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Abstract— The 1959 sphere-packing bound of Shannon is
reviewed, and a new algorithm is derived for its calculation.
This algorithm performs the entire calculation in the logarithmic
domain, thus facilitating the exact calculation of the bound for
moderate to large block lengths. The new algorithm circumvents
the numerical difficulties associated with a previously suggested
algorithm by Valembois and Fossorier. We also compare the
bound with a new sphere-packing bound which was recently
derived by the authors. By applying the bound to M-ary PSK
block coded modulation, the new bound suggests an interesting
alternative to the Shannon bound.

I. I NTRODUCTION

Error correcting codes which employ efficient iterative
decoding algorithms closely approach the capacity limit of
many standard communication channels. The performance of
these codes is especially appealing for moderate to large
block lengths. These developments stirred up new interest in
studying the limits of code performance as a function of the
block length (see, e.g., [1]–[5] and [8]–[11]).

Sphere-packing bounds are lower bounds on the error-
probability of block codes in terms of the rate, block length
and communication channel. These bounds are valid under
maximum-likelihood (ML) decoding or in general under list
decoding. Classical members of this family are the 1959
sphere-packing (SP59) bound of Shannon [6] which refers
to the AWGN channel and the 1967 sphere-packing (SP67)
bound of Shannon, Gallager and Berlekamp [7] which is
valid for any discrete memoryless channel. The latter bound
has been recently improved by Valembois and Fossorier [8]
and Wiechman and Sason [10]. These lower bounds on the
decoding error probability are often used as a reference for
quantifying the sub-optimality of codes with their practical
decoding algorithms; by comparing computer simulations for
the performance of turbo-like codes over a wide range of rates
and block sizes, it was exemplified in the literature that the
gap between the sphere-packing bounds and the performance
of these codes under efficient iterative decoding algorithms
can be reduced below 1 dB.

The calculation of the SP59 bound is numerically involved
and becomes prohibitively complex when the block length
exceeds several hundreds. To overcome this problem, Shannon
provides in [6] some asymptotic approximations for the SP59
bound which enable to estimate of value of the bound for large
block lengths. These approximations perform the calculation

in the logarithmic domain, thus circumventing the numerical
problems which hinder the exact calculation of the bound. In
[8], a recursive algorithm for the calculation of the SP59 bound
is presented. This algorithm performs the calculations in the
natural domain and is therefore prone to numerical over and
underflows when applied to block lengths of more than several
hundreds.

This paper presents an algorithm which performs the entire
calculation of the SP59 bound in the logarithmic domain.
This technique allows us to calculate the bound for all block
lengths without encountering numerical difficulties. The new
algorithm is applied to calculate the SP59 bound for several
moderate to large block lengths and compare the exact value
of the bound with the asymptotic approximations in [6]. This
algorithm is part of a more general study of sphere-packing
bounds in [10]. The second part of this study is the derivation
of an improved sphere-packing (ISP) bound which, under a
mild condition, is valid for general memoryless channels; this
bound was recently presented in the conference paper [11].
The ISP bound is based on the work in [7] and [8] and
improves the tightness of the bounds derived in these works.

The paper is structured as follows: Section II reviews the
SP59 bound of Shannon and the asymptotic approximations
provided in [6]. Section III presents the recursive algorithm
for the calculation of the SP59 bound, as derived in [8]. The
numerical instability of this algorithm motivates the derivation
of a new algorithm for calculating the bound in the logarithmic
domain which is performed in Section IV. Section V presents
a short discussion of the ISP bound presented in [10], [11]
along with some numerical results comparing the SP59 and
ISP bounds for M-ary PSK signaling over the AWGN channel.
The paper is summarized in Section VI. Some technical cal-
culations are relegated to an Appendix. For a comprehensive
tutorial review of classical sphere-packing bounds (i.e.,the
SP59 and SP67 bounds) and recent improvements in [8], the
reader is referred to [5, Chapter 5].

