Arimoto-Rényi Conditional Entropy
and Bayesian M-ary Hypothesis Testing

Igal Sason (Technion) Sergio Verdú (Princeton)
Department of Electrical Engineering
Technion, Israel
November 23rd, 2017
Hypothesis Testing

- **Bayesian M-ary hypothesis testing:**
 - X is a random variable taking values on \mathcal{X} with $|\mathcal{X}| = M$;
 - a prior distribution P_X on \mathcal{X};
 - M hypotheses for the \mathcal{Y}-valued data $\{P_{Y|X=m}, m \in \mathcal{X}\}$.

- **Introduction**
- **Hypothesis Testing**
Introduction

Hypothesis Testing

- **Bayesian M-ary hypothesis testing:**
 - X is a random variable taking values on \mathcal{X} with $|\mathcal{X}| = M$;
 - a prior distribution P_X on \mathcal{X};
 - M hypotheses for the \mathcal{Y}-valued data $\{P_{Y|X=m}, m \in \mathcal{X}\}$.

- $\varepsilon_{X|Y}$: the minimum probability of error of X given Y
 - achieved by the *maximum-a-posteriori* (MAP) decision rule. Hence,

 \[
 \varepsilon_{X|Y} = \mathbb{E} \left[1 - \max_{x \in \mathcal{X}} P_{X|Y}(x|Y) \right] \\
 = 1 - \sum_{y \in \mathcal{Y}} \max_{x \in \mathcal{X}} P_{X,Y}(x, y).
 \]

 where (2) holds when Y is discrete.
Example

Let X and Y be random variables defined on the set $\mathcal{A} = \{1, 2, 3\}$, and let

$$
\left[P_{XY}(x, y) \right]_{(x,y) \in \mathcal{A}^2} = \frac{1}{45} \begin{pmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{pmatrix}.
$$

(3)

Then,

$$
\varepsilon_{X|Y} = 1 - \left(\frac{8}{45} + \frac{9}{45} + \frac{7}{45} \right) = \frac{7}{15}.
$$

(4)
Interplay $\varepsilon_{X|Y} \leftrightarrow$ information measures

- Bounds on $\varepsilon_{X|Y}$ involving information measures exist in the literature. Those works attest that there is a considerable motivation for studying the relationships between $\varepsilon_{X|Y}$ and information measures.
- $\varepsilon_{X|Y}$ is rarely directly computable, and the best bounds are information theoretic.
Interplay $\varepsilon_{X|Y} \leftrightarrow$ information measures

- Bounds on $\varepsilon_{X|Y}$ involving information measures exist in the literature. Those works attest that there is a considerable motivation for studying the relationships between $\varepsilon_{X|Y}$ and information measures.
- $\varepsilon_{X|Y}$ is rarely directly computable, and the best bounds are information theoretic.
- Useful for
 - the analysis of M-ary hypothesis testing
 - proofs of coding theorems.
Interplay $\varepsilon_{X|Y}$ ↔ information measures

- Bounds on $\varepsilon_{X|Y}$ involving information measures exist in the literature. Those works attest that there is a considerable motivation for studying the relationships between $\varepsilon_{X|Y}$ and information measures.

- $\varepsilon_{X|Y}$ is rarely directly computable, and the best bounds are information theoretic.

- Useful for
 - the analysis of M-ary hypothesis testing
 - proofs of coding theorems.

- In this talk, we introduce:

 upper and lower bounds on $\varepsilon_{X|Y}$ in terms of the Arimoto-Rényi conditional entropy $H_\alpha(X|Y)$ of any order α, and apply them in coding.
The Rényi Entropy

Definition

Let P_X be a probability distribution on a discrete set \mathcal{X}. The Rényi entropy of order $\alpha \in (0, 1) \cup (1, \infty)$ of X is defined as

$$H_\alpha(X) = \frac{1}{1 - \alpha} \log \sum_{x \in \mathcal{X}} P_X^{\alpha}(x)$$

(5)

By its continuous extension,

$$H_0(X) = \log \left| \{ x \in \mathcal{X} : P_X(x) > 0 \} \right|, \quad H_1(X) = H(X), \quad H_\infty(X) = \log \frac{1}{p_{\text{max}}}$$

