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Capacity-Achieving Ensembles for the Binary
Erasure Channel With Bounded Complexity

Henry D. Pfister,Member, Igal Sason,Member, and R̈udiger Urbanke

Abstract

We present two sequences of ensembles of non-systematic irregular repeat-accumulate codes which asymptotically (as
their block length tends to infinity) achieve capacity on thebinary erasure channel withbounded complexityper information
bit. This is in contrast to all previous constructions of capacity-achieving sequences of ensembles whose complexity grows at
least like the log of the inverse of the gap (in rate) to capacity. The new bounded complexity result is achieved by puncturing
bits, and allowing in this way a sufficient number of state nodes in the Tanner graph representing the codes. We derive an
information-theoretic lower bound on the decoding complexity of randomly punctured codes on graphs. The bound holds for
every memoryless binary-input output-symmetric channel and is refined for the binary erasure channel.

Index Terms

Binary erasure channel (BEC), codes on graphs, degree distribution (d.d.), density evolution (DE), irregular repeat-
accumulate (IRA) codes, low-density parity-check (LDPC) codes, memoryless binary-input output-symmetric (MBIOS) channel,
message-passing iterative (MPI) decoding, punctured bits, state nodes, Tanner graph.

I. I NTRODUCTION

During the last decade, there have been many exciting developments in the construction of low-complexity
error-correction codes which closely approach the capacity of many standard communication channels with feasible
complexity. These codes are understood to be codes defined on graphs, together with the associated iterative decoding
algorithms. By now, there is a large collection of these codes that approach the channel capacity quite closely with
moderate complexity.

The first capacity-achieving sequences of ensembles of low-density parity-check (LDPC) codes for the binary
erasure channel (BEC) were found by Luby et al. [7], [8] and Shokrollahi [17]. Following these pioneering works,
Oswald and Shokrollahi presented in [9] a systematic study ofcapacity-achieving degree distributions (d.d.) for
sequences of ensembles of LDPC codes whose transmission takesplace over the BEC. Capacity-achieving ensembles
of irregular repeat-accumulate (IRA) codes for the BEC were introduced and analyzed in [4], [16], and also capacity-
achieving ensembles for erasure channels with memory were designed and analyzed in [10], [11].

In [5], [6], Khandekar and McEliece discussed the decoding complexity of capacity-approaching ensembles of
irregular LDPC and IRA codes for the BEC and more general channels. They conjectured that if the achievable
rate under message-passing iterative (MPI) decoding is a fraction 1 − ε of the channel capacity with vanishing bit
error (or erasure) probability, then for a wide class of channels, the decoding complexity scales like1

ε ln 1
ε . This

conjecture is based on the assumption that the number of edges (per information bit) in the associated bipartite graph
scales likeln 1

ε , and the required number of iterations under MPI decoding scales like 1
ε . There is one exception

for capacity-achieving and low-complexity ensembles of codes on the BEC, where the decoding complexity under
the MPI algorithm behaves likeln 1

ε (see [7], [15], [16], [17]). This is true since the absolute reliability provided
by the BEC allows every edge in the graph to be used only once during MPI decoding.
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In [15], Sason and Urbanke considered the question of how sparse can parity-check matrices of binary linear
codes be, as a function of their gap (in rate) to capacity (where this gap depends on the channel and the decoding
algorithm). If the code is represented by a standard Tanner graph without state nodes, the decoding complexity
per iteration under MPI decoding is strongly linked to the density of the corresponding parity-check matrix (i.e.,
the number of edges in the graph per information bit). In particular, they considered an arbitrary sequence of
binary linear codes which achieves a fraction1− ε of the capacity of a memoryless binary-input output-symmetric
(MBIOS) channel with vanishing bit error probability. By information-theoretic tools, they proved that for every
such sequence of codes and every sequence of parity-check matrices which represent these codes, the asymptotic

density of the parity-check matrices grows at least like
K1+K2 ln 1

ε

1−ε whereK1 and K2 are constants which were
given explicitly as a function of the channel statistics (see [15, Theorem 2.1]). It is important to mention that
this bound is valid under ML decoding, and hence, it also holds for every sub-optimal decoding algorithm. The
tightness of the lower bound for MPI decoding on the BEC was demonstrated in [15, Theorem 2.3] by analyzing
the capacity-achieving sequence of check-regular LDPC-codeensembles introduced by Shokrollahi [17]. Based on
the discussion in [15], it follows that for every iterative decoder which is based on the standard Tanner graph,
there exists a fundamental tradeoff between performance and complexity, and the complexity (per information bit)
becomesunboundedwhen the gap between the achievable rate and the channel capacity vanishes. Therefore, it was
suggested in [15] to study if better performance versus complexity tradeoffs can be achieved by allowing more
complicated graphical models (e.g., graphs which also involve state nodes).

In this paper, we present sequences of capacity-achieving ensembles for the BEC with bounded encoding and
decoding complexity per information bit. Our framework therefore yields practical encoding and decoding algorithms
that require linear time, where the constant factor which isimplied by the linear time is independent ofε (and is
in fact quite small). The new ensembles are non-systematic IRA codes with properly chosen d.d. (for background
on IRA codes, see [4] and Section II). The new bounded complexity results under MPI decoding improve on the
results in [16], and demonstrate the superiority of properly designed non-systematic IRA codes over systematic
IRA codes (since with probability 1, the complexity of any sequence of ensembles of systematic IRA codes grows
at least likeln 1

ε , and hence, it becomesunboundedunder MPI decoding when the gap between the achievable rate
and the capacity vanishes (see [16, Theorem 1])). The new bounded complexity result is achieved by allowing a
sufficient number of state nodes in the Tanner graph representing the codes. Hence, it answers in the affirmative a
fundamental question which was posed in [15] regarding the impact of state nodes in the graph on the performance
versus complexity tradeoff under MPI decoding. We suggest a particular sequence of capacity-achieving ensembles
of non-systematic IRA codes where the degree of the parity-check nodes is5, so the complexity per information
bit under MPI decoding is equal to5

1−p when the gap (in rate) to capacity vanishes (p designates the bit erasure
probability of the BEC). We note that our method of truncatingthe check d.d. is similar to the bi-regular check
d.d. introduced in [19] for non-systematic IRA codes.

Simulations results which are presented in this paper to validate the claims of our theorems, compare our new
ensembles with another previously known ensemble. This is meant to give the reader some sense of their relative
performance. We note that for fixed complexity, the new codes eventually (for n large enough) outperform any
code proposed to date. On the other hand, theconvergence speedto the ultimate performance limit is expected to
be quite slow, so that for moderate lengths, the new codes arenot expected to be record breaking. It is important
to note that we do not claim optimality of our ensembles, but the main point here is showing for the first time
the existence of IRA codes in which their encoding and decoding complexity per information bit remain bounded
as the code threshold approaches the channel capacity. We also derive in this paper an information-theoretic lower
bound on the decoding complexity of randomly punctured codes on graphs. The bound holds for every MBIOS
channel with a refinement for the particular case of a BEC.

The structure of the paper is as follows: Section II provides preliminary material on ensembles of IRA codes,
Section III presents our main results which are proved in Section IV. Analytical and numerical results for the
considered degree distributions and their asymptotic behavior are discussed in Section V. Practical considerations
and simulation results for our ensembles of IRA codes are presented in Section VI. We conclude our discussion in
Section VII. Three appendices also present important mathematical details which are related to Sections IV and V.
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II. IRA C ODES

We consider here ensembles of non-systematic IRA codes. We assume that all information bits are punctured.
The Tanner graph of these codes is shown in Fig. 1. These codes canbe viewed as serially concatenated codes
where the encoding process is done as follows: the outer codeis a mixture of repetition codes of varying order, the
bits at the output of the outer code are interleaved, and thenpartitioned into disjoint sets (whose size is not fixed
in general). The parity of each set of bits is computed, and then these bits are accumulated (so the inner code is a
differential encoder).

code bits

x2x1

x0 x3 random permutation

information
bits

parity
checks

DE

Fig. 1. The Tanner graph of IRA codes.

Using standard notation, an ensemble of IRA codes is characterized by its block lengthn and its d.d. pair
λ(x) =

∑∞
i=1 λix

i−1 and ρ(x) =
∑∞

i=1 ρix
i−1. Here, λi (or ρi, respectively) designates the probability that a

randomly chosen edge, among the edges that connect the information nodes and the parity-check nodes, is connected
to an information bit node (or to a parity-check node) of degree i. As is shown in Fig. 1, every parity-check node
is also connected to two code bits; this is a consequence of the differential encoder which is the inner code of these
serially concatenated and interleaved codes. LetR(x) =

∑∞
i=1 Ri xi be a power series where the coefficientRi

denotes the fraction of parity-check nodes that are connected to i information nodes. Then it is easy to show that

ρi =
iRi

∑∞
j=1 jRj

or equivalently Ri =
ρi

i
∑∞

j=1
ρj

j

which yields that the polynomialsR(·) andρ(·) are related by the equation

R(x) =

∫ x
0 ρ(t) dt

∫ 1
0 ρ(t) dt

. (1)

We assume that the permutation in Fig. 1 is chosen uniformly atrandom from the set of all permutations. The
transmission of a randomly selected code from this ensembletakes place over a BEC with erasure probabilityp. The
asymptotic performance of the MPI decoder (as the block length tends to infinity) can be analyzed by tracking the
average fraction of erasure messages which are passed in thegraph of Fig. 1 during thelth iteration. This technique
was introduced in [13] and is known as density evolution (DE).In the asymptotic case where the block length tends
to infinity, the messages which are passed through the edges ofthe Tanner graph are statistically independent, so
the cycle-free condition does indeed hold for IRA codes.

A single iteration first includes the update of the messages inthe Tanner graph from the code nodes to the
parity-check nodes, then the update of the messages from theparity-check nodes to the information nodes, and
vice versa. Using the same notation as in [4], letx

(l)
0 be the probability of erasure for a message from information

nodes to parity-check nodes,x
(l)
1 be the probability of erasure from parity-check nodes to code nodes,x(l)

2 be the
probability of erasure from code nodes to parity-check nodes, and finally, letx(l)

3 be the probability of erasure for
messages from parity-check nodes to information nodes (seeFig. 1). From the Tanner graph of IRA codes in Fig. 1,
an outgoing message from a parity-check node to a code node isnot an erasure if and only if all the incoming
messages at the same iteration from the information nodes tothe parity-check nodes are not erasures, and also
the incoming message through the other edge which connects acode node to the same parity-check node is not
an erasure either. Since a fractionRi of the parity-check nodes are of degreei (excluding the two edges which
connect every parity-check node to two code nodes), then theaverage probability that at thelth iteration, all the
incoming messages through the edges from the information nodes to an arbitrary parity-check node in the graph
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are not erasures is equal to
∑∞

i=1 Ri(1 − x
(l)
0 )i = R(1 − x

(l)
0 ). Following the cycle-free concept which is valid for

the asymptotic case where the block length tends to infinity, we obtain that

1 − x
(l)
1 = (1 − x

(l)
2 ) R(1 − x

(l)
0 ).

It is also clear from Fig. 1 that the outgoing message from a parity-check node to an information node is not
an erasure if and only if the incoming messages through the other edges which connect this parity-check node to
information nodes in the graph are not erasures, and also theincoming messages through the two edges which
connect this parity-check node to code nodes are not erasures either. The number of bits involved in short cycles
become negligible asn gets large. DE assumes all messages are statistically independent in the asymptotic case,
and the concentration theorem justifies this assumption. Hence, for an arbitrary edge which is connected to a
parity-check node, the average probability that all the incoming messages through the other edges connecting this
parity-check node are not erasures is equal to

∞
∑

i=1

ρi(1 − x
(l)
0 )i−1 = ρ(1 − x

(l)
0 ).

The probability that the two incoming messages passed at iteration l from two consecutive code nodes to the
parity-check node which is connected to them are both not erasures is equal to(1 − x

(l)
2 )2, so we obtain that

1 − x
(l)
3 = (1 − x

(l)
2 )2 ρ(1 − x

(l)
0 ).

For variable nodes in the Tanner graph, the outgoing messagewill be an erasure if and only if all the incoming
messages through the other edges connecting this node are erasures and also the information we get about this
node from the BEC is an erasure too. The update rule of the messages at the information nodes in Fig. 1 therefore
implies thatx(l)

0 = λ(x
(l)
3 ), and this follows since we assume here that all the information nodes are punctured

(hence, there is no information about the values of the information bits which comes directly from the BEC). Since
all the code bits in the Tanner graph of Fig. 1 are transmitted over the BEC, then the update rule of the messages
at the code bits implies thatx(l)

2 = px
(l−1)
1 .

We now assume that we are at a fixed point of the MPI decoding algorithm, and solve forx0. From the last four
equalities, we obtain the following equations:

x1 = 1 − (1 − x2) R(1 − x0) (2)

x2 = px1 (3)

x3 = 1 − (1 − x2)
2 ρ(1 − x0) (4)

x0 = λ(x3). (5)

The only difference between (2)–(5) and the parallel equations in [4] is the absence of a factorp in the RHS of (5).
This modification stems from the fact that all information bitsare punctured in the ensemble considered. Solving
this set of equations for a fixed point of iterative decoding provides the equation

x0 = λ

(

1 −
[

1 − p

1 − pR(1 − x0)

]2

ρ(1 − x0)

)

. (6)

If Eq. (6) has no solution in the interval(0, 1], then according to the DE analysis of MPI decoding, the bit erasure
probability must converge to zero. Therefore, the conditionthat

λ

(

1 −
[

1 − p

1 − pR(1 − x)

]2

ρ(1 − x)

)

< x, ∀x ∈ (0, 1] (7)

implies that MPI decoding obtains a vanishing bit erasure probability as the block length tends to infinity.
The design rate of the ensemble of non-systematic IRA codes can be computed by matching edges in the Tanner

graph shown in Fig. 1. In particular, the number of edges in thepermutation must be equal to both the number of
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information bits times the average information bit degree and the number of code bits times the average parity-check
degree. This implies that the design rate of non-systematic IRA ensembles is equal to

RIRA =

∫ 1
0 λ(x) dx

∫ 1
0 ρ(x) dx

. (8)

Furthermore, we will see later thatRIRA = 1−p for any pair of d.d.(λ, ρ) which satisfies Eq. (6) for allx0 ∈ [0, 1]
(see Lemma 1 in Section IV).

In order to find a capacity-achieving ensemble of IRA codes, wegenerally start by finding a d.d. pair(λ, ρ) with
non-negative power series expansions which satisfies Eq. (6) for all x0 ∈ [0, 1]. Next, we slightly modifyλ(·) or
ρ(·) so that Eq. (7) is satisfied and the new design rate in Eq. (8) is equal to (1− ε)(1− p) for an arbitrarily small
ε > 0. Since the capacity of the BEC is1 − p, this gives an ensemble which has vanishing bit erasure probability
under MPI decoding at rates which are arbitrarily close to capacity.

III. M AIN RESULTS

Definition 1: [Capacity-Approaching Codes] Let {Cm} be a sequence of binary linear codes of rateRm, and
assume that for everym, the codewords of the codeCm are transmitted with equal probability over a channel whose
capacity isC. This sequence is said toachieve a fraction1 − ε of the channel capacity with vanishing bit error
probability if limm→∞ Rm ≥ (1 − ε)C, and there exists a decoding algorithm under which the average bit error
probability of the codeCm tends to zero in the limit wherem tends to infinity.1

Definition 2: [Encoding and Decoding Complexity] Let C be an ensemble of IRA codes with a d.d. pairλ(·)
and ρ(·). Suppose the transmission takes place over a BEC, and the ensemble achieves a fraction1 − ε of the
channel capacity with vanishing bit erasure probability. The encoding and the decoding complexityare measured in
operations per information bit, and under MPI decoding, theyare defined as the number of edges per information
bit in the Tanner graph. We denote the asymptotic encoding and decoding complexity byχE(ε, C) andχD(ε, C),
respectively (note that as the block length of the codes tends to infinity, the complexity of a typical code from this
ensemble concentrates around the average complexity).

