35c) imply the same decision region YN
g , the second and third
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measures (in (4.35b) and (4.35c), respectively) are amenable to gener-

alizations for the class of fully interleaved fading channels, as opposed

to the first measure (since the exponential term of the first tilting

measure in (4.35a) is quadratic in {yl}N
l=1, but does not depend on

the coordinates of the transmitted codeword {xm(l)}N
l=1); it therefore

demonstrates a different functional behavior of these tilting measures.

The geometrical region which is associated with the sphere bound

(see Section 3.2.5 on p. 42) is an N -dimensional sphere whose center

coincides with the transmitted codeword (so this region is a particular

case of (4.34) where η = 1). For the sphere bound, the tilting measures

in (4.35a) and (4.35b) are identical (i.e., fm
N (y) ≡ 1), and the third

tilting measure in (4.35c) gets the form

fm
N (y) =

N∏

l=1

{
exp

(
θ
(
yl − γ xm(l)

)2
)}

, θ > −1

2
.

4.4 Special cases of the DS2 bound

In this section we demonstrate that many reported upper bounds can be

considered as special cases of the DS2 bound 1 (see Section 4.2.2

on p. 96). These observations rely on the material presented in

[50, 167, 183].

4.4.1 The Shulman and Feder bound

We consider here the transmission of a binary linear block code C where

the communication takes place over a memoryless binary-input output-

symmetric (MBIOS) channel. The analysis refers to the decoding error

probability under soft-decision ML decoding.

The Shulman and Feder bound (SFB) [187] on the block error prob-

ability of an (N,K) binary linear block code C, transmitted over an

MBIOS channel is given by

Pe ≤ 2−NEr(R+
logα(C)

N
) (4.37)

1 The first version of the Duman and Salehi bounds which is introduced in this section is

shown to be a particular case of the DS2 bound. Therefore, we introduced the latter bound
in Section 4.2, before the presentation of their first version bound in Section 4.4.
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where

Er(R) = max
0≤ρ≤1

(E0(ρ) − ρR) (4.38)

E0(ρ) , − log2

{
∑

y

[
1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]1+ρ
}

. (4.39)

Er is the random coding error exponent [82], R , K
N designates the

code rate in bits per channel use, and

α(C) , max
1≤l≤N

Al

2−N(1−R)
(
N
l

) . (4.40)

In the RHS of (4.40), {Al} denotes the distance spectrum of the code.

Hence, for fully random block codes, α(C) is equal to 1, and the SFB

particularizes to the random coding bound [82]. In general, the param-

eter α(C) in the SFB (4.37) measures the maximal ratio of the distance

spectrum of a code (or ensemble) and the average distance spectrum

which corresponds to fully random block codes of the same block length

and rate.

The original proof of the SFB is quite involved. In [183], a simpler

proof of the SFB is derived, and by doing so, the simplified proof repro-

duces the SFB as a particular case of the DS2 bound (see Eq. (4.8)).

In light of the significance of the proof concept to the continuation of

our paper, we outline this proof briefly.

Since we deal with linear block codes and the communication chan-

nel is memoryless, binary-input output-symmetric channel (MBIOS),

one can assume without any loss of generality that the all zero code-

word c0 is the transmitted vector. In order to facilitate the expression of

the upper bound (4.10) in terms of distance spectrum of the block code

C, we consider here the case where the un-normalized tilting measure

G0
N (y) can be expressed in the following product form:

G0
N (y) =

N∏

i=1

g(yi) (4.41)

where g is an arbitrary non-negative scalar function, and the channel

is by assumption MBIOS, so that the transition probability measure is
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expanded in the product form

pN (y|cm′
) =

N∏

i=1

p(yi|cm′
(i)) (4.42)

where cm′
= (cm′

(1), . . . , cm′
(N)). Hence, the upper bound on the condi-

tional ML decoding error probability given in (4.10) can be rewritten as

Pe = Pe|0

≤
(

∑

y

g(y) p(y|0)

)N(1−ρ)




N∑

l=1

Al

(
∑

y

g(y)
1− 1

ρ p(y|0)

)N−l

·
(

∑

y

g(y)
1− 1

ρ p(y|0)1−λp(y|1)λ

)l




ρ

λ ≥ 0,

0 ≤ ρ ≤ 1

≤
(

max
0<l≤N

Al

2−N(1−R)
(
N
l

)
)ρ (

∑

y

g(y) p(y|0)

)N(1−ρ)

2−N(1−R)ρ

·
{

∑

y

g(y)
1− 1

ρ p(y|0) +
∑

y

g(y)
1− 1

ρ p(y|0)1−λp(y|1)λ

}Nρ

.

(4.43)

By setting

g(y) =

[
1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ

p(y|0)
− ρ

1+ρ , λ =
1

1 + ρ
(4.44)

and using the symmetry of the channel (where p(y|0) = p(−y|1)), the

SFB follows readily.

Miller and Burshtein suggested in [133, Theorem 1] to combine the

union bound and the SFB in a sophisticated manner. The idea of com-

bining the union bound and the SFB is based on using the union bound

at the portion of the Hamming weights where the distance spectrum

of the considered ensemble deviates considerably from the one which

corresponds to the ensemble of fully random block codes, and using the

SFB for the complementary portion of the Hamming weights where the

two distance spectra are close enough.
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Fig. 4.1 The ratio between the average distance spectrum of a random ensemble of turbo-
block codes {Al} and the binomial distribution {Bl} which characterizes the average dis-

tance spectrum of fully random block codes with the same block length and code rate. We
consider an ensemble of uniformly interleaved turbo-block codes where the two constituent
codes are binary, linear and systematic block codes of the same rate and block length which

are chosen at random. The overall rate of the ensemble is R = 0.72 bits per channel use,
and the block length of the turbo code is N = 100 bits (this implies that the constituent
systematic codes are of dimension 72, and their number of parity bits is 14).

Fig. 4.1 shows the ratio between the average distance spectrum of

a random ensemble of turbo-block codes {Al} and the binomial dis-

tribution {Bl} which characterizes the average distance spectrum of

fully random block codes with the same block length and code rate.

According to this figure, the union bound is used with respect to the

small and large Hamming weights (where the distance spectrum of the

ensemble is considerably larger than the corresponding binomial distri-

bution), and the SFB is used with respect to the rest of the Hamming

weights (i.e., the intermediate values for which the two distance spec-

tra are close enough, so that the ratio depicted in this figure is close

to 1).

An upper bound on the ML decoding error probability which com-

bines the SFB with the union bound was used for the analysis of LDPC

codes under ML decoding (see [133] and [176, Theorem 2.2]). This

generalized bound was used in order to prove that for an arbitrary
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MBIOS channel, properly chosen ensembles of regular LDPC codes

achieve under ML decoding rates which can be made arbitrarily close

to the channel capacity.2 Based on the same bounding technique which

combines the union bound with the SFB, the performance of punc-

tured LDPC codes under ML decoding was studied in [95]. It is shown

in this paper that under ML decoding, capacity-achieving codes of any

rate and for any MBIOS channel can be constructed by puncturing

some original LDPC codes with small enough rate; this indicates the

high potential of rate-compatible puncturing to be used in designing

capacity-achieving codes for an arbitrary MBIOS channel (see also [88]

for the design and analysis of punctured LDPC codes under iterative

message-passing decoding). These results demonstrate that the gener-

alized bound which properly combines the SFB with the union bound

provides a rather powerful bounding technique for the ML analysis

of various ensembles of LDPC codes (or other capacity-approaching

ensembles of linear codes). We refer the reader to [21] where Burshtein

and Bennatan stated this bounding technique for ensembles of non-

binary codes, and applied their bounds to various ensembles of non-

binary LDPC codes which are communicated over an arbitrary discrete

memoryless channel.

The SFB was recently improved by Twitto et al. [201, 200] where

the general approach of this improvement relies on variations of the

DS2 bound which tighten the pre-exponent of the SFB. The improved

bounding technique was adapted for the analysis of the block error

probability as well as the bit error probability of binary linear block

codes. For codes of high rate, the improved version of the SFB out-

performs the tangential-sphere bound, as exemplified in [201, 200] for

some turbo-like ensembles.

2 We note that a parallel result was not proved yet for any ensemble of LDPC codes under a
sub-optimal iterative message-passing decoding algorithm. For ensembles of regular LDPC
codes, it is well known that by increasing the degrees of the variable nodes and the parity-
check nodes so that the design rate stays constant, the achievable rates of ensembles of

regular LDPC codes improve under ML decoding, though their achievable rates under
iterative message-passing decoding degrade.
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4.4.2 Gallager-type bounds for the binary-input
AWGN channel

In this section, we present various upper bounds on the ML decoding

error probability for the binary-input AWGN channels; the derivation

of these bounds rely on the DS2 bound which is a variation of the

Gallager bounding technique. We show that these reported bounds are

special cases of the DS2 bound. In general, we prove it by choosing

appropriate probability tilting measures which enable to derive these

bounds as special cases of the DS2 bound.

Let C be a binary linear block code of length N . Throughout this

section, δ , d
N (where 0 ≤ δ ≤ 1) designates the normalized Hamming

weight of an arbitrary codeword of C whose Hamming weight is equal

to d, and rN (δ) ,
lnSd
N designates the exponential growth rate of the

distance spectrum of C as a function of δ.

The derivation of the upper bounds in this section relies on the

partitioning of the code C into constant Hamming weight subcodes

{Cd}N
d=0 where the subcode Cd includes all the codewords of Hamming

weight d, and also the all-zero codeword. We note that although the

subcodes {Cd} are not necessarily linear (since the sum of two code-

words of Hamming weight d is not necessarily a codeword of such a

Hamming weight), the upper bound on the conditional error probabil-

ity (4.8) (see p. 97) of every subcode Cd is still valid; the reason is that

the linearity of the code is not required for the validity of (4.8).

Due to the channel symmetry and the linearity of the code, an

overall union bound over the subcodes yields that

Pe = Pe|0 ≤
N∑

d=dmin

Pe|0(d) (4.45)

where dmin is the minimum Hamming distance of the code C, and Pe|0(d)

is the conditional ML decoding error probability of the subcode Cd,

given that the all-zero codeword is transmitted. In the continuation to

this section, we will apply the DS2 bound with different tilting mea-

sures in order to re-derive previously reported upper bounds as special

cases of the former bound. From (4.45), it suffices to obtain bounds on

Pe|0(d).
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(1) 4.4.2.1 Duman and Salehi bound (first version)

The Duman and Salehi bound in [62] (which is named here as

the first version of the Duman and Salehi bounds) is a special

case of the DS2 bound [60]. More specifically, the bound in

[62] is a special case of the generalized DS2 bound in (4.8)

where the normalized tilting measure is given by

ψm
N (y) =

N∏

l=1





√
α

2π
exp


−α

2

(
yl −

β

α

√
2Es

N0
xm(l)

)2







α > 0, β ∈ R. (4.46)

We assume here that the components of the codeword xm

are either +1 or −1 for a ‘0’ or ‘1’ input, respectively. By

(4.8), we obtain the following upper bound on Pe|0(d):

Pe|0(d) ≤ (Sd)
ρ

(∫ +∞

−∞
p0(y)

1
ρ ψ(y)

1− 1
ρ dy

)(N−d)ρ

·
(∫ +∞

−∞
p0(y)

1−λρ
ρ p1(y)λ ψ(y)

1− 1
ρ dy

)dρ

0 ≤ ρ ≤ 1, λ > 0 (4.47)

where from (4.46), and given that the all-zero codeword is

transmitted, then we obtain that

ψ(y) =

√
α

2π
exp


−α

2

(
y − β

α

√
2Es

N0

)2

 , y ∈ R (4.48)

and the probability density functions

p0(y) =
1√
2π

exp


−1

2

(
y −

√
2REb

N0

)2

 ,

p1(y) = p0(−y), y ∈ R (4.49)

refer to the binary-input AWGN channel. The substitution of

Eqs. (4.48) and (4.49) into (4.47), and the optimization over
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the parameters λ ≥ 0 and β ∈ R in this bound gives (see [62])

β∗ =
1 − d

N
1
α − d

N (1 − ρ)
, λ∗ =

1

2

(
β∗ +

1 − β∗

ρ

)
. (4.50)

The closed-form expressions of the integrals in (4.47) for the

specific probability measures ψ and p0 in (4.48) and (4.49),

respectively, gives the following upper bound:

Pe|0(d) ≤ (Sd)
ρ α

N(1−ρ)
2

(
α − α − 1

ρ

)−Nρ
2

exp





NREb

N0


−1 +

(β∗)2(1 − ρ)

α

+
ρ
(
1 − d

N

)(
β∗ + 1−β∗

ρ

)2

α − α−1
ρ








. (4.51)

The bound in (4.51) is the first version of the Duman and

Salehi bounds [62], and it is numerically optimized over the

range 0 < α < 1
1−ρ , 0 < ρ ≤ 1 (we note that the reason for

the range of α as above is because we get from (4.51) that

α − α−1
ρ should be positive, and also α > 0 is a requirement

in (4.46)).

Based on our notation for the normalized Hamming weight

(δ) and the exponential growth rate of the distance spectrum

(rN (δ)) of a linear block code, then the bound in (4.47) is

also expressible in the following equivalent form:

Pe|0(d) ≤
{

eρrN (δ)

(∫ +∞

−∞
p0(y)

1
ρ ψ(y)1−

1
ρ dy

)(1−δ)ρ

·
(∫ +∞

−∞
p0(y)

1−λρ
ρ p1(y)λ ψ(y)

1− 1
ρ dy

)δρ
}N

0 ≤ ρ ≤ 1, λ > 0. (4.52)

This form is useful for the discussion on the Eb
N0

– thresholds

of linear codes (see Section 4.7.3 on p. 141).



118 Gallager-Type Upper Bounds: Variations, Connections and Applications

(2) 4.4.2.2 Viterbi and Viterbi bound (first version)

The Viterbi and Viterbi bound [209] is an upper bound

on the ML decoding error probability for BPSK modulated

block codes operating over a binary-input AWGN channel.

It can be verified that it is also a particular case of the first

version of Duman and Salehi bounds by substituting α = 1

in (4.50) and (4.51), which yields the following conditional

upper bound on the ML decoding error probability:

Pe|0(d) ≤ (Sd)
ρ exp

(
−NREb

N0

(
d
N

)
ρ

1 − d
N (1 − ρ)

)
, 0 ≤ ρ ≤ 1 .

The optimization over the parameter ρ then gives the

Viterbi & Viterbi upper bound [209], which reads

Pe|0(d) ≤ exp
(
−N Ev1(δ)

)

where

Ev1
(δ) =





δc − rN (δ), 0 ≤ rN (δ)

c
≤ δ (1 − δ)

(
√

c −
√

(1 − δ) rN (δ)

δ

)2

, δ (1 − δ) ≤ rN (δ)

c
≤ δ

1 − δ

and

δ ,
d

N
, rN (δ) ,

ln(Sd)

N
, c ,

Es

N0
=

REb

N0
.

(3) 4.4.2.3 Viterbi and Viterbi bound (second version)

The second version of the Viterbi and Viterbi bounds [210]

is based on the 1961 Gallager-Fano bound, and is valid for

an arbitrary MBIOS channel. This bound reads

Pe|0(d) ≤ exp
(
−N Ev2(δ)

)

where

Ev2(δ) = max
0≤ρ≤1

{
−ρ rN (δ) + δ ln

(
h̄(ρ)

)
+ (1 − δ) ln

(
ḡ(ρ)

)

−(1 − ρ) ln
(
h̄(ρ) + ḡ(ρ)

)}
.
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From (4.20) and (4.23), and the substitution ρ = s
s−r (so

since, s ≥ 0, r ≤ 0, then 0 ≤ ρ ≤ 1), we obtain that

h̄(ρ) , h(r) =
∑

y

{[
p0(y)

1
1+ρ + p0(−y)

1
1+ρ

]−(1−ρ)

·
[
p0(y)p0(−y)

] 1
1+ρ

}

ḡ(ρ) , g(r)=
∑

y

{[
p0(y)

1
1+ρ + p0(−y)

1
1+ρ

]−(1−ρ)
p0(y)

2
1+ρ

}
.

For the binary-input AWGN channel, p0(·) is introduced in

(4.49). Clearly, for channels with continuous output, the sums

above should be replaced by integrals.

The second version of the Viterbi & Viterbi bound is again a

special case of the DS2 bound, as noticed by the substitution

in (4.10) of the un-normalized tilting measure

Gm
N (y) =

N∏

l=1

{(
p(yl|0)

1
1+ρ + p(yl|1)

1
1+ρ

)ρ
p(yl|0)

− ρ
1+ρ

}
.

(4) 4.4.2.4 Divsalar bound

The geometric interpretation of the bound of Divsalar [50] is

shown in Fig. 3.2 (see p. 38). We show in Section 4.3.3 (see

p. 107) that the spherical region which is shown in Fig. 3.2

is equivalently represented by the condition in (4.32) with

an appropriate (and non-unique) tilting measure of the 1961

Gallager-Fano bound (for some possible choices of this tilting

measure, see e.g., (4.35a)–(4.35c)).

The following connection between the Gallager-Fano tilting

measure (fm
N (y)) and the normalized tilting measure (ψm

N (y))

in the DS2 bound follows from (4.9) and (4.31):

ψm
N (y) =

[fm
N (y)]s [pN (y|xm)]1−s

∑

y

{
[fm

N (y)]s [pN (y|xm)]1−s
} . (4.53)
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Substituting the tilting measure (4.35c) and the pdf (4.33)

into (4.53), yields that the corresponding normalized tilting

measure (ψm
N ) for the Divsalar bound coincides with the one

in (4.46). This result is verified by setting the parameters as

follows:

α = 1 − (2θ + 1)s, β = 1 − (2θ + 1)ηs. (4.54)

This is the grounds for the observation in [50] that Divsalar

bound is a closed form expression of the Duman and Salehi

(first version) bound [62].

(5) 4.4.2.5 The Engdahl and Zigangirov bound

For the Engdahl and Zigangirov bound [67] (see Section 3.2.6

on p. 44) which was derived for a binary-input AWGN

channel, the decision region YN
g associated with the trans-

mitted codeword xm =
(
xm(1),xm(2), . . . ,xm(N)

)
is an N -

dimensional region whose boundary is a plane

YN
g =

{
y |

N∑

l=1

yl x
m(l) ≥ Nd

}
(4.55)

where d ∈ R is a parameter of the 1961 Gallager-Fano bound

(with a slight abuse of notation, we make it clear in our dis-

cussion when the parameter d stands for the real parameter

in the 1961 Gallager-Fano bound (see, e.g., (4.19) and (4.32)),

and when d designates the Hamming weights of codewords

of a linear code).

The motivation for (4.55) is that inside the good region (i.e.,

y ∈ YN
g ), the correlation between the received vector y and

the transmitted codeword xm is expected to be significant.

Therefore, it is above a certain threshold (Nd), where the

parameter d is to be optimized, so as to get the tightest upper

bound within the family of bounds (4.32) and the associated

decision region YN
g in (4.55). The following Gallager-Fano

tilting measure can be associated with the same decision
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region YN
g :

fm
N (y) =

N∏

l=1

{
exp

(
−1

2
y2

l + β yl x
m(l)

)}
(4.56)

where β 6= γ (γ is introduced in (4.33)). The free parameter

β in (4.56) demonstrates again that there might be some

functionally different Gallager-Fano tilting measures which

imply the same decision region (based on the definition of

the regions in (4.12)). It is interesting to note, that for this

specific choice of a decision region (4.55), it was demonstrated

in [67] that there is no need to invoke the Chernoff bounds

for the binary-input AWGN channel, and the two terms in

the right hand side of (4.14) can be exactly calculated.