(6) \hspace{1cm} (7) \hspace{1cm} (8)

where p_{max} is the largest of the masses of X.
The Binary Rényi Divergence

Definition

For $\alpha \in (0, 1) \cup (1, \infty)$, the binary Rényi divergence of order α is given by

$$d_\alpha(p\|q) = \frac{1}{\alpha - 1} \log \left(p^\alpha q^{1-\alpha} + (1 - p)^\alpha (1 - q)^{1-\alpha} \right).$$ (9)
The Binary Rényi Divergence

Definition

For $\alpha \in (0, 1) \cup (1, \infty)$, the binary Rényi divergence of order α is given by

$$d_\alpha(p\|q) = \frac{1}{\alpha - 1} \log \left(p^\alpha q^{1-\alpha} + (1 - p)^\alpha (1 - q)^{1-\alpha} \right). \quad (9)$$

$$\lim_{\alpha \uparrow 1} d_\alpha(p\|q) = d(p\|q) = p \log \frac{p}{q} + (1 - p) \log \frac{1 - p}{1 - q}. \quad (10)$$
Rényi Conditional Entropy?

- If we mimic the definition of $H(X|Y)$ and define conditional Rényi entropy as
 \[
 \sum_{y \in Y} P_Y(y) H_\alpha(X|Y = y),
 \]
 we find that, for $\alpha \neq 1$, the conditional version may be larger than $H_\alpha(X)$!
Rényi Conditional Entropy?

- If we mimic the definition of $H(X|Y)$ and define conditional Rényi entropy as

$$
\sum_{y \in Y} P_Y(y) H_\alpha(X|Y = y),
$$

we find that, for $\alpha \neq 1$, the conditional version may be larger than $H_\alpha(X)$!

- To remedy this situation, Arimoto introduced a notion of conditional Rényi entropy, $H_\alpha(X|Y)$ (named Arimoto-Rényi conditional entropy), which is upper bounded by $H_\alpha(X)$.

Definition

Let P_{XY} be defined on $\mathcal{X} \times \mathcal{Y}$, where X is a discrete random variable.

- If $\alpha \in (-\infty, 0) \cup (0, 1) \cup (1, \infty)$, then

$$H_\alpha(X|Y) = \frac{\alpha}{1 - \alpha} \log \mathbb{E} \left[\left(\sum_{x \in \mathcal{X}} P^\alpha_{X|Y}(x|Y) \right)^{\frac{1}{\alpha}} \right] \quad (11)$$
The Arimoto-Rényi Conditional Entropy (cont.)

Definition

Let P_{XY} be defined on $\mathcal{X} \times \mathcal{Y}$, where X is a discrete random variable.

- If $\alpha \in (-\infty, 0) \cup (0, 1) \cup (1, \infty)$, then

\[
H_\alpha(X|Y) = \frac{\alpha}{1 - \alpha} \log \mathbb{E} \left[\left(\sum_{x \in \mathcal{X}} P_{X|Y}^\alpha(x|y) \right)^{\frac{1}{\alpha}} \right] \tag{11}
\]

\[
= \frac{\alpha}{1 - \alpha} \log \sum_{y \in \mathcal{Y}} P_Y(y) \exp \left(\frac{1 - \alpha}{\alpha} H_\alpha(X|Y = y) \right), \tag{12}
\]

where (12) applies if Y is a discrete random variable.
The Arimoto-Rényi Conditional Entropy (cont.)

- By its continuous extension,

\[
H_0(X|Y) = \text{ess sup} \ H_0 \left(P_{X|Y}(\cdot|Y) \right) \\
= \max_{y \in Y} H_0(X \mid Y = y),
\]

\[
H_1(X|Y) = H(X|Y),
\]

\[
H_\infty(X|Y) = \log \frac{1}{\mathbb{E}[\max_{x \in \mathcal{X}} P_{X|Y}(x|Y)]}
\]

where (14) applies if \(Y \) is a discrete random variable.
The Arimoto-Rényi Conditional Entropy (cont.)

