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Abstract

We present two sequences of ensembles of non-systematic irregular repeat-accumulate codes
which asymptotically (as their block length tends to infinity) achieve capacity on the binary
erasure channel (BEC) with bounded complexity per information bit. This is in contrast to all
previous constructions of capacity-achieving sequences of ensembles whose complexity grows at
least like the log of the inverse of the gap (in rate) to capacity. The new bounded complexity
result is achieved by puncturing bits, and allowing in this way a sufficient number of state
nodes in the Tanner graph representing the codes. We also derive an information-theoretic
lower bound on the decoding complexity of randomly punctured codes on graphs. The bound
holds for every memoryless binary-input output-symmetric channel, and is refined for the BEC.

1 Introduction

During the last decade, there have been many exciting developments in the construction
of low-complexity error-correction codes which closely approach the capacity of many
standard communication channels with feasible complexity. These codes are understood
to be codes defined on graphs, together with the associated iterative decoding algorithms.
By now, there is a large collection of these codes that approach the channel capacity quite
closely with moderate complexity.

The first capacity-achieving sequences of ensembles of low-density parity-check (LDPC)
codes for the binary erasure channel (BEC) were found by Luby et al. [4, 5] and Shokrol-
lahi [12]. Following these pioneering works, Oswald and Shokrollahi presented in [6] a
systematic study of capacity-achieving degree distributions (d.d.) for sequences of en-
sembles of LDPC codes whose transmission takes place over the BEC. Capacity-achieving
ensembles of irregular repeat-accumulate (IRA) codes for the BEC were introduced and
analyzed in [1, 11], and also capacity-achieving ensembles for erasure channels with mem-
ory were designed and analyzed in [7].

In [2, 3], Khandekar and McEliece discussed the decoding complexity of capacity-
approaching ensembles of irregular LDPC and IRA codes for the BEC and more general
channels. They have conjectured that if the achievable rate under message-passing it-
erative (MPI) decoding is a fraction 1 − ε of the channel capacity with vanishing bit
error/erasure probability, then for a wide class of channels, the decoding complexity
scales like 1

ε
ln 1

ε
. This conjecture is based on the assumption that the number of edges

(per information bit) in the associated bipartite graph scales like ln 1
ε
, and the required



number of iterations under MPI decoding scales like 1
ε
. However, for capacity-achieving

and low-complexity ensembles of codes on the BEC, the decoding complexity under the
MPI algorithm behaves like ln 1

ε
(see [4, 10, 11, 12]). This is since the absolute reliability

provided by the BEC allows every edge in the graph to be used only once during MPI
decoding.

In [10], Sason and Urbanke considered the question of how sparse can parity-check
matrices of binary linear codes be, as a function of their gap (in rate) to capacity (where
this gap depends on the channel and the decoding algorithm). If the code is represented
by a standard Tanner graph without state nodes, the decoding complexity under MPI
decoding is strongly linked to the density of the corresponding parity-check matrix (i.e.,
the number of edges in the graph per information bit). In particular, they considered an
arbitrary sequence of binary linear codes which achieves a fraction 1−ε of the capacity of
a memoryless binary-input output-symmetric (MBIOS) channel with vanishing bit error
probability. By information-theoretic tools, they proved that for every such sequence
of codes and every sequence of parity-check matrices which represent these codes, the

asymptotic density of the parity-check matrices grows at least like
K1+K2 ln 1

ε

1−ε
where K1

and K2 are constants which were given explicitly as a function of the channel statistics
(see [10, Theorem 2.1]). It is important to mention that this bound is valid under
ML decoding, and hence, it also holds for every sub-optimal decoding algorithm. The
tightness of the lower bound for MPI decoding on the BEC was demonstrated in [10,
Theorem 2.3] by analyzing the capacity-achieving sequence of check-regular LDPC-code
ensembles introduced by Shokrollahi [12]. Based on the discussion in [10], it follows that
for every iterative decoder which is based on the standard Tanner graph, there exists
a fundamental tradeoff between performance and complexity, and the complexity (per
information bit) becomes unbounded when the gap between the achievable rate and the
channel capacity vanishes. Therefore, it was suggested in [10] to study if better tradeoffs
can be achieved by allowing more complicated graphical models (e.g., graphs which also
involve state nodes).