(6) 4.4.2.6 The Chernoff version of various

bounds are Gallager-type bounds

In his paper [50], Divsalar derived simplified Chernoff ver-

sions of some upper bounds, which are obtained as spe-

cial instances of the 1961 Gallager-Fano bounding tech-

nique. These simplified Chernoff versions include the follow-

ing bounds:

The Chernoff version of the TSB (see Section 3.2.10.1 on

p. 59): The TSB of Poltyrev [152] is one of the tightest

known upper bound for block codes which are transmitted

over a binary-input AWGN channel and ML decoded (see,

e.g., [170], [169]). However, in the random coding setting, it

fails to reproduce the random coding exponent [152] while the

DS2 bound does. This bound involves a numerical solution

of an associated optimization equation ([170, Eq. (4.8)]), and

it is therefore not expressed in closed form. In his paper [50],

Divsalar derived a simplified Chernoff version of the TSB.

That upper bound is shown in [50] to have the same error

exponent as the TSB of Poltyrev, and therefore the loosen-

ing of the TSB by invoking the Chernoff bounding technique,
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does not carry any implications on the tightness of the bound

for asymptotically infinite block length.

The Chernoff version of the tangential bound (see Section

3.2.10.2 on p. 66): This version coincides with the first version

of the Viterbi and Viterbi bound [209]. It can be shown that

the relevant Gallager-Fano decision region is a plane, which

is also the case for the Engdahl and Zigangirov bound [67].

However, as noted above, in the latter bound the Chernoff

bounding technique is not invoked, improving thus the bound

for a finite block length.

The Chernoff version of the sphere bound (see Section

3.2.10.3 on p. 68): This bound results as a particular case

of the decision region in Divsalar bound (4.35), where η = 1.

Due to the connection of the Gallager-Fano tilting measure

to the Duman and Salehi variation, it is evident that the

Chernoff versions of these bounds can be also viewed as spe-

cial cases of the DS2 bound. It should be emphasized that

the mentioned bounds above were originally developed with-

out resorting to Chernoff bounding technique, yielding thus

tighter versions of these bounds.

4.4.3 Gallager-type bounds for fully interleaved fading
channels with perfect CSI

We demonstrate here various variations of the DS2 bound when applied

to the class of fully interleaved Rayleigh fading channels with perfect

channel state information at the receiver. This problem is treated in

detail in [52], [173], [172] and here we present in a comparative fashion

some insightful results. The model is:

y = ax + n (4.57)

where y stands for the received signal, x stands for the BPSK mod-

ulated input signal (that is ±√
2Es) and n designates the additive

zero mean and N0
2 variance Gaussian noise component. The fading a is

assumed to be perfectly known at the receiver and hence is considered

to be real valued, as the receiver compensates for any phase rotation.
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Due to the ideal interleaving, the channel is assumed to be memoryless.

The bounds are based on first decomposing the code to constant-weight

subcodes (where every subcode also includes the all-zero codeword),

over which a union bound is invoked as in (4.45).

4.4.3.1 The optimized DS2 bound

Similarly to Section 4.4.2 (see p. 115), the derivation of the upper

bounds in this section relies on the partitioning of the code C into con-

stant Hamming weight subcodes {Cd}N
d=0 where the subcode Cd includes

all the codewords of Hamming weight d, and also the all-zero codeword.

Due to the channel symmetry and the linearity of the code, an overall

union bound over the subcodes yields (4.45).

In [172], the measure

Ψ(y, a) =
N∏

l=1

ψ(yl, al) (4.58)

is optimized to yield the tightest conditional DS2 bound (4.8) with

respect to the subcode Cd (given that the all-zero codeword is trans-

mitted), where (y,a) are interpreted as the available measurements at

the receiver.

Pe|0(d) ≤ (Sd)
ρ

{(∫ ∞

−∞

∫ ∞

0
ψ(y,a)

1− 1
ρ p0(y,a)

1
ρ dady

)(1−δ)ρ

·
(∫ ∞

−∞

∫ ∞

0
ψ(y,a)

1− 1
ρ p0(y,a)

1−λρ
ρ p1(y,a)λ dady

)δρ
}N

0 < ρ ≤ 1, λ ≥ 0
(4.59)

where δ , d
n designates the normalized Hamming weight (0 ≤ δ ≤ 1),

the probability density functions p0 and p1 are introduced in (3.101)

for fully interleaved fading channels, and ψ is an arbitrary non-negative

function which satisfies the condition
∫ ∞

−∞

∫ ∞

0
ψ(y,a)dady = 1 . (4.60)
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The function ψ(·, ·) can be regarded as a tilting measure depending on

the measurements y,a, which are perfectly available to the receiver.

Resorting to calculus of variations, we obtain the following form for

the optimal function ψ, as to provide the tightest upper bound of the

family above:

ψ(y,a) = β p0(y,a)

(
1 + α

[
p1(y,a)

p0(y,a)

]λ
)ρ

, −∞ < y < ∞, a ≥ 0

(4.61)

where the parameters α, β are non-negative (see [172, Appendix A]).

For specific values of λ, ρ and δ, the parameter α is optimally deter-

mined as to satisfy the implicit equation

∫ ∞

−∞

∫ ∞

0
p0(y,a)

(
1 + α

[
p1(y,a)

p0(y,a)

]λ
)ρ−1

dady

∫ ∞

−∞

∫ ∞

0
p0(y,a)

(
1 + α

[
p1(y,a)

p0(y,a)

]λ
)ρ

dady

= 1 − δ. (4.62)

The parameter β is then optimally determined by the following relation

(which stems directly from (4.60) and (4.61)):

β =

{∫ ∞

−∞

∫ ∞

0
p0(y,a) ·

(
1 + α

[
p1(y,a)

p0(y,a)

]λ
)ρ

dady

}−1

. (4.63)

We note here that the left hand side of (4.62) is a decreasing func-

tion of the non-negative parameter α, and it also admits every value

between zero and unity (corresponding to α →∞ and α = 0, respec-

tively). Therefore, the existence and uniqueness of a solution α for

(4.62) is assured for any δ (as 0 < δ < 1), and this solution can be

determined numerically (e.g., by the bisection method).

We observe from our discussion so far that the minimization of the

above upper bound on the block error probability (which is based on

the minimization of the upper bound on Pe|0(d) in (4.59) and the calcu-

lation of the union bound in (4.45)) involves a numerical minimization

of (4.59) over the parameters λ and ρ (where λ ≥ 0 and 0 < ρ ≤ 1),

for every particular subcode Cd (d = 0,1, . . . ,N). The optimal values of
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α and β which are related to the optimal tilting measure ψ in (4.61)

are numerically evaluated from (4.62) and (4.63) as a function of the

two optimized parameters λ and ρ. This minimization is performed

separately for every subcode (where the number of the subcodes Cd

doesn’t exceed the length N of the linear block code C, and clearly we

are interested only on the subcodes Cd for which Sd > 0, as otherwise

Pe|0(d) = 0).

Suppose we wish to calculate an upper bound on the block error

probability for an ensemble of linear block codes whose average distance

spectrum is calculable. By invoking the Jensen inequality to the right

hand side of (4.59), then E[(Sd)
ρ] ≤ (E[Sd])

ρ, where 0 ≤ ρ ≤ 1. Hence,

for ensembles of codes, the upper bound (4.59) therefore stays valid by

replacing the distance spectrum in the right hand side of (4.59) with

the statistical expectation of the distance spectrum (as was first noted

in [62]).

4.4.3.2 Exponential tilting measure

In [173], a sub-optimal selection for ψ in (4.58) is suggested which in fact

is motivated by the Duman and Salehi (first version) bound [62]. An

exponential tilting measure is also applied in [173] to the fading sample

a (treated as a measurement), which gives rise to the exponential tilting

measure

ψ(y,a) =

√
α
2π exp

[
−α

2

(
y − au

√
2Es
N0

)2

− αv2a2Es
N0

]
p(a)

∫ +∞

0
p(a) exp

(
−αv2a2Es

N0

)
da

(4.64)

where α ≥ 0, −∞ < u < +∞, −∞ < v < +∞, and p(a) designates the

probability density function of the independent fading samples. That

yields a closed form upper bound in (4.59), which reads (see [173])

Pe|0(d) ≤ (Sd)
ρ α

−N(1−ρ)
2

(
α − α − 1

ρ

)−Nρ
2

·
(

1

1 + t

)N(1−ρ) ( 1

1 + ε

)dρ (
1

1 + v

)(N−d)ρ

(4.65)
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where

t =
αν2Es

N0
(4.66a)

v =
Es

N0


α(u2 + ν2)

(
1 − 1

ρ

)
+

1

ρ
−

(
αu − αu−1

ρ

)2

α − α−1
ρ


 (4.66b)

ε = v +
Es

N0

(
αu − αu−1

ρ

)2
−

(
αu − αu−1

ρ − 2λ
)2

α − α−1
ρ

. (4.66c)

This bound is in fact equivalent to the Divsalar and Biglieri bound

[52] which has been derived via a geometric extension of the associated

decision region in Divsalar bound [50] (by rotating the displaced sphere

region in [50]). The bound (4.64)–(4.66) also yields to an extension of

the Viterbi and Viterbi (first version) bound for fully interleaved fading

channels and perfect CSI at the receiver (see [173]), by setting

α = 1 , u = 1 − ξρ , ν =
√

1 − (1 − ξρ)2 , λ =
1 + ξ (1 − ρ)

2
.

(4.67)

In [173], the DS2 bound associated with the exponential tilting measure

(4.64) is also applied to the fully interleaved Rician fading channel. As

a special case, it yields the Duman and Salehi (first version) bound for

a binary-input AWGN channel, where the Rician parameter K stand-

ing for the power ratio of the direct and the diffused received paths,

goes to infinity. The bounds are depicted in Fig. 4.5 for the ‘repeat and

accumulate’ (RA) codes (an ensemble of turbo-like codes which was

introduced by Divsalar, Jin and McEliece [54]) operating over a fully

interleaved Rayleigh fading channel. The penalty for the gradual spe-

cialization of the DS2 bound by constraining the selection ψ in (4.58)

is explicitly indicated.

4.5 Gallager-type bounds for the mismatched

decoding regime

In this section we generalize the DS2 bound for a mismatched decoding

metric. The basic setting is as before, that is a codeword x is conveyed
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via a channel of transition probability pN (y|x). The decoder operates

in a ML fashion, but may use a mismatched metric QN (y|x). Namely,

code xj out of the M possible equiprobable codewords is declared if

QN (y|xj) > QN (y|xi) , ∀ i 6= j , i = 1,2 , . . . , M , (4.68)

and ties are randomly resolved. The matched case results when

QN (y|x) = pN (y|x). In general, QN (y|x) is not necessarily normalized

to yield a probability measure.

We first employ the Duman and Salehi bounding technique in this

setting and then examine the performance of random ensembles of

codes.

4.5.1 The mismatched Duman and Salehi bound

The standard Gallager upper bound on the conditional decoding error

probability for the mismatched case Pe|m (conditioned on the transmit-

ted codeword xm) is given by

Pe|m ≤
∑

y

pN (y|xm)




∑

m′ 6=m

(
QN (y|xm′

)

QN (y|xm)

)λ



ρ

, λ,ρ ≥ 0. (4.69)

By invoking the Duman and Salehi bounding technique as described

in section 4.2.2, then starting from (4.69) yields in parallel to (4.8),

Pe|m ≤




∑

m′ 6=m

∑

y

pN (y|xm)
1
ρ ψm

N (y)1−
1
ρ

(
QN (y|xm′

)

QN (y|xm)

)λ



ρ

,

λ ≥ 0, 0 ≤ ρ ≤ 1 (4.70)

where as in Section 4.2.2, ψm
N (y) is the normalized Duman and

Salehi tilting measure. In parallel to (4.10), the DS2 bound with the

unnormalized tilting measure reads

Pe|m ≤




∑

y

Gm
N (y)pN (y|xm)




1−ρ

·




∑

m′ 6=m

∑

y

pN (y|xm)Gm
N (y)

1− 1
ρ

(
QN (y|xm′

)

QN (y|xm)

)λ



ρ

,

0 ≤ ρ ≤ 1, λ ≥ 0 . (4.71)
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The advantage of this bound, as compared to the original Gallager

mismatched bound (4.69), is as in the matched case: The possible

utilization for specific codes and ensembles. This is demonstrated in

Section 4.7.2 for a fully interleaved fading channel with faulty channel

state information.

4.5.2 Ensembles of random codes

In this subsection, we examine the bound for a random coding strat-

egy. As in the matched regime, for a general distribution of codewords

qN (x), the DS2 bound with the optimized tilting measure reconstructs

the 1965 Gallager random coding bound. We therefore continue with

the mismatched Gallager bound (4.69) and restrict our attention to

ensembles of codes where each codeword satisfies the inequality

Nε − δ ≤ ΓN (xj) < Nε, δ > 0 , j = 1,2 , . . . , M (4.72)

where ΓN (xj) stands for an arbitrary cost function involved in the

transmission of the codeword xj and ε is a positive constant, both to

be specified. For a codebook satisfying the inequality (4.72) (for every

codeword), we further loosen the bound (4.69) letting

Pe|m ≤
∑

y

pN (y|xm)




∑

m′ 6=m

(
QN (y|xm′

)

QN (y|xm)

)λ (
eΓN (xm′

)

eΓN (xm)

)
eδ




ρ

,

λ,ρ ≥ 0 . (4.73)

This is since for every value of j (j = 1,2 , . . . , M), the inequality

eΓN (xm′
)

eΓN (xm) eδ > 1 holds for any codebook satisfying (4.72). Now, we select

randomly and independently each codeword in such a codebook by the

probability law αN (x). The upper bound on the decoding error proba-

bility over this ensemble equals

Pe ≤
∑

y

∑

xm

αN (xm)pN (y|xm)
∑

x1

. . .
∑

xm−1

∑

xm+1

. . .
∑

xM





M∏

i=1

i6=m

αN (xi)

·




∑

j 6=m

(
QN (y|xj)

QN (y|xm)

)λ
eΓN (xj)

eΓN (xm)
eδ




ρ
 (4.74)
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where λ,ρ ≥ 0.

As indicated in (4.72), the measure αN (x) satisfies the condition

αN (x) ≡ 0 ∀ x : ΓN (x) /∈ [Nε − δ, Nε) . (4.75)

In principle, the parameter δ introduced in (4.72) may depend on N .

Invoking the Jensen inequality in (4.74) yields the following upper

bound on the decoding error probability:

Pe ≤ (M − 1)ρ eδρ
∑

y

∑

x

αN (x)pN (y|x)

·





∑

x′

αN (x′)

(
QN (y|x′)

QN (y|x)

)λ
eΓN (x′)

eΓN (x)





ρ

(4.76)

where 0 ≤ ρ ≤ 1, λ ≥ 0, and the superscript of xm was removed (as the

bound is clearly invariant to the transmitted codeword). Let qN (x) be

an arbitrary probability measure and we set

αN (x) =
qN (x)

µα
(4.77)

where based on (4.72)

µα = µα(Γ, δ,ε) =
∑

x :ΓN (x)∈[Nε−δ,Nε)

qN (x) . (4.78)

The substitution of (4.77) into (4.76) gives

Pe ≤
(M − 1)ρ eδρ

(µα)1+ρ

∑

y

∑

x

qN (x)pN (y|x)

·





∑

x′

qN (x′)

(
QN (y|x′)

QN (y|x)

)λ
eΓN (x′)

eΓN (x)





ρ

(4.79)

where λ ≥ 0, 0 ≤ ρ ≤ 1 and δ > 0. We may further loosen the bound

(4.79) by replacing eδρ

(µα)1+ρ by eδ

µ2
α
, as δ > 0, 0 ≤ ρ ≤ 1 and µα ≤ 1.
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This yields

Pe ≤
eδMρ

µ2
α

∑

y

∑

x

qN (x)pN (y|x)

·





∑

x′

qN (x′)

(
QN (y|x′)

QN (y|x)

)λ
eΓN (x′)

eΓN (x)





ρ

(4.80)

where we also upper bounded M − 1 by M . Let the channel probability

law pN (y|x) and the mismatched metric QN (y|x) be memoryless, i.e.,

pN (y|x) =
N∏

k=1

p(yk|xk), QN (y|x) =
N∏

k=1

Q(yk|xk) (4.81)

and we also set an i.i.d. probability measure qN (x)

qN (x) =
N∏

k=1

q(xk). (4.82)

Let the cost function ΓN (x) be an additive function

ΓN (x) =
N∑

k=1

γ(xk). (4.83)

Substituting (4.81)-(4.83) into (4.80) then yields the single letter

expression

Pe ≤
eδ

µ2
α

eρRN

[
∑

y

∑

x

q(x)p(y|x)

(
∑

x′

q(x′)

(
Q(y|x′)
Q(y|x)

)λ eγ(x′)

eγ(x)

)ρ]N

(4.84)

where the rate R equals R = ln(M)
N . Alternatively, we obtain that

Pe ≤
eδ

µ2
α

· e−N [E0(q,γ,ρ,λ)−ρR] (4.85)

where

E0(q,γ,ρ,λ) =

− ln

[
∑

y

∑

x

q(x)p(y|x)

(
∑

x′

q(x′)

(
Q(y|x′)
Q(y|x)

)λ eγ(x′)

eγ(x)

)ρ]
. (4.86)
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Before turning to treat the exponent in (4.85), let us estimate µα for

fixed (N -independent) δ. Based on (4.78) and (4.83)

µα = Pr

(
−δ ≤

N∑

k=1

γ(xk) − Nε < 0

)
(4.87)

where xk, k = 1,2 , . . . , N , are i.i.d. random variables governed by the

single-letter probability measure q(x). Now, we choose ε to satisfy the

equality

ε =
∑

x

q(x)γ(x) (4.88)

for a fixed function γ. Similarly to Gallager [83], one can estimate µα

for N → ∞, yielding

lim
N→∞

√
N µα =

δ√
2πσ2

(4.89)

where

σ2 =
∑

x

q(x)γ(x)2 −
(

∑

x

q(x)γ(x)

)2

. (4.90)

This is directly found based on (4.87) by the central limit property as

follows:

µα = Pr

(
−δ√
N

≤ 1√
N

N∑

k=1

γ(xk) −
√

Nε < 0

)

−→
N→∞ Pr

( −δ√
N

≤ N(0,σ2) < 0

)

≈
δ√
N

¿ 1

δ√
N

1√
2πσ2

. (4.91)

The pre-exponent factor in (4.85) can be optimized over δ ≥ 0 to yield

min
δ>0

lim
N→∞

1

N

eδ

µ2
α

= min
δ>0

(2πσ2) · eδ

δ2
= (2πσ2) · e2

4
(4.92)

which demonstrates that the behavior of the pre-exponent in (4.85)

is asymptotically proportional to N (with N →∞). Thus for finite
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ε (4.88) and σ2 (4.90), the pre-exponent in (4.85) has no exponential

implications as it behaves asymptotically like a ln(N)
N term in the expo-

nent. For a fixed input distribution q(x), we then attempt to maximize

the error exponent

E(R,q) = sup
0≤ρ≤1

λ≥0

γ(x)

(
E0(q,γ,ρ,λ) − ρR

)
(4.93)

where γ(x) is a real function yielding finite ε and σ2 in (4.88) and (4.90)

respectively. Consider the rate equation

R =
∂

∂ρ

(
E0(q,γ,ρ,λ)

)

= eE0(q,γ,ρ,λ)

·




−

∑

y

∑

x

q(x)p(y|x)

(
∑

x′

q(x′)

(
Q(y|x′)
Q(y|x)

)λ eγ(x′)

eγ(x)

)ρ

· ln




∑

x′

q(x′)Qλ(y|x′)eγ(x′)

Qλ(y|x)eγ(x)








(4.94)

where the last equality results from (4.86). The maximal rate RH is

calculated by substituting ρ = 0 in (4.94), yielding

RH = sup
γ(x)

max
λ≥0

∑

y

∑

x

q(x)p(y|x) ln




Qλ(y|x)eγ(x)

∑

x′

q(x′)Qλ(y|x′)eγ(x′)




(4.95)

This, in fact, equals what is known as the Csiszár-Körner-Hui lower

bound on the mismatched capacity, since it yields the dual represen-

tation in the terminology of [85]. It is rather straightforwardly verified

that the error exponent E(R) in (4.93) is positive for R < RH . The

input distribution q(x) can now be chosen to maximize RH , in the usual

sense [85], [132]. In the case of continuous input and output alphabets,
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the relevant sums should be replaced by integrals and it should be ver-

ified that the optimized γ(x) and q(x) yield finite (though arbitrary) ε

and σ in (4.88) and (4.90) respectively.