II. T HE 1959 SPHERE-PACKING BOUND AND

ASYMPTOTIC APPROXIMATIONS

The SP59 bound of Shannon [6] provides a lower bound
on the decoding error probability of block codes transmitted
over the AWGN channel. Consider a block codeC of length
N , and rateR nats per channel use per dimension. It is



assumed that the codewords are mapped to equal energy
signals (e.g., PSK modulation); hence, each transmitted signal
corresponds to a point anN -dimensional sphere centered at the
origin, but finer details of the modulation are not considered.
This assumption implies that every Voronoi cell (i.e., the
convex region containing all the points which are closer to the
considered signal than any other code signal) is a polyhedric
cone limited by at mostexp(NR)−1 hyper planes intersecting
at the origin. To measure the size of the Voronoi regions,
Shannon introduced the solid angle of a cone which is defined
to be the area of the sphere of unit radius which is cut out by
the cone. Since the Voronoi cells partition the spaceR

N , the
sum of their solid angles must be the area of anN -dimensional
sphere of unit radius. The derivation of the SP59 bound relies
on two main observations:

• Among the cones of a given solid angle, the lowest error
probability is achieved by the circular cone whose axis
connects the code signal with the origin.

• It is best to share the total solid angle equally among the
exp(NR) Voronoi regions.

From these observations it follows that the average Voronoi
cell of any code cannot be better than a circular cone with
a solid angle equal toexp(−NR) of the solid angle ofRN

centered around the code signal. The solid angle of a circular
cone is given by the following lemma.

Lemma 1 (Solid Angle of a Circular Cone [6]): The solid
angle of a circular cone of half angleθ in R

N is given by

ΩN (θ) =
2π

N−1
2

Γ(N−1
2

)

∫ θ

0

(sin φ)N−2
dφ .

In particular, the solid angle ofRN is

ΩN (π) =
2π

N
2

Γ(N
2

)
.

Theorem 1 (The 1959 Sphere-Packing (SP59) Bound [6]):
Assume that a block code of lengthN and rateR nats per
dimension is transmitted over an AWGN channel with noise
spectral densityN0

2 . Then, under ML decoding, the error
probability satisfies

Pe(ML) > PSPB(N, θ, A) , A ,

√

2Es

N0

whereEs is the average energy per code symbol,θ ∈ [0, π]

satisfies the inequality2−NR ≤ ΩN (θ)
ΩN (π) ,

PSPB(N, θ, A) , Q(
√

NA) +
(N − 1)e−

NA2

2

√
2π

·
∫ π

2

θ

(sin φ)N−2
fN (

√
NA cos φ) dφ (1)

and

fN (x) ,
1

2
N−1

2 Γ(N+1
2

)

∫ ∞

0

z
N−1 exp

(

−z2

2
+ zx

)

dz (2)

wherex ∈ R andN ∈ N.
By assumption, the transmitted signal corresponds to point

on theN -dimensional sphere of radius
√

NEs centered at the
origin. The valuePSPB(N, θ,A) in the RHS of (1) designates

the probability that the additive Gaussian noise carries the
transmitted signal outside theN -dimensional circular cone
of half angleθ whose main axis connects the origin and the
transmitted signal point. Hence, this function is monotonically
decreasing inθ. The tightest lower bound on the decoding error
probability is therefore achieved forθ1(N,R) which satisfies

ΩN

(

θ1(N, R)
)

ΩN (π)
= exp(−NR).

Solving this equation to find the optimal angleθ1(N,R) is a
tedious task which considerably increases the computational
complexity of the evaluating the SP59 bound. To simplify
the calculation of the bound, [6] provides asymptotically tight
upper and lower bounds on the ratioΩN (θ)

ΩN (π) .
Lemma 2 (Bounds on the Solid Angle [6]): The solid an-

gle of a circular cone of half angleθ in the Euclidean space
R

N satisfies the inequality

Γ(N
2

)(sin θ)N−1

2Γ(N+1
2

)
√

π cos θ

(

1 − tan2 θ

N

)

≤ ΩN (θ)

ΩN (π)
≤ Γ(N

2
)(sin θ)N−1

2Γ(N+1
2

)
√

π cos θ
.