In this paper, we present sequences of capacity-achieving ensembles for the BEC with
bounded complexity under MPI decoding. The new ensembles are non-systematic IRA
codes with properly chosen d.d. (for background on IRA codes, see [1] and Section 2).
The new bounded complexity results improve on the results in [11], and demonstrate the
superiority of properly designed non-systematic IRA codes over systematic IRA codes
(since with probability 1, the complexity of any sequence of ensembles of systematic IRA
codes becomes unbounded under MPI decoding when the gap between the achievable
rate and the capacity vanishes [11, Theorem 1]). The new bounded complexity result is
achieved by allowing a sufficient number of state nodes in the Tanner graph representing
the codes. Hence, it answers in the affirmative a fundamental question which was posed
in [10] regarding the impact of state nodes in the graph on the performance versus
complexity tradeoff under MPI decoding. We suggest a particular sequence of capacity-
achieving ensembles of non-systematic IRA codes where the degree of the parity-check
nodes is 5, so the complexity per information bit under MPI decoding is equal to 5

1−p

when the gap (in rate) to capacity vanishes (p designates the bit erasure probability of the
BEC). We note that our method of truncating the check d.d. is similar to the bi-regular
check d.d. introduced in [14] for non-systematic IRA codes.

We also present an information-theoretic lower bound on the decoding complexity of
randomly punctured codes on graphs. The bound holds for every MBIOS channel with
a refinement for the BEC.



The structure of the paper is as follows: Section 2 provides preliminary material on
ensembles of IRA codes, Section 3 presents our main results. For the sake of brevity, we
omit the proofs; the interested reader is referred to [8] for the proofs, and also for other
analytical and numerical results w.r.t. the considered d.d. which are discussed in the
full paper version [8]. Practical considerations and simulation results for our ensembles
of IRA codes are presented in Section 4. We conclude our discussion in Section 5.

2 IRA Codes
We consider in our first two theorems ensembles of non-systematic IRA codes. We assume
that all information bits are punctured. The Tanner graph of these codes is shown in
Fig. 1. These codes can be viewed as serially concatenated codes, where the outer code
is a mixture of repetition codes of varying order and the inner code is generated by a
differential encoder with puncturing. We define these ensembles by a uniform choice of
the interleaver separating the component codes.

We assume that a randomly selected code from this ensemble is used to communicate
over a BEC with erasure probability p. The asymptotic performance of the MPI decoder
(as the block length tends to infinity) can be analyzed by tracking the average fraction
of erasure messages which are passed in the graph of Fig. 1 during the lth iteration. This
technique is known as density evolution (DE) [9]. Using the same notation as in [1], let
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Figure 1: The Tanner graph of IRA codes.

x
(l)
0 be the probability of erasure for a message from information nodes to parity-check

nodes, x
(l)
1 be the probability of erasure from parity-check nodes to code nodes, x

(l)
2 be

the probability of erasure from code nodes to parity-check nodes, and finally, let x
(l)
3 be

the probability of erasure for messages from parity-check nodes to information nodes (see
Fig. 1). We now assume that we are at a fixed point of the MPI decoding algorithm, and
solve for x0. We obtain the following equations:

x1 = 1− (1− x2)R(1− x0), (1)

x2 = px1, (2)

x3 = 1− (1− x2)
2ρ(1− x0), (3)

x0 = λ(x3), (4)

where R(x) =
∑∞

i=1 Ri xi is a power series where the coefficient Ri denotes the fraction
of parity-check nodes that are connected to i information nodes (as is depicted in Fig. 1,
we note that every parity-check node is also connected to two code bits; this is a result of
the differential encoder which is the inner code of the considered construction of serially
concatenated and interleaved codes). The power series ρ(x) =

∑∞
i=1 ρix

i−1 is given from



the edge perspective, where ρi designates the fraction of edges in the Tanner graph (see
Fig. 1) which are connected to parity-check nodes of degree i; as before, the degree of the
parity-check nodes refers to the number of edges which are only connected to information
nodes. Therefore, R(·) and ρ(·) are related by the equation

R(x) =

∫ x

0
ρ(t) dt∫ 1

0
ρ(t) dt

.