It can be also verified that at ρ = 1

R = sup
λ≥0

E0(q,γ = 0 , ρ = 1,λ) (4.96)

yields the generalized cutoff rate [106], which cannot be further

improved by optimizing over the real function γ(x). In terms of ensem-

bles, it is worth emphasizing that the upper bound (4.85) resulted

by restricting our attention to ensembles of codewords satisfying

(4.72). This restriction is necessary, as if a purely random ensemble

is attempted, then it was concluded in [85] that the results associated

with γ(x) = 0 cannot be surpassed. The maximal rate then corresponds

to the generalized mutual information (GMI) [132].

In [153], the 1965 Gallager bounding technique was applied to derive

upper bounds for i.i.d. random and fixed composition codes, operating

over memoryless channels with finite input alphabets and arbitrary out-

put alphabets, and whose decoding metric is matched to the channel.

The metric which is at the beginning general, was then optimized to

yield an equivalent metric to ML decoding, and yet the results in [153]

reproduced the error exponent for fixed composition codes [41]. Here

we deal with a mismatched metric and the code ensemble is restricted

by introducing a generalized energy constraint (4.72), which is subject

to optimization.

4.5.3 Ensembles of structured codes

We apply here the generalization of the DS2 bound for the mis-

matched decoding regime (4.69) to ensembles of structured codes. We

assume that the transition probabilities of the channel pN (y|x) and the

mismatched metric QN (y|x) are MBIOS (i.e., memoryless, binary-input

and output-symmetric).

The optimization of the normalized Duman and Salehi tilting mea-

sure ψm
N (y) in (4.70) is restricted here to the case where ψ0

N (y) can be

expressed in the product form ψ0
N (y) =

∏N
i=1 ψ(yi). In that case, the

partitioning of the code (or ensemble of codes) to constant Hamming
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weight subcodes yields (4.45), where

Pe|0(d) ≤ (Sd)
ρ

(
∑

y

g1(y)ψ(y)
1− 1

ρ

)(N−d)ρ (
∑

y

g2(y)ψ(y)
1− 1

ρ

)dρ

(4.97)

and

g1(y) = p(y|0)
1
ρ , g2(y) = p(y|0)

1
ρ

(
Q(y|1)

Q(y|0)

)λ

. (4.98)

For continuous output channels, the sums in (4.97) should be replaced

by integrals. With the aid of calculus of variations, the optimal nor-

malized Duman and Salehi tilting measure ψ, in terms of minimizing

the upper bound (4.97)-(4.98), admits the form

ψ(y) =

p(y|0)

(
1 + α

(
Q(y|1)

Q(y|0)

)λ
)ρ

∑

y

p(y|0)

(
1 + α

(
Q(y|1)

Q(y|0)

)λ
)ρ , λ ≥ 0 , 0 ≤ ρ ≤ 1 . (4.99)

As demonstrated in [183, Appendix B], the parameter α is optimally

determined by a numerical solution of the equation

∑

y

p(y|0)

(
1 + α

(
Q(y|1)

Q(y|0)

)λ
)ρ−1

∑

y

p(y|0)

(
1 + α

(
Q(y|1)

Q(y|0)

)λ
)ρ = 1 − δ (4.100)

where δ ≡ d
N is the normalized Hamming weight of the N -length code-

words possessing a Hamming weight d. The existence and uniqueness

of a solution α in (4.100) is proved in [183, Appendix B].

From the discussion above, the upper bound for the mismatched

decoding regime in (4.45), (4.97)–(4.100) involves numerical optimiza-

tions over the two parameters λ ≥ 0, 0 ≤ ρ ≤ 1, for at most the N con-

stant Hamming weight subcodes of the considered ensemble of codes.

The necessary information on the ensemble of codes comprises the aver-

age distance spectrum (or even a tight upper bound on the ensemble
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distance spectrum), so that more refined information on the algebraic

structure of the codes is not required.

4.6 Gallager-type bounds for parallel channels

The error performance analysis in the case where each codeword is par-

titioned and each part is transmitted over one of independent channels

in parallel is of interest. Code partitioning is employed in transmission

over block-fading channels (for performance bounds of coded commu-

nication systems over block-fading channels, see [70, 219, 227, 228]),

incremental redundancy retransmission schemes, cooperative coding,

multi-carrier signaling (for performance bounds of coded orthogonal-

frequency division multiplexing (OFDM) systems, see [119, 226]), etc.

In his thesis [64], Ebert considered the problem of communicating

over parallel discrete time channels, disturbed by an additive Gaussian

noise with a total power constraint on the set of channels. He found

explicit upper and lower bounds on the ML decoding error probability,

which decrease exponentially with block length. The exponents of the

upper and lower bounds coincide for rates between the critical rate

(Rcrit) and capacity. The results were also shown to be applicable to

colored Gaussian noise channels with an average power constraint on

the channel.

In [122], Liu et al. derive upper bounds on the ML decoding error

probability of structured ensembles of codes whose transmission takes

place over (independent) parallel channels. The analysis in [122] mod-

ifies the 1961 Gallager-Fano bound [81, Section 3] and adapts this

bounding technique for the communication over parallel channels. As

special cases of this modified bound, a generalization of the union-

Bhattacharyya bound, the SFB [187], sphere bound, and a combina-

tion of the two former bounds are derived for parallel channels. In order

to make the calculation of the weight enumerators feasible when tak-

ing into account the partitioning of codewords and their transmission

over parallel channels, the authors study the case where the bits of

the codewords are randomly assigned to J parallel channels, where

the fraction of bits transmitted over each channel is determined in

advance. The upper bounds on the ML decoding error probability
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are applied to ensembles of codes defined on graphs (e.g., uniformly

interleaved repeat-accumulate codes and turbo codes). The comparison

between upper bounds under ML decoding and computer simulations

of the performance of such ensembles under iterative decoding shows

a good match in several cases. For a given ensemble of codes and a

given codeword-symbol to channel assignment rule, a reliable channel

region is defined as the closure of the set of parallel-channel transi-

tion probabilities for which the decoding error probability vanishes as

the codeword length goes to infinity. The upper bounds on the block

error probability derived in [122] enable to derive achievable regions for

ensuring reliable communications under ML decoding.

Tightened Gallager bounds for independent parallel MBIOS chan-

nels were recently derived in [165, 166], and were exemplified for various

ensembles of turbo-like codes (see Section 4.7.5). Performance bounds

for dependent parallel channels are considered in [12].

4.7 Some applications of the Gallager-type bounds

In Section 4.4, a large class of efficient bounds (or their Chernoff ver-

sions) was demonstrated to be a special case of the generalized DS2

bound. Implications and applications of these observations are pointed

out here, including the fully interleaved fading channel, resorting to

either matched or mismatched decoding. The proposed approach can

be also generalized to geometrically uniform non-binary codes, finite

state channels, bit interleaved coded modulation systems, and it can

be also used for the derivation of upper bounds on the conditional

decoding error probability.

4.7.1 AWGN channels

We apply here some variants of the Gallager bounds and other reported

bounds to the ensemble of un-punctured turbo codes of rate 1
3 with a

uniform interleaver of length 1000 and two recursive systematic con-

volutional (RSC) component codes whose generators are (1, 21
37) in

octal form (see Fig. 4.2). The considered ensemble of codes is also
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y
2

y
1

y
3

uniform

interleaver

binary input

of length 1000

Fig. 4.2 Block diagram of an ensemble of uniformly interleaved turbo codes of rate- 1
3

and
interleaver length 1000. The generator of the two identical component codes (16 states,

recursive systematic convolutional (RSC) codes) is
[
1, 1+D4

1+D+D2+D3+D4

]
. A termination

to the all-zero state is assumed at the end of each block.

terminated to the all-zero state at the end of each frame by additional

four bits (having thus an overall of 3012 coded bits). The following

upper bounds on the bit error probability are depicted in Fig. 4.3:

The original TSB of Poltyrev ([152, 170]) (differing from the loosened

Chernoff version bound derived in [50]), the Engdahl and Zigangirov

bound [67] (the non-Chernoff version in Section 4.4.2.5 here), Duman

and Salehi bounds [62, 60] (Sections 4.2.2 and 4.4.2.1 here), Divsalar

bound [50] (Section 4.4.2.4 here), Viterbi and Viterbi bounds [209, 210]

(Sections 4.4.2.2 and 4.4.2.3 here), and finally the union bound. It is

demonstrated in Fig. 4.3, that the difference between the two versions

of the Duman and Salehi bounds for the binary-input AWGN channel

is very small (about 0.01 dB) and that also the Duman and Salehi (first

version) bound coincides with Divsalar bound. The first observation is

consistent with [60] and the second observation verifies numerically the

fact that Divsalar bound is indeed a closed form of Duman and Salehi

(first version) bound [62], as was first indicated in [50] (the negligible
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difference between the two bounds depicted in Fig. 4.3 is attributed to

the numerical optimizations associated with the calculation of the first

version of the Duman and Salehi bound (4.51)). The TSB [152] and

the Engdahl and Zigangirov bound [67] were derived without invoking

the Chernoff bounding technique, explaining therefore their advantage

over Duman and Salehi bounds and some other related bounds for

block codes of moderate block-length, as the latter bounds rely on the

Chernoff bounding technique (see Fig. 4.3). However, as indicated in

[50] (and Section 4.4.2), the loosening of the TSB which turns it into a
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Fig. 4.3 A comparison between upper bounds on the bit error probability with ML decoding.
The bounds refer to the ensemble of turbo codes in Fig. 4.2, operating over a binary-input
AWGN channel.

1. Tangential-sphere bound (TSB) ([152], [170]).
2. The Engdahl and Zigangirov bound [67].
3. The DS2 (second version of the Duman and Salehi) bound [60].
4. Divsalar bound [50].
5. Duman and Salehi (first version) bound [62].
6. Viterbi & Viterbi (second version) bound [210].
7. Union bound in Q-form.
The bounds 2–6 are combined with the union bound in its Q-form for every constant
Hamming-weight subcode of the considered ensemble. We also plot here simulation results
of Log-MAP iterative decoding with 1, 3, 5 and 10 iterations.
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particular case of the DS2 bound, does not carry any implications on its

associated error exponent for the asymptotically infinite block length.

4.7.2 Fully interleaved fading channels

We apply here various variants of the generalized DS2 bound to the fully

interleaved Rayleigh fading channel with perfect channel state informa-

tion (see Section 4.4.3). These bounds are evaluated for the ensemble of

rate 1
3 uniformly interleaved turbo codes depicted in Fig. 4.2. The opti-

mization of the generalized DS2 bound (combined with the tight version

of the union bound) is demonstrated as the tightest reported bound (see

also [173],[172]). It also approximately replicates here the performance

of these turbo codes when iteratively decoded with 10 iterations of the

Log-MAP iterative decoding algorithm (see Fig. 4.4). These bounds
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Fig. 4.4 A comparison between upper bounds on the bit error probability with ML decoding.
The bounds refer to the ensemble of turbo codes in Fig. 4.2, operating over a fully interleaved

Rayleigh fading channel with perfect channel state information.
1. The generalized DS2 bound [172] combined with the union bound in its tight form.
2. The generalization of the Engdahl and Zigangirov bound [172].

3. The union bound in its tight form.
These upper bounds are also compared to computer simulation results of the Log-MAP
iterative decoding algorithm with up to 10 iterations.
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are also evaluated for the ensemble of rate-1
4 uniformly interleaved RA

codes [54], with a block length of N = 4096 (see upper plot of Fig. 2.1

and Fig. 4.5). In [172, 173], these bounds were applied to some ensem-

bles of efficient codes (turbo [24], Gallager-LDPC [81] and RA codes

[54]). For moderate values of energy per bit to spectral noise density(
Eb
N0

)
, the optimized DS2 upper bound (under ML decoding) falls below

the computer simulation results for the sum-product iterative decod-

ing algorithm (see Fig. 4.5), demonstrating the mild sub-optimality of

iterative decoding.
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Fig. 4.5 Comparison between upper bounds on the bit error probability with ML decoding.
The bounds refer to the RA codes in the upper plot of Fig. 2.1, operating over a fully
interleaved Rayleigh fading channel with perfect channel state information.

1. The generalized DS2 bound [172].
2. Divsalar and Biglieri bound [52].
3. The generalization of the Engdahl and Zigangirov bound [172].

4. The generalization of Viterbi and Viterbi bound [173].
5. The tight form of the union bound.
The upper bounds 1–4 are combined with the tight version of the union bound for every
constant Hamming-weight subcode of the considered ensemble of codes. The bounds are also

compared with computer simulation results of the sum-product iterative decoding algorithm
with 20 iterations.
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4.7.3 Thresholds of codes

Let C be an ensemble of binary, linear block codes of block-length N

and rate R. Consider the case where the transmission takes place over

an AWGN channel. The threshold is defined as the infimum over the

values of Eb
N0

ensuring a decoding error probability which asymptotically

decays to zero as the block length tends to infinity. Obviously, the

threshold depends on four parameters: The channel model, the applied

decoding algorithm and the considered code (or ensemble of codes), and

whether we require a vanishing block error probability or a vanishing

bit error probability. In the following, we consider soft-decision ML

decoding, and require the stronger constraint of vanishing block error

probability.

In Table 4.1, bounds on the thresholds are exemplified for various

ensembles of regular LDPC codes and uniformly interleaved RA codes.

The bounds refer to ML decoding where transmission takes place over a

binary-input AWGN channel. The bounds on the thresholds are com-

pared to their exact values under iterative message-passing decoding

(using the density evolution technique), and are also compared with the

Shannon capacity limit as a reference. It is shown that as the code rate

is increased, the gap between the bounds on the thresholds which follow

from the DS2 and Divsalar bounds becomes more pronounced (where

the bound of Divsalar was introduced in [50] and Section 3.2.4 here).

Table 4.1 Upper bounds on the thresholds of Eb

N0
for ensembles of RA and LDPC codes. The

bounds refer to ML decoding where transmission takes place over a binary-input AWGN
channel. The bounds are compared to the exact values of the thresholds under iterative
message-passing decoding (using the density evolution technique for the sum-product decod-

ing algorithm [156]), and are also compared as a reference with the Shannon capacity limit.

Divsalar Density
Ensemble Rate bound DS2 bound evolution Capacity

RA(q = 3) 1
3

0.792 dB 0.752 dB 0.479 dB −0.495 dB

RA(q = 4) 1
4

−0.052 dB −0.068 dB 0.106 dB −0.794 dB

RA(q = 5) 1
5

−0.480 dB −0.488 dB 0.044 dB −0.936 dB

LDPC(3,6) 1
2

0.793 dB 0.679 dB 1.110 dB 0.187 dB

LDPC(4,6) 1
3

−0.381 dB −0.419 dB 1.674 dB −0.495 dB

LDPC(3,4) 1
4

−0.488 dB −0.508 dB 1.003 dB −0.794 dB
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The bounds also indicate on the sub-optimality of iterative message-

passing decoding (e.g., for the ensemble of (4,6) LDPC codes, there is a

gap of more than 2 dB between the thresholds under ML and iterative

decoding algorithms).

Upper bounds on the thresholds of RA [54] and Gallager-LDPC

codes [81] under “typical pairs” decoding algorithm, were derived by

McEliece et al. [4] for the binary symmetric channel (BSC) and for the

binary-input AWGN channel. Exact thresholds for the BSC under a

specific iterative decoding algorithm were derived by Bazzi et al. [15].

Based on the optimized DS2 bound, an upper bound on the thresh-

olds which are associated with ML decoding were numerically calcu-

lated for the fully interleaved fading channels with perfect channel

state information (see Section 3.3.1). As predicted, these thresholds

meet the ultimate Shannon capacity limit for the ensemble of fully

random block codes of rate R. Thresholds for the ensembles of RA and

(j,k) Gallager-LDPC codes are depicted in Table 4.2. These thresh-

olds refer to the fully interleaved Rayleigh fading channel with per-

fect channel state information and a maximum ratio combining space

diversity of order four. As expected, due to the simple structure of RA

codes, the calculated thresholds for the ensemble of RA codes are worse

than the corresponding thresholds for the ensembles of Gallager-LDPC

codes.

Table 4.2 Upper bounds on the Eb

N0
– thresholds for ensembles of codes operating over a

fully interleaved Rayleigh fading channel with space diversity (based on the maximum ratio
combining principle) of order four, and perfect channel state information at the receiver.

Rate

Eb

N0
thresholds for the ensembles of RA

codes (j,k) Gallager-LDPC codes

The Shannon
capacity limit

1
2

– (4,8) : 0.76 dB, 0.58 dB

(5,10) : 0.69 dB

1
3

1.02 dB (4,6) : −0.11 dB, −0.25 dB

(8,12) : −0.21 dB

1
4

0.12 dB (3,4) : −0.29 dB, −0.62 dB

(6,8) : −0.58 dB

1
5

−0.30 dB (4,5) : −0.73 dB −0.82 dB
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In general, the calculation of the upper bounds on these thresh-

olds depends on the asymptotic exponent of the distance spectra of the

considered codes (or ensembles). Recently, some techniques for the cal-

culation of the asymptotic exponents of the distance spectra of turbo

codes and irregular LDPC codes where derived in [174] and [34], respec-

tively. These techniques can be applied to calculate upper bounds on

the Eb
N0

-thresholds for turbo codes and LDPC codes under optimal ML

decoding.

4.7.4 Mismatched decoding

We apply here the generalized DS2 bound introduced in Section 4.5.3,

to study the robustness of a mismatched decoder that is based on ML

decoding with respect to the faulty channel measurements. We examine

here a BPSK modulated signal, transmitted through a fully interleaved

Rayleigh fading channel. For simplicity, we apply our bounds to the

case of perfect phase estimation of the i.i.d. fading samples (in essence

reducing the problem to a real channel). We also assume that the esti-

mated and real magnitudes of the Rayleigh fading samples satisfy a

joint distribution of two correlated bivariate Rayleigh variables with

an average power of unity.

Based on the notation in Section 4.5, we therefore obtain for the

MBIOS channel

Q(y, â|0) = Q(−y, â|1)

=
1√
2π

exp


−1

2

(
y − â

√
2REb

N0

)2

 2â exp(−â2) ,

p(y, â|0) = p(−y, â|1)

=

∫ +∞

0

1√
2π

exp


−1

2

(
y − a

√
2REb

N0

)2

 pa,â(a, â)da,

− ∞ < y < +∞ , â ≥ 0
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where a, â are jointly Rayleigh distributed according to the following

pdf:

pa,â(r1, r2) =
4r1r2

1 − ρ∗
I0

(
2
√

ρ∗ r1r2

1 − ρ∗

)
exp

(
−r2

1 + r2
2

1 − ρ∗

)
, r1, r2 ≥ 0

(4.101)

E(a2) = E(â2) = 1. Here, the parameter ρ∗ designates the correlation

coefficient between the pairs of squared Rayleigh random variables

a2, â2, i.e.,

ρ∗ =
Cov(a2, â2)√

Var(a2)Var(â2)
. (4.102)

The integral expressed in (4.101) can be transformed to another inte-

gral which is easily calculated with the aid of the Gaussian numerical

integration formula (see [183, Appendix C]).