Corollary 1 (SP59 Bound (Cont.)): If θ∗ satisfies

Γ(N
2

)(sin θ∗)N−1

2Γ(N+1
2

)
√

π cos θ∗

(

1 − tan2 θ∗

N

)

= exp(−NR) (3)

then ΩN (θ∗)
ΩN (π) ≥ exp(−NR), and therefore

Pe(ML) > PSPB(N, θ
∗
, A). (4)

The use ofθ∗ instead of the optimal valueθ1(N,R) causes
some loss in the tightness of the SP59 bound. However, due
to the asymptotic tightness of the bounds onΩN (θ)

ΩN (π) , the
loss in the tightness of the bound in Corollary 1 vanishes
asymptotically asN → ∞. In [8], it was numerically observed
that the loss is marginal even for relatively small values ofN

andR.
The calculation of the SP59 bound is numerically challeng-

ing and causes over and under flows in the floating point
operations when the block length exceeds several hundreds;
increasing the precision of the floating point numbers does
little to increase the range where the bound can be calculated.
To overcome this, [6] provides some asymptotic formulas
which give an accurate estimation of the bound when the
block lengths become very large. These approximations allow
the calculation to be made in the logarithmic domain which
virtually eliminates the possibility of floating point errors.

Theorem 2: [6]: Defining

G(θ) ,
A cos θ +

√
A2 cos2 θ + 4

2

EL(θ) ,
A2 − AG(θ) cos θ − 2 ln

(

G(θ) sin θ
)

2

then

PSPB(N, θ, A) ≥
√

N − 1

6N(A + 1)
e

−(A+1)2+3
2 e

−N EL(θ)
. (5)

This lower bound is valid for any block lengthN . However,
the ratio of the left and right terms in (5) stays bounded
away from one for allN . A more accurate approximation
of PSPB(N, θ,A) is given below, but without a determined
inequality. As a consequence, the following approximationis



not a proven theoretical lower bound on the error probability.
For N > 1000, however, its numerical values become very
close to the exact value, giving a useful approximation of the
SP59 bound. Following the notation of Theorem 2, [6] shows
that if θ > cot−1(A), then

PSPB(N, θ, A) ≈ α(θ)e−NEL(θ)

√
N

(6)

where

α(θ) ,

(

√

π (1 + G(θ)2) sin θ
(

AG(θ) sin2
θ − cos θ

)

)−1

.

III. A R ECURSIVEALGORITHM FOR CALCULATING THE

1959 SPHERE-PACKING BOUND [8]

In [8, Section 2], the SP59 bound is reviewed and a
recursive algorithm to simplify its calculation is suggested.
This algorithm is given by the following theorem:

Theorem 3 (Recursive Calculation of the SP59 Bound):
[8, Theorem 3]: The set of functions{fN} introduced in (2)
can be expressed in the alternative form

fN (x) = PN (x)+QN (x) exp(
x2

2
)

∫ x

−∞

exp(− t2

2
) dt ,

x ∈ R,
N ∈ N

wherePN and QN are two polynomials, determined by the
same recursive equation for allN ≥ 5

PN (x) =
2N − 5 + x2

N − 1
PN−2(x) − N − 4

N − 1
PN−4(x) ,

QN (x) =
2N − 5 + x2

N − 1
QN−2(x) − N − 4

N − 1
QN−4(x) (7)

with the initial conditions

P1(x) = 0, Q1(x) = 1

P2(x) =

√

2

π
, Q2(x) =

√

2

π
x

P3(x) =
x

2
, Q3(x) =

1 + x2

2

P4(x) =

√

2

π

2 + x2

3
, Q4(x) =

√

2

π

3x + x3

3
.

