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Related Work

Related Work: Approaches for Asymptotic Analysis

Assume an LDPC code ensemble whose transmission takes place
over a memoryless binary-input output-symmetric channel.

Consider the asymptotic case where the block length tends to ∞.

Ardakani et al. (Allerton & ISIT 2005)
Numerical approximations for the number of iterations and
decoding complexity are provided.

This enables to numerically optimize LDPC code ensembles with
good asymptotic tradeoff between performance and complexity.

However, this approach does not provide rigorous bounds on the
convergence speed of an iterative message-passing decoder.
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Related Work

Related Work (2)

Ma and Yang (ISIT 2004), and Ma’s PhD thesis (2007)
Provide asymptotic bounds on the number of iterations for the
case of a binary erasure channel (BEC).

The bounds serve for numerical optimization of LDPC code
ensembles with fast decoding speed over the BEC.

The bounds do not characterize explicitly how the number of
iterations increases when the gap (in rate) to capacity vanishes.
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Related Work

Related Work (3)

Conjecture (Khandekar and McEliece, ISIT 2001)
For a large class of channels, if the design rate of a suitably designed
ensemble forms a fraction 1 − ε of the channel capacity, then the
decoding complexity scales like 1

ε
ln 1

ε
.

The logarithmic term in this expression is attributed to the graphical
complexity (i.e., the decoding complexity per iteration) and the number
of iterations scales like 1

ε
.

For the BEC, the absolute reliability of the messages allows every
edge in the graph to be used only once during the iterative decoding
so the decoding complexity behaves like ln 1

ε
.
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Scope of This Work

Scope of This Work

Introduce new lower bounds on the number of iterations for the BEC
where these bounds:

Apply to various code ensembles defined on graphs (e.g., LDPC,
RA, IRA, ARA) in the asymptotic case where n → ∞.
The lower bounds on the required number of iterations are
expressed in terms of

I the achievable gap to capacity
I the target bit erasure probability
I the fraction of degree-2 variable nodes (i.e., they don’t depend

explicitly on the full characterization of the degree distributions).
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Lower bounds on the number of iterations and proof outlines LDPC codes

Theorem

Let
{

(n, λ, ρ)
}

be a sequence of LDPC code ensembles (n → ∞).
Lets assume

Transmission over a BEC with erasure probability p.

The sequence achieves 1 − ε of the channel capacity with
vanishing bit erasure prob. under message-passing decoding.

L2(ε) - fraction of variable nodes of degree 2.

Then, the number of iterations (l) required to achieve an average bit
erasure probability Pb over the ensemble satisfies

l ≥
2

1 − p

(

√

p L2(ε) −
√

Pb

)2 1
ε

.

provided that Pb < p L2(ε).
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Lower bounds on the number of iterations and proof outlines LDPC codes

On the fraction of variable nodes of degree 2

For various capacity-achieving sequences of LDPC ensembles over
the BEC

L2(ε) −−−→
ε→0

1
2

irrespectively of the erasure probability of the channel.
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Lower bounds on the number of iterations and proof outlines LDPC codes

On the fraction of variable nodes of degree 2

Corollary
If L2(ε) does not tend to zero as the gap (ε) to capacity vanishes then

l(ε) = Ω

(

1
ε

)

.

This supports the conjecture by Khandekar and McEliece.
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Lower bounds on the number of iterations and proof outlines LDPC codes

Proof Outline
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Define the EXIT functions.

v(x) =
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)

0 ≤ x ≤ p

1 p < x ≤ 1
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Asymptotically, as the block length tends
to infinity, we assume vanishing bit erasure
prob. under message-passing decoding.

⇒ Density evolution implies:
c(x) < v(x) for all x ∈ (0, 1).
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Area theorem:
∫ 1

0

(

v(x)− c(x)
)

dx =
C − R

aL
=

Cε

aL

aL - average left degree of the ensemble.
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The EXIT functions can be used to track
the progress of the iterative decoder.
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Area of i’th triangle: Bi = |vi|
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Slope = 1
p λ2

Slope = ρ′(1)

Monotonicity and concavity of c(x) and v(x):
Triangles are trapped between c(x) and v(x).
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Lower bounds on the number of iterations and proof outlines LDPC codes

Proof Outline (Cont.)

Based on the area theorem and the stability condition, we get
from the last picture:

C ε

aL
≥

1
2

(

1
ρ′(1)

+ pλ2

) l−1
∑

i=0

|vi |
2

≥ pλ2

l−1
∑

i=0

|vi |
2

where l is an arbitrary natural number.

Cauchy-Schwartz inequality:
(

∑l−1
i=0 |vi |

)2
≤ l

∑l−1
i=0 |vi |

2
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Lower bounds on the number of iterations and proof outlines LDPC codes

Proof Outline (Cont.)

l – Number of iterations required to achieve a bit erasure prob. Pb.

Based on density evolution:
l−1
∑

i=0

|vi | ≥ 1 − L−1
(

Pb

p

)

.