The only difference between equations (1)–(4) and those in [1] is the removal of a p in (4),
since all the information bits are punctured in the considered ensemble of codes. Solving
this set of equations for a fixed point of MPI decoding provides the equation

x0 = λ

(
1−

[
1− p

1− pR(1− x0)

]2

ρ(1− x0)

)
. (5)

If Eq. (5) has no solution in the interval (0, 1] and the RHS is less than one at x0 = 1,
then according to the DE analysis of MPI decoding, the bit erasure probability must
converge to zero. Therefore, the condition that

λ

(
1−

[
1− p

1− pR(1− x)

]2

ρ(1− x)

)
< x, ∀x ∈ (0, 1], (6)

implies vanishing bit erasure probability under MPI decoding as the block length tends
to infinity.

The design rate of the ensemble of non-systematic IRA codes can be computed by
matching edges in decoding graph shown in Fig. 1. This implies that the design rate is
equal to

RIRA =

∫ 1

0
λ(x) dx∫ 1

0
ρ(x) dx

. (7)

Furthermore, we show in [8] that RIRA = 1− p for any pair of d.d. (λ, ρ) which satisfies
Eq. (5) for all x0 ∈ [0, 1].

In order to find a capacity-achieving ensemble of IRA codes, we generally start by
finding a pair of d.d. (λ, ρ) with non-negative power series expansions which satisfies
Eq. (5) for all x0 ∈ [0, 1]. Next, we slightly modify λ(·) or ρ(·) so that Eq. (6) is satisfied
and the new design rate in Eq. (7) is equal to (1 − ε)(1 − p) for an arbitrarily small ε.
Since the capacity of the BEC is 1 − p, this gives an ensemble which has vanishing bit
erasure probability under MPI decoding at rates which are arbitrarily close to capacity.

3 Main Results

Definition 1. Let {Cm} be a sequence of binary linear codes of rate Rm, and assume
that for every m, the codewords of the code Cm are transmitted with equal probability
over a channel whose capacity is C. This sequence is said to achieve a fraction 1− ε of
the channel capacity with vanishing bit error probability if limm→∞ Rm ≥ (1 − ε)C, and
there exists a decoding algorithm under which the average bit error probability of the
code Cm tends to zero in the limit where m tends to infinity.1

1We refer to vanishing bit erasure probability for the particular case of a BEC.



Definition 2. Let C be an ensemble of LDPC or IRA codes whose d.d., λ(·) and ρ(·),
can be chosen arbitrarily (subject to possibly some constraints). The encoding and the
decoding complexity are measured in operations per information bit which are required
for achieving a fraction 1 − ε of the channel capacity with vanishing bit error/erasure
probability. Unless the pair of d.d. is specified, the encoding and the decoding complexity
are measured with respect to the best ensemble (i.e., for the optimized pair of d.d.), and
refer to the average complexity over this ensemble (as the block length of the codes
tends to infinity, the complexity of a typical code from this ensemble concentrates to the
average complexity). We denote the encoding and the decoding complexity by χE(ε, C)
and χD(ε, C), respectively.

We note that for the BEC, both the encoding and the decoding complexity of IRA
codes under MPI decoding are equal to the normalized number of edges per information
bit in the associated Tanner graph.