Theorem 1:[Capacity-Achieving Bit-Regular Ensembles for the BEC with Bounded Complexity] Consider
the ensemble of bit-regular non-systematic IRA codesC, where the d.d. of the information bits is given by

λ(x) = xq−1, q ≥ 3 (9)

which implies that each information bit is repeatedq times. Assume that the transmission takes place over a BEC
with erasure probabilityp, and let the d.d. of the parity-check nodes2 be

ρ(x) =
1 − (1 − x)

1

q−1

[

1 − p

(

1 − qx + (q − 1)
[

1 − (1 − x)
q

q−1

]

)

]2 . (10)

Let ρn be the coefficient ofxn−1 in the power series expansion ofρ(x) and, for an arbitraryε ∈ (0, 1), define
M(ε) to be the smallest positive integer3 M such that

M
∑

n=2

ρn > 1 − ε

q(1 − p)
. (11)

The ε-truncated d.d. of the parity-check nodes is given by

ρε(x) =



1 −
M(ε)
∑

n=2

ρn



 +

M(ε)
∑

n=2

ρnxn−1 . (12)

1We refer to vanishing bit erasure probability for the particular case of a BEC.
2The d.d. of the parity-check nodes refers only to the connection of the parity-check nodes with the information nodes. Every parity-check

node is also connected totwo code bits(see Fig. 1), but this is not included inρ(x).
3The existence ofM(ε) for ε ∈ (0, 1) follows from the fact thatρn = O(n−q/(q−1)) and

∑

∞

n=2 ρn = 1. This implies that
∑M

n=2 ρn can
be made arbitrarily close to 1 by increasingM . It can be shown thatM(ε) = O

(

1
εq−1

)

.
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For q = 3 andp ∈ (0, 1
13 ], the polynomialρε(·) has only non-negative coefficients, and the d.d. pair(λ, ρε) achieves

a fraction1− ε of the channel capacity with vanishing bit erasure probability under MPI decoding. Moreover, the
complexity (per information bit) of encoding and decoding satisfies

χE(ε, C) = χD(ε, C) < q +
2

(1 − p)(1 − ε)
. (13)

In the limit whereε tends to zero, the capacity is achieved with aboundedcomplexity ofq + 2
1−p .

Theorem 2:[Capacity-Achieving Check-Regular Ensembles for the BEC with Bounded Complexity] Con-
sider the ensemble of check-regular non-systematic IRA codesC, where the d.d. of the parity-check nodes is given
by

ρ(x) = x2. (14)

Assume that the transmission takes place over a BEC with erasure probabilityp, and let the d.d. of the information
bit nodes be4

λ(x) = 1 +

2p(1 − x)2 sin

(

1
3 arcsin

(

√

−27p(1−x)
3
2

4(1−p)3

))

√
3 (1 − p)4

(

−p(1−x)
3
2

(1−p)3

) 3

2

. (15)

Let λn be the coefficient ofxn−1 in the power series expansion ofλ(x) and, for an arbitraryε ∈ (0, 1), define
M(ε) to be the smallest positive integer5 M such that

M
∑

n=2

λn

n
>

(1 − p)(1 − ε)

3
. (16)

This infinite bit d.d. is truncated by treating all informationbits with degree greater thanM(ε) as pilot bits (i.e.,
these information bits are set to zero). Letλε(x) be theε-truncated d.d. of the bit nodes. Then, for allp ∈ [0, 0.95],
the polynomialλε(·) has only non-negative coefficients, and the modified d.d. pair(λε, ρ) achieves a fraction1− ε
of the channel capacity with vanishing bit erasure probability under MPI decoding. Moreover, the complexity (per
information bit) of encoding and decoding isboundedand satisfies

χE(ε, C) = χD(ε, C) <
5

(1 − p)(1 − ε)
. (17)

In the limit asε tends to zero, the capacity is achieved with aboundedcomplexity of 5
1−p .

The following two conjectures extend Theorems 1 and 2 to a widerrange of parameters. Both of these conjectures
can be proved by showing that the power series expansions ofλ(x) andρ(x) are non-negative for this wider range.
Currently, we can show that the power series expansions ofλ(x) andρ(x) are non-negative over this wider range
only for small to moderate values ofn (using numerical methods) and very large values ofn (using asymptotic
expansions). We note that if these conjectures hold, then Theorem 1 is extended to the rangep ∈ [0, 3

13 ] (asq → ∞),
and Theorem 2 is extended to the entire rangep ∈ [0, 1).

Conjecture 1:The result of Theorem 1 also holds forq ≥ 4 if

p ≤















6 − 7q + 2q2

6 − 13q + 8q2
4 ≤ q ≤ 8

12 − 17q + 6q2

12 − 37q + 26q2
q ≥ 9

. (18)

We note that the form of Eq. (18) is implied by the analysis in Appendix A.

Conjecture 2:The result of Theorem 2 is also valid forp ∈ (0.95, 1).

4For real numbers, one can simplify the expression ofλ(x) in (15). However, since we consider laterλ(·) as a function of a complex
argument, we prefer to leave it in the form of (15).

5The existence ofM(ε) for ε ∈ (0, 1) follows from the fact thatλn = O(n−3/2) and
∑

∞

n=2
λn
n

= 1−p
3

. This implies that
∑M

n=2
λn
n

can

be made arbitrarily close to1−p
3

by increasingM . It can be shown thatM(ε) = O
(

1

ε2/3

)

.
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In continuation to Theorem 2 and Conjecture 2, it is worth noting that Appendix C suggests a conceptual proof
which in general could enable one to verify the non-negativity of the d.d. coefficients{λn} for p ∈ [0, 1−ε], where
ε > 0 can be made arbitrarily small. This proof requires though to verify the positivity of a fixed number of the
d.d. coefficients, where this number grows considerably asε tends to zero. We chose to verify it for alln ∈ N

andp ∈ [0, 0.95]. We note that a direct numerical calculation of{λn} for small to moderate values ofn, and the
asymptotic behavior ofλn (which is derived in Appendix B) strongly supports Conjecture 2.

Theorem 3:[An Information-Theoretic Bound on the Complexity of Punctured Codes over the BEC] Let
{C′

m} be a sequence of binary linear block codes, and let{Cm} be a sequence of codes which is constructed
by randomly puncturing information bits from the codes in{C′

m}.6 Let Ppct designate the puncturing rate of the
information bits, and suppose that the communication of thepunctured codes takes place over a BEC with erasure
probabilityp, and that the sequence{Cm} achieves a fraction1−ε of the channel capacity with vanishing bit erasure
probability. Then with probability 1 w.r.t. the random puncturing patterns, and for an arbitrary representation of the
sequence of codes{C′

m} by Tanner graphs, the asymptotic decoding complexity underMPI decoding satisfies

lim inf
m→∞

χD(Cm) ≥ p

1 − p





ln
(

Peff

ε

)

ln
(

1
1−Peff

) + lmin



 (19)

where
Peff , 1 − (1 − Ppct)(1 − p) (20)

and lmin designates the minimum number of edges which connect a parity-check node with the nodes of the parity
bits.7 Hence, a necessary condition for a sequence of randomly punctured codes{Cm} to achieve the capacity
of the BEC with bounded complexityis that the puncturing rate of the information bits satisfies the condition
Ppct = 1 − O(ε).

Theorem 4 suggests an extension of Theorem 3, though as will be clarified later, the lower bound in Theorem 3
is at least twice larger than the lower bound in Theorem 4 when applied to the BEC.

Theorem 4:[An Information-Theoretic Bound on the Complexity of Punctured Codes: General Case] Let
{C′

m} be a sequence of binary linear block codes, and let{Cm} be a sequence of codes which is constructed
by randomly puncturing information bits from the codes in{C′

m}. Let Ppct designate the puncturing rate of the
information bits, and suppose that the communication takesplace over an MBIOS channel whose capacity is equal
to C bits per channel use. Assume that the sequence of punctured codes{Cm} achieves a fraction1 − ε of the
channel capacity with vanishing bit error probability. Thenwith probability 1 w.r.t. the random puncturing patterns,
and for an arbitrary representation of the sequence of codes{C′

m} by Tanner graphs, the asymptotic decoding
complexity per iteration under MPI decoding satisfies

lim inf
m→∞

χD(Cm) ≥ 1 − C

2C

ln
(

1
ε

1−(1−Ppct)C
2C ln 2

)

ln
(

1
(1−Ppct)(1−2w)

) (21)

where

w ,
1

2

∫ +∞

−∞
min (f(y), f(−y)) dy (22)

andf(y) , p(y|x = 1) designates the conditionalpdf of the channel, given the input isx = 1. Hence, a necessary
condition for a sequence of randomly punctured codes{Cm} to achieve the capacity of an MBIOS channel with
bounded complexity per iterationunder MPI decoding is that the puncturing rate of the information bits satisfies
Ppct = 1 − O(ε).

Remark 1 (Deterministic Puncturing):It is worth noting that Theorems 3 and 4 both depend on the assumption
that the set of information bits to be punctured is chosen randomly. It is an interesting open problem to derive

6Since we do not require that the sequence of original codes{C′

m} is represented in a systematic form, then by saying ’information bits’,
we just refer to any set of bits in the codeC′

m whose size is equal to the dimension of the code and whose corresponding columns in
the parity-check matrix are linearly independent. If the sequence of the original codes{C′

m} is systematic (e.g., turbo or IRA codes before
puncturing), then it is natural to define the information bits as the systematic bits of the code.

7The fact that the value oflmin can be changed according to the choice of the information bits is a consequence of the bounding technique.
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information-theoretic bounds that apply toevery puncturing pattern(including the best carefully designed puncturing
pattern for a particular code). We also note that for any deterministic puncturing pattern which causes each parity-
check to involve at least one punctured bit, the bounding technique which is used in the proofs of Theorems 3 and
4 becomes trivial and does not provide a meaningful lower bound on the complexity in terms of the gap (in rate)
to capacity.

IV. PROOF OF THEMAIN THEOREMS

In this section, we prove our main theorems. The first two theorems are similar and both prove that under MPI
decoding, specific sequences of ensembles of non-systematicIRA codes achieve the capacity of the BEC with
bounded complexity (per information bit). The last two theorems provide an information-theoretic lower bound on
the decoding complexity of randomly punctured codes on graphs. The bound holds for every MBIOS channel and
is refined for a BEC.

The approach used in the first two theorems was pioneered in [7] and can be broken into roughly three steps.
The first step is to find a (possibly parameterized) d.d. pair(λ, ρ) which satisfies the DE equation (6). The second
step involves constructing an infinite set of parameterized (e.g., truncated or perturbed) d.d. pairs which satisfy
inequality (7). The third step is to verify that all of coefficients of the d.d. pair(λ, ρ) are non-negative and sum to
one for the parameter values of interest. Finally, if the design rate of the ensemble approaches1− p for some limit
point of the parameter set, then the ensemble achieves the channel capacity with vanishing bit erasure probability.
The following lemma simplifies the proof of Theorems 1 and 2. Its proof is based on the analysis of capacity-
achieving sequences for the BEC in [17], and the extension to erasure channels with memory in [10], [11].

Lemma 1:Any pair of d.d. functions(λ, ρ) which satisfyλ(0) = 0, λ(1) = 1, and satisfy the DE equation (6)
for all x0 ∈ [0, 1] also have a design rate (8) of1 − p (i.e., it achieves the capacity of a BEC whose erasure
probability isp).

Proof: We start with Eq. (6) and proceed by substitutingx0 = 1 − x, applying λ−1(·) to both sides, and
moving things around to get

1 − λ−1(1 − x) =

(

1 − p

1 − pR(x)

)2

ρ(x). (23)

Integrating both sides fromx = 0 to x = 1 gives
∫ 1

0

(

1 − λ−1(1 − x)
)

dx =

∫ 1

0

(

1 − p

1 − pR(x)

)2

ρ(x) dx.

Sinceλ(·) is positive, monotonic increasing andλ(0) = 0, λ(1) = 1, we can use the identity
∫ 1

0
λ(x) dx +

∫ 1

0
λ−1(x) dx = 1 (24)

to show that
∫ 1

0
λ(x) dx =

∫ 1

0

(

1 − p

1 − pR(x)

)2

ρ(x) dx.

Taking the derivative of both sides of Eq. (1) shows that

ρ(x) =

∫ 1

0
ρ(x) dx · R′(x)

and then it follows easily that
∫ 1

0
λ(x)dx =

∫ 1

0
ρ(x) dx ·

∫ 1

0

(

1 − p

1 − pR(x)

)2

R′(x)dx

=

∫ 1

0
ρ(x) dx ·

∫ R(1)

R(0)

(

1 − p

1 − pu

)2

du

= (1 − p) ·
∫ 1

0
ρ(x) dx

where the fact thatR(0) = 0 andR(1) = 1 is implied by Eq. (1). Dividing both sides by the integral ofρ(·) and
using Eq. (8) shows that the design rateRIRA = 1 − p.
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A. Proof of Theorem 1

1) Finding the D.D. Pair: Consider a bit-regular ensemble of non-systematic IRA codes whose d.d. pair(λ, ρ)
satisfies the DE equation (6). We approach the problem of findingthe d.d. pair by solving Eq. (6) forρ(·) in terms
of λ(·) and the progression is actually similar to the proof of Lemma 1, except that the limits of integration change.
Starting with Eq. (23) and integrating both sides fromx = 0 to x = t gives

∫ t

0

(

1 − λ−1(1 − x)
)

dx

=

∫ t

0

(

1 − p

1 − pR(x)

)2

ρ(x) dx

=

∫ t

0

(

1 − p

1 − pR(x)

)2 R′(x)

R′(1)
dx

=
(1 − p)2

R′(1)

R(t)

1 − pR(t)
(25)

where the substitutionρ(x) = R′(x)/R′(1) follows from Eq. (1). The free parameterR′(1) can be determined by
requiring that the d.d.R(·) satisfyR(1) = 1. Solving Eq. (25) forR′(1) with t = 1 andR(1) = 1 shows that

R′(1) =
1 − p

∫ 1
0 (1 − λ−1(1 − x)) dx

. (26)

Solving Eq. (25) forR(t) and substituting forR′(1) gives

R(t) =

∫ t

0
(1−λ−1(1−x)) dx

∫ 1

0
(1−λ−1(1−x)) dx

1 − p + p ·
∫ t

0
(1−λ−1(1−x)) dx

∫ 1

0
(1−λ−1(1−x)) dx

.

For simplicity, we now define

Q(x) ,

∫ x
0

(

1 − λ−1(1 − t)
)

dt
∫ 1
0 (1 − λ−1(1 − t)) dt

(27)

substitutex for t, and get

R(x) =
Q(x)

1 − p + pQ(x)
. (28)

It follows from Eqs. (1) and (28) that

ρ(x) =
R′(x)

R′(1)

=
(1 − p)Q′(x)

(1 − p + pQ(x))2
(1 − p + pQ(1))2

(1 − p)Q′(1)

=
1

(1 − p + pQ(x))2
Q′(x)

Q′(1)

=
1 − λ−1(1 − x)

(1 − p + pQ(x))2
(29)

and

ρ(1) =
1 − λ−1(0)

(1 − p + pQ(1))2
= 1. (30)

The important part of this result is that there is no need to truncate the power series ofρ(·) to forceρ(1) = 1. This
appears to be an important element of ensembles with boundedcomplexity.