Observing the recursive equations forPN and QN in (7),
we notice that the coefficients of the higher powers ofx vanish
exponentially asN increases. When performing the calcu-
lation using double-precision floating point numbers, these
coefficients cause underflows whenN is larger than several
hundreds, and are replaced by zeros. However, examining (1),
we observe that the functionfN (x) is typically evaluated
at x ∼ O(

√
N). Hence, asN becomes larger than several

hundreds, the underflows in the calculation of the coefficients
for the higher powers ofX cause a considerable accuracy in
the calculation ofPSPB in (1). For further discussion on the
effect of these numerical difficulties the reader is referred to
[10, Section 4.2]

IV. A L OG-DOMAIN APPROACH FORCOMPUTING THE

1959 SPHERE-PACKING BOUND

The numerical difficulties which makes the calculation of
the SP59 bound intractable for moderate to large block lengths
can be overcome by performing the calculation in the loga-
rithmic domain. In this section, we present a method which

performs the calculation of the integrand in the RHS of (1) in
the log domain. This approach circumvents the numerical over
and under flows which become problematic in the calculation
of the SP59 bound for large block lengths. We begin our
derivation by representing the set of functions{fN} defined
in (2) as a sum of exponents.

Proposition 1: The set of functions{fN} in (2) can be
expressed in the form

fN (x) =

N−1
∑

j=0

exp
(

d(N, j, x)
)

, x ∈ R, N ∈ N

where for allN ∈ N, x ∈ R and j = 0, 1 . . . , N − 1

d(N, j, x) ,
x2

2
+ ln Γ

(

N

2

)

− ln Γ

(

j

2
+ 1

)

− ln Γ(N − j)

+(N − 1 − j) ln
(√

2 x
)

− ln 2

2

+ ln

[

1 + (−1)j
γ̃

(

x2

2
,
j + 1

2

)]

(8)

and

Γ(a) ,

∫ ∞

0

t
a−1

e
−t

dt , Re(a) > 0 (9)

γ̃(x, a) ,
1

Γ(a)

∫ x

0

t
a−1

e
−t

dt , x ∈ R, Re(a) > 0 (10)

designate the complete and incomplete Gamma functions,
respectively.
The proof of this proposition is given in the Appendix.

Remark 1: Note that the exponentsd(N, j, x) in (8)
are readily calculated using standard mathematical func-
tions. The function which calculates the natural logarithm
of the Gamma function is implemented in the MATLAB
software by gammaln, and in the Mathematica software
by LogGamma. The function γ̃(a, b) is implemented in
MATLAB by gammainc(x,N) and in Mathematica by
GammaRegularized(N,0,x).

To complete the calculation of the functionfN in the log
domain, we employ the function

max ∗(x1, . . . , xm) , ln

(

m
∑

i=1

e
xi

)

,
m ∈ N,

x1, . . . , xm ∈ R
(11)

which is commonly used in the implementation of the log-
domain BCJR algorithm. The functionmax ∗ is calculated in
the log domain using the recursive equation

max ∗(x1, . . . , xm+1) = max ∗(max ∗(x1, . . . , xm), xm+1

)

,

m ∈ N \ {1}, x1, . . . , xm+1 ∈ R

with the initial condition

max ∗(x1, x2) = max(x1, x2) + ln
(

1 + e
−|x1−x2|

)

.

Combining Proposition 1 and the definition of the function
max ∗ in (11), yields a log domain algorithm for the calcula-
tion of the set of functions{fN}.

Corollary 2: The set of functions{fN} defined in (2) can
be rewritten in the form

fN (x) = exp
[

max ∗(
d(N, 0, x), d(N, 1, x), . . . , d(N, N − 1, x)

)

]

whered(N, j, x) is introduced in (8).