Theorem 1 (Bit-Regular Ensembles with Bounded Complexity). Consider the
ensemble of bit-regular non-systematic IRA codes C, where the d.d. of the information
bits is given by λ(x) = xq−1 (q ≥ 3) which implies that each information bit is repeated
q times. Assume that the transmission takes place over a BEC with erasure probability
p, and let the d.d. of the parity-check nodes2 be

ρ(x) =
1− (1− x)

1
q−1

[
1− p

(
1− qx + (q − 1)

[
1− (1− x)

q
q−1

])]2 .

Let ρn be the coefficient of xn−1 in the power series expansion of ρ(x) and, for an arbitrary
ε ∈ (0, 1), define M(ε) to be the smallest positive integer3 M such that

M∑
n=2

ρn > 1− ε

q(1− p)
.

The ε-truncated d.d. of the parity-check nodes is now given by

ρε(x) =


1−

M(ε)∑
n=2

ρn


 +

M(ε)∑
n=2

ρnx
n−1 .

For q = 3 and p ∈ (0, 1
13

], the polynomial ρε(·) has only non-negative coefficients, and
the d.d. pair (λ, ρε) achieves a fraction 1− ε of the channel capacity with vanishing bit
erasure probability under MPI decoding. Moreover, the complexity (per information bit)
of encoding and decoding satisfies

χE(ε, C) = χD(ε, C) < q +
2

(1− p)(1− ε)
.

In the limit as ε tends to zero, the capacity is achieved (using MPI decoding) with a
bounded complexity of q + 2

1−p
.

2The d.d. of the parity-check nodes refers only to the connection of the parity-check nodes with the
information nodes. Every parity-check node is also connected to two code bits (see Fig. 1), but this is
not included in ρ(x).

3The existence of M(ε) for ε ∈ (0, 1) follows from the fact that ρn = O(n−q/(q−1)) and
∑∞

n=2 ρn = 1.
This implies that

∑M
n=2 ρn can be made arbitrarily close to 1 by increasing M . It can be shown that

M(ε) = O
(

1
εq−1

)
.



Theorem 2 (Check-Regular Ensemble with Bounded Complexity). Consider
the ensemble of check-regular non-systematic IRA codes C, where the d.d. of the parity-
check nodes is given by ρ(x) = x2. Assume that the transmission takes place over a BEC
with erasure probability p, and let the d.d. of the information bit nodes be4

λ(x) = 1 +

2p(1− x)2 sin

(
1
3
arcsin

(√
−27p(1−x)

3
2

4(1−p)3

))

√
3 (1− p)4

(
−p(1−x)

3
2

(1−p)3

) 3
2

. (8)

Let λn be the coefficient of xn−1 in the power series expansion of λ(x) and, for an arbitrary
ε ∈ (0, 1), define M(ε) to be the smallest positive integer5 M such that

M∑
n=2

λn

n
>

(1− p)(1− ε)

3
.

This infinite bit d.d. is truncated by treating all information bits with degree greater
than M(ε) as pilot bits (i.e., these information bits are set to zero). Let λε(x) be the
ε-truncated d.d. of the bit nodes. Then, for all p ∈ [0, 0.95], the polynomial λε(·) has only
non-negative coefficients, and the modified d.d. pair (λε, ρ) achieves a fraction 1−ε of the
channel capacity with vanishing bit erasure probability under MPI decoding. Moreover,
the complexity (per information bit) of encoding and decoding is bounded and satisfies

χE(ε, C) = χD(ε, C) <
5

(1− p)(1− ε)
.

In the limit as ε tends to zero, the capacity is achieved with a bounded complexity of 5
1−p

.

The following two conjectures extend Theorems 1 and 2 to a wider range. Both of
these conjectures can be proved by showing that the power series expansions of λ(x)
and ρ(x) are non-negative for this wider range. Currently, we can show that the power
series expansions of λ(x) and ρ(x) are non-negative over this wider range only for small
to moderate values of n (using numerical methods) and very large values of n (using
asymptotic expansions). We note that if these conjectures hold, then Theorem 1 is
extended to the range p ∈ [0, 3

13
] (as q →∞), and Theorem 2 is extended to the entire

range p ∈ [0, 1).