Now, consider the bit-regular case where every informationbit is repeatedq ≥ 3 times (i.e.,λ(x) = xq−1). From
Eq. (27), it can be verified with some algebra that

Q(x) = qx − (q − 1)
[

1 − (1 − x)
q

q−1

]

. (31)
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Substituting this into Eq. (29) gives the result in Eq. (10).
Finally, we show that the power series expansion of Eq. (10) defines a proper probability distribution. First, we

note thatp ∈ (0, 1
13 ] by hypothesis, and that Appendix A establishes the non-negativity of the d.d. coefficients{ρn}

under this same condition. Sinceρ(1) = 1, these coefficients must sum to one if the power series expansion converges
at x = 1. This follows from the asymptotic expansion, given later in (63), which implies thatρn = O(n−q/(q−1)).
Therefore, the functionρ(x) defines a proper d.d.

2) Truncating the D.D.:Starting with the d.d. pair (λ,ρ) implied by Eq. (29) (which yields that Eq. (6) holds),
we apply Lemma 1 to show that the design rate is1 − p. The next step is to slightly modify the check d.d. so
that the inequality (7) is satisfied instead. In particular, one can modify theρ(x) from (29) so that the resulting
ensemble of bit-regular non-systematic IRA codes is equal to a fraction1 − ε of the BEC capacity.

Let us defineM(ε) to be the smallest positive integerM such that the condition in (11) is satisfied. Such an
M exists for anyε ∈ (0, 1) becauseρn = O(n−q/(q−1)). We define theε-truncation ofρ(·) to be the new check
degree polynomial in (12), which is also equal to

ρε(x) =



ρ1 +
∞

∑

i=M(ε)+1

ρi



 +

M(ε)
∑

i=2

ρix
i−1 (32)

and satisfiesρε(1) = ρ(1) = 1. Based on Eqs. (11) and (32), and since the power series expansion of ρ(·) is
non-negative for small enough values ofp (see Appendix A), then for these values ofp

∫ 1

0
ρε(x) dx <

∫ 1

0
ρ(x) dx +

∞
∑

i=M(ε)+1

ρi

<

∫ 1

0
ρ(x) dx +

ε

q(1 − p)

=
1 + ε

q(1 − p)
.

Applying Eq. (8) to the last equation, shows that the design rate of the new ensemble(λ, ρε) of bit-regular,
non-systematic IRA codes is given by

RIRA =

∫ 1
0 λ(x) dx

∫ 1
0 ρε(x) dx

=
1

q
∫ 1
0 ρε(x) dx

>
1 − p

1 + ε
.

Using the fact that 1
1+ε > 1 − ε, for ε > 0, we get the final lower bound

RIRA > (1 − p) (1 − ε). (33)

This shows that the design rate of the new ensemble of codes is equal at least to a fraction1− ε of the capacity of
the BEC. Now, we need to show that the new ensemble satisfies the inequality (7), which is required for successful
decoding, given by

λ

(

1 −
[

1 − p

1 − p Rε(1 − x)

]2

ρε(1 − x)

)

< x, ∀x ∈ (0, 1] (34)

whereRε(·) can be computed fromρε(·) via Eq. (1). Since the truncation ofρ(x) only moves edges from high
degree checks (i.e.,xj terms withj > M ) to degree one checks (i.e. thex0 term), it follows that

ρε(x) > ρ(x) , ∀x ∈ [0, 1). (35)

We will also show that
Lemma 2:

Rε(x) > R(x) , ∀x ∈ (0, 1). (36)
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Proof: We rely on Eqs. (1), (10) and (32) to show that for an arbitraryε > 0

Rε(x) =
ρ1 +

∑∞
i=M(ε)+1 ρi

ρ1 +
∑∞

i=M(ε)+1 ρi +
∑M(ε)

i=2
ρi

i

· x

+

∑M(ε)
i=2

ρi

i · xi

ρ1 +
∑∞

i=M(ε)+1 ρi +
∑M(ε)

i=2
ρi

i

,

∞
∑

i=1

R
(ε)
i xi (37)

and

R(x) =
ρ1

ρ1 +
∑∞

i=M(ε)+1
ρi

i +
∑M(ε)

i=2
ρi

i

· x

+

∑∞
i=2

ρi

i · xi

ρ1 +
∑∞

i=M(ε)+1
ρi

i +
∑M(ε)

i=2
ρi

i

,

∞
∑

i=1

Ri xi. (38)

It is easy to verify that the coefficients in the power series expansions ofRε(·) andR(·) in (37) and (38), respectively,
are all non-negative and each of them sum to one. By comparingthe two, it follows easily that

R
(ε)
i < Ri ∀ i ≥ 2.

Since
∑∞

i=1 Ri =
∑∞

i=1 R
(ε)
i = 1, then

R
(ε)
1 > R1.

Let
δi , Ri − R

(ε)
i i = 1, 2, . . .

then δ1 = −∑∞
i=2 δi (since by definition,

∑∞
i=1 δi =

∑∞
i=1 Ri −

∑∞
i=1 R

(ε)
i = 0), and δi > 0 for every integer

i ≥ 2. It therefore follows that forx ∈ (0, 1)

R(x) − Rε(x) = δ1x +
∞

∑

i=2

δix
i < δ1x +

∞
∑

i=2

δix = 0

which proves the inequality in (36).
The validity of the condition in (34) follows immediately from the two inequalities in (35) and (36), and the fact

that the d.d. pair(λ, ρ) satisfies the equality in (6) for allx0 ∈ [0, 1].

B. Proof of Theorem 2

1) Finding the D.D. Pair: Like in the proof of Theorem 1, we start the analysis by solving equation (6), but
this time we calculateλ(·) for a particular choice ofρ(·). Let us chooseρ(x) = x2, soR(x) = x3, and we obtain
from the equivalent equation in (23) that the inverse function of λ(·) is equal to

λ−1(x) = 1 −
(

1 − p

1 − p(1 − x)3

)2

(1 − x)2 . (39)

Inserting (39) into (15) shows that the expression ofλ(·) in (15) is the inverse function to (39) forx ∈ [0, 1], so
(15) gives us a closed form expression ofλ(·) in the interval[0, 1]. As we noted already, for real numbers, one can
simplify the expression ofλ(·) in (15), but since we consider it later as a function of a complex argument, then
we prefer to leave it in the form of (15).
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In the following, we show how (15) was derived. Note that since we already verified the correctness of (15),
then in the following derivation we do not need to worry aboutissues of convergence. Set

y = λ−1(x) , z =

√
1 − y

1 − p
, u = 1 − x.

With this notation and foru ∈ [0, 1], (39) can be written in the form

zφ(u) = u

whereφ(u) = 1−pu3. We now use the Lagrange inversion formula (see, e.g., [1, Section 2.2]) to obtain the power
series expansion ofu = u(z) aroundz = 0, i.e., we write

u(z) =

∞
∑

k=0

ukz
k.

If z = 0 thenu = 0, so u0 = u(0) = 0. The Lagrange inversion formula states that

uk =
1

k
[uk−1] φk(u), k = 1, 2, . . . (40)

where[uk−1] φk(u) is the coefficient ofuk−1 in the power series expansion ofφk(u). From the definition ofφ(·),
the binomial formula gives

φk(u) = (1 − pu3)k =
k

∑

j=0

{

(−1)j

(

k

j

)

pju3j

}

(41)

so from (40) and (41)

uk =







(−1)
k−1
3

k

(

k
k−1

3

)

p
k−1

3 , if k = 1, 4, 7, 10, . . .

0 otherwise
.

We conclude that

u(z) =
∑

k: k−1

3
∈N

{

(−1)
k−1

3

k

(

k
k−1
3

)

p
k−1

3 zk

}

whereN designates the set of non-negative integer numbers. Sincez =
√

1−y
1−p , then we get

u =
∑

k: k−1

3
∈N

{

(−1)
k−1

3

k

(

k
k−1
3

)

p
k−1

3

(1 − p)k
(1 − y)

k

2

}

andx = 1 − u = λ(y) (sincey = λ−1(x)). Finally, we obtain a power series expansion forλ(·) from the last two
equalities

λ(x) = 1 −
∑

k: k−1

3
∈N

{

(−1)
k−1

3

k

(

k
k−1
3

)

p
k−1

3

(1 − p)k
· (1 − x)

k

2

}

.

By substitutingk = 3l + 1 wherel ∈ N, the latter equation can be written as

λ(x) = 1 − 1
3
√

p

∞
∑

l=0

{

(−1)l

3l + 1

(

3l + 1

l

)

t3l+1

}

wheret ,

(

3
√

p
1−p

) √
1 − x. Fortunately, the final sum can be expressed in closed form andleads to the expression

of λ(·) in (15). Plots of the functionλ(·) as a function ofp ∈ (0, 1) are depicted in Fig. 2.
Finally, we show that the power series expansion of Eq. (15) defines a proper probability distribution. Three

different representations of the d.d. coefficients{λn} are presented in Section V-B.1 and derived in Appendix B.
They are also used in Appendix C to prove the non-negativity ofthe d.d. forp ∈ [0, 0.95]. Sinceλ(1) = 1, these
coefficients must also sum to one if the power series expansionconverges atx = 1. The fact thatλn = O(n−3/2)
follows from a later discussion (in Section V-B.2) and establishes the power series convergence atx = 1. Therefore,
the functionλ(x) gives a well-defined d.d.
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Fig. 2. The functionλ(·) in (15), as a function of the erasure probabilityp of the BEC.

2) Truncating the D.D.:Now, we must truncateλ(·) in such a way that inequality (7), which is a necessary
condition for successful iterative decoding, is satisfied. We do this by treating all information bits with degree
greater than some threshold as pilot bits. In practice, thismeans that the encoder uses a fixed value for each of
these bits (usually zero) and the decoder has prior knowledge of these fixed values. This truncation works well
because a large number of edges in the decoding graph are initialized by each pilot bit. Since bits chosen to be
pilots no longer carry information, the cost of this approach is a reduction in code rate. The rate after truncation
is given by

RIRA =
K ′

N
=

K

N

K ′

K
=

K

N

(

1 − K − K ′

K

)

whereN is the block length,K is number of information bits before truncation, andK ′ is the number of information
bits after truncation. Applying Lemma 1 to the d.d. pair (λ,ρ) shows that the design rate is given byK/N = 1−p.
Therefore, the rate can be rewritten asRIRA = (1−p)(1−δ) whereδ , (K−K ′)/K is the fraction of information
bits that are used as pilot bits.

For an arbitraryε ∈ (0, 1), we defineM(ε) to be the smallest positive integerM which satisfies Eq. (16). Next,
we choose all information bit nodes with degree greater thanM(ε) to be pilot bits. This implies that the fraction
of information bit nodes used as pilot bits is given byδ =

∑∞
n=M(ε)+1 Ln where the fraction of information bit

nodes with degreen is given by

Ln =
λn/n

∑∞
n=2 λn/n

. (42)

Based on Eqs. (8) and (14), we have
∞

∑

n=2

λn

n
=

∫ 1

0
λ(x) dx = RIRA

∫ 1

0
ρ(x) dx =

1 − p

3
. (43)

Therefore, we can use Eqs. (16), (42) and (43) to show that

δ =
∞

∑

n=M(ε)+1

Ln

=

∑∞
n=M(ε)+1 λn/n
∑∞

n=2 λn/n

=

∑∞
n=M(ε)+1 λn/n

1−p
3
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<
(1−p)ε

3
1−p
3

= ε.

Let us define the effectiveε-modified d.d. to be

λε(x) =

M(ε)
∑

n=2

λnxn−1 .

Although this is not a d.d. in the strict sense (because it no longer sums to one), it is the correctλ function for
the DE equation. This is because all information bits with degree greater thanM(ε) are known at the receiver and
therefore have zero erasure probability. Since the d.d. pair(λ,ρ) satisfies the equality in (6) andλε(x) < λ(x) for
x ∈ (0, 1], then it follows that the inequality required for successful decoding (7) is satisfied.

As explained in Section I, the encoding and decoding complexity on the BEC are both equal to the number of
edges, per information bit, in the Tanner graph. The degree ofthe parity-check nodes is fixed to5 (three edges
attached to information bits and two edges attached to code bits), and this implies that the complexity is given by

χE(ε, C) = χD(ε, C) =
5

RIRA
<

5

(1 − p)(1 − ε)
.

Therefore, the complexity isboundedand equals 5
1−p as the gap to capacity vanishes.

C. Proof of Theorem 3

Proof: Under MPI decoding, the decoding complexity of the sequence of codes{Cm} is equal to the number
of edges in the Tanner graph of the original codes{C′

m} normalized per information bit (since for the BEC, one
can modify the MPI decoder so that every edge in the Tanner graph is only used once). This normalized number
of edges is directly linked to the average degree of the parity-check nodes in the Tanner graphs of the sequence
of codes{C′

m} (up to a scaling factor which depends on the rate of the code).We will first derive an information-
theoretic bound on the average degree of the parity-check nodes for the sequence{C′

m}, sayaR(C′
m), which will be

valid for every decoding algorithm. From this bound, we will directly obtain a bound on the decoding complexity
of punctured codes on graphs, when we assume that an MPI decoding algorithm is used.

Let u
′
m = (u1, u2, . . . , unm

) be a codeword of a binary linear block codeC′
m, and assume that a subset of the

information bits of the codeC′
m are punctured (see footnote no. 6 in Section III). Let us replace the punctured bits of

u
′
m by question marks, and let us call the new vectorum. The bits ofum (those which were not replaced by question

marks) are the coordinates of the codewords of the puncturedcodeCm. Let us assume thatum is transmitted over
a BEC whose erasure probability is equal top. The question marks in the received vectorvm = (v1, v2, . . . , vnm

)
remain in all the places where they existed inum (due to puncturing of a subset of the information bits ofu

′
m), and

in addition, the other bits ofum which are transmitted over the BEC are received as question marks with probability
p or remain in their original values with probability1−p (due to the erasures of the BEC). Since by our assumption,
the sequence of punctured codes{Cm} achieves a fraction1− ε of the channel capacity with vanishing bit erasure
probability, then there exists a decoding algorithm (e.g.,ML decoding) so that the average bit erasure probability
of the codeCm goes to zero as we letm tend to infinity, andlimm→∞ Rm ≥ (1 − ε)(1 − p). Here,Rm andR′

m

designate the rates (in bits per channel use) of the punctured codeCm and the original codeC′
m, respectively. The

rate of the punctured code(Cm) is greater than the rate of the original code(C′
m), i.e., R′

m < Rm. Let P
(i)
b (m)

designate the bit erasure probability of the digitui at the end of the decoding process of the punctured codeCm.
Without loss of generality, one can assume that thenmR′

m first bits of the vectoru′
m refer to the information bits

of the codeC′
m, and the othernm(1 − R′

m) last bits ofu′
m are the parity bits ofCm andC′

m. Let

Pb(m) ,
1

nmR′
m

nmR′

m
∑

i=1

P
(i)
b (m)

be the average bit erasure probability of the codeCm (whose codewords are transmitted with equal probability),
based on the observation of the random vectorvm at the output of the BEC. By knowing the linear block code



15

C′
m, then we get that

H(u′

m|vm)
nm

= H({ui}nmR′

m
i=1 |vm)
nm

+
H({ui}nm

i=nmR′
m+1

|vm,{ui}nmR′

m
i=1 )

nm

(a)
= H({ui}nmR′

m
i=1 |vm)
nm

(b)
=

∑ nmR′

m
i=1 H(ui|vm,u1,...,ui−1)

nm

(c)

≤
∑ nmR′

m
i=1 H(ui|vm)

nm

(d)

≤
∑ nmR′

m
i=1 h(P

(i)
b (m))

nm

(e)

≤ R′
m h

(

Pb(m)
)

where equality (a) is valid since thenmR′
m information bits of the linear block codeC′

m determine thenm(1−R′
m)

parity bits of its codewords, equality (b) is based on the chain rule for the entropy, inequality (c) follows since
conditioning reduces the entropy, inequality (d) follows from Fano’s inequality and since the codeCm is binary, and
inequality (e) is based on Jensen’s inequality and the concavity of the binary entropy functionh(x) = −x log2(x)−
(1 − x) log2(1 − x) for x ∈ (0, 1). Based on our assumption that there exists a decoding algorithm so that thebit
erasure probabilityof the sequence of codes{Cm} vanishes (asm → ∞), then it follows that

lim
m→∞

H(u′
m|vm)

nm
= 0. (44)

For the sake of notational simplicity, we will replaceu′
m, vm and nm by U

′, V, and n, respectively. In the
following derivation, letK and E designate the random vectors which indicate the positions of the known and
punctured/erased digits in the received vector (V), respectively (note that knowing one of these two random vectors
implies the knowledge of the other vector). The random vectorVK denotes the sub-vector ofV with the known
digits of the received vector (i.e., those digits which are not punctured by the encoder and not erased by the BEC).
Note that there is aone-to-onecorrespondence between the received vectorV and the pair of vectors(VK,E). We
designate byU′

E
andU

′
K

the sub-vectors of the original codewordU
′ of the codeC′

m, such that they correspond to
digits of U′ in the punctured/erased and known positions of the receivedvector, respectively (so thatU′

K
= VK).