By partitioning the considered linear and binary block code C of

length N and rate R to constant Hamming weight subcodes, the tight

version of the union bound on the ML decoding error probability, cor-

responding to the subcode of Hamming weight d (0 ≤ d ≤ N), is given

in this case by the expression

Sd E




Q




√
2REb

N0

d∑

i=1

ai âi

√√√√
d∑

i=1

â2
i







(4.103)

where Sd designates the number of codewords of Hamming weight d,

the Q-function is introduced in (2.8) and the notation E stands for the

statistical expectation with respect to the i.i.d. Rayleigh fading samples

{ai} and their Rayleigh distributed estimations {âi}. The expressions in

(4.103) (where 0 ≤ d ≤ N) are calculated via the Monte-Carlo method,

by generating the correlated bivariate Rayleigh random variables with

a certain correlation coefficient ρ∗ (expressed in (4.102)), based on the

algorithm proposed in [194]. The upper bound on the bit error probabil-

ity based on the generalized DS2 bound in (4.97)–(4.100) is compared

in Fig. 4.6 to the improved upper bound that combines the DS2 bound

with the tight version of the union bound for every constant Hamming
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Fig. 4.6 A comparison between two upper bounds on the bit error probability. The bounds
refer to the ensemble of turbo codes depicted in Fig. 4.2, operating over a fully interleaved
Rayleigh fading channel with mismatched decoding. The generalized DS2 bound is com-

pared with the improved bounding technique which combines the DS2 bound with the tight
form of the union bound (for every constant Hamming weight subcode). The bounds are

demonstrated for Eb

N0
= 3 dB, and are depicted as a function of the correlation coefficient

(in the range 1
2

to 1) between the squares of the i.i.d. jointly Rayleigh fading samples and
their estimates.

weight subcode. The comparison between these two bounds refers to

the ensemble of uniformly interleaved turbo codes depicted in Fig. 4.2

where Eb
N0

= 3 dB. It is reflected from Fig. 4.6 that the latter bound

yields a considerably tighter error floor (the error floor in Figs. 4.6 and

4.7 is observed for a sufficiently high correlation coefficient ρ∗, and it

reflects the robustness of the system to faulty measurements of the fad-

ing samples). The error floor exhibited by the improved upper bound

in Fig. 4.6 also predicts reliably the error floor of the turbo codes asso-

ciated with the suboptimal and efficient Log-MAP iterative decoding

algorithm (based on computer simulations with 10 iterations). Note

that this error floor depends on the correlation coefficient rather than

the SNR. The upper bounds on the bit error probability that are based

on the combination of the generalized DS2 bound in (4.97)–(4.100) and



146 Gallager-Type Upper Bounds: Variations, Connections and Applications

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

26

10
25

10
24

10
23

10
22

10
21

1 2 3 4

1: Eb/No = 3.25 dB

2: Eb/No = 3.00 dB

3: Eb/No = 2.75 dB

4: Eb/No = 2.50 dB

Correlation coefficient

B
it
 e

rr
o
r 

p
ro

b
a
b
ili

ty

Fig. 4.7 A comparison between upper bounds on the bit error probability for the ensemble of
turbo codes depicted in Fig. 4.2. The codes operate over a fully interleaved Rayleigh fading

channel with mismatched decoding. The bounds are based on combining the generalized
DS2 bound with the tight form of the union bound, and it is applied to every constant
Hamming weight subcode. The bounds are plotted for Eb

N0
= 2.50,2.75,3.00 and 3.25 dB, as

a function of the correlation coefficient (in the range 1
2

to 1) between the squares of the
i.i.d. jointly Rayleigh fading samples and their estimates.

the tight version of the union bound (4.103) are depicted in Fig. 4.7

for several fixed values of Eb
N0

. These curves are plotted as a function

of the correlation coefficient ρ∗ between the squares of the i.i.d. jointly

Rayleigh fading samples and their estimates. The bounds in Fig. 4.7

refer to the ensemble without puncturing of rate 1
3 turbo codes depicted

in Fig. 4.2. Since for a fully interleaved Rayleigh fading channel with

perfect side information on the fading samples, the channel cutoff rate

corresponds to Eb
N0

= 3.23 dB, then according to the upper bounds

depicted in Fig. 4.7, the ensemble performance of these turbo codes

(associated with the hypothetical ML decoding) is sufficiently robust

in case of mismatched decoding, even in a portion of the rate region

exceeding the channel cutoff rate.

The proposed upper bounds depicted in Figs. 4.6 and 4.7 were

efficiently implemented in Matlab software, indicating their
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applicability in terms of complexity and the practical running

time involved in their calculations.

4.7.5 Parallel channels

In [122], the 1961 Gallager bound was generalized for the case

where the communication model forms a parallel concatenation of J

statistically independent memoryless binary-input output-symmetric

(MBIOS) channels, as shown in Fig. 4.8.

Code

Error�

Correction
Channel

Mapper

Channel 1

Channel 2

Channel 

Decoder

1

2

J

Fig. 4.8 System model of parallel channels. A random mapper is assumed where every bit
is assigned to one of the J channels; a bit is assigned to the jth channel independently of

the other bits and with probability αj (where
∑J

j=1 αj = 1).

Using an error-correcting code C of size M = 2k, the encoder selects

a codeword xm (m = 0,1, . . . ,M − 1) to be transmitted, where all code-

words are assumed to be selected with equal probability ( 1
M ). Each

codeword consists of n symbols and the coding rate is defined as

R ,
log2 M

n = k
n ; this setting is referred to as using an (n,k) code. The

channel mapper selects for each coded symbol one of J channels through

which it is transmitted. The j-th channel component has a transition

probability p(y|x;j). The considered model assumes that the channel

encoder performs its operation without prior knowledge of the spe-

cific mapping of the bits to the parallel channels. While in reality, the

choice of the specific mapping is subject to the levels of importance

of different coded bits, the considered model assumes for the sake of

analysis that this mapping is random and independent of the coded

bits. This assumption enables to average over all possible mappings,

though suitable choices of mappings for the coded bits are expected to

perform better than the average.

The received vector y is maximum-likelihood (ML) decoded at the

receiver when the specific channel mapper is known at the receiver.

While this broad setting gives rise to very general coding, mapping and
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decoding schemes, we will focus on the case where the input alphabet

is binary, i.e., x ∈ {−1,1} (where zero and one are mapped to +1 and

−1, respectively). The output alphabet is real, and may be either finite

or continuous. By its definition, the mapping device divides the set

of indices {1, . . . ,n} into J disjoint subsets I(j) for j = 1, . . . ,J , and

transmits all the bits whose indices are included in the subset I(j)

through the j-th channel. For a fixed channel mapping device (i.e.,

for given sets I(j)), the problem of upper-bounding the ML decoding

error probability is exceedingly difficult. In order to circumvent this

difficulty, a probabilistic mapping device was introduced in [122] which

then uses a random assignment of the bits to the J parallel channels;

this random mapper takes a symbol and assigns it to channel j with

probability αj (which is termed the assignment rate) the assignment is

independent of that of other symbols, and by definition, the equality∑J
j=1 αj = 1 follows. This approach enables in [122] the derivation of

an upper bound for the parallel channels which is averaged over all

possible channel assignments, and the bound can be calculated in terms

of the distance spectrum of the code (or ensemble). Another benefit

of the random mapping approach is that it naturally accommodates

for practical settings where one is faced with parallel channels having

different capacities.

In [122], Liu et al. derive upper bounds on the ML decoding error

probability of structured ensembles of codes whose transmission takes

place over (independent) parallel channels. The analysis in [122] modi-

fies the 1961 Gallager-Fano bound from [81, Section 3] (see Section 4.2.3

here) and adapts this bounding technique for the communication over

parallel channels. As special cases of this modified bound, a generaliza-

tion of the union-Bhattacharyya bound, the SFB [187], sphere bound,

and a combination of the two former bounds are derived for paral-

lel channels. The upper bounds on the ML decoding error probability

are applied to ensembles of codes defined on graphs (e.g., uniformly

interleaved repeat-accumulate codes and turbo codes). The compari-

son in [122] between upper bounds under ML decoding and computer

simulations of the performance of such ensembles under iterative decod-

ing shows a good match in several cases. For a given ensemble of codes

and a given codeword-symbol to channel assignment rule, a reliable
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channel region is defined as the closure of the set of parallel-channel

transition probabilities for which the decoding error probability van-

ishes as the codeword length goes to infinity. The upper bounds on

the block error probability derived in [122] enable to derive achievable

regions for ensuring reliable communications under ML decoding.

210 25 0 5 10 15 20

10
�24

10
�23

10
�22

10
�21

10
0

Received E
s
/N

0
 (dB)

F
E

R

sim (1 block)
sim (2� block)
sim (3� block)
sim (4� block)
analysis bounds

Fig. 4.9 Performance of turbo codes over block-fading channels where the upper bounds on
the ML decoding error probability are compared with computer simulations of the Log-MAP

iterative decoding algorithm. This figure is reproduced from [122] with permission.

Fig. 4.9 illustrates the average block error probability of an ensemble

of uniformly interleaved turbo codes whose transmission takes place

over a block-fading Gaussian channel. The turbo encoder consists of

two recursive systematic convolutional codes connected by a uniform

interleaver of length 378 bits. The components of the turbo code have

a common generator G1(D) = G2(D) = [1, 1+D+D3

1+D2+D3 , 1+D+D2+D3

1+D2+D3 ], and

the overall code rate is one-fifth bits per channel use. A coded frame is

divided into an equal number of sub frames (1, 2, 3 or 4 in the figure),

and the fading during each sub-frame is assumed to stay constant and

be i.i.d. with a Rayleigh distribution; the noise added to the channel is
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assumed to be an additive Gaussian noise. The bound depicted in this

figure relies on combining the SFB with the union bound (see [122]).
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Fig. 4.10 Performance bounds for the bit error probability under ML decoding versus com-
puter simulation results of iterative Log-MAP decoding (with 10 iterations). We refer here

to the ensemble of uniformly interleaved turbo codes shown in Fig. 4.2 (see p. 137) where
the transmission takes place over two (independent) parallel binary-input AWGN channels.
Each bit is equally likely to be assigned to one of these channels, and the energy per bit

to spectral noise density of the first channel is set to
(

Eb

N0

)

1
= 0 dB. The compared upper

bounds on the bit error probability are the generalizations of the DS2 and 1961 Gallager
bounds with their optimized tilting measures [166], the LMSF bound from [122] (which
relies on a proper combination of the Shulman-Feder bound (SFB) and the union bound),
and the union bound.

Tightened Gallager bounds on the performance of binary linear

codes were recently derived for the case where the transmission takes

place over independent parallel MBIOS channels [166, 165]. These

bounds were exemplified for turbo-like codes with a special emphasis

on accumulate-repeat-accumulate codes [1]. The first approach studied
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in [166, 165] is a generalization of the DS2 bound for parallel channels,

and an optimization of the probability tilting measures in this bound

with respect to each of these channels. The other approach is the opti-

mization of the related tilting measures in the generalized 1961 Gallager

bound where, except for the optimizations via calculus of variations,

this bound was originally derived in [122]. The numerical results show

a remarkable improvement over the special instances of the Gallager

bounds studied in [122]. These bounds are exemplified for codes of

finite length, and inner bounds on the asymptotic attainable channel

regions are also computed. However, in some cases (see Fig. 4.10), the

upper bounds which are valid under optimal ML decoding happen to be

a bit pessimistic as compared to computer simulations of sub-optimal

iterative decoding algorithms, thus indicating that there is room for

further improvement.

4.8 Summary and conclusions

In this section, we discuss numerous efficient bounds on the decoding

error probability of specific codes and ensembles under ML decoding,

and we demonstrate the underlying connections that exist between

them. In addressing the Gallager bounding techniques and their vari-

ations, we focus here on the Duman and Salehi variation, which orig-

inates from the classical 1965 Gallager bound. The considered upper

bounds on the block and bit error probabilities under ML decoding rely

on the distance spectra and the input-output weight distributions of the

codes, respectively, which are in general calculable. By generalizing the

second version of the Duman and Salehi (DS2) bound which was origi-

nally derived for the binary-input AWGN channel [60], we demonstrate

its remarkable generality and show that it provides the natural bridge

between the 1961 and 1965 Gallager bounds (see Section 4.3). It is

applicable for both random and specific codes, as well as for either

bit or block error analysis. Some observations and interconnections

between the Gallager and Duman and Salehi bounds are presented

in Section 4.3, which partially rely on insightful observations made by

Divsalar [50]. In particular, it is demonstrated in Section 4.3 that the

1965 Gallager random coding bound can be re-derived from the DS2
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bound. The geometric interpretations of these Gallager-type bounds

are introduced in Section 4.3, reflecting the non-uniqueness of their

associated probability tilting measures. In Section 4.4, many reported

upper bounds on the ML decoding error probability (or their Chernoff

versions) are shown to be special cases of the DS2 bound. This is done

by choosing an appropriate probability tilting measure and calculating

the resulting bound with the specific chosen measure. This framework

also facilitates to generalize the Shulman-Feder bound (SFB) in [187]

(see [183, Appendix A]).

The proposed approach can be generalized to geometrically uniform

non-binary codes, finite-state channels, bit-interleaved coded modula-

tion systems [35], and it can be also used for the derivation of upper

bounds on the conditional decoding error probability (so as to account

for a possible partitioning of the original code to subcodes). The DS2

bound is generalized in Section 4.5 to the mismatched decoding regime,

where the decoder performs ML decoding with respect to a mismatched

metric. The generalized bound is applicable to the analysis of the error

performance of deterministic codes and ensembles. We address in par-

ticular the random coding version, which matches the 1965 Gallager

random coding setting, and reproduces in Section 4.5 some known

results (see [85], [106], [132]), hinging on an alternative approach which

appropriately limits the considered ensemble of codes. Implications and

applications of these observations are pointed out in Section 4.7, which

include the fully interleaved fading channel with either matched or mis-

matched decoding.

The generalization of the DS2 upper bound for the analysis of the

bit error probability yields the replacement of the distance spectrum

{Sd}N
d=1 (which appears in the upper bound on the block error proba-

bility) by the sequence {S′
d}N

d=1 where: S′
d =

∑NR
w=1

{(
w

NR

)
Aw,d

}
, and

Aw,d designates the number of codewords in a systematic block code

with an information Hamming weight w and a total Hamming weight

d (where 0 ≤ w ≤ NR and 0 ≤ d ≤ N). The derivation of the general-

ized DS2 bound on the bit error probability is detailed in [172], and

it yields a considerable improvement in the tightness of the bound, as

compared to [62, 60]. The computational complexity which is involved

in calculating the DS2 bound is moderate.
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The interconnections between many reported upper bounds are

depicted in Fig. 4.11, where it is reflected that the DS2 bound yields

many reported upper bounds as special cases.

The 1965 Gallager
bound [82, 83]

The generalized version of
the Duman & Salehi (DS2) bound [183]

(practical for calculation)

The random coding
bound [82, 83]

Bounds for
mismatched

decoding
[183]

The generalized
DS2 bound for fully
interleaved fading

channels [172, 183]

up to a
factor

between
1 and 2

Divsalar
bound

[50]

Duman & Salehi
bound (first version)

[60, 62]

The 1961 Gallager -
Fano bound [71, 81]

A generalized version of
the Shulman & Feder

bound [183]

The bound in
[173] for fully

interleaved fading
channels

Viterbi & Viterbi
bound (first version)

[209]

Viterbi & Viterbi
bound (second
version) [210]

Shulman & Feder
bound [187]

Divsalar
& Biglieri

bound [52]

Generalized
Viterbi & Viterbi

bound [173]
Union bound

Fig. 4.11 A diagram which shows interconnections among various upper bounds on the ML
decoding error probability.

The tangential-sphere bound (TSB) is one of the tightest upper

bounds for block codes which are transmitted over the binary-input

AWGN channel and ML decoded (see Fig. 4.3, the discussion in

Section 3.2, and [168, 170, 169, 164]). However, in the random coding

setting, the TSB and some of its improved versions fail to reproduce

the random coding error exponent (see Section 4.4.2.6 and [152, 199]),

while the DS2 bound does. In fact, even the SFB which is a special case

of the latter bound (see Section 4.4.1) achieves capacity for the ensem-
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ble of fully random block codes. This substantiates the claim that there

is no uniformly best bound, providing the incentive for the generaliza-

tion of the SFB (see [183, Appendix A] and some tightened versions

of the SFB [200, 201]). However, we note that the loosened version of

the TSB [50] (which involves the Chernoff inequality) maintains the

asymptotic (i.e., for infinite block length) exponential tightness of the

TSB of Poltyrev [152], and this loosened version is a special instance

of the DS2 bound (see Section 4.4.2).
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Sphere-Packing Bounds on the Decoding Error

Probability: Classical and Recent Results

Overview : This section reviews the concepts used in the derivation of

sphere-packing lower bounds on the block error probability. We review

both the 1959 sphere-packing bound derived by Shannon for the Gaus-

sian channel and the 1967 sphere-packing bound derived by Shannon,

Gallager and Berlekamp for discrete memoryless channels. These ideas

serve for presenting recent improvements on the tightness of the 1967

sphere-packing bound, as suggested by Valembois and Fossorier. These

modifications provide an improved version of the classical 1967 sphere-

packing bound whose tightness is enhanced especially for codes of short

to moderate block lengths. These modifications also extend the appli-

cation of the 1967 sphere-packing bound to memoryless continuous-

output channels.

5.1 Introduction

The 1967 sphere-packing (SP67) bound, derived by Shannon, Gallager

and Berlekamp [184], provides a lower bound on the decoding error

probability of block codes as a function of their block length and their

code rate, and it applies to arbitrary discrete memoryless channels

(DMCs). Like the random coding bound of Gallager [82], the sphere-

155
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packing bound decays to zero exponentially with the block length for

all rates below the channel capacity. Further, the error exponent of the

SP67 bound is a convex function of the rate which is known to be tight

at the portion of the rate region between the critical rate (Rc) and the

channel capacity; for this important rate region, the error exponents

of the random coding and SP67 bounds coincide [184, Part 1]. The

1959 sphere-packing (SP59) bound, derived by Shannon [185], provides

a lower bound on the block error probability when the transmission

takes place over an AWGN channel. Its derivation relies on first show-

ing that the error probability of any code whose codewords lie on a

sphere must be greater than the error probability of a code of the same

length and rate whose codewords are uniformly distributed over that

sphere.

The SP67 bound happens to be loose for codes of moderate block

lengths. This is due to the original focus in [184] on asymptotic analysis.

In their paper [204], Valembois and Fossorier revisited the SP67 bound

in order to improve its tightness for codes of short to moderate block

lengths, and also to extend its spectrum of applications to continuous-

output channels (e.g., the AWGN channel which is the communication

channel model for the SP59 bound of Shannon [185]). The motivation

for the study in [204] was strengthened due to the outstanding perfor-

mance of codes defined on graphs even for moderate block lengths. The

remarkable improvement in the tightness of the SP67 bound was exem-

plified in [204] for the case of BPSK signaling over the AWGN channel,

and it was shown that the improved version of the SP67 bound provides

an interesting alternative to the SP59 bound [185].