By its continuous extension,

\[H_0(X|Y) = \text{ess sup} \ H_0 \left(P_{X|Y}(\cdot|Y) \right) = \max_{y \in Y} H_0(X|Y = y), \]

\[H_1(X|Y) = H(X|Y), \]

\[H_\infty(X|Y) = \log \frac{1}{\mathbb{E} \left[\max_{x \in X} P_{X|Y}(x|Y) \right]} \]

where (14) applies if \(Y \) is a discrete random variable.

Monotonicity Properties

- \(H_\alpha(X|Y) \) is monotonically decreasing in \(\alpha \) throughout the real line.
- \(\frac{\alpha-1}{\alpha} H_\alpha(X|Y) \) is monotonically increasing in \(\alpha \) on \((0, \infty)\) & \((-\infty, 0)\).
Let X take values in $|\mathcal{X}| = M$, then

$$H(X|Y) \leq h(\varepsilon_{X|Y}) + \varepsilon_{X|Y} \log(M - 1)$$ \hspace{1cm} (17)
Fano’s Inequality

Let X take values in $|\mathcal{X}| = M$, then

$$H(X|Y) \leq h(\varepsilon_{X|Y}) + \varepsilon_{X|Y} \log(M - 1)$$

$$= \log M - d(\varepsilon_{X|Y} \parallel 1 - \frac{1}{M})$$
Fano’s Inequality

Let X take values in $|\mathcal{X}| = M$, then

$$H(X|Y) \leq h(\varepsilon_{X|Y}) + \varepsilon_{X|Y} \log(M - 1)$$

$$= \log M - d(\varepsilon_{X|Y} \parallel 1 - \frac{1}{M})$$

(17) and (18) are not nearly as popular as (17);

(18) turns out to be the version that admits an elegant (although not immediate) generalization to the Arimoto-Rényi conditional entropy.
Generalization of Fano’s Inequality

- It is easy to get Fano’s inequality by averaging $H(X|Y = y)$ with respect to the observation y:

$$H(X|Y) = \sum_{y \in Y} P_Y(y) H(X|Y = y).$$
Generalization of Fano’s Inequality

- It is easy to get Fano’s inequality by averaging $H(X|Y = y)$ with respect to the observation y:

$$H(X|Y) = \sum_{y\in\mathcal{Y}} P_Y(y) H(X|Y = y).$$

- This simple route is not viable in the case of $H_\alpha(X|Y)$ since it is not an average of Rényi entropies of conditional distributions:

$$H_\alpha(X|Y) \neq \sum_{y\in\mathcal{Y}} P_Y(y) H_\alpha(X|Y = y), \quad \alpha \neq 1. \quad (19)$$
Generalization of Fano’s Inequality

- It is easy to get Fano’s inequality by averaging $H(X|Y = y)$ with respect to the observation y:

$$H(X|Y) = \sum_{y \in Y} P_Y(y) \, H(X|Y = y).$$

- This simple route is not viable in the case of $H_\alpha(X|Y)$ since it is not an average of Rényi entropies of conditional distributions:

$$H_\alpha(X|Y) \neq \sum_{y \in Y} P_Y(y) \, H_\alpha(X|Y = y), \quad \alpha \neq 1. \quad (19)$$

- The standard proof of Fano’s inequality, also fails for $H_\alpha(X|Y)$ of order $\alpha \neq 1$ since it does not satisfy the chain rule.
Before we generalize Fano’s inequality by linking $\varepsilon_{X|Y}$ with $H_\alpha(X|Y)$ for $\alpha \in [0, \infty)$, note that for $\alpha = \infty$, the following equality holds:

$$\varepsilon_{X|Y} = 1 - \exp(-H_\infty(X|Y)).$$ (20)
Lemma

Let $\alpha \in (0, 1) \cup (1, \infty)$ and $(\beta, \gamma) \in (0, \infty)^2$. Then,

$$f_{\alpha,\beta,\gamma}(u) = \left(\gamma(1 - u)^{\alpha} + \beta u^{\alpha} \right)^{\frac{1}{\alpha}}, \quad u \in [0, 1]$$ \hspace{1cm} (21)

is

- strictly convex for $\alpha \in (1, \infty)$;
- strictly concave for $\alpha \in (0, 1)$.