Finally, let H ′
E

denote the matrix of those columns ofH ′ (a parity-check matrix representing the block codeC′
m)

whose variables are indexed byE, and |e| denotes the number of elements of a vectore. Then, we get

H(U′|V) = H(U′|VK,E)

= H(U′
E
,U′

K
|VK,E)

= H(U′
E
|VK,E)

=
∑

vk,e p(vk, e) H(U′
E
|VK = vk,E = e)

=
∑

vk,e p(vk, e)
(

|e| − rank(H ′
e)

)

=
∑

e
p(e)

(

|e| − rank(H ′
e)

)

=
∑

e
p(e) |e| − ∑

e
p(e) rank(H ′

e) .

and by normalizing both sides of the equality w.r.t. the block length (n), then

H(U′|V)

n
=

1

n

∑

e

p(e) |e| − 1

n

∑

e

p(e) rank(H ′
e) . (45)

Note that the rank of a parity-check matrixH ′
e of the block codeC′

m is upper bounded by the number of non-zero
rows of H ′

e which is equal to the number of parity-check nodes which involve punctured or erased bits (the sum
∑

e
p(e) · rank(H ′

e) is therefore upper bounded by the average number of parity-check sets which involve punctured
or erased bits).
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Now, we will bound the two sums in the RHS of (45): letIm and Pm be the number of information bits and
parity bits in the original codeC′

m. Thennm = Im + Pm is the block length of the codeC′
m, and the block length

of the codeCm (i.e., the block length after puncturing a fractionPpct of the information bits inC′
m) is equal to

Im(1−Ppct) + Pm. Since the dimension of punctured codes may decrease as compared to the original codes, then
we get the following upper bound on the rate of the punctured codeRm ≤ Im

Im(1−Ppct)+Pm
. Its asymptotic value (as

m → ∞) is by assumption at least(1 − ε)(1 − p), i.e.,

(1 − ε)(1 − p) ≤ lim
m→∞

Rm ≤ lim
m→∞

Im

Im(1 − Ppct) + Pm
.

We obtain from the last inequality that

lim
m→∞

Im

Pm
≥ (1 − ε)(1 − p)

Peff + ε(1 − Peff)

wherePeff was introduced in (20), so the asymptotic rate of the sequence of codes{C′
m} satisfies

lim
m→∞

R′
m = lim

m→∞
Im

Im + Pm

≥ (1 − ε)(1 − p)

(1 − ε)(1 − p) + Peff + ε(1 − Peff)
. (46)

The number of elements of a vectore indicates the number of bits in the codewords ofC′
m which are punctured

by the encoder or erased by the BEC. Its average value is therefore equal to
∑

e

p(e) |e| = Im Ppct +
(

Im(1 − Ppct) + Pm

)

p

= Im Ppct +
Imp

Rm

= nmR′
m

(

Ppct +
p

Rm

)

so sinceRm < 1 − p, then we obtain from (46) and the last equality that

lim
m→∞

1

nm

∑

e

p(e) |e|

≥ (1 − ε)(1 − p)

(1 − ε)(1 − p) + Peff + ε(1 − Peff)

(

Ppct +
p

1 − p

)

. (47)

If a parity-check node of the Tanner graph of the codeC′
m is connected to information nodes byk edges, then

based on the assumption that the information bits of the codes in {C′
m} are randomly punctured at ratePpct,

then the probability that a parity-check node involves at least one punctured or erased information bit is equal to
1 − (1 − Peff)k. This expression is valid with probability 1 (w.r.t. the randomly chosen puncturing pattern) when
the block length tends to infinity (or in the limit wherem → ∞). We note thatPeff is introduced in (20), and it
stands for the effective erasure probability of information bits in the codeC′

m when we take into account the effects
of the random puncturing of the information bits at the encoder, and the random erasures which are introduced
by the BEC. The average number of the parity-check nodes which therefore involve at least one punctured or
erased information bit is equal tonm(1 − R′

m)
∑

k dk,m

(

1 − (1 − Peff)k
)

wheredk,m designates the fraction of
parity-check nodes in the Tanner graph ofC′

m which are connected to information nodes byk edges. Therefore

1

nm

∑

e

p(e) rank(H ′
e) ≤ (1 − R′

m)

(

1 −
∑

k

dk,m(1 − Peff)k

)

.

From Jensen’s inequality, we obtain that
∑

k

dk,m(1 − Peff)k ≥ (1 − Peff)bR(C′

m)
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wherebR(C′
m) ,

∑

k kdk,m is the average number of edges which connect a parity-check node with information
nodes in the Tanner graph of the codeC′

m. By definition, it follows immediately thataR(C′
m) ≥ bR(C′

m) + lmin,
and therefore we get

1

nm

∑

e

p(e) rank(H ′
e) ≤ (1 − R′

m)
(

1 − (1 − Peff)aR(C′

m)−lmin

)

. (48)

From Eqs. (45)–(48), we obtain that

lim
m→∞

H(u′
m|vm)

nm

= lim
m→∞

1

nm

∑

e

p(e) |e| − lim
m→∞

1

nm

∑

e

p(e) rank(H ′
e)

≥ (1 − ε)(1 − p)

(1 − ε)(1 − p) + Peff + ε(1 − Peff)

(

Ppct +
p

1 − p

)

−
(

1 − (1 − ε)(1 − p)

(1 − ε)(1 − p) + Peff + ε(1 − Peff)

)

·
(

1 − (1 − Peff)aR−lmin

)

whereaR , lim infm→∞ aR(C′
m). The limit of the normalized conditional entropy in (44) is equal to zero, so its

lower bound in the last inequality cannot be positive. This yields the inequality

(1 − p)(1 − ε)Ppct + (1 − ε)p −
(

Peff + ε(1 − Peff)
) (

1 − (1 − Peff)aR−lmin

)

≤ 0. (49)

From (20), then(1 − p) Ppct + p − Peff = 0, so simplification of the LHS in (49) gives

Peff (1 − Peff)aR−lmin

≤ ε(1 − p)Ppct + εp + ε(1 − Peff)
(

1 − (1 − Peff)aR−lmin

)

≤ ε(1 − p)Ppct + εp + ε(1 − Peff)

= ε.

This yields the following information-theoretic bound the asymptotic degree of the parity-check nodes(aR(C′
m))

lim inf
m→∞

aR(C′
m) ≥ ln

(

Peff

ε

)

ln
(

1
1−Peff

) + lmin (50)

which is valid with probability 1 w.r.t. the puncturing patterns. The proof until now is valid under any decoding
algorithm (even the optimal MAP decoding algorithm), and inthe continuation, we link our result to MPI decoding.

From the information-theoretic bound in (50), it follows that with probability 1 w.r.t. the puncturing patterns, the
asymptotic decoding complexity of the sequence of punctured codes{Cm} satisfies under MPI decoding

lim inf
m→∞

χD(Cm) =

(

1 − R

R

)

lim inf
m→∞

aR(C′
m)

whereR is the asymptotic rate of the sequence{Cm}. The scaling by1−R
R is due to the fact that the complexity

is (by definition) normalized per information bit, and the average degree of the check nodes is normalized per
parity-check node). As said before, the last equality is true since the MPI decoder can be modified for a BEC so
that every edge in the Tanner graph is only used once; therefore, the number of operations which are performed for
MPI decoding of the punctured codeCm is equal to the number of edges in the Tanner graph of the original code
C′

m. SinceR ≤ 1 − p, then we obtain from (50) that under MPI decoding, the asymptotic decoding complexity
satisfies (19) with probability 1 w.r.t. the puncturing patterns.
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If Ppct = 1−O(ε), then it follows from (20) that alsoPeff = 1−O(ε). Therefore, the RHS of (19) remains bounded
when the gap (in rate) to capacity vanishes (i.e., in the limit whereε → 0). We conclude that with probability 1
w.r.t. the puncturing patterns of the information bits, a necessary condition that the sequence of punctured codes
achieves the capacity of the BEC withbounded complexityunder MPI decoding is that the puncturing rate of the
information bits satisfies the conditionPpct = 1 − O(ε). Otherwise, the complexity grows likeO

(

ln
(

1
ε

))

.
Discussion:Note that a-fortiori the same statement in Theorem 3 holds if we require that the block erasure

probability tends asymptotically to zero. At the beginningof our work, we considered the natural generalization of
the lower bound on complexity derived in [16, Theorem 1]. This generalization relies on the DE equation (6) for
ensembles of non-systematic IRA ensembles whose information bits are punctured uniformly at random. However,
it results in a slightly looser bound than the bound in Theorem3, so we omit its derivation. It is also important to
note that the lower bound on complexity which was originallyderived from the DE equation (6) is not as general
as the statement in Theorem 3, because the latter statement isvalid for every sequenceof codes (and not just for
IRA ensembles). The lower bound on decoding complexity of capacity-achieving codes on the BEC is especially
interesting due to two constructions of capacity-achieving IRA ensembles on the BEC with bounded complexity
that were introduced in the first two theorems of our paper. We note that for ensembles of IRA codes where the
inner code is a differential encoder, together with the choice of puncturing systematic bits of the IRA codes and
the natural selection of the information bits as the systematic bits, thenlmin = 2 (since every parity-check node
is connected to exactly two parity bits). For punctured IRA codes, the lower bound in (19) is also a lower bound
on the encoding complexity (since the encoding complexity of IRA codes is equal to the number of edges in the
Tanner graph per information bit, so under MPI decoding, the encoding and the decoding complexity of IRA codes
on the BEC are the same).

The lower bound on the asymptotic degree of the parity-check nodes in (50) is valid under ML decoding (and
hence, it is also valid under any sub-optimal decoding algorithm, such as MPI decoding). Finally, the link between
the degree of the parity-check nodes in the Tanner graph and the decoding complexity is valid under MPI decoding.

D. Proof of Theorem 4

Proof: The proof relies on the proofs of [2, Theorem 1] and [15, Theorem 1], and it suggests a generalization
to the case where a fraction of the information bits are punctured before the code is transmitted over an MBIOS
channel.

Under MPI decoding, the decoding complexity per iteration ofthe sequence of codes{Cm} is equal to the number
of edges in the Tanner graph of the original codes{C′

m} normalized per information bit. Similarly to the proof
for the BEC, we will first derive an information-theoretic bound on the average degree of the parity-check nodes
for the sequence{C′

m}, sayaR(C′
m), which will be valid for every decoding algorithm. From this bound, we will

directly obtain a bound on the decoding complexity per iteration of punctured codes on graphs, when we assume
that an MPI decoding algorithm is performed.

It suffices to prove the first bound (which refers to the limit of the average degree of the parity-check nodes for
the sequence{C′

m}) w.r.t. MAP decoding. This is because the MAP algorithm minimizes the bit error probability
and therefore achieves at least the same fraction of capacity as any suboptimal decoding algorithm. According to
our assumption about random puncturing of the information bits at ratePpct, then it follows that the equivalent
MBIOS channel for the information bits is given by

q(y|x = 1) = Ppct δ0(y) + (1 − Ppct) p(y|x = 1) (51)

which is physically degraded w.r.t. the original communication channel whose conditionalpdf (given thatx = 1 is
the input to the channel) isp(y|x = 1). On the other hand, since we assume that only information bits are punctured,
then the original MBIOS channel over which the communication takes place is also the equivalent channel for the
parity bits.

By assumption, the sequence of punctured codes{Cm} achieves a fraction1− ε of the channel capacity. LetIm

andPm designate the number of information bits and parity bits in the codeC′
m (before puncturing), respectively.

Since the dimension of the punctured codeCm is upper bounded by the dimension of the original codeC′
m, then

the rate ofCm satisfies the inequality

Rm ≤ Im

(1 − Ppct)Im + Pm
.
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According to the assumption in the theorem, we havelimm→∞ Rm ≥ (1 − ε)C, which implies that

lim
m→∞

Im

Pm
≥ (1 − ε)C

1 − (1 − ε)(1 − Ppct)C
. (52)

The asymptotic rate of the original sequence of codes{C′
m} (before puncturing) therefore satisfies

lim
m→∞

R′
m = lim

m→∞
Im

Im + Pm
≥ (1 − ε)C

1 + (1 − ε)PpctC
(53)

Similarly to the information-theoretic proof for the BEC, it follows exactly via the same chain of inequalities
that

lim
m→∞

H(u′
m|vm)

nm
= 0 (54)

whereu′
m andvm designate a codeword of the original codeC′

m, and the received vector at the output of the channel
(after puncturing information bits fromu′

m and transmitting the punctured codeword over the communication
channel), respectively. The parameternm designates the block length of the original codeC′

m.
Let g(y|x = 1) be an arbitrary conditionalpdf at the output of an MBIOS channel, given thatx = 1 is the input

to this channel, and let us define the operator

ω(g) ,
1

2

∫ +∞

−∞
min

(

g(y|x = 1), g(y|x = 0)
)

dy.

Then, it follows directly that0 ≤ ω(g) ≤ 1
2 , andω(p) = w wherew is introduced in (22). For the MBIOS channel

in (51)

ω(q) =
Ppct

2

∫ +∞

−∞
δ0(y) dy

+
1 − Ppct

2

∫ +∞

−∞
min

(

p(y|x = 1), p(y|x = 0)
)

dy

=
Ppct

2
+ (1 − Ppct) w

so, we obtain the equality
1 − 2ω(q) = (1 − 2w)(1 − Ppct). (55)

Similarly to the proof of [2, Theorem 1], we define a binary randomvector Z = (z1, . . . , znm
) so that for

l = 1, 2, . . . , nm, if ul andvl designate thel-th components ofu′
m andvm, respectively, then

Pr
(

zl = 1| q(vl|ul = 1) > q(−vl|ul = 1)
)

= 1

Pr
(

zl = 0| q(vl|ul = 1) < q(−vl|ul = 1)
)

= 1

Pr
(

zl = 1| q(vl|ul = 1) = q(−vl|ul = 1)
)

=
1

2
.