This section is structured as follows: Section 5.2 presents the SP59

bound of Shannon [185] which provides a lower bound on the ML

decoding error probability for the Gaussian channel in terms of the

code rate and the block length of the code; this section also addresses

some tips from [204] which are provided for simplifying the computa-

tion of the SP59 bound. Section 5.3 presents the classical SP67 bound

which was originally derived by Shannon, Gallager and Berlekamp for

a general discrete memoryless channel (DMC) [184], and explains the

concepts and main ideas which were used for the derivation of the

SP67 bound. Section 5.4 provides an improved version of the SP67
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bound, as suggested by Valembois and Fossorier in [204], which makes

the bound tighter for codes of moderate block length. The new bound

also extends the validity of this bounding technique to memoryless

continuous-output channels (e.g., the Gaussian channel, for which the

SP59 bound applies). For the Gaussian channel, some numerical results

from [204], comparing between the SP59 bound and the improved SP67

bound, are presented. Concluding comments on sphere-packing bounds

are finally given in Section 5.5.

5.2 The 1959 Shannon lower bound for the

AWGN channel

The SP59 bound of Shannon [185] provides a lower bound on the decod-

ing error probability of an arbitrary block code whose transmission

takes place over an AWGN channel. Consider a block code C of length

N , and assume that the rate of the code is R bits per channel use per

dimension. It is assumed that all the codewords are mapped to signals

of the same energy, but the bound does not take into account the par-

ticular modulation which is used. Since all the signals are represented

by points on a sphere centered at the origin, then every Voronoi cell

is a polyhedric cone which is limited by at most 2NR − 1 hyper planes

intersecting at the origin.

Definition 5.1. (Solid angle of a cone) The solid angle of a cone is

defined as the area of a sphere of unit radius (in the same Euclidean

space) cut out by the cone.

Since the 2NR Voronoi cells partition the Euclidean space R
N , the

sum of their solid angles is equal to the solid angle of the whole space,

i.e., it is equal to the total area of a sphere of unit radius in the N -

dimensional space.

The main idea used for the derivation of the SP59 bound is that

the error probability of an arbitrary code under ML decoding is lower

bounded by the decoding error probability which corresponds to the

case where the Voronoi regions are circular cones of equal solid angles;

their common value is equal to a fraction 2−NR of the solid angle of

R
N . This follows as a corollary of the two propositions (see [185])
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• Among the cones of a given solid angle, the circular cone

provides the lowest decoding error probability under ML

decoding.
• In order to minimize the average decoding error probability,

it is best to share the total solid angle equally between the

2NR Voronoi cells.

Lemma 5.2. (Solid angle of a circular cone) The solid angle of a

circular cone of half angle θ in R
N is given by

ΩN (θ) =
2π

N−1
2

Γ(N−1
2 )

∫ θ

0
(sinφ)N−2 dφ . (5.1)

In particular, the solid angle of the whole space is

ΩN (π) =
2π

N
2

Γ(N
2 )

. (5.2)

Theorem 5.3. (The SP59 bound) Let

fn(x) =
1

2(n−1)/2Γ(n+1
2 )

∫ ∞

0
zn−1 exp(−z2

2
+ zx) dz , ∀ x ∈ R, n ∈ N

(5.3)

and

PSPB(N,θ,A) =
(N − 1)e−

NA2

2√
2π

∫ π
2

θ
(sinφ)N−2 fN (

√
NAcosφ) dφ

+ Q(
√

NA). (5.4)

Then, the ML decoding error probability of any code of block length

N and rate R satisfies the following lower bound:

Pe(ML) > PSPB(N,θ,A) , A ,

√
2Es

N0
(5.5)

for all θ ∈ [0,π] so that 2−NR ≤ ΩN (θ)
ΩN (π) .
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The signal point which is represented by the transmitted signal

lies on a sphere of radius
√

NEs in R
N . The value PSPB(N,θ,A) in

the RHS of (5.5) designates the probability that the additive noise

vector moves this signal point outside a cone of half angle θ whose

main axis passes through the origin and the signal point. Hence, this

function is monotonically decreasing in θ. The tightest lower bound on

the decoding error probability is therefore achieved for θ1(N,R) which

satisfies
ΩN

(
θ1(N,R)

)

ΩN (π)
= 2−NR.

The calculation of θ1(N,R) may become quite tedious for large values of

N . In order to simplify the calculation of the SP59 bound, [185] provides

asymptotically tight upper and lower bounds on the ratio ΩN (θ)
ΩN (π) . These

bounds are provided in the following lemma:

Lemma 5.4. (Bounds on the solid angle) The solid angle of a circular

cone of half angle θ in the Euclidean space R
N satisfies the inequality

Γ(N
2 )(sinθ)N−1

2Γ(N+1
2 )

√
π cosθ

(
1 − (tanθ)2

N

)
≤ ΩN (θ)

ΩN (π)
≤ Γ(N

2 )(sinθ)N−1

2Γ(N+1
2 )

√
π cosθ

. (5.6)

Corollary 5.5. (SP59 bound (cont.)) If θ∗ satisfies the equation

Γ(N
2 )(sinθ∗)N−1

2Γ(N+1
2 )

√
π cosθ∗

(
1 − (tanθ∗)2

N

)
= 2−NR (5.7)

then ΩN (θ∗)
ΩN (π) ≥ 2−NR, and thus

Pe(ML) > PSPB(N,θ∗,A) (5.8)

The use of θ∗ instead of the optimal value θ1(N,R) causes some loss

in the tightness of the SP59 bound. However, due to the asymptotic

tightness of the bounds on ΩN (θ)
ΩN (π) , the loss in the tightness of the bound

in Corollary 5.5 vanishes asymptotically as we let N tend to infinity.

In [204], it was numerically observed that the loss is marginal even for

small values of the dimension (NR). For example, it was observed that

the loss is smaller then 0.01 dB whenever the dimension of the code
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is greater than 20, and becomes even smaller then 0.001 dB when the

dimension of the code exceeds 60.

In [204, Section 2], the SP59 bound was reviewed, and an algorithm

which simplifies the calculation of the bound is given in the following

theorem:

Theorem 5.6. (Recursive equations for simplifying the calculation of

the SP59 bound) [204, Theorem 3]: The set of functions {fn} intro-

duced in (5.3) can be rewritten in the alternative form

fn(x) = Pn(x) + Qn(x)exp(
x2

2
)

∫ x

−∞
exp(− t2

2
) dt , x ∈ R, n ∈ N

(5.9)

where Pn and Qn are two polynomials which can be determined by the

same recursive equation for all n ≥ 5:

Pn(x) =
2n − 5 + x2

n − 1
Pn−2(x) − n − 4

n − 1
Pn−4(x) ,

Qn(x) =
2n − 5 + x2

n − 1
Qn−2(x) − n − 4

n − 1
Qn−4(x) (5.10)

with the initial conditions

P1(x) = 0, Q1(x) = 1

P2(x) =

√
2

π
, Q2(x) =

√
2

π
x

P3(x) =
x

2
, Q3(x) =

1 + x2

2

P4(x) =

√
2

π

2 + x2

3
, Q4(x) =

√
2

π

3x + x3

3
. (5.11)

This theorem is proved in [204, Appendix A]. Note that the algo-

rithm in this theorem can be applied to the calculation of the SP59

bound for values of N not exceeding 1,000 (due to numerical prob-

lems of overflows and underflows which are related to the calculation

of the recursive equations (5.10) for larger values of N). For numerical

accuracy purposes, it was suggested in [204] to use the two recursive

equations in (5.10) with their initial values in (5.11) in order to pre-

compute the coefficients of the two polynomials PN and QN (i.e., by
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simply performing convolution operations); note that the function

y(x) = exp(
x2

2
)

∫ x

−∞

exp(− t2

2 )√
2π

dt

appearing as a multiplicative function at the second term of the RHS in

(5.9) can be easily calculated using standard programming languages;

e.g., with the MATLAB software, the function y can be expressed in

the form

y(x) = erfcx(− x√
2
) , x ∈ R

and for x ¿−1, it is well approximated by y(x) ≈ − 1√
2π x

.

For large block lengths, [185] presents some asymptotic formulas

which give a very accurate estimation of the bound for large enough

block lengths. These approximations allow the calculation to be made

in the logarithmic domain which virtually eliminates the possibility of

floating point errors.

Theorem 5.7. [185]: Defining

G(θ) ,
Acosθ +

√
A2 cos2 θ + 4

2

EL(θ) ,
A2 − AG(θ)cosθ − 2ln(G(θ)sinθ)

2

then

PSPB(N,θ,A) ≥
√

N − 1

6N(A + 1)
e

−(A+1)2+3
2 e−N EL(θ). (5.12)

This lower bound is valid for any block length N . However, the

ratio of the terms in the LHS and RHS of (5.12) stays bounded away

from one for all values of N . A better approximation of PSPB(N,θ,A)

is given by the next theorem, but without a determined inequality. As

a consequence, the following approximation is not a proven theoreti-

cal lower bound on the error probability. For N > 1000, however, its

numerical values become almost identical to those of the exact bound,

thus giving a useful approximation to this lower bound (see also [57]).
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Theorem 5.8. [185]: Using the notation of Theorem 5.7, if θ >

cot−1(A), then

PSPB(N,θ,A) ≈ α(θ)e−NEL(θ)

√
N

where

α(θ) ,

(√
π
(
1 + G(θ)2

)
sinθ(AG(θ)sin2 θ − cosθ)

)−1

.

Fig. 5.1 which was reproduced from [204] refers to the (128,64,22)

extended BCH codes; it compares the SP59 bound with the actual per-

formance achieved by a near-ML decoding algorithm when transmission

takes place over an AWGN channel and the codewords are BPSK mod-

ulated (for further details about this sub-optimal decoding algorithm,

the reader is referred to [203, Section 6B]). This figure shows a small
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Fig. 5.1 A comparison between the 1959 sphere-packing (SP59) bound of Shannon [185]
for (128,64) block codes and the ML performance of the extended (128,64,22) BCH code
over the AWGN channel with BPSK modulation. The performance of the extended BCH

code relies on the BMA algorithm from [203] which is a near-ML decoding algorithm with
reduced complexity. This figure is reproduced (with permission) from [204]. For further
details, the reader is referred to [203, Section 6B].
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gap of only 0.34 dB for a target block error probability of Pt = 10−4

between the SP59 bound and the performance of the considered rate-1
2

code of block length 128 bits.

A comparison of the performance of turbo codes under iterative

sum-product decoding algorithm with the SP59 lower bound shows (see

[57, 115, 125, 181]) the existence of good turbo codes of rate between
1
6 and 1

2 which are about 0.7 dB away of the SP59 bound for a target

error probability of 10−4 and moderate block lengths.

5.3 The 1967 sphere-packing bound

We outline here the concepts and main ideas which serve for the deriva-

tion of the SP67 bound, as originally introduced by Shannon, Gallager

and Berlekamp [184]. The SP67 bound applies to all DMCs, and it

possesses the very pleasing feature that its error exponent is exact for

all rates between the critical rate and channel capacity [184, Part I];

this nice property also holds in the limit where the code rate tends to

zero [184, Part II]. The analysis in [184] was primarily focused on the

exponential behavior of the SP67 bound, and the aim of the authors

was to simplify the derivation of the bound as long as no penalty is

incurred in its exponential behavior.

Apart of outlining the classical derivation of the SP67 bound, the

discussion in this section also serves as a preparatory step towards

the consideration of possible refinements of the SP67 bound in order

to make it attractive for moderate block lengths. Hence, in the next

section, we rely on the proof concepts introduced in this section, and

use them to explain the improvements on the SP67 bound, as sug-

gested in [204]. By doing so, Valembois and Fossorier have managed to

adapt their new sphere-packing bound so that it also applies to memo-

ryless channels with continuous output (and not only to DMCs); their

new bound also competes well with the 1959 sphere-packing bound of

Shannon [185]. The study in [204], extending the applicability of the

sphere-packing bounding technique to codes of moderate block lengths,

was highly motivated by the outstanding performance of turbo-like

codes which obtain reliable communication at rates close to capacity

with tolerable latency and complexity (even under sub-optimal iterative
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decoding algorithms). To conclude, we start our discussion by outlining

the concepts of the proofs used for the classical derivation of the SP67

bound [184], and then move in the next section to an improved version

of this bound for moderate block lengths and for memoryless channels

with continuous outputs. We consider this study to be of primary sig-

nificance in the evaluation of how close to optimal are turbo-like codes

together with their (sub-optimal) iterative decoding algorithms (in this

respect, the reader is also referred to [57], [115] and [125]).

For the derivation of the classical SP67 bound [184], let x1, . . . ,xM

be a set of M codewords of length N , and assume that their transmis-

sion takes place over a DMC. Also let us assume a list decoder where

for each received sequence y, the decoder outputs a list of at most L

integers from 1 to M ; these integers correspond to the indices of the

codewords (or the corresponding messages before encoding). When the

codeword xm is transmitted over the channel, an error is declared if the

index m does not appear in the list. In [184], the authors derive a lower

bound on the decoding error probability of a code with M codewords

of block length N , assuming an arbitrary list decoder whose size is

limited to L. The particular case where L = 1 clearly provides a lower

bound on the performance under optimal ML decoding (since the list

size is limited to one for each received sequence at the channel output).

Referring to a list decoder of size at most L, the code rate (in nats per

symbol use) is given by R =
ln(M

L )
N ; the motivation for this definition

is that the possible number of messages is reduced from M to L, thus

ln
(

M
L

)
nats of information are gained. For the case where L = 1, this

definition particularizes to the standard definition of code rate. In the

other extreme case where L = M , all the codewords are in the list for

any output sequence y, so there is no need for a communication channel

and the transmission rate is therefore zero.

Let Ym be the set of output sequences y for which the message index

m is on the decoding list. The probability of error under list decoding

when the message whose index is m is sent over the DMC, is given by

Pe,m =
∑

y∈Yc
m

Pr(y|xm) (5.13)
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where the superscript c designates the complementary set. Let Pe,max

designate the maximum over m of Pe,m for the code and list decoding

under consideration. Assuming that the codewords are equally likely to

be transmitted, the average decoding error probability is given by

Pe =
1

M

M∑

m=1

Pe,m. (5.14)

In [184], the derivation of the SP67 bound was divided into three

steps where in the first step, the authors derive upper and lower bounds

on the decoding error probability for a block code with simply two code-

words; as a second step, a lower bound on the decoding error proba-

bility is derived for fixed composition codes, and finally, the derivation

of the SP67 bound is completed for an arbitrary block code under list

decoding. In the following, we outline the derivation of the SP67 bound

according to these steps.

Upper and lower bounds for a code with two codewords

Let Pm(y) (where m = 1,2) be the probability of receiving the sequence

y when message no. m is transmitted. Lets assume ML decoding, and

let Ym be the set of sequences decoded into the message index m.

Summing (5.13) over m gives the equality

Pe,1 + Pe,2 =
∑

y

min
m=1,2

Pm(y).

In order to obtain upper and lower bounds on the two conditional error

probabilities Pe,1 and Pe,2 and study the tradeoff between these two

error probabilities, the authors rely on a simple and useful inequality

which is later shown to be asymptotically tight in the limit where N

tends to infinity. The inequality states that for all the received vectors y

min
m=1,2

Pm(y) ≤ P1(y)1−sP2(y)s ≤ max
m=1,2

Pm(y) , 0 < s < 1

hence, the combination of the last two equations gives

Pe,1 + Pe,2 ≤ eµ(s), 0 < s < 1. (5.15)
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where

µ(s) , ln
(∑

y

P1(y)1−sP2(y)s
)
. (5.16)

By extending the definition of the function µ to the interval [0,1]:

µ(0) , lim
s→0+

µ(s), µ(1) , lim
s→1−

µ(s)

so as to cover the endpoints s = 0 and s = 1, one obtains from (5.15)

the inequality

Pe,1 + Pe,2 ≤ min
0≤s≤1

eµ(s). (5.17)

Let the codewords be denoted by xm = (km,1, . . . ,km,N ) where m =

1,2, and let the received sequence be y = (j1, . . . , jN ). Since the commu-

nication channel is memoryless, then Pm(y) =
∏N

n=1 Pr(jn|km,n), and

the function µ is expressible in the form

µ(s) =
N∑

n=1

µn(s), µn(s) , ln
( J∑

j=1

Pr(j|k1,n)1−sPr(j|k2,n)s
)
. (5.18)

The next step in [184] is the derivation of upper and lower bounds

on Pe,1 and Pe,2, where the authors allow themselves the flexibility of

making Pe,1 very much larger than Pe,2 or vice versa. The authors prove

the following theorem:

Theorem 5.9. (Upper and lower bounds for the pairwise error prob-

ability) [184, Theorem 5]: Let P1(y) and P2(y) be two probability

assignments on a discrete set of sequences, let Y1 and Y2 be disjoint

decision regions for these sequences, let Pe,1 and Pe,2 be given by (5.13),

and assume that P1(y)P2(y) 6= 0 for at least one sequence y. Then, for

all s ∈ (0,1), either

Pe,1 >
1

4
exp

(
µ(s) − sµ′(s) − s

√
2µ′′(s)

)
(5.19)

or

Pe,2 >
1

4
exp

(
µ(s) + (1 − s)µ′(s) − (1 − s)

√
2µ′′(s)

)
(5.20)

where the function µ is introduced in (5.16). Furthermore, for an appro-

priate choice of Y1 and Y2

Pe,1 ≤ exp
(
µ(s) − sµ′(s)

)
(5.21)
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and

Pe,2 ≤ exp
(
µ(s) + (1 − s)µ′(s)

)
. (5.22)

Finally, the function µ is non-positive and convex over the interval

(0,1). The convexity of µ is strict unless P1(y)
P2(y) is constant over all

the sequences y for which P1(y)P2(y) 6= 0. Moreover, the function µ is

strictly negative over the interval (0,1) unless P1(y) = P2(y) for all y.

Concept of the proof: Taking the first and second derivatives of the

function µ gives

µ′(s) =
∑

y

Qs(y)D(y), µ′′(s) =

(
∑

y

Qs(y)D(y)2

)
− µ′(s)2 (5.23)

where Qs is defined to be the probability measure

Qs(y) =
P1(y)1−sP2(y)s

∑
y′ P1(y′)1−sP2(y′)s

and D(y) , ln P2(y)
P1(y) designates the log-likelihood ratio. If we consider

D(y) to be a RV with probability assignment Qs(y), then it follows

from (5.23) that the first and second derivatives of µ are equal to the

expectation and variance of the RV D(y), respectively, i.e.,

µ′(s) = EQs

{
D(y)

}
, µ′′(s) = VarQs

{
D(y)

}
.

Hence, µ′′(s) ≥ 0, so the function µ is convex (and it is strictly convex

if and only if D(y) is not a constant for all the sequences y for which

P1(y)P2(y) 6= 0). It is direct to show that the probability assignments

P1 and P2 are expressible in the form

P1(y) = exp
(
µ(s) − sD(y)

)
Qs(y) (5.24)

P2(y) = exp
(
µ(s) + (1 − s)D(y)

)
Qs(y). (5.25)

For the derivation of the lower bounds, the authors define in [184] the

parameterized set

Ỹs ,

{
y : |D(y) − µ′(s)| ≤

√
2µ′′(s)

}

=
{
y : |D(y) − EQs

{
D(y)

}
|2 ≤ 2VarQs

{
D(y)

}}
(5.26)
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hence, from the Chebychev inequality

∑

y∈Ỹs

Qs(y) >
1

2
.