$$f''_{\alpha,\beta,\gamma}(u) = (\alpha - 1)\beta\gamma \left(\gamma(1 - u)^{\alpha} + \beta u^{\alpha} \right)^{\frac{1}{\alpha} - 2} (u(1 - u))^{\alpha - 2}$$ \hspace{1cm} (22)

which is strictly negative if $\alpha \in (0, 1)$, and strictly positive if $\alpha \in (1, \infty)$.
Generalization of Fano’s Inequality (cont.)

Theorem

Let P_{XY} be a probability measure defined on $\mathcal{X} \times \mathcal{Y}$ with $|\mathcal{X}| = M < \infty$. For all $\alpha \in (0, \infty)$,

$$H_{\alpha}(X|Y) \leq \log M - d_{\alpha}(\varepsilon_{X|Y} \parallel 1 - \frac{1}{M}).$$

(23)

Equality holds in (23) if and only if, for all y,

$$P_{X|Y}(x|y) = \begin{cases} \frac{\varepsilon_{X|Y}}{M - 1}, & x \neq L^*(y) \\ 1 - \varepsilon_{X|Y}, & x = L^*(y) \end{cases}$$

(24)

where $L^*: \mathcal{Y} \rightarrow \mathcal{X}$ is a deterministic MAP decision rule.
Generalization of Fano’s Inequality (cont.)

If X, Y are vectors of dimension n, then $\varepsilon_{X|Y} \to 0 \Rightarrow \frac{1}{n} H(X|Y) \to 0$. However, the picture with $H_\alpha(X|Y)$ is more nuanced!
Generalization of Fano’s Inequality (cont.)

If X,Y are vectors of dimension n, then $\varepsilon_{X|Y} \to 0 \Rightarrow \frac{1}{n} H(X|Y) \to 0$. However, the picture with $H_\alpha(X|Y)$ is more nuanced!

Theorem

Assume

- $\{X_n\}$ is a sequence of random variables;
- X_n takes values on \mathcal{X}_n such that $|\mathcal{X}_n| \leq M^n$ for $M \geq 2$ and all n;
- $\{Y_n\}$ is a sequence of random variables, for which $\varepsilon_{X_n|Y_n} \to 0$.

a) If $\alpha \in (1, \infty]$, then $H_\alpha(X_n|Y_n) \to 0$;

b) If $\alpha = 1$, then $\frac{1}{n} H(X_n|Y_n) \to 0$;

c) If $\alpha \in [0, 1)$, then $\frac{1}{n} H_\alpha(X_n|Y_n)$ is upper bounded by $\log M$; nevertheless, it does not necessarily tend to 0.
Lower Bound on $H_\alpha(X|Y)$

Theorem

If $\alpha \in (0, 1) \cup (1, \infty)$, then

$$\frac{\alpha}{1 - \alpha} \log g_\alpha(\varepsilon_X|Y) \leq H_\alpha(X|Y), \quad (25)$$

with the piecewise linear function

$$g_\alpha(t) = \left(k(k + 1) \frac{1}{\alpha} - k \frac{1}{\alpha} (k + 1) \right) t + k \frac{1}{\alpha} + 1 - (k - 1)(k + 1) \frac{1}{\alpha} \quad (26)$$

on the interval $t \in \left[1 - \frac{1}{k}, 1 - \frac{1}{k+1} \right)$ for $k \in \{1, 2, \ldots\}$.

- Not restricted to finite M.
Proof Outline

Lemma

Let X be a discrete random variable attaining maximal mass p_{max}. Then, for $\alpha \in (0, 1) \cup (1, \infty)$,

$$H_\alpha(X) \geq s_\alpha(\varepsilon_X)$$

(27)

where $\varepsilon_X = 1 - p_{\text{max}}$ is the minimum error probability of guessing X, and $s_\alpha : [0, 1) \rightarrow [0, \infty)$ is given by

$$s_\alpha(x) := \frac{1}{1 - \alpha} \log \left(\left\lfloor \frac{1}{1 - x} \right\rfloor (1 - x)^\alpha + \left(1 - (1 - x) \left\lfloor \frac{1}{1 - x} \right\rfloor \right)^\alpha \right).$$

Equality holds in (27) if and only if P_X has $\left\lfloor \frac{1}{p_{\text{max}}} \right\rfloor$ masses equal to p_{max}.