In particular, in case thatvl corresponds to an erasure, thenzl is equal to zero or one with probability12 . Hence,
the channelU′ → Z is equivalent to a BSC with crossover probability which is equal to ω(q).

Based on [2, Eqs. (4), (5), (11) and (12)], we obtain that

H(u′
m|vm)

nm
≥ 1 − I(u′m; vm) − H(S′

m)

nm
(56)

where S
′
m = H ′

mZ
T is the syndrome (we designate byH ′

m a parity-check matrix of the codeC′
m). From [2,

Eq. (14)], we obtain an upper bound on the normalized entropy of the syndrome for the case of random puncturing

H(S′
m)

nm
≤ (1 − R′

m) h

(

1 − (1 − 2ω(q))aR(C′

m)

2

)

(57)

where as compared to [2, Eq. (14)], we further loosen the upperbound on the entropy of the syndrome by assuming
that all the bits ofC′

m face (because of puncturing) the channel in (51). In fact, this is true only for the information
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bits of the codewords ofC′
m (since parity bits are not punctured), but since the channelwith the conditionalpdf

q(·|x = 1) is physically degraded w.r.t. to the original MBIOS channel, and the inequalityω(q) ≥ w follows
directly from (55), then the upper bound in (57) holds.

Let Lm designate the number of digits of the codewords in{Cm} (i.e., after puncturing information bits at a
puncturing ratePpct), thenLm = Im(1 − Ppct) + Pm, and

I(u′m; vm) ≤ Lm

nm
· C. (58)

From (52), we get

lim
m→∞

Lm

nm
= lim

m→∞

Im

Pm
· (1 − Ppct) + 1

Im

Pm
+ 1

≤ 1

1 + (1 − ε)PpctC
. (59)

Based on (54), the LHS of (56) vanishes as we letm tend to infinity. In the limit wherem → ∞, the combination
of (52)–(59) therefore gives the following inequality:

1 − C

1 + (1 − ε)PpctC

−
(

1 − (1 − ε)C

1 + (1 − ε)PpctC

)

h

(

1 − (1 − 2ω(q))aR

2

)

≤ 0

where aR , limm→∞ aR(C′
m). By invoking the following inequality for the binary entropy function (see [15,

Lemma 3.1])

h(x) ≤ 1 − 2

ln 2

(

x − 1

2

)2

, 0 ≤ x ≤ 1

2

we obtain from the last two inequalities that

1 − C

1 + (1 − ε)PpctC

−
(

1 − (1 − ε)C

1 + (1 − ε)PpctC

) (

1 − (1 − 2ω(q))2aR

2 ln 2

)

≤ 0.

We note that the last inequality extends the inequality in [15, Eq. (32)] to the case where we allow random puncturing
of the information bits at an arbitrary puncturing rate (if there is no puncturing, thenPpct = 0 andω(q) = w from
(55), so [15, Eq. (32)] follows directly as a particular case). From the last inequality and (55), we obtain that with
probability 1 w.r.t. the puncturing patterns, the following information-theoretic bound on the asymptotic degree of
the parity-check nodes is satisfied

lim inf
m→∞

aR(C′
m) ≥

ln
(

1
ε

1−(1−Ppct)C
2C ln 2

)

2 ln
(

1
(1−Ppct)(1−2w)

) . (60)

The proof until now is valid under an arbitrary decoding algorithm (i.e., under MAP decoding, and hence, under
any other decoding algorithm). In order to proceed, we referto MPI decoding, where the asymptotic decoding
complexity per iteration of the punctured codesCm is equal to 1−R

R times aR where R , limm→∞ Rm is the
asymptotic rate of the sequence of punctured codes{Cm}. By assumptionR ≥ (1 − ε)C, so we obtain from (60)
the lower bound on the decoding complexity per iteration of punctured codes which is given in (21). This lower
bound drives us to the interesting conclusion that if the puncturing rate of the information bits is strictly less than
1, then the decoding complexity per iteration must grow at least likeln

(

1
ε

)

. On the other hand, ifPpct = 1−O(ε),
then the numerator and denominator of the RHS in (21) are bothin the order ofln

(

1
ε

)

, and therefore the lower
bound on the decoding complexity per iteration stays bounded as the gap (in rate) to capacity vanishes.

Discussion:Like Theorem 3, the lower bound on the decoding complexity in Theorem 4 also clearly holds if we
require vanishing block error probability. For a BEC with erasure probabilityp, the parameterw in (22) is equal to
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w = p
2 , and the capacity is equal toC = 1−p. From (20), this implies that for the BEC,(1−2w)(1−Ppct) = 1−Peff .

It therefore follows that the lower bound in Theorem 3 is at least twice larger than the lower bound for the BEC
which we get from the general bound in Theorem 4. The derivationof Theorems 3 and 4 are also different, so
because of these two reasons, we derive the stronger versionof the bound for the BEC in addition to the general
bound for MBIOS channels. The comparison between the two bounds for punctured codes on graphs is consistent
with the parallel comparison in [15, Theorem 1] for non-punctured codes. The bounds in Theorems 3 and 4 refer
both to random puncturing, so these two theorems are valid with probability 1 w.r.t. the puncturing patterns, if we
let the block length of the codes go to infinity. Since these bounds become trivial for some deterministic puncturing
patterns, it remains an interesting open problem to derive information-theoretic bounds that can be applied toevery
puncturing pattern.

V. A NALYTICAL PROPERTIES ANDEFFICIENT COMPUTATION OF THED.D.

In this section, we tackle the problem of computing the d.d. coefficients for both the bit-regular and check-regular
ensembles. While doing this, we also lay some of the groundwork required to prove that these coefficients are non-
negative. Asymptotic expressions for the coefficients can also be computed rather easily in the process. We start
with bit-regular ensemble because the analysis is somewhatsimpler.

A. The Bit-Regular Ensemble

1) A Recursion for the D.D. Coefficients{ρn}: We present here an efficient way for the calculation of the d.d.
coefficients{ρn}, referring to the ensemble of bit-regular IRA codes in Theorem 1. To this end, we derive a very
simple recursion for coefficients of the power series expansions of R(x) and ρ(x). We start with Eq. (28) and
rearrange things to get

R(x) =
1

1 − p
Q(x) − p

1 − p
R(x)Q(x).

Next, we substitute the power series expansions forR(x) andQ(x) to get
∞

∑

n=2

Rnxn =
1

1 − p

∞
∑

n=2

Qnxn − p

1 − p

∞
∑

i=2

Rix
i

∞
∑

j=2

Qjx
j .

Matching the coefficients ofxn on both sides gives

Rn =
1

1 − p
Qn − p

1 − p

n−2
∑

i=2

RiQn−i. (61)

Using Eq. (27), we can write

Q(x) =

∫ x
0 (1 − (1 − t)1/(q−1))dt

∫ 1
0 (1 − (1 − t)1/(q−1))dt

=

∫ x
0

∑∞
k=1(−1)k+1

( 1

q−1

k

)

tkdt
1
q

= q
∞

∑

k=1

( 1
q−1

k

)

(−x)k+1

k + 1

which implies that

Qn =
(−1)nq

n

( 1
q−1

n − 1

)

, n ≥ 2. (62)

Sinceρ(x) = R′(x)/R′(1), this gives

ρn =
n Rn

R′(1)
=

n Rn

q (1 − p)

where the last equality follows from Eqs. (9) and (26), andRn is calculated from (61) and (62).
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2) Asymptotic Behavior ofρn: In this section, we consider the asymptotic behavior of the coefficients in the
power series expansion of Eq. (10). The resulting expression provides important information about the decay rate
of the coefficients. It also shows thatρn always becomes positive for large enoughn and therefore lends support to
Conjecture 1. We approach the problem by first writingρ(x) as a power series in(1−x)1/(q−1) and then analyzing
the asymptotic behavior of each term. This approach is motivated and justified by the results of [3].

We start by rewriting (10) in terms ofu = (1 − x)1/(q−1), and then expanding the result into a power series in
u to get

ρ(x) =
1 − u

(

1 − p
(

quq−1 − (q − 1)uq
)

)2

= (1 − u)
∞

∑

i=0

(i + 1)pi
(

q uq−1 − (q − 1)uq
)i

= 1 − u + 2pquq−1 − 2p(2q − 1)uq + 2p(q − 1)uq+1

+3p2q2u2q−2 + O
(

u2q−1
)

.

Now, we can convert this into an asymptotic estimate ofρn by using the fact (from [3]) that

[xn]
{

(1 − x)α
}

=
n−1−α

Γ(−α)

(

1 +
α(α + 1)

2n
+ O

(

n−2
)

)

where [xk] A(x) is the coefficient ofxk in the power series expansion ofA(x). We note that the termsuq−1 and
u2q−2 are actually polynomials inx and do not contribute to the asymptotic behavior. Combiningthe remaining
terms with the equalityρn+1 = [xn]ρ(x) shows that

ρn+1 =
n− q

q−1

(q − 1)Γ( q−2
q−1)

(

1 +
q

2(q − 1)2n
− 2pq(2q − 1)

(q − 1)n

+
4p(q + 1)Γ( q−2

q−1)

Γ( q−3
q−1)n

q

q−1

+ O
(

n−2
)

)

. (63)

B. The Check-Regular Ensemble

1) Three Representations for the D.D. Coefficients{λn}: We present here three different useful expressions for
the computation of the d.d. coefficients{λn}, referring to the ensemble of check-regular IRA codes in Theorem 2.
The first expression is based on the Lagrange inversion formula (see, e.g., [1, Section 2.2]). The second expression
follows by applying the Cauchy residue theorem in order to obtain the power series expansion ofλ(·) in (15), and the
third expression provides a simple recursion which followsfrom the previous expression. These three expressions
are proved in Appendix B, and provide efficient numerical methods to calculate the d.d. of the information bits
(from the edge perspective).

The first expression of the d.d. coefficients{λn} is the following:

λn =
1

n − 1
[xn−2] φn−1(x) , n = 2, 3, . . . (64)

where
φ(x) ,

x

1 −
(

1−p
1−p(1−x)3

)2
(1 − x)2

. (65)

This representation of the sequence{λn} follows directly from the Lagrange inversion formula by writing yφ(x) = x
wherey = λ−1(x).

A second expression for the d.d. coefficients{λn} is given by

λn = −4(1 − p)2

9πp
Im







∫ ∞

0

g(r)
(

1 + c(p) re
iπ

3

)n dr







(66)
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wheren = 2, 3, . . . ,

c(p) ,

(

4

27

(1 − p)3

p

)
2

3

, 0 < p < 1 (67)

and the complex functiong(·) is

g(r) = lim
w→0+

sin
(

1
3 arcsin(r

3

4 + iw)
)

r
1

4

, r > 0. (68)

Finally, we present an expression for the d.d. coefficients{λn} which suggests an efficient way for their numerical
calculation. For all integersn ≥ 1, the following equality holds:

λn+1(p) =
1 − p

(1 + 2p)2n−1
·
2(n−1)
∑

i=0

a
(n)
i pi (69)

where for an integern ≥ 2, the calculation of the sequence
{

a
(n)
i

}2(n−1)

i=0
relies on the following recursive equation:

a
(m+1)
i =

(2m − 3i − 1)
(

a
(m)
i − 2a

(m)
i−2

)

2(m + 1)

+
(20m − 3i − 1) a

(m)
i−1

2(m + 1)
, m = 1, . . . , n − 1 (70)

with the initial valuea
(1)
0 = 1

2 . We definea
(k)
i as zero fori < 0 or i > 2(k − 1) (wherek = 1, 2, . . .). Based on

Eqs. (69) and (70), it follows that

λ2(p) =
1 − p

2(1 + 2p)

λ3(p) =
(1 − p)(1 + 16p + 10p2)

8(1 + 2p)3

λ4(p) =
(1 − p)(1 + 12p + 168p2 + 164p3 + 60p4)

16(1 + 2p)5

and so on. Eqs. (69) and (70) provide a simple way to calculate the sequence{λn} without the need to calculate
numerically complicated improper integrals or to obtain the power series expansion of a complicated function; this
algorithm involves only the four elementary operations, and hence it can be implemented very easily.

An alternative way to express Eqs. (69) and (70) is

λn+1(p) =
(1 − p) · Pn(p)

(1 + 2p)2n−1
n = 1, 2, . . . (71)

where{Pn(x)}n≥1 is a sequence of polynomials of degree2(n − 1) which can be calculated with the recursive
equation

Pn+1(x) =

[

(14 − 4n)x2 + (20n − 4)x + 2n − 1
]

Pn(x)

2(n + 1)

−3x(1 + x − 2x2) dPn(x)
dx

2(n + 1)
, n = 1, 2, . . . (72)

and the initial polynomialP1(x) = 1
2 .
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2) Asymptotic Behavior ofλn: We show in Appendix B that for a fixed value ofp, the asymptotic behavior of
the d.d.{λn} is given by

λn+1 =
n− 3

2

2
√

π(1 − p)

[

1 +
3
√

2

2
a
−(n− 1

2
)

p sin

(

(

n − 1

2

)

θp

)]

·
[

1 +
3

8n
+

25

128n2
+ O

(

1

n3

)]

(73)

where
ap ,

∣

∣

∣
1 + e

iπ

3 c(p)
∣

∣

∣
, θp , arg

[

1 + e
iπ

3 c(p)
]

(74)

and c(p) is given in (67). Unlessp is close to one, it can be verified that the asymptotic expression for the
coefficients{λn} also provides a tight approximation for these coefficients already for moderate values ofn. For
example, ifp = 0.5, then the asymptotic expression in (73) is tight forn ≥ 20 (λ20 is equal to0.0100 while the
asymptotic expression in (73) is equal to0.0107). If p = 0.8, the asymptotic expression for the coefficients{λn}
in (73) is tight only forn ≥ 120 (the approximation forλ120 is equal to0.0020, and its exact value is0.0021). In
general, by increasing the value ofp (which is less than unity), the asymptotic expression in (73) becomes a good
approximation for the coefficientsλn starting from a higher value ofn (see Fig. 3).
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Fig. 3. The exact and approximated values ofλn+1 (n = 1, . . . , 1000) for the check-regular IRA ensemble in Theorem 2. The approximation
is based on the asymptotic expression in (73). The plots refer to a BEC whose erasure probability isp = 0.2 (upper plot) andp = 0.8
(lower plot).

3) Some Properties of the Power Series Expansion ofλ(x) in Eq. (15): The values ofPn(·) at the endpoints of
the interval[0, 1] can be calculated from the recursive equation (72) (the coefficient of the derivative vanishes at
these endpoints). Calculation shows that forn ≥ 1

Pn(0) =
1

2n − 1

1

4n

(

2n

n

)

, Pn(1) =
9n−1

4n

(

2n

n

)

. (75)

Since these values are positive, it follows from (71) that{λn(p)}n≥2 are positive for0 ≤ p < 1 if and only if the
polynomialsPn(·) do not have zeros inside the interval[0, 1] for all n ≥ 1. We note that if for everyn ≥ 1, all the
coefficients of the polynomialPn(·) were positive, then based on (71), this could suggest a promising direction to
prove the positivity of{λn(p)}n≥2 over the whole intervalp ∈ [0, 1). Unfortunately, this is only true forn ≤ 6.
The positivity of {λn(p)}n≥2 over the interval[0, 0.95] is proved in Appendix C, based on their relation to the
polynomialsPn(·). As we already noted, our numerical results strongly support the conjecture that this is true also
for p ∈ (0.95, 1).
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As we will see, the behavior of the functionsλn(p), in the limit wherep → 1 and n → ∞, depends on the
order that the limits are taken. When the value ofn is fixed, it follows from (71) and (75) that in the limit where
p → 1, then forn = 2, 3, 4, . . .