Substituting this and solving for l gives

l ≥
2

1 − p

(

√

p L2 −
√

Pb

)2 1
ε

.
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Lower bounds on the number of iterations and proof outlines LDPC codes

The graphical complexity perspective
In the asymptotic case where n → ∞

The graphical complexity of capacity-approaching LDPC and
systematic irregular repeat-accumulate (IRA) ensembles is
un-bounded as the gap to capacity vanishes and scales at least
like ln 1

ε
(I.S. & R. Urbanke, Trans. on IT, 2003 and 2004).

Adding state nodes to the graph provides an improved tradeoff:
I Capacity-achieving ensembles of non-systematic IRA codes with

bounded graphical complexity (Pfister et al., Trans. IT, July 2005).
I Capacity-achieving ensembles of systematic

accumulate-repeat-accumulate (ARA) codes with bounded
complexity (Pfister & Sason, Trans. IT, June 2007).
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Lower bounds on the number of iterations and proof outlines LDPC codes

Question
Can state nodes also reduce the number of decoding iterations?

To this end, lets consider variants of repeat-accumulate codes which
include state nodes in their Tanner graphs.
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Lower bounds on the number of iterations and proof outlines Variants of repeat-accumulate codes

Systematic ARA Codes: Encoder

R’(1)

k

Π
kL’(1)kL’(1)kk

Irr. Repeat
EncoderEncoder

Accumulate
Encoder
Irr. SPC

Encoder
Accumulate

kL’(1)
R’(1)

kL’(1)

Encoder diagram for the systematic ARA ensemble
I ”Accumulate" block is the standard rate-1 1

1+D encoder
I “Irr. Repeat" block repeats each bit a different number of times
I “Irr. SPC" block groups bit in different size blocks and outputs a

single parity bit for each block
I Block sizes are shown on each arrow for k information bits
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Lower bounds on the number of iterations and proof outlines Variants of repeat-accumulate codes

Systematic ARA Codes: Tanner Graph
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Shading is used to denote punctured or erased bits
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Lower bounds on the number of iterations and proof outlines Variants of repeat-accumulate codes

Graph Reduction for Code Bits (Pfister & Sason)

Any “code bit" node whose value is not erased by the BEC can be
removed from the graph by absorbing its value into its two
“parity-check 2" nodes.

When the value of a “code bit" node is erased, one can merge the
two “parity-check 2" nodes which are connected to it (by summing
the equations) and this removes the “code bit" from the graph.

Merging two “parity-check 2" nodes causes their degrees to be
summed.
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Lower bounds on the number of iterations and proof outlines Variants of repeat-accumulate codes

Graph Reduction for Systematic Bits (Pfister & Sason)

The “systematic bit" nodes in the Tanner graph of the systematic
ARA codes only provide channel information. Erasures make
them worthless, and they can be removed along with their
“parity-check 1" nodes without affecting the decoder.

When the value of a “systematic bit" node is observed (assume
the value is zero w.o.l.o.g.), it can be removed leaving a degree 2
parity-check.

Degree 2 parity-checks imply equality, and allow the connected
“punctured bit" nodes to be merged (summing their degrees).
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Lower bounds on the number of iterations and proof outlines Variants of repeat-accumulate codes

Theorem
For

systematic ARA ensembles.

systematic and non-systematic IRA ensembles.

Under mild conditions, the number of iterations required to achieve an
average bit erasure probability Pb satisfies

l(ε) = Ω

(

1
ε

)

The proof relies on graph reduction of the Tanner graph for systematic
ARA codes, and also on the previous result for LDPC code ensembles.
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Summary

Summary

We introduce analytic lower bounds on the number of iterations for
the asymptotic case where the block length tends to infinity.
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Summary

Summary

We introduce analytic lower bounds on the number of iterations for
the asymptotic case where the block length tends to infinity.

The bounds show that for various families of code ensembles
defined on graphs (LDPC, IRA, ARA), the number of iterations on
the BEC grows at least like the inverse of the gap to capacity.

The bounds are simple to evaluate and are given in terms of the
channel erasure probability, the required bit erasure probability,
the gap to capacity and the fraction of variable nodes of degree 2.

The behavior of these lower bounds matches experimental results
and a previous conjecture of Khandekar and McEliece.
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Summary

Summary

Code Number of iterations Graphical complexity
family as function of ε as function of ε

LDPC Ω
(1

ε

)

Θ
(

ln 1
ε

)

Systematic IRA Ω
(1

ε

)

Θ
(

ln 1
ε

)

Non-systematic IRA Ω
(1

ε

)

Θ(1)

Systematic ARA Ω
(1

ε

)

Θ(1)
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Summary

Full Paper Version
I. Sason and G. Wiechman, "Bounds on the number of iterations for
turbo-like ensembles over the binary erasure channel," submitted to
IEEE Trans. on Information Theory, November 2007. [Online].
Available: http://www.arxiv.org/abs/0711.1056.
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