Conjecture 1. The result of Theorem 1 also holds for q ≥ 4 if

p ≤





6− 7q + 2q2

6− 13q + 8q2
4 ≤ q ≤ 8

12− 17q + 6q2

12− 37q + 26q2
q ≥ 9

.

We note that Conjecture 1 is implied by the analysis in [8, Appendix A].

4For real numbers, one can simplify the expression of λ(x) in (8). However, since we consider λ(·) in
[8] as a function of a complex argument, we prefer to leave it in the form of (8).

5The existence of M(ε) for ε ∈ (0, 1) follows from the fact that λn = O(n−3/2) and
∑∞

n=2
λn

n = 1−p
3 .

This implies that
∑M

n=2
λn

n can be made arbitrarily close to 1−p
3 by increasing M . It can be shown that

M(ε) = O
(

1
ε2/3

)
.



Conjecture 2. The result of Theorem 2 also holds for p ∈ (0.95, 1).

In continuation to Theorem 2 and Conjecture 2, it is worth noting that [8, Appendix C]
suggests a conceptual proof which in general could enable one to verify the non-negativity
of the d.d. coefficients {λn} for p ∈ [0, 1 − ε], where ε > 0 can be made arbitrarily
small. This proof requires though to verify the positivity of a fixed number of the d.d.
coefficients, where this number grows considerably as ε tends to zero. We chose to verify
it for all n ∈ N and p ∈ [0, 0.95]. We note that a direct numerical calculation of {λn} for
small to moderate values of n, and the asymptotic behavior of λn (which is derived in [8,
Appendix B]) strongly supports Conjecture 2.

Theorem 3 (Information-Theoretic Bound on the Complexity of Punctured
Codes over the BEC). Let {C ′m} be a sequence of binary linear block codes, and let
{Cm} be a sequence of codes which is constructed by randomly puncturing information
bits from the codes in {C ′m}.6 Let Ppct designate the puncturing rate of the information
bits, and suppose that the communication of the punctured codes takes place over a BEC
with erasure probability p, and that the sequence {Cm} achieves a fraction 1 − ε of the
channel capacity with vanishing bit erasure probability. Then with probability 1 w.r.t.
the random puncturing patterns, and for an arbitrary representation of the sequence of
codes {C ′m} by Tanner graphs, the asymptotic decoding complexity under MPI decoding
satisfies

lim inf
m→∞

χD(Cm) ≥ p

1− p


 ln

(
Peff

ε

)

ln
(

1
1−Peff

) + lmin




where
Peff , 1− (1− Ppct)(1− p)

and lmin designates the minimum number of edges which connect a parity-check node with
the nodes of the parity bits.7 Hence, a necessary condition for a sequence of randomly
punctured codes {Cm} to achieve the capacity of the BEC with bounded complexity is
that the puncturing rate of the information bits satisfies the condition Ppct = 1−O(ε).

Theorem 4 suggests an extension of Theorem 3, though as is clarified in [8], the lower
bound in Theorem 3 is at least twice larger than the following lower bound when applied
to the particular case of a BEC.

Theorem 4 (Information-Theoretic Bound on the Complexity of Punctured
Codes: General Case). Let {C ′m} be a sequence of binary linear block codes, and let
{Cm} be a sequence of codes which is constructed by randomly puncturing information
bits from the codes in {C ′m}. Let Ppct designate the puncturing rate of the information
bits, and suppose that the communication takes place over an MBIOS channel whose
capacity is equal to C bits per channel use. Assume that the sequence of punctured
codes {Cm} achieves a fraction 1 − ε of the channel capacity with vanishing bit error

6Since we do not require that the sequence of original codes {C′m} is represented in a systematic form,
then by saying ’information bits’, we just refer to any set of bits in the code C′m whose size is equal
to the dimension of the code and whose corresponding columns in the parity-check matrix are linearly
independent. This enables to define such a set in a non-unique way. If the sequence of the original
codes {C′m} is systematic (e.g., turbo or IRA codes before puncturing), then it is natural to define the
information bits as the systematic bits of the code.