λn(p) ≈ Pn−1(1)

32n−3
(1 − p) =

1

3

1

4n−1

(

2n − 2

n − 1

)

(1 − p). (76)

Therefore, for a fixed value ofn, λn(p) is linearly proportional to1−p whenp → 1. On the other hand, if the value
of p is fixed (0 < p < 1) and we letn tend to infinity, then we obtain from (73) thatλn(p) is inversely proportional
to 1−p. Observe from Fig. 3 that the sequence of functions{λn(p)}n≥2 is monotonically decreasing for all values
of p, and that the tail of this sequence becomes more significant asthe value ofp grows. This phenomenon can be
explained by Eq. (73) since the asymptotic behavior of the sequence{λn(p)} is linearly proportional to 1

1−p ; this
makes the tail of this sequence more significant as the value ofp is closer to 1. It seems from the plots in Fig. 3 that
the asymptotic expression (73) forms an upper bound on the sequence{λn(p)}. From these plots, it follows that
by increasing the value ofp, then the approximate and exact values ofλn(p) start to match well for higher values
of n. We note that the partial sum

∑1000
n=2 λn(p) is equal to0.978, 0.970, 0.955 and0.910 for p = 0.2, 0.4, 0.6 and

0.8, respectively; therefore, if the value of the erasure probability (p) of the BEC is increased, then the tail of the
sequence{λn(p)} indeed becomes more significant (since the sum of all theλn(p)’s is 1). More specifically, we
use the fact that ∞

∑

n=N

n−α =
N1−α

α − 1

(

1 + o(1)
)

, α > 1

and rely on Eq. (73) in order to show that for a large enough value of N , the sum
∑N

n=2 λn(p) is approximately
equal to1 − 1√

πN
1

1−p ; this matches very well with the numerical values computed for N = 1000 with p = 0.2

and0.8.

VI. PRACTICAL CONSIDERATIONS ANDSIMULATION RESULTS

In this section, we present simulation results for both the bit-regular (Theorem 1) and check-regular (Theorem 2)
ensembles. While these results are provided mainly to validate the claims of the theorems, we do compare them
with another previously known ensemble. This is meant to givethe reader some sense of their relative performance.
Note that forfixed complexity, the new codes eventually (forn large enough) outperform any code proposed to
date. On the other hand, theconvergence speedto the ultimate performance limit is expected to be quite slow, so
that for moderate lengths, the new codes are not expected to be record breaking.

A. Construction and Performance of Bit-Regular IRA Codes

The bit-regular plot in Fig. 4 compares systematic IRA codes [4] with λ(x) = x2 and ρ(x) = x36 (i.e., rate
0.925) with bit-regular non-systematic codes formed by ourconstruction in Theorem 1 withq = 3. This comparison
with non-systematic IRA codes was chosen for two reasons. First, both codes have good performance in the error
floor region because neither have degree 2 information bits. Second, LDPC codes of such high rate have a large
fraction of degree 2 bits and the resulting comparison seemed rather unfair. We remind the reader that the bit-regular
ensembles of IRA codes in Theorem 1 are limited to high rates (for q = 3, the rate should be at least12

13 ≈ 0.9231).
The fixed point atx = 1 of the DE equation for the ensemble in Theorem 1 prevents the decoder from getting

started without the help of some kind of ”doping”. We overcome this problem by using a small number of systematic
bits (100–200) in the construction. Of course, these bits are included in the final rate of0.925. Codes of block length
N = 8000, 64000 and500000 were chosen from these ensembles and simulated on the BEC. The parity-check d.d.
of each bit-regular code was also truncated to maximum degree M . All codes were constructed randomly from
their d.d.s while avoiding 4 cycles in the subgraph induced by excluding the code bits (i.e., w.r.t. the top half of
Fig. 1).

It is clear that the bit-regular ensemble performs quite well when the block length is large. As the block length
is reduced, the fraction of bits required for ”doping” (i.e., to get decoding started) increases and the performance
is definitely degraded. In fact, the regular systematic IRA codes even outperform the bit-regular construction for a
block length of 8000.
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Fig. 4. BER and WER for random rate 0.925 codes from the bit-regular IRA ensemble in Theorem 1 withq = 3 and the regular systematic
IRA ensemble with d.d.λ(x) = x2 andρ(x) = x36. The curves are shown forN = 8000, 64000, and500000.

B. Construction and Performance of Check-Regular IRA Codes

The performance of the check-regular construction in Theorem2 was also evaluated by simulation. A fixed
rate of 1/2 was chosen and non-systematic IRA codes were generated with varying block length and maximum
information-bit degree. For comparison, LDPC codes from the check-regular capacity-achieving ensemble [17]
were constructed in the same manner. This ensemble was chosenfor comparison because it has been shown to be
essentially optimal for LDPC codes in terms of the tradeoff between performance and complexity [9], [17]. The
IRA code ensembles were formed by treating all information bits degree greater thanM = 25, 50 as pilot bits.
The LDPC code ensembles were formed by choosing the check degreeto be q = 8, 9 and then truncating the bit
d.d. so thatλ(1) = 1. This approach leads to maximum bit degrees ofM = 61, 126, respectively. Actual codes of
lengthN = 8192, 65536 and524288 were chosen from these ensembles, and simulated over the BEC.The results
of the simulation are shown in Fig. 5. To simplify the presentation, only the best performing curve (in regards to
truncation lengthM ) is shown for each block length.

The code construction starts by quantizing the d.d. to integer values according to the block length. Next, it matches
bit edges with check edges in a completely random fashion. Since this approach usually leads both multiple edges
and 4-cycles, a post-processor is used. One iteration of post-processing randomly swaps all edges involved in a
multiple-edge or 4-cycle events. We note that this algorithm only considers 4-cycles in the subgraph induced by
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Fig. 5. BER and WER for random rate1/2 codes from the check-regular IRA ensemble in Theorem 2 and the check-regular LDPC
ensemble [17] forN = 8192, 65536, and524288.

excluding the code bits (i.e., the top half of the graph in Fig.1). This iteration is repeated until there are no more
multiple edges or 4-cycles. For the IRA codes, a single “dummy” bit is used to collect all of the edges originally
destined for bits of degree greater thanM . Since this bit is known to be zero, its column is removed to complete
the construction. After this removal, the remaining IRA code is no longer check regular because this “dummy” bit
is allowed to have multiple edges. In fact, it is exactly the check nodes which are reduced to degree 1 that allow
decoding to get started. Finally, both the check-regular IRAand LDPC codes use an extended Hamming code to
protect the information bits. This helps to minimize the effect of small weaknesses in the graph and improves the
word erasure rate (WER) quite a bit for a very small cost. The rate loss associated with this is not considered in
the stated rate of one-half.

C. Stability Conditions

While the condition (7) is both necessary and sufficient for successful decoding, we can still gain some insight
by studying (7) at its endpointsx = 0 andx = 1. The condition that the fixed point atx = 0 be stable is commonly
known as the stability condition. Our capacity-achieving d.d. pairs actually satisfy (7) forx ∈ (0, 1], but focusing
on the pointsx = 0 andx = 1 gives rise to just two stability conditions. For decoding tofinish, the fixed point at
x = 0 must bestable. While, to get decoding started, it helps if the fixed point atx = 1 is unstable.
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The stability condition atx = 0 can be found by requiring that the derivative of the LHS of (7) is less than unity
at x = 0. Writing this in terms ofλ2 (whereλ′(0) = λ2 andλ(0) = 0) gives

λ2 <
1

2pR′(1)
1−p + ρ′(1)

. (77)

We note that the bit-regular IRA ensemble in Theorem 1 satisfiesρ′(1) = ∞, and since it has no degree 2
information bits, then it meets the stability condition in (77) with equality. This is similar to the case with other
capacity-achieving ensembles of codes on graphs whose transmission takes place over the BEC (see, e.g., [16],
[17]).

The stability condition atx = 1 can be found by requiring that small deviations fromx = 1 grow larger.
Essentially, this means that the derivative of the LHS of (7) should be greater than 1 atx = 1. Writing this in
terms ofρ2 (assumingρ(0) = 0) gives

ρ2 >
1

(1 − p)2λ′(1)
. (78)

Since capacity-achieving codes must also satisfy this stability condition with equality, we see that the RHS of (78)
must go to zero for capacity-achieving ensembles without degree 2 parity-check nodes. It is worth noting that the
check-regular ensemble in Theorem 2 (which has no degree 2 parity-check nodes) hasλ′(1) = ∞ and therefore
meets the stability condition with equality. Furthermore, one can see intuitively how degree 2 parity-checks help
to keep the decoding chain reaction from ending.

In reality, the fixed point atx = 1 is usually made unstable by either allowing degree 1 parity-checks or adding
systematic bits (which has a similar effect). Therefore, thederivative condition is not strictly required. Still, it can
play an important role. Consider what happens if you truncate the bit d.d. of the check-regular ensemble and then
add systematic bits to get decoding started. The fixed point atx = 1 remains stable because the truncated bit d.d.
hasλ′(1) < ∞. In fact, the decoding curve in the neighborhood ofx = 1 has a shape that requires a large number
of systematic bits get decoding started reliably. This is themain reason that we introduced the ”pilot bit” truncation
in Theorem 2.

VII. C ONCLUSIONS

In this work, we present two sequences of ensembles of non-systematic irregular repeat-accumulate (IRA) codes
which asymptotically (as their block length tends to infinity) achieve capacity on the binary erasure channel (BEC)
with bounded complexity(throughout this paper, the complexity is normalized per information bit). These are
the first capacity-achieving ensembles with bounded complexity on the BEC to be reported in the literature. All
previously reported capacity-achieving sequences have a complexity which grows at least like the log of the inverse
of the gap (in rate) to capacity. This includes capacity-achieving ensembles of LDPC codes [7], [8], [17], systematic
IRA codes [4], [6], [16], and Raptor codes [18]. The ensemblesof non-systematic IRA codes which are considered
in our paper fall in the framework of multi-edge type LDPC codes[14].

We show that under message-passing iterative (MPI) decoding, this new bounded complexity result is only possible
because we allow a sufficient number of state nodes in the Tanner graph representing a code ensemble. The state
nodes in the Tanner graph of the examined IRA ensembles are introduced by puncturing all the information bits.
We also derive an information-theoretic lower bound on the decoding complexity of randomly punctured codes
on graphs. The bound refers to MPI decoding, and it is valid for an arbitrary memoryless binary-input output-
symmetric channel with a special refinement for the BEC. Since this bound holds with probability 1 w.r.t. a
randomly chosen puncturing pattern, it remains an interesting open problem to derive information-theoretic bounds
that can be applied toevery puncturing pattern. Under MPI decoding and the random puncturing assumption, it
follows from the information-theoretic bound that a necessary condition to achieve the capacity of the BEC with
bounded complexity or to achieve the capacity of a general memoryless binary-input output-symmetric channel with
bounded complexity per iteration is that the puncturing rate of the information bits goes to one. This is consistent
with the fact that the capacity-achieving IRA code ensembles introduced in this paper are non-systematic, where
all the information bits of these codes are punctured.

In Section VI, we use simulation results to compare the performance of our ensembles to the check-regular
LDPC ensemble introduced by Shokrollahi [17] and to systematicRA codes. For the cases tested, the performance
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of our check-regular IRA codes is slightly worse than that ofthe check-regular LDPC codes. It is clear from
these results that the fact that these capacity-achieving ensembles have bounded complexity does not imply that
their performance, for small to moderate block lengths, is superior to other reported capacity-achieving ensembles.
Note that forfixed complexity, the new codes eventually (forn large enough) outperform any code proposed to
date. On the other hand, theconvergence speedto the ultimate performance limit happens to be quite slow, so
for small to moderate block lengths, the new codes are not necessarily record breaking. Further research into
the construction of codes with bounded complexity is likelyto produce codes with better performance for small
to moderate block lengths. In this respect, we refer to a recent work [12] where Pfister and Sason present new
ensembles of accumulate-repeat-accumulate codes achieving the BEC capacity with bounded complexity; these
codes are systematic and suggest better performance for short to moderate block length.

The central point in this paper is that by allowing state nodesin the Tanner graph, one may obtain a significantly
better tradeoff between performance and complexity as the gap to capacity vanishes. Hence, it answers in the
affirmative a fundamental question which was posed in [15] regarding the impact of state nodes (or in general,
more complicated graphical models than bipartite graphs) on the performance versus complexity tradeoff under MPI
decoding. Even the more complex graphical models, employed by systematic IRA codes, provides no asymptotic
advantage over codes which are presented by bipartite graphs under MPI decoding (see [15, Theorems 1, 2] and
[16, Theorems 1, 2]). Non-systematic IRA codes do provide, however, this advantage over systematic IRA codes;
this is because the complexity of systematic IRA codes becomes unbounded, under MPI decoding, as the gap to
capacity goes to zero.

APPENDICES

Appendix A: Proof of the Non-Negativity of the Power Series Expansion ofρ(·) in (10)

Based on the relation (1) between the functionsR(·) andρ(·), we see thatρ(·) has a non-negative power series
expansion if and only ifR(·) has the same property. We find it more convenient to prove thatR(·) has a non-negative
power series expansion. Starting with Eq. (28), we can rewriteR(x) as

R(x) =
1

p

p
1−p Q(x)

1 + p
1−p Q(x)

= −1

p

∞
∑

i=1

(−p Q(x)

1 − p

)i

= −1

p

∞
∑

i=0

{

(−p Q(x)

1 − p

)2i+1

+

(−p Q(x)

1 − p

)2i+2
}

=
1

p

[

p Q(x)

1 − p
−

(

p Q(x)

1 − p

)2
] ∞

∑

i=0

{

(

p Q(x)

1 − p

)2i
}

.

One can verify from Eq. (62) that the power series coefficients of Q(x) are positive. Therefore, the sum

∞
∑

i=0

{

(

p

1 − p
Q(x)

)2i
}

also has a non-negative power series expansion. Based on this, it follows that theR(·) has a non-negative power
series expansion if the function

p

1 − p
Q(x) −

(

p

1 − p
Q(x)

)2

has the same property. This means that the power series expansion of R(·) has non-negative coefficients as long as

[xk]
p

1 − p
Q(x) ≥ [xk]

(

p

1 − p
Q(x)

)2

k = 0, 1, 2, . . . (A.1)
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where[xk] A(x) is the coefficient ofxk in the power series expansion ofA(x). SinceQ(·) has a non-negative power
series expansion starting fromx2, it follows that Q2(·) has a non-negative power series expansion starting from
x4. Therefore, the condition in inequality (A.1) is automatically satisfied fork < 4. For k = 4, 5, the requirement
in (A.1) leads (after some algebra) to the inequality in (18). Examining this condition forq = 3 and in the limit as
q → ∞, we find that the value ofp should not exceed1

13 and 3
13 , respectively. While we believe that the power

series expansion ofR(·) is indeed positive for allp satisfying (18), we were unable to prove this analytically.Even
if this is true, it follows thatR(·) has a non-negative power series expansion only for rather small values ofp.

For the particular case ofq = 3, however, we show that the conditionp ≤ 1
13 is indeed sufficient to ensure that

(A.1) is satisfied for allk ≥ 0.
Proof: In the case whereq = 3, we find that

Q(x) = (−2 + 2x)
(

1 −
√

1 − x
)

+ x (A.2)

and
Q(x)2 = (8 − 20x + 12x2)

(

1 −
√

1 − x
)

− 4x + x2 − 4x3. (A.3)

Expanding (A.2) in a power series gives

Q(x) = x + (−2 + 2x)
∞

∑

j=1

{(1
2

j

)

(−1)j+1 xj

}

and matching terms shows that fork ≥ 2

[xk] Q(x) =
6

2k − 3

(1
2

k

)

(−1)k+1 .