The proof relies on the Schur-concavity of $H_\alpha(\cdot)$.
Proof Outline (cont.)

For every $y \in \mathcal{Y}$, the lemma yields $H_\alpha(X \mid Y = y) \geq s_\alpha(\varepsilon_{X\mid Y}(y))$.
For every $y \in \mathcal{Y}$, the lemma yields $H_\alpha(X \mid Y = y) \geq s_\alpha(\varepsilon_{X\mid Y}(y))$.

For $\alpha \in (0, 1)$, let $f_\alpha : [0, 1) \to [1, \infty)$ be defined as

$$f_\alpha(x) = \exp \left(\frac{1-\alpha}{\alpha} s_\alpha(x) \right)$$

- g_α is the piecewise linear function which coincides with f_α at all points $1 - \frac{1}{k}$ for $k \in \mathbb{N}$;
- g_α is the lower convex envelope of f_α;

$$H_\alpha(X \mid Y) \geq \frac{\alpha}{1-\alpha} \log \mathbb{E} \left[f_\alpha(\varepsilon_{X\mid Y}(Y)) \right] \quad \text{(Lemma; f_α increasing)}$$

$$\geq \frac{\alpha}{1-\alpha} \log \mathbb{E} \left[g_\alpha(\varepsilon_{X\mid Y}(Y)) \right] \quad (g_\alpha \leq f_\alpha)$$

$$\geq \frac{\alpha}{1-\alpha} \log g_\alpha(\varepsilon_{X\mid Y}) \quad \text{(Jensen)}$$
Proof Outline (cont.)

For every $y \in \mathcal{Y}$, the lemma yields $H_\alpha(X \mid Y = y) \geq s_\alpha(\varepsilon_{X \mid Y}(y))$.

For $\alpha \in (0, 1)$, let $f_\alpha : [0, 1) \to [1, \infty)$ be defined as

$$f_\alpha(x) = \exp\left(\frac{1-\alpha}{\alpha} s_\alpha(x)\right)$$

- g_α is the piecewise linear function which coincides with f_α at all points $1 - \frac{1}{k}$ for $k \in \mathbb{N}$;
- g_α is the lower convex envelope of f_α;

$$H_\alpha(X \mid Y) \geq \frac{\alpha}{1-\alpha} \log \mathbb{E} \left[f_\alpha(\varepsilon_{X \mid Y}(Y))\right] \quad \text{(Lemma; f_α increasing)}$$

$$\geq \frac{\alpha}{1-\alpha} \log \mathbb{E} \left[g_\alpha(\varepsilon_{X \mid Y}(Y))\right] \quad \text{($g_\alpha \leq f_\alpha$)}$$

$$\geq \frac{\alpha}{1-\alpha} \log g_\alpha(\varepsilon_{X \mid Y}) \quad \text{(Jensen)}$$

For $\alpha \in (1, \infty)$, $-g_\alpha$ is the lower convex envelope of $-f_\alpha$, and f_α is monotonically decreasing. Proof is similar.
\(H_\alpha(X|Y) \leftrightarrow \varepsilon_{X|Y} \)

Upper/lower bounds on \(H_\alpha(X|Y) \) [bits]

\(\alpha = 1/4 \) (solid lines) and \(\alpha = 4 \) (dash-dotted lines) with \(M = 8 \).
Asymptotic Tightness

Both upper and lower bounds on $\varepsilon_{X|Y}$ are asymptotically tight as $\alpha \to \infty$.
Asymptotic Tightness

Both upper and lower bounds on $\varepsilon_{X|Y}$ are asymptotically tight as $\alpha \to \infty$.