The idea of the derivation of the lower bounds on Pe,1 and Pe,2 is to

take into account only the error events where the received sequence y

falls within the set Ỹs defined in (5.26). From (5.24) and (5.26)

Pe,1 =
∑

y∈Yc
1

P1(y)

≥
∑

y∈Yc
1∩Ỹs

P1(y)

≥ exp
(
µ(s) − sµ′(s) − s

√
2µ′′(s)

) ∑

y∈Yc
1
∩Ỹs

Qs(y) (5.27)

and similarly

Pe,2 ≥ exp
(
µ(s) + (1 − s)µ′(s) − (1 − s)

√
2µ′′(s)

) ∑

y∈Yc
2
∩Ỹs

Qs(y).

(5.28)

Finally, since the sets Y1 and Y2 are assumed to be disjoint, then

∑

y∈Yc
1
∩Ỹs

Qs(y) +
∑

y∈Yc
2
∩Ỹs

Qs(y) =
∑

y∈Ỹs

Qs(y) >
1

2

so at least one of the terms
∑

y∈Yc
1
∩Ỹs

Qs(y) and
∑

y∈Yc
2
∩Ỹs

Qs(y)

should be larger than 1
4 , which finally leads to the validity of at least

one of the lower bounds in (5.19) and (5.20).

For the derivation of the upper bounds in (5.21) and (5.22), let

Y1 ,
{
y : D(y) < µ′(s)

}
, Y2 , Yc

1 (5.29)

so that the sets Y1 and Y2 are disjoint. The derivation of the upper

bounds in (5.21) and (5.22) follows from (5.24) and (5.25), and it relies

on the definition of the disjoint sets Y1 and Y2 in (5.29). To obtain the

upper bounds, one simply replaces the sums
∑

y∈Ym
Qs(y) by 1.
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Concepts of proof for the derivation of the SP67 bound

for fixed composition codes

Following the derivation of upper and lower bounds on the pairwise

error probability (see Theorem 5.9), Shannon, Gallager and Berlekamp

derived in [184] a lower bound on the decoding error probability for

fixed composition codes. Let C be a block code of M codewords, each of

length N , and assume that the transmission of this code takes place over

a DMC whose probability law is given by P (j|k) where k ∈ {1, . . . ,K}
and j ∈ {1, . . . ,J} designate the input and output symbols, respectively.

For the decoding of the code C, an arbitrary list decoder is assumed

where the size of the list is limited to L for any output sequence y. By

assumption, since the code C has a fixed composition, then each symbol

k ∈ {1, . . . ,K} appears in every one of the codewords x1, . . . ,xM in C
an equal number of times. Let us define the vector q , (q1, . . . , qK) to

be a K-length vector where qk (k = 1, . . . ,K) designates the fraction of

appearances of the symbol k in each one of the codewords x1, . . . ,xM .

Let Pe,m, as given in (5.13), be the error probability under list decoding

given that the index of the transmitted message is m, and let Pe,max

designate the maximum of Pe,m over m (where m = 1, . . . ,M). For a

given m, one can reduce the value of Pe,m by enlarging the set Ym of

output sequences for which the index message m is on the list of the

decoder. However, since the size of the list is limited to L for any output

sequence, this will decrease the size of the set Ym′ for some m′ 6= m, and

hence, will increase the value of Pe,m′ . In order to keep some control

on the size of the set Ym without specifically considering the other

codewords, the authors in [184] define an arbitrary probability tilting

measure which can be expressed in the product form

fN (y) =

N∏

n=1

f(jn) (5.30)

for any output sequence y = (j1, . . . , jN ), and define accordingly the

size of the set Ym as

F (Ym) ,
∑

y∈Ym

fN (y). (5.31)
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Next, they rely on Theorem 5.9 in order to relate the conditional error

probability Pe,m and F (Ym); to this end, let Pr(y|xm) and fN (y) cor-

respond to P1(y) and P2(y) in Theorem 5.9, respectively. In light of

these substitutions, the function µ in (5.16) gets the form

µ(s) , ln
(∑

y

Pr(y|xm)1−sfN (y)s
)

(5.32)

and similarly to (5.18), since the tilting measure fN is expressed in the

product form (5.30) and the code is assumed to have a fixed composi-

tion, then the function µ in (5.32) is expressible by the sum

µ(s) = N
K∑

k=1

qkµk(s,f), µk(s,f) , ln




J∑

j=1

P (j|k)1−sf(j)s


 . (5.33)

By doing so, Theorem 5.9 provides a lower bound on either Pe,m or

F (Ym) which is valid for every m ∈ {1, . . . ,M}. Now, since the size of

the list at the decoder is limited to L, then from (5.31)

M∑

m=1

F (Ym) =
M∑

m=1

∑

y∈Ym

fN (y) ≤
L∑

l=1

∑

y

fN (y) = L (5.34)

so there exists an integer m ∈ {1, . . . ,M} for which F (Ym) ≤ L
M . More-

over, for this value of m, one can simply replace a lower bound on

Pe,m with a lower bound on Pe,max. Based on the additivity property

of the function µ in (5.18), the term
√

µ′′(s) in the exponents of the

lower bounds in (5.19) and (5.20) is proportional to the square root

of N while the other terms µ(s) and µ′(s) in these exponents are lin-

early proportional to N . Hence, since Shannon, Gallager and Berlekamp

mainly focused in their paper [184] on the exponential behavior of the

upper and lower bounds for large values of N , they chose for the sim-

plicity of their analysis to obtain a loose but general upper bound on√
µ′′(s). The exponential behavior of the bounds remains unaffected in

the asymptotic case where N tends to infinity. However, as we see in

the next section, this bound is loose when considering codes of moder-

ate block lengths. A loose but simple bound on the second derivative

of the function µ was derived in [184, Appendix B], and it reads

s
√

µ′′
k(s,f) ≤ ln

( e√
Pmin

)
(5.35)
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where Pmin designates the smallest non-zero transition probability of

the DMC.

Following this approach and using the additivity property of the

function µ in (5.33) and inequality (5.35), one obtains from Theorem 5.9

that if there exists a sequence y for which Pr(y|xm)fN (y) 6= 0, then

either

Pe,max > exp

{
N

[
K∑

k=1

qk

(
µk(s,f) − sµ′

k(s,f)
)

+ O1

(
1√
N

)]}
(5.36)

or

L

M
≥ F (Ym)

> exp

{
N

[
K∑

k=1

qk

(
µk(s,f) + (1 − s)µ′

k(s,f)
)

+ O2

(
1√
N

)]}

(5.37)

where, for large N , the terms O1

(
1√
N

)
and O2

(
1√
N

)
scale like the

inverse of the square root of N ; hence, they asymptotically do not

affect the exponents of these two bounds for large N . The inequalities

in (5.36) and (5.37) provide a parametric lower bound on Pe,max for a

given L
M in terms of the parameter s (where 0 < s < 1) in the same way

Theorem 5.9 provides a parametric lower bound on Pe,1 for a given Pe,2.

This lower bound is valid for an arbitrary fixed composition block code

of composition q with M codewords of length N , and for an arbitrary

list decoder whose lists are limited to size L. Since the lower bound

is a function of an arbitrary tilting measure f which can be expanded

in the form (5.30), one would in general wish to find the function f

which maximizes the lower bound on Pe,max for a given composition. In

addition, one may look for the best composition in the sense that the

composition q minimizes this lower bound. This is a kind of a min-max

optimization problem. The authors of [184] find the following solution

for this min-max problem: For 0 < s < 1, let qs = (q1,s, . . . , qK,s) satisfy

the condition

J∑

j=1

P (j|k)1−s(αj,s)
s

1−s ≥
J∑

j=1

(αj,s)
1

1−s , ∀ k = 1, . . . ,K (5.38)



172 Sphere-Packing Bounds on the Decoding Error Probability

where

αj,s ,

K∑

k=1

qk,sP (j|k)1−s (5.39)

and let fs , (fs(1), . . . ,fs(J)) in the product form (5.30) be given by

fs(j) =
(αj,s)

1
1−s

∑J
j′=1(αj′,s)

1
1−s

. (5.40)

Note that by multiplying both sides of (5.38) by qk,s and summing over

k ∈ {1, . . . ,K}, the condition in (5.38) should be satisfied in equality for

all k for which qk,s > 0. This form of solution is reminiscent of the form

of solution given in [83, Theorem 5.6.5] for the random coding error

exponent. To this end, one simply needs to substitute ρ = s
1−s in order

to make Eqs. (5.38) and (5.39) look similar to those referring to the

random coding error exponent in [83, Eqs. (5.6.37) and (5.6.38)]. In

light of the analysis of the random coding error exponent [82], and

the similarity of the two expressions, it was ensured in [184] that a

solution to the equations given in (5.38) and (5.39) necessarily exists.

Since the parameter s lies within the interval [0,1), then from the above

substitution, the range of ρ is [0,∞); this is in contrast to the random

coding error exponent where ρ is restricted to lie within the interval

[0,1] (see Section 4.2.1). The methodology of the bounding technique

in [184], used for the derivation of the sphere-packing bound for fixed

composition codes, was to verify that unless the lower bound on Pe,max

becomes trivial (i.e., the case where it is equal to zero), there exists a

value of s ∈ [0,1) for which inequality in (5.37) is violated. Hence, the

lower bound on Pe,max, as given in (5.36), should be necessarily satisfied

for this value of s. This approach gives the following lower bound on

the maximal decoding error probability:

Pe,max > exp

[
−N

(
E0

( s

1 − s
,qs

)
− s

1 − s

(
R − ln4

N

)
+ O

( 1√
N

))]

(5.41)

where the term O
(

1√
N

)
scales like the inverse of the square root of N

and vanishes as N tends to infinity. With the substitution ρ = s
1−s , as

mentioned above (so that ρ ≥ 0), and by taking the maximization of the
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error exponent with respect to ρ within the interval [0,∞), the authors

end up with a sphere-packing lower bound for fixed composition codes.

The final form of this bound is stated in the following theorem:

Theorem 5.10. (Sphere-packing lower bound on the decoding error

probability for fixed composition codes) [184, Theorem 6]: Let P (j|k)

be the transition probability which characterizes a DMC, and let C be

a fixed composition code which is communicated over the DMC and

which is comprised of M codewords of length N . Assume an arbitrary

list decoding scheme where the size of the list is limited to L. Then,

the maximal error probability is lower bounded by

Pe,max ≥ exp

[
−N

(
Esp

(
R − ln4

N
− ε

)
+

√
8

N
ln

( e√
Pmin

)
+

ln4

N

)]

(5.42)

where R ,
ln
(

M
L

)

N , Pmin designates the smallest non-zero transition

probability of the DMC, the parameter ε is an arbitrary small posi-

tive number, and the function Esp is given by

Esp(R) , sup
ρ≥0

(
E0(ρ) − ρR

)
(5.43)

E0(ρ) , max
q

E0(ρ,q) (5.44)

E0(ρ,q) , − ln

(
J∑

j=1

[ K∑

k=1

qkP (j|k)
1

1+ρ

]1+ρ
)

. (5.45)

The maximum in (5.44) is over all probability vectors q = (q1, . . . , qK),

i.e., over all q with K non-negative components summing to 1.

In the following, we outline the ideas which finally lead to the

generalization of the sphere-packing bound for arbitrary block codes

(i.e., without imposing the restriction that the codes possess a fixed

composition).
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Concepts used for the generalization of the SP67

bound for general block codes

The sphere-packing bound was finally generalized in [184] for block

codes which do not necessarily have a fixed composition. One fact which

is useful in this generalization is that the number of different ways to

choose the composition of a code word is equal to the number of ways

of picking K non-negative integers which sum to N . Hence, there are(
N+K−1

K−1

)
different compositions, and since the total number of code-

words is equal to M , there must be some composition which contains

a number of codewords M ′ bounded by

M ′ ≥ M(
N+K−1

K−1

) . (5.46)

Since the authors in [184] are mainly focused on the analysis of the

error exponent, they use the upper bound

(
N + K − 1

K − 1

)
≤ NK (5.47)

for simplifying the final form of their bound; this loosening does not

incur any penalty on the error exponent, as the number of different

compositions only grows polynomially with N . Clearly, this loosening

of the bound is not in place while considering a moderate value of N ,

as noted in [204] (see the next section which explains the improvements

of the SP67 bound for moderate block lengths). By Considering the set

of messages which corresponds to this set of M ′ codewords as a fixed

composition code, and assuming that the same list decoder is used as

for the original code, then for each m in this fixed composition set, Pe,m

stays the same as in the original code. Theorem 5.10 now applies here

by replacing the rate R with
ln

(
M′
L

)

N ; since the error exponent Esp is

a decreasing function of its argument, one can loosen the lower bound

by replacing M ′ with M
NK , and obtain the following lower bound on the

maximal error probability from Theorem 5.10:
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Pe,max ≥ exp

[
−N

(
Esp

(
ln(M

L )

N
− K lnN

N
− ln4

N

)

+

√
8

N
ln

(
e√

Pmin

)
+

ln4

N

)]
(5.48)

where the ε > 0 in (5.42) was chosen to absorb the inequality in (5.47).

In order to obtain a lower bound on the average error probability

(rather than the maximal error probability), the authors in [184] use

the concept of expurgating half of the codewords with the largest error

probability, and rely on to the following simple inequality which is

valid for an arbitrary block code with M codewords of length N and

list decoding of size L:

Pe(N,M,L) ≥ 1

2
Pe,max(N,

M

2
,L).

This inequality relies on the fact that the block code composed from the
M
2 codewords with the lowest error probability in the original code has

the property that its maximal error probability does not exceed twice

the average error probability of the original code (whose number of

codewords is M). This finally gives the following sphere-packing lower

bound:

Theorem 5.11. (1967 Sphere-packing bound for DMCs) [184,

Theorem 2]: Let C be an arbitrary block code whose transmission takes

place over a DMC. Assume that the DMC is specified by the set of

transition probabilities P (j|k) where k ∈ {1, . . . ,K} and j ∈ {1, . . . ,J}
designate the channel input and output alphabets, respectively. Assume

that the code C forms a set of M codewords of length N (i.e., each code-

word is a sequence of N letters from the input alphabet), and assume

that the code is decoded with an arbitrary list decoder where the size

of the list is limited to L. Then, the average decoding error probability

of the code C is lower bounded by

Pe(N,M,L) ≥ exp

{
−N

[
Esp

(
R − O1

( lnN

N

))
+ O2

( 1√
N

)]}

(5.49)



176 Sphere-Packing Bounds on the Decoding Error Probability

where R ,
ln
(

M
L

)

N , the error exponent Esp(R) is introduced in (5.43),

the terms

O1

( lnN

N

)
=

ln8

N
+

K lnN

N

O2

( 1√
N

)
=

√
8

N
ln

( e√
Pmin

)
+

ln8

N
(5.50)

scale like lnN
N and the inverse of the square root of N , respectively

(hence, both terms vanish as we let N tend to infinity), and Pmin des-

ignates the smallest non-zero transition probability of the DMC.

Comparing the expression for the sphere-packing error exponent

(Esp) with (4.5) and (4.6), one verifies that the only difference between

Esp(R) and Er(R) which form upper and lower bounds on the error

exponents, respectively, is the range of the parameter ρ. For the upper

bound, ρ can take values in the semi-infinite interval ρ ≥ 0, where for

the lower bound, ρ is restricted to the finite interval 0 ≤ ρ ≤ 1. Hence,

the two bounds on the error exponents coincide as long as the value

of ρ which maximizes the RHS of (5.43) lies within the interval [0,1].

Since, the optimal parameter ρ forms a non-increasing function of the

rate R, once the upper and lower bounds on the error exponent coincide

at a certain rate R, they should also coincide at higher rates. Hence,

the error exponents of the random coding and sphere-packing bounds

coincide at the portion of the rate region between the critical rate,

defined by Rc , E′
0(1), and the channel capacity. This is the rate region

where the performance of capacity-approaching codes (e.g, turbo-like

codes) is most appealing.

5.4 Sphere-packing bounds revisited for moderate

block lengths

The analysis related to the derivation of the SP67 bound was mainly

asymptotic; the purpose of the authors in [184] (see also Section 5.3)

was to simplify their analysis as long as there was no penalty with

respect to the error exponent of the resulting bound. It was therefore

very encouraging that the error exponent of the SP67 bound [184] coin-
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cides with the error exponent of the random coding bound [82] for the

whole rate region between the critical rate of a DMC and its capacity.

The introduction of turbo-like codes (e.g., turbo, LDPC and RA

codes) which closely approach the channel capacity with feasible com-

plexity (see e.g., [158] and [156]) revolutionized the field of coding the-

ory. During the last decade, there is a large interest in the construction

of structured codes with moderate block lengths which closely approach

the capacity limit. Based on these exciting developments, Valembios

and Fossorier [204] were motivated to review the derivation of the SP67

bound, and suggested several improvements which tighten the bound

for moderate block lengths. They have also made this bound applicable

for memoryless continuous-output channels (and not only for DMCs);

as was exemplified in [204] (and is shown later in this section), the

modified SP67 bound when particularized for the Gaussian channel

competes well with the SP59 bound [185] (see Section 5.2) for practical

rates and block lengths.

The derivation of the improved version of the SP67 bound in [204]

deviates from the classical derivation of the SP67 bound [184] (see

Section 5.3) in the following respects:

• Instead of the region Ys introduced in (5.26), the derivation

of the modified SP67 bound introduces an additional free

parameter x, to define the set

Ỹx
s ,

{
y : |D(y) − µ′(s)| ≤ x

√
2µ′′(s)

}

=
{
y : |D(y) − EQs

{
D(y)

}
| ≤ x

√
2VarQs

{
D(y)

}}
.

Then, the Chebychev inequality gives

Pr(Ỹx
s ) ≥ 1 − 1

2x2
.

Clearly, this region particularizes to the region (5.26) in the

specific case where x = 1. The lower bound above is mean-

ingful as long as x >
√

2
2 , and this generalization is used in

the continuation of the derivation of the classical SP67 bound

[184] (as outlined in Section 5.3).
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• The simple (though loose) bound on the second derivative

of the function µ in (5.35) is replaced by the exact value,

expressed in terms of the transition probability of the DMC

(see [204, Appendix B]). By doing so, the authors also cir-

cumvented the need for the term ln e√
Pmin

which originally

prevented the application of the classical SP67 bound to

memoryless continuous-output channels due to the fact that

Pmin in Theorem 5.11 becomes infinitesimally small for mem-

oryless continuous-output channels.
• In lieu of the upper bound (5.47) on the binomial coefficient

which behaves polynomially in N , the authors in [204] use

the exact value of the binomial coefficient
(
N+K−1

K−1

)
.

• To emphasize the similarity between the random-coding

and the SP67 bounds, the parameter ρ was selected sub-

optimally. It was therefore suggested in [204] to set ρ opti-

mally in order to maximize the lower bound.

These modifications lead to the following theorem which suggests

an improvement over the classical SP67 bound in terms of the pre-

exponent. Note that a lower bound on the ML decoding error proba-

bility follows as a particular case of a list decoder with size L = 1.