Doing the same thing for (A.3) shows that, fork ≥ 4,

[xk] Q(x)2 =

(

8 − 20k

k − 3
2

+
12k(k − 1)

(

k − 3
2

) (

k − 5
2

)

)

(1
2

k

)

(−1)k+1 .

The maximal value ofp such that the condition (A.1) is satisfied fork ≥ 0 is given by

p

1 − p
≤ [xk] Q(x)

[xk] Q(x)2

=
6

2k−3

8 − 20k
k− 3

2

+ 12k(k−1)

(k− 3

2)(k− 5

2)

=
2k − 5

4(k + 5)
k = 4, 5, 6, . . .

Since the RHS of this inequality is strictly increasing fork ≥ 4, the maximal value ofp which satisfies (A.1)
is found by substitutingk = 4. This gives the conditionp ≤ 1

13 and completes the proof that the power series
expansion ofR(·) is non-negative forq = 3 andp ≤ 1

13 .

Appendix B: Proof of Properties of the D.D. Coefficients{λn}

The main part of this appendix proves the three different representation for the d.d.{λn} which follows from
the power series expansion ofλ(·) in (15). We also consider in this appendix some properties ofthe polynomials
Pn(·) which are related to the third representation of the d.d.{λn}, and which are also useful for the proof in
Appendix C. Finally, we consider the asymptotic behavior of the d.d.{λn}.

We start this Appendix by proving the first expression for the d.d. {λn} in (64)–(65).
Proof: The first representation of the d.d.{λn} in (64) follows directly from the Lagrange inversion formulaby
simply writing yφ(x) = x wherey , λ−1(x) is introduced in (39), andφ(·) , x

λ−1(x) is introduced in (65). We
note thatλn is the coefficient ofxn−1 in the power series expansion of the functionλ(x) in (15).
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The proof of the second expression for the d.d.{λn} in (66)–(68) relies on the Cauchy residue theorem.
Proof: The functionλ(·) in (15) is analytic except for three branch cuts shown in Fig. 6. The first branch cut
starts at one and continues through the real axis towards infinity. The remaining two branches are straight lines
which are symmetric w.r.t. the real axis. They are located along the lines defined byz = 1 + c(p)re±

iπ

3 , where

c(p) ,

(

4(1−p)3

27p

)2/3
andr ≥ 1. By the Cauchy Theorem we have

λn =
1

2πi

∮

Γ

λ(z)

zn
dz, n ≥ 2 (B.1)

where the contourΓ = Γ1∪Γ2∪Γ3 is the closed path which is shown in Fig. 6 and which is composedof three parts:
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Γ
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Fig. 6. The branch cuts of the functionλ(x) in (15), and the contour of integration in Eq. (B.1).

the first part of integration(Γ1) is parallel to the branch cut at an angle of60◦, and it starts from the pointz = 1

on the real axis and goes to infinity along this line, so it can beparameterized as
{

Γ1 : z = 1 + c(p) r e
iπ

3 + iw
}

where0 ≤ r ≤ R andw → 0+ is an arbitrarily small positive number (the straight lineΓ1 is parallel but slightly
above the branch cut whose angle is60◦ with the real axis). We later letR tend to infinity. The second path of
integration(Γ2) is along the part of the circle of radius

∣

∣

∣
1 + c(p)Re

iπ

3

∣

∣

∣
where we integrate counter-clockwise,

starting fromz = 1 + c(p)Re
iπ

3 + iw and ending atz = 1 + c(p)Re−
iπ

3 − iw. The third part of integration is a
straight line which is parallel to the branch cut whose anglewith the real axis is−60◦, but is slightly below this
branch cut; it starts at the pointz = 1+ c(p)Re−

iπ

3 − iw, and ends at the pointz = 1 on the real axis (so the points
on Γ3 are the complex conjugates of the points onΓ1, and the directions of the integrations overΓ1 and Γ3 are
opposite). Overall,Γ , Γ1 ∪ Γ2 ∪ Γ3 forms a closed path of integration which does not contain thethree branch
cuts of the functionλ(·) in (15), and it is analytic over the domain which is bounded bythe contourΓ. We will
first show that the above integral overΓ2 vanishes as the radius of the circle tend to infinity, so in the limit where
R → ∞, we obtain that the integral overΓ is equal to the sum of the two integrals overΓ1 and Γ3. In order to
see that, we will show that the modulus ofλ(z)− 1 in (15) is bounded over the circle|z| = R (whenR is large),
so it will yield that for n ≥ 2, the integral

∫

Γ2

λ(z)−1
zn dz vanishes asR → ∞. To this end, we rely on the equality

sin

(

1

3
arcsin(z)

)

=
1

2i

[

(

iz +
√

1 − z2
) 1

3

−
(

iz +
√

1 − z2
)− 1

3

]

so
∣

∣sin
(

1
3 arcsin(z)

)∣

∣ = O
(

|z| 13
)

as |z| → ∞.
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By substitutingz′ = 3
√

3
2

√

p(1−z)
3
2

(−1+p)3 , then

∣

∣

∣

∣

∣

∣

sin





1

3
arcsin





3
√

3

2

√

p(1 − z)
3

2

(−1 + p)3









∣

∣

∣

∣

∣

∣

= O
(

|z′| 13
)

= O
(

|z| 14
)

and from (15),

|λ(z) − 1|

=

∣

∣

∣

∣

∣

∣

√

− 4(1 − p)

3p
√

1 − z
sin





1

3
arcsin





√

−27p(1 − z)3/2

4(1 − p)3









∣

∣

∣

∣

∣

∣

= O
(

|z|− 1

4 |z| 14
)

= O(1).

From the last equality, it follows that

lim
R→∞

∫

Γ2

λ(z) − 1

zn
dz = 0, ∀ n ≥ 2. (B.2)

Now we will evaluate the integral over the straight lineΓ1 (and similarly overΓ3). Let

z = 1 +

(

4

27

(1 − p)3

p

)
2

3

re
iπ

3 + iw, w → 0+, r ≥ 0

then after a little bit of algebra, one can verify that

λ(z) − 1 =

(

4

p

) 1

3

·
e

2πi

3 sin
(

1
3 arcsin(r

3

4 )
)

r
1

4

(B.3)

so from the parameterization ofΓ1 and (B.3), we obtain that

lim
R→∞

∫

Γ1

λ(z) − 1

zn
dz

= −
(

4

p

) 1

3

c(p)

∫ +∞

0

g(r)
(

1 + c(p) r e
iπ

3

)n dr (B.4)

wherec(p) is introduced in (67), and the functiong(·) is introduced in (68).
Since the points onΓ3 are the complex conjugates of the points onΓ1, and the integrations overΓ1 andΓ3 are

in opposite directions, then it follows from (B.4) that

lim
R→∞

∫

Γ3

λ(z) − 1

zn
dz

=

(

4

p

) 1

3

c(p)

∫ +∞

0

g∗(r)
(

1 + c(p) r e−
iπ

3

)n dr. (B.5)
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By combining Eqs. (B.1)–(B.5) and (67) [we note thatc(p) in (67) is real for0 < p < 1], we obtain that forn ≥ 2

λn =
1

2πi

∮

Γ

λ(z)

zn
dz

=
1

2πi

(

lim
R→∞

∫

Γ1

λ(z) − 1

zn
dz + lim

R→∞

∫

Γ3

λ(z) − 1

zn
dz

)

=

(

4

p

) 1

3 c(p)

2πi





∫ +∞

0

g∗(r)
(

1 + c(p) r e−
iπ

3

)n dr

−
∫ +∞

0

g(r)
(

1 + c(p) r e
iπ

3

)n dr





=

(

4

p

) 1

3 c(p)

2πi
(−2i) Im







∫ +∞

0

g(r)
(

1 + c(p) r e
iπ

3

)n dr







= −c(p)

π

(

4

p

) 1

3

Im







∫ +∞

0

g(r)
(

1 + c(p) r e
iπ

3

)n dr







= −4(1 − p)2

9πp
Im







∫ +∞

0

g(r)
(

1 + c(p) r e
iπ

3

)n dr







which coincides with the representation ofλn in (66)–(68).
The Proof of the third expression for the sequence{λn} in (69)–(75) is based on the previous expression which

was proved above, and it enables to calculate the d.d.{λn} in an efficient way.
Proof: From equation (66), then we obtain that

∞
∑

k=n+1

λk(p)

= −4(1 − p)2

9πp
Im











∫ +∞

0
g(r)

∞
∑

k=n+1

1
(

1 + c(p) re
iπ

3

)k
dr











= −4(1 − p)2

9πp c(p)
· Im







∫ +∞

0

g(r)

r e
iπ

3

(

1 + c(p) r e
iπ

3

)n dr







= −
(

4

p

) 1

3 1

π
· Im







∫ +∞

0

g(r)

r e
iπ

3

(

1 + c(p) r e
iπ

3

)n dr







where the last transition is based on (67). Therefore, by multiplying both sides of the last equality by
(p

4

) 1

3 and
differentiating with respect top, we obtain the equality

∂

∂p

{

(p

4

) 1

3

∞
∑

k=n+1

λk(p)

}

= − 1

π
· Im

{∫ +∞

0

g(r)

r e
iπ

3

· ∂

∂p

(

(

1 + c(p) r e
iπ

3

)−n
)

∂r

}

=
n

π

∂c

∂p
· Im











∫ +∞

0

g(r)
(

1 + c(p) r e
iπ

3

)n+1 ∂r
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= −n

π

∂c

∂p

9πp

4(1 − p)2
· λn+1(p)

where the last transition is based on (66). The functionc(·) introduced in (67) is monotonic decreasing in(0, 1],
and

∂c

∂p
= −2

7

3 (1 − p)(1 + 2p)

27 p
5

3

0 < p < 1

so by combining the last equality with the previous one, it follows easily that

∂

∂p

{

(p

4

) 1

3

∞
∑

k=n+1

λk(p)

}

= n α(p) λn+1(p) (B.6)

where

α(p) , − 9p

4(1 − p)2
∂c

∂p
= −2

1

3

3

1 + 2p

1 − p

1

p
2

3

. (B.7)

From (B.6), we get that forn ≥ 2

∂

∂p

{

(p

4

) 1

3

λn(p)

}

=
∂

∂p

{

(p

4

) 1

3

∞
∑

k=n

λk(p)

}

− ∂

∂p

{

(p

4

) 1

3

∞
∑

k=n+1

λk(p)

}

= α(p)
[

(n − 1) λn(p) − n λn+1(p)
]

so, the following recursive equation follows forn ≥ 2

λn+1(p)

=
1

n

[

(n − 1)λn(p) − 1

α(p)

∂

∂p

{

(p

4

) 1

3

λn(p)

}

]

(a)
=

1

n

(

n − 1 − 1

2

1 − p

1 + 2p

)

· λn(p) − 3

2n

p(1 − p)

1 + 2p
· λ′

n(p)

=

(

(4n − 3)p + (2n − 3)
)

λn(p) − 3p(1 − p)λ′
n(p)

2(1 + 2p)n

where transition (a) is based on (B.7), and the last two transitions involve a little bit of algebra. We rewrite the
recursive equation as

λn+2(p) =
[(4n + 1)p + (2n − 1)] λn+1(p) − 3p(1 − p)λ′

n+1(p)

2(1 + 2p)(n + 1)
(B.8)

for n ≥ 1, and the initial value isλ2(p) = 1−p
2(1+2p) . Based on the recursive equation (B.8) and the value ofλ2(·),

it can be shown that

λ3(p) =
(1 − p)(1 + 16p + 10p2)

8(1 + 2p)3

λ4(p) =
(1 − p)(1 + 12p + 168p2 + 164p3 + 60p4)

16(1 + 2p)5

and so on, which suggests the possible substitutionλn+1(p) = (1−p)Pn(p)
(1+2p)2n−1 for a certain sequence of polynomials

{Pn(·)}n≥1. Combining the last substitution with (B.8) gives rather easily the recursive equation (72), and it
therefore justifies the existence of such polynomialsPn(·) in (71) which can be calculated recursively from (72)
with the initial polynomialP1(·) = 1

2 (the initial polynomial is determined from the value ofλ2(·)). In general, it
is easy to verify from (72) that forn ≥ 1, Pn(·) is a polynomial of degree2(n − 1). Eq. (75) follows easily from
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(72), as if we substitutep = 0 or p = 1 in (72), then the coefficient ofP ′
n(·) vanishes, so we obtain that for an

integern ≥ 1

Pn+1(0) =
2n − 1

2(n + 1)
Pn(0) , Pn+1(1) =

9(2n + 1)

2(n + 1)
Pn(1)

whereP1(0) = P1(1) = 1
2 . The closed form solutions forPn(0) andPn(1) are given in (75).

We will prove now a property of the polynomialsPn(·) which will be useful for the proof of the positivity of
the power series expansion ofλ(·) (see Appendix C).

Lemma 3: If for somen ∈ N, the polynomialPn(·) has a zero in the interval[0, 1], then the polynomialPn+1(·)
has also a zero in the same interval.

Proof: Since from Eq. (75),Pn(0) andPn(1) are both positive, then ifPn(·) has a zero in[0, 1], then it follows
that the minimal value ofPn(·) over this interval is obtained at an interior pointxn ∈ (0, 1). So,Pn(xn) ≤ 0 and
P

′

n (xn) = 0. Since (14 − 4n)x2 + (20n − 4)x + (2n − 1) > 0 for n ≥ 1 and x ∈ [0, 1], then from Eq. (72),
Pn+1(xn) ≤ 0. From Eq. (75),Pn+1(0) andPn+1(1) are both positive, butPn+1(xn) ≤ 0, so the continuity of the
polynomialPn+1(·) yields that this polynomial has at least one zero inside the interval [0, 1].

As a direct consequence of Lemma 3 and the equality in (71), we obtain that if for a certain positive integern,
the value ofλn(·) is positive in the interval[0, 1), then fork = 2, 3, . . . , n − 1, λk(·) should be also positive in
this interval. The above observation points towards one viable way of proving the positivity of the sequence{λn}:
show thatPn(·) is strictly positive for allx ∈ [0, 1] for n sufficiently large. The following heuristic argument shows
that this should indeed be the case. Unfortunately though, it seems nontrivial to make this argument precise, and
therefore we will use in Appendix C a different route to actually prove the positivity of the coefficients.
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n=3, 10, 30, 100, 300, and the asymptotic exponent of P
n
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Lo
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P
n(x

)/
n

n −−> infinity

Fig. 7. Plots of ln(Pn(x))
n

for the polynomialsPn(·) which are introduced in Eq. (72). In the limit wheren → ∞, these curves converge
uniformly on [0, 1] to the functionf(x) = 2 ln(1 + 2x).

Our heuristic argument goes as follows. Consider Fig. 7 whichshows
ln
(

Pn(·)
)

n for increasing values ofn. This

figure suggests that
ln
(

Pn(x)
)

n converges uniformly over the whole rangex ∈ [0, 1] to a smooth limit. In order to
find this limiting function, let us assume that approximately

Pn(x)
.
= Cnenf(x) where lim

n→∞
ln(Cn)

n
= 0.