Special cases

As $\alpha \to 1$, we get existing bounds as special cases:

- Fano’s inequality,
- Its counterpart by Kovalevsky ('68), and Tebbe and Dwyer ('68).
Asymptotic Tightness

Both upper and lower bounds on $\varepsilon_{X|Y}$ are asymptotically tight as $\alpha \to \infty$.

Special cases

As $\alpha \to 1$, we get existing bounds as special cases:

- Fano’s inequality,
- Its counterpart by Kovalevsky ('68), and Tebbe and Dwyer ('68).

Upper bound on $\varepsilon_{X|Y}$

The most useful domain of applicability of the counterpart to the generalization of Fano’s inequality is $\varepsilon_{X|Y} \in [0, \frac{1}{2}]$, in which case the lower bound specializes to ($k = 1$)

$$\frac{\alpha}{1 - \alpha} \log \left(1 + \left(2^{\frac{1}{\alpha}} - 2 \right) \varepsilon_{X|Y} \right) \leq H_\alpha(X|Y).$$

(28)
List Decoding

- Decision rule outputs a list of choices.
- The extension of Fano’s inequality to list decoding, expressed in terms of the conditional Shannon entropy, was initiated by Ahlswede, Gacs and Körner (’66).
- Useful for proving converse results.
A generalization of Fano’s inequality for list decoding of size L is

$$H(X|Y) \leq \log M - d(P_L \| 1 - \frac{L}{M}),$$ \hspace{1cm} (29)$$

where P_L denotes the probability of X not being in the list.

Averaging a conditional version of $H_\alpha(X|Y = y)$ with respect to the observation is not viable in the case of $H_\alpha(X|Y)$ with $\alpha \neq 1$.

Generalization of Fano’s Inequality for List Decoding

- A generalization of Fano’s inequality for list decoding of size L is

$$H(X|Y) \leq \log M - d(P_L \| 1 - \frac{L}{M}),$$ \hspace{1cm} (29)$$

where P_L denotes the probability of X not being in the list.

- Averaging a conditional version of $H_\alpha(X|Y = y)$ with respect to the observation is not viable in the case of $H_\alpha(X|Y)$ with $\alpha \neq 1$.

Theorem (Fixed List Size)

Let P_{XY} be a probability measure defined on $\mathcal{X} \times \mathcal{Y}$ where $|\mathcal{X}| = M$. Consider a decision rule $^{a} \mathcal{L}: \mathcal{Y} \rightarrow \binom{\mathcal{X}}{L}$, and denote the decoding error probability by $P_{\mathcal{L}} = \mathbb{P}[X \notin \mathcal{L}(Y)]$. Then, for all $\alpha \in (0, 1) \cup (1, \infty)$,

$$H_\alpha(X|Y) \leq \log M - d_\alpha(P_{\mathcal{L}}\|\frac{1 - \frac{L}{M}}{1 - P_{\mathcal{L}}})$$

with equality in (30) if and only if

$$P_{X|Y}(x|y) = \begin{cases} \frac{P_{\mathcal{L}}}{M - L}, & x \notin \mathcal{L}(y) \\ \frac{1 - P_{\mathcal{L}}}{L}, & x \in \mathcal{L}(y). \end{cases}$$

\(^a\binom{\mathcal{X}}{L}\) stands for the set of all subsets of \mathcal{X} with cardinality L, with $L \leq |\mathcal{X}|$.
Arimoto-Rényi Conditional Entropy Averaged over Codebook Ensembles

Consider the channel coding setup with a code ensemble C, over which we are interested in averaging the Arimoto-Rényi conditional entropy of the channel input given the channel output.

Denote such averaged quantity by

$$\mathbb{E}_C \left[H_\alpha(X^n|Y^n) \right]$$

where $X^n = (X_1, \ldots, X_n)$ and $Y^n = (Y_1, \ldots, Y_n)$.