Theorem 5.12. (Improvement on the 1967 sphere-packing bound for

DMCs) [204, Theorem 7]: Under the assumptions and notation used in

Theorem 5.11, the average decoding error probability is lower bounded

by

Pe(N,M,L) ≥ exp
{
−NẼsp(R,N)

}
(5.51)

where

Ẽsp(R,N) , inf
x>

√
2

2

{
E0(ρx) − ρx

(
R − O1

( lnN

N
,x

))

+ O2

( 1√
N

,x,ρx

)}
(5.52)

and

R ,
ln

(
M
L

)

N
(5.53)
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O1

( lnN

N
,x

)
,

ln8

N
+

ln
(
N+K−1

K−1

)

N
− ln

(
2 − 1

x2

)

N
(5.54)

O2

( 1√
N

,x,ρ
)

, x

√√√√ 8

N

K∑

k=1

qk,ρν
(2)
k (ρ) +

ln8

N
− ln

(
2 − 1

x2

)

N
(5.55)

ν
(1)
k (ρ) ,

∑J
j=1 βj,k,ρ ln

βj,k,ρ

P (j|k)∑J
j=1 βj,k,ρ

(5.56)

ν
(2)
k (ρ) ,

∑J
j=1 βj,k,ρ ln2 βj,k,ρ

P (j|k)∑J
j=1 βj,k,ρ

−
[
ν

(1)
k (ρ)

]2
(5.57)

βj,k,ρ , P (j|k)
1

1+ρ ·
(

∑

k′

qk′,ρP (j|k′)
1

1+ρ

)ρ

(5.58)

where qρ , (q1,ρ, . . . , qK,ρ) designates the input distribution which max-

imizes E0(ρ,q) in (5.44), and the parameter ρ = ρx is determined by

solving the equation

R − O1

( lnN

N
,x

)
= −1

ρ

∑

k

qk,ρν
(1)
k (ρ) +

x

ρ

√√√√ 2

N

K∑

k=1

qk,ρν
(2)
k (ρ). (5.59)

The proof is given in [204, pp. 3005–3006] and [204, Appendix B].

The new version of the SP67 bound in Theorem 5.12 applies to

an arbitrary memoryless continuous-output channel where sums over

the channel output alphabet are replaced by integrals. This bound is

particularized in [204, Section 4] to the special case of a transmission

over the AWGN channel with BPSK modulation. Fig. 5.2 depicts a

comparison in terms of regions in the two-dimensional space (R,N)

where a bound is better than the two others for three different targets

(Pt) of block error probability; the three compared bounds are the

improved sphere-packing bound of Valembois and Fossorier [204], the

SP59 bound of Shannon and the bound which follows from the capacity

limit. For example, for a rate of 3
4 bits per channel use and a block error
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Fig. 5.2 Regions in the two-dimensional space (R,N) where one bound is better than the
two others for three different targets (Pt) of block error probability. The plot corresponds
to the case where the binary codewords are BPSK modulated and transmitted over the
AWGN channel, and the focus is on high code rates. The SP59 and SP67 bounds refer to

the sphere-packing bound of Shannon [185] and the improved version of the SP67 bound
by Valembois and Fossorier [204], respectively; the CLB refers to the capacity limit bound.
The figure is reproduced (with permission) from [204].

probability of 10−6, the improved SP67 bound is better than the SP59

bound for block lengths above N = 872 bits.

5.5 Concluding comments

The introduction of structured constructions of turbo-like codes which

closely approach the Shannon capacity limit with moderate block

lengths stirred up new interest in studying the limits of code per-

formance as a function of the block length. The 1959 sphere-packing

bound of Shannon [185] serves for the evaluation of the performance

limits of block codes over an AWGN channel where the bound is

expressed in terms of the block length and code rate. This bound

was used in [57] and [115] as a benchmark in order to quantify the

sub-optimality of turbo codes with their practical iterative decoding
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algorithms; by comparing computer simulations for the performance

obtained by turbo codes over a wide range of rates and block sizes, it

was exemplified that the gap between their actual performance and the

sphere-packing bound was within 0.7 dB. The study of Valembois and

Fossorier [204] was also stimulated by the outstanding performance

of turbo-like codes with moderate block lengths and feasible decod-

ing complexity; they have improved the tightness of the classical 1967

sphere-packing bound [184] for moderate block lengths, and extended

its validity to memoryless continuous-output channels (and not only for

DMCs as in [184]). The improved version of the 1967 sphere-packing

bound in [204] competes well with the 1959 sphere-packing bound which

applies to the AWGN channel (see also Fig. 5.2), and their study stim-

ulates further research in the adaptation of sphere-packing type lower

bounds for codes of moderate block lengths which are tailored in a

more suitable way for specific channel models and certain types of

modulations.

In [8], the sphere-packing bound was used to assess the performance

limitations of transmission techniques employing efficient block codes

over fading channels. In [76], a sphere-packing bound was derived on the

average decoding error probability of block codes over Rayleigh block

fading multiple-input multiple-output (MIMO) channels. The results

show that the performance limits, as given by sphere-packing bounds,

improve significantly if a code spans a larger number of fading blocks.

On the other hand, increasing the block length improves the perfor-

mance limits only marginally; as we let the block length tend to infin-

ity, the performance limits of space-time codes are determined by the

outage probability (see [76]).

In [177], the authors suggest a technique to perform the entire cal-

culation of the 1959 sphere-packing bound in the logarithmic domain.

This technique eliminates the possibility of numerical overflows (see the

note below Theorem 5.6 on p. 160), and it facilitates the exact calcu-

lation of the 1959 sphere-packing bound for moderate to large block

lengths without the use of asymptotic approximations from [185].
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Lower Bounds Based on de Caen’s Inequality

and Recent Improvements

Overview : This section introduces de Caen’s lower bound, and its recent

improvements by Cohen and Merhav. It provides lower bounds on the

ML decoding error probability of arbitrary linear block codes which

solely depend on the distance spectrum of these codes.

6.1 Introduction

The union bound asserts that the probability of a union of events does

not exceed the sum of the probabilities of these events. This upper

bound on the probability of a union of events forms a simple upper

bound whose obvious drawback is that it may be loose due to pos-

sible intersections between the individual events. As we have seen in

Section 2, for large enough codes, the union bound becomes loose at

rates exceeding the channel cutoff rate, thus excluding the portion of

the rate region where the outstanding performance of turbo-like codes

is most appealing.

In [42], D. de Caen provides a lower bound on the probability of

a finite union of events. While an elementary result (essentially, the

Cauchy-Schwartz inequality), this bound was used to compute lower

183
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bounds on the decoding error probability of linear block codes via their

distance spectra. As examples of such lower bounds, see [108] for the

binary symmetric channel (BSC), and [182] for the binary-input AWGN

channel. In [39], Cohen and Merhav improved de Caen’s inequality by

introducing an arbitrary non-negative weighting function which is sub-

ject to optimization. Their improved bound is presented in the following

statement and, like de Caen’s inequality, it follows from the Cauchy-

Schwartz inequality.

Theorem 6.1. [39, Theorem 2.1] Let {Ai}i∈I be a finite set of events

in a probability space (Ω,F ,P ), then the probability of the union of

these events is lower bounded by

P

(
⋃

i∈I
Ai

)
≥

∑

i∈I





(
∑

x∈Ai

p(x)mi(x)

)2

∑

j∈I

∑

x∈Ai∩Aj

p(x)mi(x)2





(6.1)

where mi(x) ≥ 0 is any real function on Ω such that the sums on the

RHS of (6.1) converge. Further, equality in (6.1) is achieved when

mi(x) = m∗(x) =
1

deg(x)
, ∀ i ∈ I (6.2)

where for each x ∈ Ω

deg(x) , |{i ∈ I | x ∈ Ai}|. (6.3)

Proof. First consider the case where Ω is finite. Using a simple counting

argument gives

P

(
⋃

i∈I
Ai

)
=

∑

i∈I

∑

x∈Ai

p(x)

deg(x)
. (6.4)

Let mi(x) ≥ 0 be an arbitrary non-negative function on Ω. From the

Cauchy-Schwarz inequality, it follows that
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


∑

x∈Ai

p(x)

deg(x)







∑

x∈Ai

p(x)m2
i (x)deg(x)




≥




∑

x∈Ai

√
p(x)

deg(x)

√
p(x)m2

i (x)deg(x)




2

=




∑

x∈Ai

p(x)mi(x)




2

(6.5)

provided that the sums in (6.5) converge. Therefore, (6.4) and (6.5)

give

P

(
⋃

i∈I
Ai

)
≥

∑

i∈I

(∑
x∈Ai

p(x)mi(x)
)2

∑
x∈Ai

p(x)m2
i (x)deg(x)

=
∑

i∈I

(∑
x∈Ai

p(x)mi(x)
)2

∑
j∈I

∑
x∈Ai∩Aj

p(x)m2
i (x)

. (6.6)

Note that mi(x) may be different for each i in the sum over all i ∈ I.

However, in order to achieve equality in (6.5), we need (6.2) to be

satisfied.

For a general probability space, as noted in [42] and [113], since

there are only finitely many Ai’s, the number of Boolean atoms defined

by the Ai’s unions and intersections is also finite. Thus, the general

space can be reduced to a finite probability space. In this case, the

sums in (6.1) are replaced by integrals.

In [39], Cohen and Merhav refer to the choice of mi(x) ≡ 1 as the

trivial choice of mi(x). In this particular case, we get the inequality

P

(
⋃

i∈I
Ai

)
≥

∑

i∈I

{
P (Ai)

2

∑

j∈I
P (Ai ∩ Aj)

}

which is de Caen’s bound [42]. Thus, de Caen’s bound is a special

case of the bound suggested by Cohen and Merhav in Theorem 6.1. In

this context, it is noted that a recent improvement of de Caen’s bound
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was provided by Kuai, Alajaji and Takahara [113]. However, Dembo

has demonstrated in [44] that both de Caen’s bound and Kuai, Alajaji

and Takahara’s bound are derived by solving the same minimization

problem. While the latter bound is obtained by applying a stronger

method than de Caen’s bound, it improves this bound by a negligible

factor which is at most 9
8 (see [44]).

The essence of the bound in Theorem 6.1 is the ability to choose

an appropriate function mi(x). To define a proper strategy for choos-

ing mi(x), it was observed by Cohen and Merhav that a multiplication

of this weighting function by a constant factors out in (6.1). Hence,

mi(x) should only define an essence of behavior, and not necessar-

ily exact values. When looking for such a behavior, recall that the

optimal function is given by mi(x) = 1
deg(x) (see (6.2)). However, in

the context of the derivation of lower bounds on the ML decoding

error probability for linear block codes, the calculation of this func-

tion is prohibitively complex, as it requires the full characterization

of the Voronoi regions of every individual codeword. For this rea-

son, several alternatives are suggested in [39] for choosing the func-

tions mi(x); these choices yield inherently tighter bounds than some

previously reported lower bounds which rely on de Caen’s inequality

(e.g., Seguin’s bound [182]). By following this approach, Cohen and

Merhav relied on (6.1) for the derivation of improved lower bounds

on the decoding error probability of linear codes under optimal ML

decoding. They exemplified their bounds for BPSK modulated signals

which are equally likely to be transmitted among M signals, and where

the examined communication channels are a BSC or a binary-input

AWGN channel. In this context, the element x in the RHS of (6.1)

is replaced by the received vector y at the output of the communi-

cation channel, and Ai (where i = 1,2, . . . ,M − 1) consists of all the

vectors which are closer in the Euclidean sense to the signal si rather

than the transmitted signal s0. Similarly to Seguin’s bound [182], the

bounds in [39] get (after some loosening in their tightness) final forms

which solely depend on the distance spectrum of the code. Recently,

two lower bounds on the ML decoding error probability of binary

linear block codes were derived by Behnamfar et al. [16] for BPSK-

modulated AWGN channels. These bounds are easier for numerical



6.2. Lower bounds based on de Caen’s inequality and variations 187

calculation, but are looser than Cohen-Merhav bounds for low to mod-

erate SNRs.

We note that lower bounds which are based on de Caen’s inequality

(see [16], [39], [108] and [182]) are applicable for specific codes but not

for ensembles; this restriction is due to the fact that Jensen’s inequality

does not allow to replace the distance spectrum of a linear code in these

bounds by the average distance spectrum of ensembles.

6.2 Lower bounds based on de Caen’s inequality

and variations

6.2.1 Lower bounds on the ML decoding error
probability for the AWGN channel

We start our discussion by presenting the lower bound of Cohen and

Merhav, as introduced in [39, Proposition 3.1] for the Gaussian chan-

nel, and then refer to its two particular cases which are named in [39,

Section 3] as the ‘norm’ and ‘dot-product’ lower bounds; these two lower

bounds on the ML decoding error probability refer to the situation

where the signals are transmitted over the AWGN channel with equal

probability. These bounds rely on particular choices of the ‘weight-

ing functions’ mi which appear in Theorem 6.1. The following lower

bound, introduced in Theorem 6.2, relies on the improvement of de

Caen’s lower bound (see Theorem 6.1). To this end, the authors make

use of the following parametric weighting function, given the transmit-

ted signal s0 and the received vector y:

m(y|s0) = exp
{
−(a||y||2 + b 〈y,s0〉 + c||s0||2)

}
(6.7)

where a, b and c are free parameters, and 〈·, ·〉 designates the standard

inner product. It is easily demonstrated that Seguin’s bound [182] forms

a particular case of the lower bounds of Cohen and Merhav, and there-

fore Seguin’s bound is in general a looser bound (as exemplified in [39]

and in some numerical results in this section). In order to derive lower

bounds which solely depend on the distance spectrum of a binary linear

block code, Seguin proved a monotonicity property with respect to the

correlation between two arbitrary codewords of the code. This property

enables to loosen the lower bounds by replacing the correlation between
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two arbitrary codewords with a simple upper bound which depends on

the Hamming weights of the two codewords and the minimum distance

of the code. The same upper bound on the correlation between two

arbitrary codewords was also used in [39]. We finally address Swatzek’s

bound [192] which was exemplified in [182] to be looser than the bound

of Seguin. The discussion concludes by addressing a recently intro-

duced bound of Benhamfar, Alajaji and Linder [16]. Some numeri-

cal results finally exemplify the use of these distance-spectrum based

bounds for the performance evaluation of some (short) block codes;

these bounds are also compared with the 1959 sphere-packing (SP59)

bound of Shannon (see Section 5.2) and the TSB upper bound of

Poltyrev (see Section 3.2.1).

Theorem 6.2. [39, Proposition 3.1] Let s0, . . . ,sM−1 be a set of M

signals of dimension K whose transmission takes place over an AWGN

channel with two-sided noise spectral density of N0
2 . Then, the condi-

tional error probability under ML decoding given that the signal s0 is

transmitted is lower bounded by

P (error|s0) ≥ exp
(
(β′ − 2β)||s0||2

)
(

N ′
0√

N0N ′′
0

)K

M−1∑

i=1

{
Q2

(
κ(α,si,N

′
0)

)

M−1∑

j=1

Ψ
(
ρi,j ,κ(α′,si,N

′′
0 ),κ(α′,sj ,N

′′
0 )

)

}
(6.8)

where
Q(x) ,

1√
2π

∫ ∞

x
exp

(
−y2

2

)
dy (6.9)

is the complementary Gaussian cumulative distribution function,

Ψ(ρ,x′,y′)

,
1

2π
√

1 − ρ2

∫ ∞

x′

∫ ∞

y′
exp

{
−x2 − 2ρxy + y2

2(1 − ρ2)

}
dx dy (6.10)

is the normalized (unit variance) two-dimensional Gaussian integral

with Ψ(1,x,x) , Q(x),

ρi,j ,
〈si − s0,sj − s0〉

||si − s0|| ||sj − s0||
(6.11)
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designates a correlation, the function κ is given by

κ(α,si,N0) ,
||αs0 − si||2 − (α − 1)2||s0||2√

2N0 ||si − s0||
.

The constants N ′
0,N

′′
0 ,α,α′,β and β′ are given by

N ′
0 , N0

1+aN0
, N ′′

0 , N0
1+2aN0

α ,
1

N0
− b

2

a+ 1
N0

, α′ ,
1

N0
−b

2a+ 1
N0

β ,

(
1

N0
+a

)(
1

N0
+c

)
−

(
1

N0
− b

2

)2

1
N0

+a
,

β′ ,

(
1

N0
+2a

)(
1

N0
+2c

)
−

(
1

N0
−b

)2

1
N0

+2a
(6.12)

where a > − 1
2N0

, and the constants b and c are arbitrary real numbers.

For ease of computation of the lower bound in Theorem 6.2, it is use-

ful to rely on the following alternative representations of the functions

Q and Ψ from Eqs. (6.9) and (6.10)

Q(x) ,
1

π

∫ π
2

0
exp

(
− x2

2sin2 θ

)
dθ , x > 0 (6.13)

and

Ψ(ρ,x,y)

=
1

2π

∫ π
2
−tan−1( y

x)

0

√
1 − ρ2

1 − ρsin2θ
exp

(
−x2

2

1 − ρsin2θ

(1 − ρ2)sin2 θ

)
dθ

+
1

2π

∫ tan−1( y
x)

0

√
1 − ρ2

1 − ρsin2θ
exp

(
−y2

2

1 − ρsin2θ

(1 − ρ2)sin2 θ

)
dθ (6.14)

where Eq. (6.13) was first introduced by Craig [40], and Eq. (6.14) was

derived by Simon and Divsalar (see [188, Section 9]).

Let C be a binary linear block code whose codewords are BPSK

modulated, and transmitted over an AWGN channel. Assume that the

only information we have about the linear code C is its distance spec-

trum, and we are looking for a lower bound on the error probability
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of this code under ML decoding. Based on the linearity of the code,

one can assume that the all-zero codeword is transmitted, and apply

the lower bound in Theorem 6.2 to obtain a lower bound on the aver-

age decoding error probability. However, the only obstacle in applying

the bound in (6.8) to linear block codes is the fact that the corre-

lation two signals (i.e., ρi,j in (6.11)) does not depend solely on the

Hamming weight of the individual codewords, but also on the num-

ber of agreements (and disagreements) between these two codewords.

A pleasing property of the two-dimensional Gaussian integral Ψ(ρ, ·, ·)
in (6.10) is that this function is a monotonically increasing function of

the correlation ρ (this property was formally proved by Seguin in [182,

Eqs. (23)–(25)]); hence, as suggested by Seguin, one can replace the

correlation ρi,j in the RHS of (6.8) by an upper bound on this corre-

lation which only depends on the Hamming weights of the individual

codewords, and in this way obtain a looser lower bound on the decod-

ing error probability which solely depends on the distance spectrum of

the code. To this end, Seguin relied on the following upper bound on

the correlation:

ρi,j ≤ ρ(i, j) , min





√
wH(ci)

wH(cj)
,

√
wH(cj)

wH(ci)
,
wH(ci) + wH(cj) − dmin

2
√

wH(ci)wH(cj)





(6.15)

where wH(c) designates the Hamming weight of a codeword c, and

dmin designates the minimal distance of the code C. In [39], Cohen and

Merhav relied on the same upper bound on the correlation in order

to obtain a looser lower bound on the ML decoding error probability

which solely depends on the distance spectrum of a binary linear block

code; to this end, the correlation ρi,j in the RHS of (6.8) is replaced by

the upper bound on ρi,j , as given in (6.15), and obtain an overall lower

bound which solely depends on the distance spectrum of C.

From the statement in Theorem 6.1 and the context of Theorem 6.2

which addresses a hypothesis testing problem for the AWGN chan-

nel, the corresponding optimized weighting function mi which maxi-

mizes the lower bound in the RHS of (6.6) is independent of the index i,

and it scales like the inverse of the number of signals which are closer

to the received vector y than the transmitted signal s0, i.e.,
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mopt(y|s0) =
1

deg(y|s0)
(6.16)

where

deg(y|s0) ,
∣∣{i : ||y − si|| < ||y − s0||}

∣∣ (6.17)

Based on the three-parameter weighting function introduced in (6.7),

[39] considers the following three particular cases of the bound in

Theorem 6.2:

• Norm Lower bound: This lower bound follows by looking at

the weighting functions whose behavior is like the exponent of

the squared Euclidean distance between the received vector

y and the signal s0. The motivation for considering this case

is because, according to the optimized weighting function

given in (6.16), it is inversely proportional to the number of

signals which fall in the interior of a K-dimensional sphere

of radius ||y − s0|| whose center is at the received vector y,

so the optimized function is monotonically decreasing in the

distance ||y − s0||. Hence, Cohen and Merhav considered the

one-parameter weighting function

m(y|s0) , exp(−a||y − s0||2) , a ≥ 0 (6.18)

which follows as a particular case of the three-parameter

weighting function in (6.7) when b = −2a and a = c. The

optimized bound which corresponds to this particular case is

called the ‘norm bound’, and it follows as a particular case

of the lower bound in Theorem 6.2 in the above setting of the

parameters a, b and c (so that the optimization problem is

reduced to a single-parameter optimization with respect to

a ≥ 0).
• Dot-Product Lower Bound: For equal-energy signals, the

degree function in (6.17) can be rewritten in the form

deg(y|s0) =
∣∣{i : 〈y,si〉 > 〈y,s0〉}

∣∣

=
∣∣{i : θy,i < θy,0}

∣∣ (6.19)
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where 〈f,g〉 designates the standard inner product of the two

functions f and g, and

θy,i , cos−1

( 〈si,y〉
||si||||y||

)
, 0 ≤ θy,i < π.