Then we obtain that

Pn+1(x)
.
= Cn+1e

(n+1)f(x) = Cn+1e
nf(x) ef(x)

P ′
n(x)

.
= Cnnenf(x)f ′(x).
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By substituting these asymptotic expressions in (72), we obtain the equation
(

Cn+1

Cn

)

ef(x) =
(14 − 4n)x2 + (20n − 4)x + (2n − 1)

2(n + 1)

−3nx(1 + x − 2x2)f ′(x)

2(n + 1)
. (B.9)

Let us assume thatlimn→∞
Cn+1

Cn
= 1 (this assumption will be verified later). Then in the limit where n → ∞,

(B.9) yields the following differential equation

ef(x) = −2x2 + 10x + 1 − 3

2
x(1 + x − 2x2)f ′(x). (B.10)

From (B.10), it follows directly thatf(0) = 0 andf(1) = ln(9). It can be easily verified that the solution of the
differential equation (B.10) isf(x) = 2 ln(1 + 2x) which in spite of the approximation suggested above coincides
with the limiting function of ln(Pn(x))

n whenn → ∞ (see Fig. 7). We note that the assumption thatCn+1

Cn
converges

to 1 can be justified from (75) as follows: for sufficiently largen

Cn ≈ Pn(1)

enf(1)
=

Pn(1)

9n
=

1

9

1

4n

(

2n

n

)

= O

(

1√
n

)

so the limit of Cn+1

Cn
is equal to 1 asn tends to infinity. In a neighborhood ofx = 1, we obtain from the solution

for the asymptotic functionf(·) that

Pn(x)
.
=

1

9

1

4n

(

2n

n

)

(1 + 2x)2n. (B.11)

We note that after after some straightforward (though tedious) calculations, it can be shown from (72) that

P ′
n(1) =

12 · 9n−2 (n − 1)

4n

(

2n

n

)

and hence it follows from (75) thatP ′
n(1) = 4(n−1)

3 Pn(1). However, the approximation in (B.11) gives that
P ′

n(1) ≈ 4n
3 Pn(1) which is indeed a very good approximation to the equality that we get from an accurate analysis

(especially for large values ofn). We also note that if we fix the value ofn (for a large enough value ofn), and
we let p tend to unity (i.e.,p → 1−), then it follows from (72) and (B.11) that

λn+1(p) =
(1 − p)Pn(p)

(1 + 2p)2n−1

≈ 1

3

1

4n

(

2n

n

)

(1 − p)

which coincides with (76).
The asymptotic behavior of the d.d.{λn}: We will discuss now the asymptotic behavior of the d.d.{λn} which

is given in Section V-B.2. We refer the reader to [3] which relates an asymptotic expansion of a function around a
dominant singularity with the corresponding asymptotic expansion for the Taylor coefficients of the function. The
problem in our case is that in order to get good approximations of the power series expansion ofλ(·) in (15) around
the dominant singularity (which is at 1), the function can beextended analytically beyond the radius of 1 for as
far as possible except for a cone around 1 (see the solid linesin Fig. 6 which are the branch cuts ofλ(·)). The
further one can expand the function around the dominant singularity, the more it is determined by this singularity,
and the Taylor series expansion around this singularity will be very accurate for determining the behavior ofλn

starting from moderate values ofn. For the functionλ(·) in (15), if we increase the value ofp and make it closer
to 1, then unfortunately, the two other singularities ofλ(·) at z = 1 + c(p)e±

iπ

3 , wherec(·) is given in (67), move
towards 1 very quickly (e.g., ifp = 0.8, then the other two singularities are located at1.0065± 0.011255i). This is
the reason why by increasing the value ofp, the asymptotic expansion kicks in for larger values ofn (see Fig. 3).

The proof of the asymptotic behavior of the d.d.{λn} goes as follows. Ifz → 1, then the functionλ(·) in (15)
is approximately equal to1 −

√
1−z

1−p (since if u ≈ 0, thensin(u) ≈ u andarcsin(u) ≈ u). The coefficient ofzn in
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the latter function is(−1)n+1

1−p

( 1

2
n

)

which is equal to 1
1−p

1
2n−1

1
4n

(

2n
n

)

. Therefore, the contribution of the dominant
singularity ofλ(·) to the asymptotic behavior ofλn+1 (i.e., the coefficient ofzn in the Taylor series expansion of
λ(z)) is given by

1

1 − p

1

2n − 1

1

4n

(

2n

n

)

=
n− 3

2

2
√

π(1 − p)

(

1 +
3

8

1

n
+

25

128

1

n2
+ O

(

1

n3

)

)

. (B.12)

This already gives the first term of the asymptotic behavior ofλn in (73); based on our explanation above, it is a
tight approximation of the asymptotic behavior ofλn+1(p) for rather small values ofp. As was mentioned above,
for larger values ofp, the other two singularities atz1,2 = 1 + c(p)e±

iπ

3 wherec(·) is introduced in (67) are very
close to the dominant singularity atz = 1. In order to determine the asymptotic behavior ofλn+1(p) for these larger
values ofp, we therefore need to take into account the asymptotic expansion of the functionλ(·) around these
two singularities. After some algebra, one can verify that the behavior of the functionλ(·) around its singularity
at z = z1 is like

λ(z) ≈ A(z) , 1 +
ei 2π

3

3
√

2p
− 3i

2
√

2

√
z1

√

1 − z
z1

1 − p
,

and the behavior ofλ(·) around its second singularity atz = z2 is like the complex conjugate ofA(z) (sincez1

andz2 form a pair of complex conjugates). The influence of these two singularities on the asymptotic behavior of
λn+1(p) is therefore equal to2 Re{[zn]A(z)}, where[zn]A(z) designates the coefficient ofzn in the power series
expansion ofA(z). Calculation shows that forn ≥ 1

2 Re{[zn]A(z)}

=
3
√

2

2(1 − p)

1

2n − 1

1

4n

(

2n

n

)

a
−(n− 1

2)
p sin

(

(

n − 1

2

)

θp

)

whereap andθp are introduced in (74), and for large values ofn, the last expression behaves like

3

4

√

2

π

n− 3

2

1 − p
a
−(n− 1

2)
p sin

(

(

n − 1

2

)

θp

)

·
(

1 +
3

8

1

n
+

25

128

1

n2
+ O

(

1

n3

)

)

. (B.13)

The sum of the two terms in (B.12) and (B.13) finally gives the asymptotic behavior ofλn+1(p) in (73).

Appendix C: Proof of the Positivity of the Power Series Expansion of λ(·) in (15)

The functionλ(·) in (15) is analytic except for three branch cuts shown in Fig. 8. The first branch cut starts
at one and continues towards infinity. The remaining two branches are symmetric around the real axis. They are

located along the linex = 1 + c(p)re±
iπ

3 wherec(p) =
(

4(1−p)3

27p

)2/3
andr ≥ 1. By the Cauchy Theorem we have

λn+1 =
1

2πi

∮

λ(z)

zn+1
dz,

where the contour can be taken e.g., along a circle of radiusr, r < 1, enclosing the origin. Such a circle is shown
as dashed line in Fig. 8. Also shown is a modified contour of integration in which the circle is expanded so that in
the limit the integral wraps around the three branch cuts (wenote that the path of integration in Fig. 8 is clearly
different from that one in Fig. 6). Note that the modulus ofλ(z) is bounded so that for large values ofR, the
integral around the circle vanishes asR → ∞ [in Appendix B, we show that ifR → ∞ then |λ(z)| ≤ O(1) on the
circle |z| = R, so

∣

∣

∣

λ(z)
zn+1

∣

∣

∣ ≤ O
(

1
Rn+1

)

.] Taking advantage of the symmetries in the problem, we see after a little bit
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Fig. 8. The branch cuts of the functionλ(x) in (15), the original contour of integration of radiusr, r < 1, and the modified contour with
radiusR tending to infinity.

of calculus that

λn+1 = Re

{

−8(1 − p)2

9pπ

∫ ∞

1

h(r)
(

1 + c(p)re
πi

3

)n+1 dr

+ lim
ε→0+

1

πi

∫ ∞

1

λ(x + εi)

xn+1
dx

}

(C.1)

wherec(p) is introduced in (67) and

h(r) , lim
α→0+

Im







sin
(

1
3 arcsin(r

3

4 eiα)
)

r
1

4







, r ≥ 1. (C.2)

Since

lim
ε→0+

Re

{

1

πi

∫ ∞

1

λ(x + εi)

xn+1
dx

}

= lim
ε→0+

Im

{

1

π

∫ ∞

1

λ(x + εi)

xn+1
dx

}

= lim
ε→0+

Im

{

1

π

∫ ∞

1

λ(x + εi) − 1

xn+1
dx

}

= lim
ε→0+

1

π

∫ ∞

1

Im {λ(x + εi) − 1}
xn+1

dx

then forn ≥ 1, we can rewrite (C.1) in the equivalent form

λn+1 = Re











−8(1 − p)2

9pπ

∫ ∞

1

h(r)
(

1 + c(p)re
πi

3

)n+1 dr
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+ lim
ε→0+

1

π

∫ ∞

1

Im
{

λ(x + εi) − 1
}

xn+1
dx (C.3)

and the functionh(·) in (C.2) can be expressed in a simpler way as

h(r) =

√
3

4

[

(

1 +

√

1 − r−
3

2

)
1

3

−
(

1 −
√

1 − r−
3

2

)
1

3

]

,

r ≥ 1. (C.4)

Although we will not make use of this in the sequel, we note that in this representation, the function smoothly
interpolatesλn for non-integral values ofn.

We start by bounding the absolute value of the first term in the RHS of (C.3). From (C.4), it follows immediately
that h(r) is positive and monotonic increasing inr for r ≥ 1, and that it is upper bounded by2−

5

3

√
3 (which is

the limit of h(r) asr → ∞). We therefore get from the non-negativity ofc(p) in (67) that
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3pπ
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1

(
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2 dr
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3 (1 − p)2

3
√

3pπ
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1
(1 + c(p)r)−

n+1

2 dr

=
2
√

3
(

1 + c(p)
)−n−1

2

p
1

3 π(n − 1)
. (C.5)

We note that (C.5) decreases by at most a factor1√
1+c(p)

when we increasen to n + 1. We use this result later in

(C.12).
Regarding the second integral in the RHS of (C.3), we note that for x ≥ 1

lim
ε→0+

1

π
Im

{

λ(x + εi) − 1
}

=
2

π

√

1 − p

3p

t

(

(x − 1)
1

4
3
√

3p

2(1−p)
3
2

)

(x − 1)
1

4

(C.6)

where

t(u) , Im

{

e
i3π

4 sin

(

1

3
arcsin

(

ue−
iπ

4

)

)}

, u ≥ 0. (C.7)

Now, we rely on the inequality (which is verified graphically in Fig. 9, see next page)

t(u) ≥ f(u) ,
1

3
u − 16

729
u5 , u ≥ 0. (C.8)
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Fig. 9. A plot which verifies graphically the inequality in (C.8).

It follows from (C.6), (C.7) and (C.8) that

lim
ε→0+

1

π
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Im {λ(x + εi) − 1}
xn+1

dx
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π
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4 xn+1
dx
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1
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xn+1
dx
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√
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− 315p2 Γ(n − 7
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√
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. (C.9)

Equality (C.9) follows from the identity
∫ ∞

1

(x − 1)α

xn+1
dx =

Γ(α + 1) Γ(n − α)

Γ(n + 1)
, −1 < α < n (C.10)

whereΓ(·) designates the complete Gamma function [the integral in theLHS of (C.10) can be calculated by the
substitutionx = 1

1−u which transforms it to
∫ 1
0 (1 − u)n−α−1uα du, and then the latter integral is by definition

equal toB(α+1, n−α) whereB(·, ·) designates the Beta function; this function is related to the complete Gamma
function by the equalityB(m, n) = Γ(m)Γ(n)

Γ(m+n) .]. SinceΓ(x + 1) = xΓ(x), andΓ
(

1
2

)

=
√

π, then we obtain from
(C.10) that
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which confirms the equality in (C.9).
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We note that (C.9) (which forms a lower bound on the second term in the RHS of (C.3)) decreases by at most a
factor 1− 3

2(n+1) uniformly overp when we increasen to n + 1 (it can be shown by using the recursive equation
Γ(x + 1) = xΓ(x) for the complete Gamma function).

From (C.3), (C.5) and (C.9) and sincec(·) in (67) is a monotonic decreasing and non-negative functionover the
interval (0, 1), it now follows that if for a specificn∗ ∈ N and for allp ∈ [0, p∗]

Γ(n∗ − 1
2)

2(1 − p)
√

π Γ(n∗ + 1)
− 315p2 Γ(n∗ − 7

2)

16(1 − p)7
√

π Γ(n∗ + 1)

≥ 2
√

3(1 + c(p))−
n∗

−1

2

πp
1

3 (n∗ − 1)
, (C.11)

1 − 3

2(n∗ + 1)
≥ 1

√

1 + c(p∗)
(C.12)

thenλn(p) > 0 for all n > n∗ andp ∈ [0, p∗].
In the following, we consider the positivity of the sequence{λn(p)} for p ∈ [0, 0.95]. From the above bounds, it

follows that we can prove the positivity of this sequence in some bandp ∈ [0, p∗] by checking the positivity of only
a finite number of terms in this sequence (we note that this number grows dramatically for values ofp∗ which are
very close to 1). Assume we pickp∗ = 0.95. By explicitly evaluating (C.11), we see that we needn∗ ≥ 7957. From
condition (C.12), we getn∗ ≥ 4144, so a valid choice for the fulfillment of both conditions isn∗ = 7957. Based
on (C.11) and (C.12), we conclude thatλn(p) > 0 for all n > n∗ andp ∈ [0, p∗]. For n ≤ n∗ and allp ∈ [0, 1),
we will verify the positivity of the coefficients{λn(p)} by alternatively showing that forn ≤ n∗, the polynomials
Pn(·) in (72) are positive in the interval[0, 1]. This equivalence follows from (71). First we can observe from(75)
that sincePn(0) andPn(1) are positive for alln ∈ N, then the polynomialsPn(·) are positive in the interval[0, 1]
if and only if they have no zeros inside this interval. Hence,based on Lemma 3 (see Appendix B), one can verify
the positivity ofPn(p) for n ≤ n∗ andp ∈ [0, 1] by simply verifying the positivity ofPn∗(·) in the interval[0, 1].
To complete our proof, we proceed as follows. We write

Pn(p) =

2(n−1)
∑

i=0

b
(n)
i (p − p0)

i (C.13)

where for convenience we choosep0 = 1
2 (this will be readily clarified). Based on (69) wherePn(p) =

∑2(n−1)
i=0 a

(n)
i pi,

it follows that

b
(n)
i =

P
(i)
n (p0)

i!
=

∑

j≥i

(

j

i

)

a
(n)
j pj−i

0 . (C.14)

Therefore, from the recursive equation (70) for{a(n)
i } and from (C.14), it follows that all coefficients{b(n)

i } are
rational and can be calculated from the coefficients{a(n)

i } which are defined recursively in (70) and are rational
as well. Using an infinite precision package, those coefficients can be computed exactly. By explicit computation,
we verify that all the coefficientsb(n)

i are strictly positive forn = n∗ and 0 ≤ i ≤ 2(n∗ − 1), and therefore it
follows from (C.13) thatPn∗(·) is positive (and strictly increasing) in the interval[p0, 1]. For p ∈ [0, p0], one can
verify from the conditions in (C.11) and (C.12) thatλn+1(p) and Pn(p) are positive forn ≥ 57 and p ∈ [0, p0].
Combining these results, we conclude thatPn∗(·) is positive in the interval[0, 1]. This therefore concludes the proof
that λn(p) is positive for alln ∈ N and p ∈ [0, 0.95]. Though not proving the positivity ofλn(·) over the whole
interval [0, 1), we note that the uniform convergence of the plots which are depicted in Fig. 7 (see Appendix B)
and (71) strongly supports our conjecture about the positivity of λn(·) over this interval.
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