Substituting the log domain form offN in the RHS of
(1), we get an efficient algorithm for the calculation of the
SP59 bound in the log domain; this algorithm is given in the
following theorem:

Theorem 4 (Log domain calculation of the SP59 bound):
The termPSPB(N, θ,A) in the RHS of (1) can be rewritten as

PSPB(N, θ, A) =

∫ π
2

θ

exp

[

ln(N − 1) − NA2

2
− 1

2
ln(2π)

+(N − 2) ln sin φ

+ max ∗
(

{

d(N, i,
√

NA cos φ)
}N−1

i=0

)

]

dφ

+Q(
√

NA) , N ∈ N, θ ∈ [0,
π

2
], A ∈ R

+

whered(N, j, x) is defined in (8).

Using Theorem 4, it is possible to calculate the exact value of
the SP59 lower bound for very large block lengths. Figure 1
shows a comparison of the exact value of the SP59 bound
and its asymptotic value as given in Theorem 4 and Eq. (6),
respectively. This comparison is shown for a code rate of0.5
bits per channel use per dimension and block lengths ofN =
102, 103 and104. The calculations of the exact and asymptotic
expressions were done usingθ∗ from (3); due to the large
block lengths, the loss incurred by using this suboptimal value
is negligible. It is observed that the asymptotic expression is
indeed quite accurate for the two larger block lengths ofN =
1, 000 and10, 000, and its accuracy is improved by increasing
the block length and the SNR.
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Fig. 1. Comparison of the approximate and exact expressions for the SP59
bound (see Eq. (6) and Thm. 4, respectively). The examined block lengths are
N = 100, 1000 and10, 000 for a rate of0.5 bits per ch. use per dimension.

V. A N IMPROVED SPHERE-PACKING BOUND

The original focus in the derivation of the SP67 bound [7]
was the asymptotic analysis of the error probability for optimal
codes when the block length tends to infinity. For this reason,

the SP67 bound fails to provide informative results for codes
of small to moderate block lengths. In [8], Valembois and
Fossorier revisit the derivation of the SP67 bound, this time
focusing on the error-probability of finite length codes. A new
sphere-packing bound is derived in [8] which dramatically
improves the tightness of the SP67 bound for codes with short
to moderate block lengths; the new bound also extends the
validity of the bound to memoryless channels with discrete
input and continuous output. This improvement motivated us
to investigate the possibility of further enhancing the tightness
of the sphere-packing technique. In [10], [11], we derive
the ISP bound which improves the tightness of the SP67
and Valembois-Fossorier bounds. Under a mild condition,
the ISP bound is valid for general discrete-time memoryless
channels. The new bound is applied to M-ary PSK block
coded modulation over the AWGN channel and its tightness
is compared with the SP59 bound which is valid for any set
of equal energy signals over the AWGN channel.
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Fig. 2. Regions in the two-dimensional space of code rate and block length
where a bound is better than the two others for three different targets of block
error probability (Pe). The figure compares the tightness of the 1959 sphere-
packing (SP59) bound of Shannon [6], the improved sphere-packing (ISP)
bound [10], and the capacity-limit bound (CLB). The plot refers to BPSK
modulated signals whose transmission takes place over the AWGNchannel,
and the considered code rates lie in the range between 0.1 and1

bits
channel use.

Fig. 2 presents regions of code rates and block lengths
for which the ISP bound outperforms the SP59 bound and
the capacity-limit bound (CLB); it refers to BPSK modulated
signals transmitted over the AWGN and considers block error
probabilities of10−4, 10−5 and10−6. It is reflected from this
figure that for any rate0 < R < 1, there exists a block length
N(R) such that the ISP bound outperforms the SP59 bound for
block lengths larger thanN(R) (the same property also holds
for the Valembois-Fossorier bound, but that the value ofN(R)
is significantly larger in the latter case). It is also observed
that the valueN(R) is monotonically decreasing withR, and
it approaches infinity as we letR tend to zero. For relatively
low code rates the SP59 bound outperforms the ISP bound for



block lengths of interest in modern communication systems.
For a further discussion and additional numerical results,the
reader is referred to [10], [11].