7The fact that the value of lmin can be changed according to the choice of the information bits is a
consequence of the bounding technique.



probability. Then with probability 1 w.r.t. the random puncturing patterns, and for an
arbitrary representation of the sequence of codes {C ′m} by Tanner graphs, the asymptotic
decoding complexity per iteration under MPI decoding satisfies

lim inf
m→∞

χD(Cm) ≥ 1− C

2C

ln
(

1
ε

1−(1−Ppct)C

2C ln 2

)

ln
(

1
(1−Ppct)(1−2w)

)

where

w , 1

2

∫ +∞

−∞
min (f(y), f(−y)) dy

and f(y) , p(y|x = 1) designates the conditional pdf of the channel, given the input is
x = 1. Hence, a necessary condition for a sequence of randomly punctured codes {Cm} to
achieve the capacity of an MBIOS channel with bounded complexity per iteration under
MPI decoding is that the puncturing rate of the information bits satisfies Ppct = 1−O(ε).

Remark 1 (Deterministic Puncturing). It is worth noting that Theorems 3 and 4
both depend on the assumption that the set of information bits to be punctured is cho-
sen randomly. It is an interesting open problem to derive information-theoretic bounds
that apply to every puncturing pattern (including the best carefully designed puncturing
pattern for a particular code). We also note that for any deterministic puncturing pat-
tern which causes each parity-check to involve at least one punctured bit, the bounding
technique which is used in the proofs of Theorems 3 and 4 becomes trivial and does not
provide a meaningful lower bound on the complexity in terms of the gap (in rate) to
capacity.

4 Code construction and Simulation Results

The performance of the check-regular construction (see Theorem 2) was evaluated using
a number of codes. A fixed rate of 1/2 was chosen and non-systematic IRA codes of
various block lengthes and maximum degrees were generated. For comparison, LDPC
codes from the check-regular capacity-achieving ensemble [12] were constructed in the
same manner. The IRA code ensembles were formed by truncating the algebraic d.d.
function to M = 25, 50. The LDPC code ensembles were formed by choosing the check
degree to be d = 8, 9 and then truncating the bit d.d. so that λ(1) = 1. This approach
leads to maximum bit degrees of M = 61, 126, respectively. Actual codes of length
N = 8192, 65536 and 524288 were chosen from these ensembles, and simulated over
the BEC. Computer simulation results are presented in Fig. 2 for a block length of
N = 8192, 65536 and 524288 bits. The examined ensembles are chosen randomly.

The random construction starts by quantizing the d.d. to integer values according to
the block length. Next, it matches bit edges with check edges in a completely random
fashion. Since this approach usually leads both multiple edges and 4-cycles, a post-
processor is used. One iteration of post-processing randomly swaps all edges involved in
a multiple-edge or 4-cycle events. This is repeated until there are no more multiple edges
or 4-cycles. For the IRA codes, a single “dummy” bit is used to collect all of the edges
originally destined for bits of degree greater than M . Since this bit is known to be zero,
its column is removed to complete the construction. After this removal, the remaining
IRA code is no longer check regular because this “dummy” bit is allowed to have multiple
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Figure 2: BER for random rate 1/2 codes from the check-regular IRA ensemble in The-
orem 2 and the check-regular LDPC ensemble [12] for N = 8192, 65536, and 524288.
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λ(x) = x2 and ρ(x) = x36. The curves are shown for N = 8000, 64000, and 500000.



edges. In fact, it is exactly the check nodes which are reduced to degree 1 that allow
decoding to get started. The bit-regular plot in Fig. 3 compares systematic IRA codes
with λ(x) = x2 and ρ(x) = x36 (i.e., rate 0.925) with bit-regular non-systematic codes
formed by our construction in Theorem 1 with q = 3. All of these codes do not use the
outer Hamming code. Still, the error floors are much better because of all degree 3 bit
nodes. Finally, a small number of systematic bits (100–200) are used to get decoding
started. By comparing Theorems 1 and 2, we see that the bit-regular ensembles of
IRA codes in Theorem 1 are limited to high rates (for q = 3, the rate should be at least
12
13
≈ 0.9231), in contrast to the check-regular ensembles (see Theorem 2 and Conjecture 2

in Section 3).