Some motivation for this study:

- The normalized equivocation $\frac{1}{n} H(X^n|Y^n)$ was used by Shannon to prove that reliable communication is impossible at rates above capacity;
- The asymptotic convergence to zero of the equivocation $H(X^n|Y^n)$ at rates below capacity was studied by Feinstein.
Coding Theorem 1 (Feder and Merhav, 1994)

For a DMC with transition probability matrix $P_{Y|X}$, the conditional entropy of the transmitted codeword given the channel output, averaged over a random coding selection with per-letter distribution P_X such that $I(P_X, P_{Y|X}) > 0$, is bounded (in nats) by

$$
\mathbb{E}_C [H(X^n|Y^n)] \leq \left(1 + \frac{1}{\rho^*(R, P_X)} \right) \exp(-nE_r(R, P_X))
$$

with

- $R = \frac{\log M}{n} \leq I(P_X, P_{Y|X})$;
- E_r is the random-coding error exponent, given by

$$
E_r(R, P_X) = \max_{\rho \in [0,1]} \rho \left(I_{\frac{1}{1+\rho}}(P_X, P_{Y|X}) - R \right) ; \quad (32)
$$

- the argument that maximizes (32) is denoted by $\rho^*(R, P_X)$.
Coding Theorem 2 (ISSV, 2017)

The following results hold under the setting in the previous theorem:

- For all $\alpha > 0$, and rates R below the channel capacity C,

$$\limsup_{n \to \infty} - \frac{1}{n} \log \mathbb{E}_C \left[H_\alpha(X^n | Y^n) \right] \leq E_{sp}(R),$$ \hspace{1cm} (33)

where $E_{sp}(\cdot)$ denotes the sphere-packing error exponent

$$E_{sp}(R) = \sup_{\rho \geq 0} \rho \left(\max_{Q_X} \frac{1}{1+\rho} (Q_X, P_{Y|X}) - R \right)$$ \hspace{1cm} (34)

with the maximization in the right side of (34) over all single-letter distributions Q_X defined on the input alphabet.
For all $\alpha \in (0, 1)$,

$$\liminf_{n \to \infty} - \frac{1}{n} \log \mathbb{E}_\mathcal{C} \left[H_\alpha(X^n | Y^n) \right] \geq \alpha E_r(R, P_X) - (1 - \alpha) R,$$ \hfill (35)

provided that

$$R < R_\alpha(P_X, P_Y | X)$$ \hfill (36)

where $R_\alpha(P_X, P_Y | X)$ is the unique solution $r \in (0, I(P_X, P_Y | X))$ to

$$E_r(r, P_X) = \left(\frac{1}{\alpha} - 1 \right) r.$$ \hfill (37)
Coding Theorem 2 (ISSV ’17, cont.)

- The rate $R_{\alpha}(P_X, P_{Y|X})$ is monotonically increasing and continuous in $\alpha \in (0, 1)$, and

$$\lim_{\alpha \downarrow 0} R_{\alpha}(P_X, P_{Y|X}) = 0,$$

$$\lim_{\alpha \uparrow 1} R_{\alpha}(P_X, P_{Y|X}) = I(P_X, P_{Y|X}).$$

(38)

(39)
Coding Theorem 3 (ISSV ’17, cont.)

Let $P_{Y|X}$ be the transition probability matrix of a memoryless binary-input output-symmetric channel, and let $P_{X}^{*} = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$. Let R_c, R_0, and C denote the critical and cutoff rates and the channel capacity, respectively, and let

$$\alpha_c = \frac{R_c}{R_0} \in (0, 1).$$

(40)

The rate $R_\alpha = R_\alpha(P_X^*, P_{Y|X})$, with the symmetric input distribution P_X^*, can be expressed as follows:

a) for $\alpha \in (0, \alpha_c]$, $R_\alpha = \alpha R_0$;

b) for $\alpha \in (\alpha_c, 1)$, $R_\alpha \in (R_c, C)$ is the solution to $E_{sp}(r) = \left(\frac{1}{\alpha} - 1 \right) r$;

c) R_α is continuous, monotonically increasing in $\alpha \in [\alpha_c, 1)$ from R_c to C.
Example: BSC(\(\delta\))