VI. SUMMARY

This paper presents an algorithm which performs the calcu-
lation of Shannon’s 1959 sphere-packing (SP59) bound [6]
in the logarithmic domain. This algorithm circumvents the
numerical difficulties associated with a previous algorithm,
suggested in [8], which performs the calculation in the prob-
ability domain. The new algorithm is used to calculate the
bound for moderate to large block lengths, and to study the
tightness of the asymptotic approximations in [6]. This work
is part of a more general study of sphere-packing bounds
[10]. A second part of this study is the derivation of an
improved sphere-packing (ISP) bound which applies to general
memoryless channels (the bound was recently presented in
[11]), and the application of this bound to M-ary PSK block
coded modulation over the AWGN channel. This allows to
compare the tightness of the SP59 and ISP bounds for different
rates, block lengths and modulation parameters (see Fig. 2,
and for more details the reader is referred to [10], [11]). A
comprehensive tutorial on sphere-packing bounds is given in
[5, Chapter 5].

APPENDIX

PROOF OFPROPOSITION1

From the definition offN in (2), it follows that

fN (x) =
1

2
N−1

2 Γ( N+1
2 )

∫

∞

0

z
N−1

exp(− z2

2
+ zx) dz

=
e

x2

2

2
N−1

2 Γ( N+1
2 )

∫

∞

0

z
N−1

exp

(

− (z − x)2

2

)

dz

=
e

x2

2

2
N−1

2 Γ( N+1
2 )

∫

∞

−x

(u + x)
N−1

exp

(

−u2

2

)

du .

From the binomial formula, we get

fN (x) =
e

x2

2

2
N−1

2 Γ( N+1
2 )

N−1
∑

j=0

[

(N − 1

j

)

x
N−1−j

∫

∞

−x

u
j
exp

(

−u2

2

)

du

]

.

(A.1)

We now examine the integral in the RHS of (A.1). From
symmetry (anti-symmetry) considerations of the integrandfor
even (odd) values ofj, we get that

∫

∞

−x

u
j
exp

(

−u2

2

)

du

=

∫

∞

0

u
j
exp

(

−u2

2

)

du + (−1)
j

∫

x

0

u
j
exp

(

−u2

2

)

du

(a)
=

∫

∞

0

(2t)
j−1
2 e

−t
dt + (−1)

j

∫ x2

2

0

(2t)
j−1
2 e

−t
dt

= 2
j−1
2

∫

∞

0

t
j−1
2 e

−t
dt ·













1 + (−1)
j

∫ x2

2

0

t
j−1
2 e

−t
dt

∫

∞

0

t
j−1
2 e

−t
dt













= 2
j−1
2 Γ

(

j + 1

2

) [

1 + (−1)
j
γ̃
( x2

2
,

j + 1

2

)

]

where (a) follows by substitutingt , u2

2 , and the functions
Γ and γ̃ are defined in (9) and (10), respectively. Substituting
the last equality in (A.1) and noting that

(N − 1

j

)

=
Γ(N)

Γ(N − j) Γ(j + 1)
, N ∈ N, j ∈ {0, 1, . . . , N − 1}

gives

fN (x)
(a)
=

N−1
∑

j=0

{

e
x2

2

Γ(N − j)

2N−1 Γ
(

N
2

)

√
π

2−j √
π

Γ
(

j
2 + 1

)

xN−1−j

2
N−j

2

·
[

1 + (−1)
j

γ̃

(

x2

2
,

j + 1

2

)] }

(b)
=

N−1
∑

j=0

exp
(

d(N, j, x)
)

where(a) follows from the equality

Γ(2u) =
22u−1

√
π

Γ(u) Γ

(

u +
1

2

)

, u 6= 0,− 1

2
,−1,− 3

2
, . . .

and (b) follows from the definition ofd(N, j, x) in (8).
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