5 Conclusions

In this work, we present two sequences of ensembles of non-systematic irregular repeat-
accumulate (IRA) codes which asymptotically (as their block length tends to infinity)
achieve capacity on the binary erasure channel (BEC) with bounded complexity (through-
out this paper, the complexity is normalized per information bit). These are the first
capacity-achieving ensembles with bounded complexity on the BEC to be reported in the
literature. All previously reported capacity-achieving sequences have a complexity which
grows at least like the log of the inverse of the gap (in rate) to capacity. This includes
capacity-achieving ensembles of LDPC codes [4, 5, 12], systematic IRA codes [1, 11], and
Raptor codes [13].

We show that under message-passing iterative (MPI) decoding, this new bounded
complexity result is only possible because we allow a sufficient number of state nodes in
the Tanner graph representing a code ensemble. The state nodes in the Tanner graph of
the examined IRA ensembles are introduced by puncturing all the information bits. We
also derive an information-theoretic lower bound on the decoding complexity of randomly
punctured codes on graphs. The bound refers to MPI decoding, and it is valid for an ar-
bitrary memoryless binary-input output-symmetric channel with a special refinement for
the BEC. Since this bound holds with probability 1 w.r.t. a randomly chosen puncturing
pattern, it remains an interesting open problem to derive information-theoretic bounds
that can be applied to every puncturing pattern. Under MPI decoding and the random
puncturing assumption, it follows from the information-theoretic bound that a necessary
condition to achieve the capacity of the BEC with bounded complexity or to achieve the
capacity of a general memoryless binary-input output-symmetric channel with bounded
complexity per iteration is that the puncturing rate of the information bits goes to one.
This is consistent with the fact that the capacity-achieving IRA code ensembles intro-
duced in this paper are non-systematic, where all the information bits of these codes are
punctured.

In Section 4, we use simulation results to compare the performance of our ensembles
to the check-regular LDPC ensemble introduced by Shokrollahi [12] and to ensembles of
systematic RA codes. For the cases tested, the performance of our check-regular IRA
codes is slightly worse than that of the check-regular LDPC codes. It is clear from these
results that the fact that these capacity-achieving ensembles have bounded complexity
does not imply that their performance, for small to moderate block lengths, is superior
to other reported capacity-achieving ensembles. Note that for fixed complexity, the new
codes eventually (for n large enough) outperform any code proposed to date. On the
other hand, the convergence speed to the ultimate performance limit happens to be quite



slow, so for small to moderate block lengths, the new codes are not necessarily record
breaking. Further research into the construction of codes with bounded complexity is
likely to produce codes with better performance for small to moderate block lengths.

The central point in this paper is that by allowing state nodes in the Tanner graph, one
may obtain a significantly better tradeoff between performance and complexity as the gap
to capacity vanishes. Hence, it answers in the affirmative a fundamental question which
was posed in [10] regarding the impact of state nodes (or in general, more complicated
graphical models than bipartite graphs) on the performance versus complexity tradeoff
under MPI decoding. Even the more complex graphical models, employed by systematic
IRA codes, provides no asymptotic advantage over codes which are presented by bipartite
graphs under MPI decoding (see [10, Theorems 1, 2] and [11, Theorems 1, 2]). Non-
systematic IRA codes do provide, however, this advantage over systematic IRA codes;
this is because the complexity of systematic IRA codes becomes unbounded, under MPI
decoding, as the gap to capacity goes to zero.
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