Had the equal-energy signals been uniformly distributed on

the surface of a sphere centered at the origin (this assumption

holds for the optimal code, and gives the 1959 sphere-packing

bound of Shannon [185]), Eqs. (6.16) and (6.19) would imply

that the optimized weighting function m(y|s0) is monoton-

ically decreasing with respect to the absolute value of the

angle between y and s0. This intuition suggested Cohen and

Merhav to consider the particular weighting function

m(y|s0) , exp
(
b 〈s0,y〉

)
, b ∈ R (6.20)

which forms a particular case of the three-parameter function

in (6.7) when a = c = 0 and b is replaced by −b. Hence, the

dot-product lower bound is also subject to a single-parameter

optimization (with respect to the parameter b).
• Seguin’s Lower Bound: Seguin’s lower bound on the ML

decoding error probability was introduced in [182], and it

follows as a particular case of the Cohen-Merhav bound in

Theorem 6.2 by setting a = b = c = 0. The reason for this

is that Seguin’s lower bound follows from de Caen’s bound,

where the latter forms a particular case of the improvement

on de Caen’s lower bound (see Theorem 6.1) in the set-

ting where all the weighting functions mi are equal to unity.

Hence, by substituting a = b = c = 0 in the RHS of (6.7),

the weighting function m(y|s0) is identically equal to 1. Note

that Seguin’s bound is also a particular case of both the norm

bound and the dot-product bound.

Based on the particular choice of the weighting function in (6.7) and

the upper bound on the correlation ρi,j as given in (6.15), Theorem 6.2

particularizes to [39, Eqs. (24) and (25)]. However, we rewrite these

equations in a different form which has two advantages: the first is that
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the lower bound is explicitly expressed in terms of the signal to noise

ratio (as opposed to the constants in (6.12) which depend on the noise

spectral density N0 and the signal energy per symbol Es separately).

The second advantage is that it shows explicitly that the arbitrary

parameter c in (6.7) does not affect the bound (this can be also seen

directly from (6.7), since the parameter c just scales this function);

hence, the calculation of the lower bound is reduced to an optimization

over two parameters. The following corollary rephrases [39, Eqs. (24)

and (25)] in a more convenient form, as explained above.

Theorem 6.3. (Lower bound on the decoding error probability of

binary linear block codes over an AWGN channel) Let C be a binary

linear block code of length N and dimension K, R , K
N be the code

rate of C in bits per channel use, dmin be the minimal distance of C, and

let {Si}N
i=0 designate the distance spectrum of C. Assume that the code

is BPSK modulated, and transmitted over an AWGN channel. Then,

the block error probability of the code C under ML decoding is lower

bounded by

Pe(C) ≥ exp

{
−NREb

N0

[
1 +

(1 − b)2

1 + 2a
− (2 − b)2

2(1 + a)

]}(√
1 + 2a

1 + a

)K

·
∑

i6=0:Si>0

Si Q2(γi)

Q(δi) + (Si − 1)Ψ
(
ρ(i, i), δi, δi

)
+

∑

j 6={0,i}
SjΨ

(
ρ(i, j), δi, δj

)

(6.21)

where

γi ,

√
(2−b)2

2(1+a)
iREb
N0

(6.22)

δi ,

√
2(1−b)2

1+2a
iREb
N0

(6.23)

ρ(i, j) , min

{√
i
j ,

√
j
i ,

i+j−dmin

2
√

ij

}
(6.24)

and a > −1
2 , b ∈ R are two arbitrary constants which are subject to

optimization. The functions Q and Ψ in the RHS of (6.21) are given
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in (6.9) and (6.10), respectively (these functions are also expressed in

(6.13) and (6.14) as integrals over finite intervals.)

As explained above and since the parameter c in the weighting func-

tion (6.7), the following three bounds follow as particular cases of the

bound given in Theorem 6.3:

• By setting b = −2a, a ≥ 0 and optimizing over a in (6.21),

one obtains the ‘norm bound’ [39].
• By setting a = 0 and optimizing over b in (6.21), one obtains

the ‘dot-product bound’ [39]
• By setting a = b = 0 in (6.21) (which renders the weighting

function equal to 1), one obtains Seguin’s bound [182].

A comparison of the ‘norm bound’, the ‘dot-product bound’ [39] and

Seguin’s bound [182] which follow as particular cases of Theorem 6.3,

and the 1959 sphere-packing lower bound [185] (see Section 5.2) is

shown in Fig. 6.1 for two short linear block codes (the upper plot refers

to the (63, 24) BCH codes, and the lower plot refers to the (24, 12)

Golay code). As expected from the discussion above, Seguin’s bound is

looser than the ‘norm bound’ and the ‘dot-product’ bound. In order to

examine the tightness of these lower bounds, they are compared with

the tangential-sphere bound of Poltyrev [152] which is one of the tight-

est reported upper bounds for the AWGN channel (see Section 3.2.1).

The sensitivity of the ‘norm bound’ to the parameter a is exemplified

in Fig. 6.2 for the (23,12,7) Golay code. This figure shows a three

dimensional mesh of the lower bound on the decoding error probability

of the Golay code as a function of the energy per bit to spectral noise

density
(

Eb
N0

)
and the parameter a > −1

2 of the lower bound in (6.21)

which is subject to optimization.

In [16], new lower bounds on the ML decoding error probability

of binary linear block codes over the Gaussian channel were recently

introduced. They suggest a reduction in the computational complexity

as compared to the Cohen-Merhav bound, and are therefore easy for

calculation; however, they are less tight than the Cohen and Merhav

bounds for low values of signal to noise ratio.
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Fig. 6.1 Bounds on the decoding error probability of two binary linear block codes under
soft-decision ML decoding. The upper plot refers to the (63, 24) BCH code, and the lower
plot refers to the (24, 12) Golay code where the transmission of both codes takes place over
the binary-input AWGN channel. Poltyrev’s upper bound [152] refers to the tangential-

sphere bound (TSB) in Section 3.2.1; the other bounds which are lower bounds on the ML
decoding error probability include Seguin’s bound [182], the ‘dot-product bound’ and the
‘norm bound’ introduced by Cohen and Merhav [39], and the 1959 sphere-packing bound

(SP59) of Shannon [185] which is introduced in Section 5.2 (where the latter bound solely
depends on the block length and the rate of the code). This figure was reproduced (with
permission) from [39].
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Fig. 6.2 A three-dimensional mesh of the ‘norm lower bound’ on the decoding error prob-
ability of the (23, 12, 7) Golay code under ML decoding. The graph of this lower bound is

shown as a function of the energy per bit to spectral noise density
(

Eb

N0

)
and the parame-

ter a > − 1
2

of the lower bound in (6.21) which is subject to optimization. This figure was
reproduced (with permission) from [39].

6.2.2 Lower bounds for the binary symmetric channel

We discuss in this sub-section lower bounds on the ML decoding error

probability of binary linear block codes over the BSC, and refer to the

Keren and Litsyn bound [108] and to a bound of Cohen and Merhav

which was derived for the BSC [39].

In this case, the transmitted codeword is one of M = 2K equiproba-

ble codewords c0, . . . ,cM−1 of length N whose transmission takes place

over a binary symmetric channel (BSC) with crossover probability p

(without any loss of generality, one can assume that p < 1
2). Let c0

be the transmitted codeword, then the ML decoder chooses the code-

word whose Hamming distance from the received vector is minimal.

Let x = c0 + e be the received vector where e ∈ GF(2)N is the error

vector. Assume that the code C is a binary linear block code, then the

symmetry of the channel yields that the average decoding error proba-

bility is equal to the conditional error probability given that the all-zero
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codeword is transmitted. The error event E can therefore be expressed

as a union of events E =
⋃M−1

i=1 E0,i (which typically have overlaps, hence

the weakness of the union bound for bad channel conditions) where

E0,i ,
{
x ∈ GF(2)N : wH(x + ci) < wH(x)

}
. (6.25)

In [39, Section 4], Cohen and Merhav derive a lower bound on the

decoding error probability for the BSC which solely depends on the

distance spectrum of the binary linear block code and the crossover

probability p of the BSC. Similarly to the derivation of lower bounds

for the AWGN channel (see Section 6.2.1), they rely on the improve-

ment on de Caen’s lower bound as stated in Theorem 6.1. In order

to simplify the final form of their bound and make it expressible in

terms of the distance spectrum, they chose the setting where the non-

negative weighting function mi(x) which appears in the RHS of (6.1)

depends on the received vector x only through its Hamming weight (so,

for all vectors x ∈ GF(2)N of the same composition, the function mi(x)

is assumed to get the same value). For the BSC model, the transition

probability is given by

Pr(x|c0 = 0) = pwH(x)(1 − p)N−wH(x).

From (6.3) (where in the context of this testing hypothesis problem, the

event Ai appearing in Theorem 6.1 is replaced with the pairwise event

event E0,i as given in (6.25)), the degree function can be expressed as

follows:

deg(x|c0) =
∣∣{ci ∈ C, i 6= 0 : wH(x + ci) < wH(x)}

∣∣

= |C| Pr{wH(x + c) < wH(x)} (6.26)

where a uniform distribution over the codewords of C is assumed. From

the statement in Theorem 6.1, the optimal weighting function mi(x)

is independent of the index i, and it is inversely proportional to the

value of deg(x|c0). In the continuation of the discussion in [39], two

alternatives for this optimized weighting function are suggested; both

are amenable to analysis and yield in their final form lower bounds

which solely depend on the distance spectrum of the code and the

crossover probability of the channel. Since the weighting function mi is
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assumed in [39, Section 4] to depend only on the Hamming weight of

the received vector x, this function is given in the form

mi(x) = µi

(
wH(x)

)
, µi : N

+ → R.

The reader is referred to [39, Section 4] for further details regarding

the derivation of the lower bound for the BSC (where the concept

of the derivation is similar to the derivation of the lower bounds for

the Gaussian channel in Section 6.2.1; it relies on the lower bound on

a union of events, as given in Theorem 6.1). To this end, Cohen and

Merhav suggest two functions µi which are based on certain approxima-

tions of the function deg(x|c0); the calculation of one of these approx-

imations depends on the knowledge of the distance spectrum of the

whole code, and it is obtained from the Chernoff bounding technique;

the other approximation depends on more elementary properties of the

code (e.g., its size, length and minimum distance). In the final from of

these bounds, both of them are subject to a one-parameter optimiza-

tion in order to obtain the tightest lower bound within the considered

family.

The lower bound of Keren and Litsyn [108] also applies to binary

linear block codes whose transmission takes place over the BSC; how-

ever, since the derivation of their bound follows from de Caen’s bound

(i.e., the weighting functions in the RHS of (6.1) are all equal to unity),

the bound in [108] is looser than the bound of Cohen and Merhav. Both

bounds are calculable in terms of the distance spectrum of the code,

and are exemplified for some class of codes in [39].

6.3 Summary and conclusions

This section introduces de Caen’s lower bound on the probability of a

union of events [42], and its recent improvement by Cohen and Merhav

[39]. These bounds provide lower bounds on the ML decoding error

probability of binary linear block codes, which solely depend on their

distance spectrum. The improved bounds in [39] require an optimiza-

tion over an arbitrary non-negative weighting function; the optimal

choice of this function is known, but it unfortunately leads to a useless

identity. Several sub-optimal choices of this function with some free



6.3. Summary and conclusions 199

parameters lead to lower bounds on the ML decoding error probabil-

ity which are subject to parameter-optimizations (in order to get the

tightest lower bounds within their forms). For binary linear block codes

whose transmission takes place over an AWGN channel, the bound of

Cohen and Merhav is reformulated in this section so that it is explic-

itly expressed in terms of the energy per bit to spectral noise density of

the channel and the distance spectrum of the code (see Theorem 6.3).

The latter form of a two-parameter bound is uniformly tighter than the

‘norm bound’ and the ‘dot-product bound’ which are studied in [39].

Finally, lower bounds for the BSC [39, 108] are shortly addressed in

this section.
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Concluding Remarks

Maximum-likelihood (ML) decoding provides an upper limit on the

attainable performance of coded communication systems, and hence

is of interest, even when the actual optimal decoding procedure can

not be practically implemented. The implications of understanding the

performance and operation of ML decoding range beyond this obvi-

ous aspect. Namely, as of late intimate relations between the ML and

sub-optimal iterative message-passing algorithms have been revealed

[128, 129, 130, 157], and a geometric view, advocated here in terms of

different bounding techniques might be beneficial.

As an example for the possible relations between ML and itera-

tive decoding algorithms, we note that some recent publications are

focused on the tradeoff between performance (even under optimal

ML decoding) and the decoding complexity per iteration for low-

density parity-check (LDPC) codes (or general binary linear block

codes which are iteratively decoded based on their bipartite graph)

[33, 149, 176, 179, 215, 214]. This tradeoff between performance and

complexity is expressed in terms of the gap (in rate) to capacity. The

study of the tradeoff between achievable rates under ML decoding and

the decoding complexity per iteration is done via information-theoretic

201
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bounds which also enable to get an indication as to the sub-optimality

of iterative message-passing decoding algorithms (as compared to opti-

mal ML decoding). To this end, bounds on the thresholds under ML

decoding are compared with exact thresholds under iterative message-

passing decoding (whose calculation is based on the density evolu-

tion technique). A generalization of the bounds for parallel channels

[180, 178] enables to apply the new bounds to ensembles of punc-

tured LDPC codes, where both intentional and random puncturing are

addressed. This suggests an interesting direction for further research

on the relation between performance bounds under ML decoding and

the decoding complexity per iteration (under iterative message-passing

decoding); this relation is based on information-theoretic bounds which

are valid for every code (and not only for ensembles, via concentration

arguments). Bounds of the type considered here such as variants of

the Shulman and Feder bound [187] were found useful in addressing

these questions (see, e.g., [94, Theorem 2], [95, Theorem 1], and [176,

Theorem 2.2]).

An additional aspect which is of great interest in the context of

iterative decoding and is related to performance bounds under ML

decoding concerns the fundamental limitations of codes with cycles.

It is well known that codes whose Tanner graphs are cycle-free have

poor performance, even under optimal ML decoding [69]. In order to

enhance this result, information-theoretic bounds which are valid under

optimal ML decoding (or hence, for any other sub-optimal decoding

algorithm) enable to relate the performance of any binary linear code

defined on graph to the minimal number of fundamental cycles which

should exist in an arbitrary bipartite graph characterizing this code

[176, 175, 180]. This approach also allows one to derive lower bounds

on the bit error probability under ML decoding as a function of the

density of an arbitrary parity-check matrix which represents the code.

These information-theoretic arguments explain why good codes should

have cycles in their bipartite graphs, and show that this property is also

valid under optimal ML decoding (so it is not a consequence of the sub-

optimality of iterative message-passing algorithms). We believe that

this direction deserves further study, and performance bounds under

ML decoding appear to be informative also in this respect.
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Yet another interesting aspect which deserves attention is the assess-

ment of the performance of modern families of codes via statisti-

cal physics methods (see [77], [135]–[136], [157], [189] and references

therein). It is most intriguing to see whether there are any concep-

tual connections between this promising, though not yet fully rigorous

methodology, and bounding techniques of the generalized Gallager fam-

ily. Evidently, any such insight could benefit significantly both domains.

The proposed approach for the derivation of Gallager bounds and

their variations, as discussed in Section 4, can be generalized to geomet-

rically uniform non-binary codes, finite-state channels, bit interleaved

coded modulation systems, coding for independent parallel channels

[122, 166, 165], and it can be also used for the derivation of upper

bounds on the conditional decoding error probability (as to account

for a possible partitioning of the original code to subcodes).

While the power and conceptual importance of Gallager’s bounding

methodology (including the 1961 Gallager and 1965 Gallager bounds)

has been widely exploited, we still believe that this has not exhausted

in full the power of Gallager-oriented approaches. Specifically, funda-

mental questions such as what is the deviation in some appropriate

‘distance’ measure (see for example (4.39), or the divergence measure

used in [288, Appendix A]) of a distance spectrum of a linear code

as compared to the binomial reference, that still permits ultimate effi-

ciency of the code (i.e., to approach capacity, but not necessarily with

an exponential behavior of the error probability) are not yet fully under-

stood. The current results, based for example on the Shulman and Feder

bound and its variants and some combinations with other bounds (see,

e.g., [133, 176, 201, 200]) do provide partial answers (such as the ade-

quacy of a sub-exponential deviation in terms of (4.39)), but definitely

are not fully conclusive.

The generalized Gallager-based bound presented in Section 4.2.2.1

calls for a deeper understanding of the potential use of this generalized

expression, and yet be able to provide insightful and compact closed

form results. Namely, the ability to use efficiently the additional degrees

of freedom provided by the code partition as well as the generalized

functions/parameters, is not yet fully understood and calls for further

study.
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As commented by the authors in [204], there is room for further

tightening lower bounds obtained with sphere-packing arguments for

codes of small to moderate block lengths, especially when focusing on

a particular channel. The improvements of the sphere-packing bounds,

as introduced by Valembois and Fossorier, are valid for the general

case and yield a bound of reasonable complexity in formulation and

computation. These are applicable for assessing the theoretical limita-

tions of block codes of moderate block lengths (e.g., turbo and LDPC

codes). Aside from inspiring more research on this subject, the bounds

introduced in [204] modify the 1967 sphere-packing bound of Shannon,

Gallager and Berlekamp [184] in a way which makes them applicable

to memoryless discrete-input and continuous output channels. Particu-

larized for the binary-input Gaussian channel, the new bounds in [204]

prove themselves (especially for high code rates) as a superior bounding

technique as compared to the 1959 sphere-packing bound of Shannon

[185] which was tailored for the Gaussian channel (but does not take

into account the modulation). Sphere-packing lower bounds improve

the understanding of the potential gain which can be achieved by opti-

mal decoding.

Considering de Caen’s based bounds and their recent improved ver-

sions [42, 39], an interesting open problem is the generalization of these

bounds to ensembles of linear codes, so that these new versions are

expressible in terms of the average distance spectrum of the ensemble.

The performance bounds reviewed here are based on basic features

of codes and ensembles, namely their distance spectra. These bounds

are readily applicable to assess ultimate performance of new classes

of codes on graphs (e.g., ensembles of protograph LDPC codes whose

distance spectra are obtained by the techniques introduced in [51, 72]).

The topics we chose to cover here within the most extensive area of

performance analysis of optimal (ML) decoders, are definitely impacted

by our subjective views. In this respect, we may have overlooked items

which should be covered in more detail. The extensive reference list

provided here is related to the central topics covered, and in this respect

it can not be considered conclusive. Yet, we do trust that the references

here along with the references therein do give a comprehensive picture

of the relevant literature.
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