- Consider a BSC with crossover probability \(\delta\), and let \(P_X = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix}\).
- The cutoff rate, critical rate and capacity (in bits) are given by

\[
R_0 = 1 - \log(1 + \sqrt{4\delta(1 - \delta)}),
\]

(41)

\[
R_c = 1 - h\left(\frac{\sqrt{\delta}}{\sqrt{\delta} + \sqrt{1 - \delta}}\right),
\]

(42)

\[
C = I(P_X, P_Y|X) = 1 - h(\delta).
\]

(43)

- The sphere-packing error exponent is given by

\[
E_{sp}(R) = d(\delta_{GV}(R) \parallel \delta)
\]

(44)

where the normalized Gilbert-Varshamov distance is denoted by

\[
\delta_{GV}(R) = h^{-1}(1 - R).
\]

(45)
Example: BSC(δ) (cont.)

Figure: The rate R_α for $\alpha \in (0, 1)$ for BSC(δ) with crossover prob. $\delta = 0.110$.

I. Sason & S. Verdú
Seminar talk
Nov. 23rd, 2017
Conclusions

- We have shown new bounds on the minimum Bayesian error prob. $\varepsilon_{X|Y}$ of M-ary hypothesis testing.
- Our major focus has been the Arimoto-Rényi conditional entropy of the hypothesis index given the observation.
Conclusions

- We have shown new bounds on the minimum Bayesian error prob. \(\varepsilon_{X|Y} \) of \(M \)-ary hypothesis testing.
- Our major focus has been the Arimoto-Rényi conditional entropy of the hypothesis index given the observation.
- Changing the conventional form of Fano’s inequality from

\[
H(X|Y) \leq h(\varepsilon_{X|Y}) + \varepsilon_{X|Y} \log(M - 1) = \log M - d(\varepsilon_{X|Y} \parallel 1 - \frac{1}{M})
\]

(46)

(47)

to the right side of (47), where \(d(\cdot \parallel \cdot) \) is the binary relative entropy, allows a natural generalization where the Arimoto-Rényi conditional entropy of an arbitrary positive order \(\alpha \) is upper bounded by

\[
H_\alpha(X|Y) \leq \log M - d_\alpha(\varepsilon_{X|Y} \parallel 1 - \frac{1}{M})
\]

(48)

with \(d_\alpha(\cdot \parallel \cdot) \) denoting the binary Rényi divergence.
Conclusions (Cont.)

- The Schur-concavity of the Rényi entropy yields a lower bound on $H_\alpha(X|Y)$ in terms of $\varepsilon_{X|Y}$, which holds even if $M = \infty$. It recovers existing bounds by letting $\alpha \to 1$.
The Schur-concavity of the Rényi entropy yields a lower bound on $H_\alpha(X|Y)$ in terms of $\varepsilon_{X|Y}$, which holds even if $M = \infty$. It recovers existing bounds by letting $\alpha \to 1$.

Our techniques were extended to list decoding with a fixed list size, generalizing all the $H_\alpha(X|Y) - \varepsilon_{X|Y}$ bounds to that setting.
The Schur-concavity of the Rényi entropy yields a lower bound on $H_{\alpha}(X|Y)$ in terms of $\varepsilon_{X|Y}$, which holds even if $M = \infty$. It recovers existing bounds by letting $\alpha \to 1$.

Our techniques were extended to list decoding with a fixed list size, generalizing all the $H_{\alpha}(X|Y)-\varepsilon_{X|Y}$ bounds to that setting.

Application: We analyzed the exponentially vanishing decay of the Arimoto-Rényi conditional entropy of the transmitted codeword given the channel output for DMCs and random coding ensembles.
Further Results in This Work

- Explicit lower bounds on $\varepsilon_{X|Y}$ as a function of $H_\alpha(X|Y)$ for an arbitrary α (also, for $\alpha < 0$).
- Explicit lower bounds on the list decoding error probability for fixed list size as a function of $H_\alpha(X|Y)$ for an arbitrary α (also, for $\alpha < 0$).
- We also explored some facets of the role of binary hypothesis testing in analyzing M-ary Bayesian hypothesis testing problems, and have shown new bounds in terms of Rényi divergence.

Journal Paper