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Abstract—The 1959 sphere-packing bound of Shannon is in the logarithmic domain, thus circumventing the numdrica
reviewed, and a new algorithm is derived for its calculation. problems which hinder the exact calculation of the bound. In
This algorithm performs the entire calculation in the logarithmic g1 5 yecursive algorithm for the calculation of the SP58ib
domain, thus facilitating the exact calculation of the bound for . h . . .
moderate to large block lengths. The new algorithm circumvents IS presented..Thls al'gorlthm performs the calculgtlonmm t
the numerical difficulties associated with a previously suggested Natural domain and is therefore prone to numerical over and
algorithm by Valembois and Fossorier. We also compare the underflows when applied to block lengths of more than several
bound with a new sphere-packing bound which was recently hundreds.
derived by the authors. By applying the bound to M-ary PSK ;g haper presents an algorithm which performs the entire
block coded modulation, the new bound suggests an interesting . . . . .
alternative to the Shannon bound. calculation of the SP59 bound in the logarithmic domain.

This technique allows us to calculate the bound for all block
|. INTRODUCTION lengths without encountering numerical difficulties. Thawn

Error correcting codes which employ efficient iterativalgorithm is applied to calculate the SP59 bound for several
decoding algorithms closely approach the capacity limit whoderate to large block lengths and compare the exact value
many standard communication channels. The performanceobfthe bound with the asymptotic approximations in [6]. This
these codes is especially appealing for moderate to la@gorithm is part of a more general study of sphere-packing
block lengths. These developments stirred up new interestbiounds in [10]. The second part of this study is the derivatio
studying the limits of code performance as a function of thef an improved sphere-packing (ISP) bound which, under a
block length (see, e.qg., [1]-[5] and [8]-[11]). mild condition, is valid for general memoryless channétss t

Sphere-packing bounds are lower bounds on the errtound was recently presented in the conference paper [11].
probability of block codes in terms of the rate, block lengtfihe ISP bound is based on the work in [7] and [8] and
and communication channel. These bounds are valid und@proves the tightness of the bounds derived in these works.
maximum-likelihood (ML) decoding or in general under list The paper is structured as follows: Section Il reviews the
decoding. Classical members of this family are the 1989P59 bound of Shannon and the asymptotic approximations
sphere-packing (SP59) bound of Shannon [6] which refegpsovided in [6]. Section Ill presents the recursive aldorit
to the AWGN channel and the 1967 sphere-packing (SP&®)y the calculation of the SP59 bound, as derived in [8]. The
bound of Shannon, Gallager and Berlekamp [7] which isumerical instability of this algorithm motivates the dation
valid for any discrete memoryless channel. The latter bouefla new algorithm for calculating the bound in the logaritbm
has been recently improved by Valembois and Fossorier [@main which is performed in Section IV. Section V presents
and Wiechman and Sason [10]. These lower bounds on theshort discussion of the ISP bound presented in [10], [11]
decoding error probability are often used as a reference falong with some numerical results comparing the SP59 and
quantifying the sub-optimality of codes with their praefic ISP bounds for M-ary PSK signaling over the AWGN channel.
decoding algorithms; by comparing computer simulatiorrs f@he paper is summarized in Section VI. Some technical cal-
the performance of turbo-like codes over a wide range ofrateulations are relegated to an Appendix. For a comprehensive
and block sizes, it was exemplified in the literature that theatorial review of classical sphere-packing bounds (iteg
gap between the sphere-packing bounds and the performa8&9 and SP67 bounds) and recent improvements in [8], the
of these codes under efficient iterative decoding algosthmeader is referred to [5, Chapter 5].
can be reduced below 1 dB.

The calculation of the SP59 bound is numerically involved
and becomes prohibitively complex when the block length
exceeds several hundreds. To overcome this problem, ShannoThe SP59 bound of Shannon [6] provides a lower bound
provides in [6] some asymptotic approximations for the SP%Hh the decoding error probability of block codes transrditte
bound which enable to estimate of value of the bound for largeer the AWGN channel. Consider a block ca@le®f length
block lengths. These approximations perform the calauhati N, and rate R nats per channel use per dimension. It is

II. THE 1959 S HEREPACKING BOUND AND
ASYMPTOTIC APPROXIMATIONS



assumed that the codewords are mapped to equal endfgy probability that the additive Gaussian noise carries th
signals (e.g., PSK modulation); hence, each transmittguhéi transmitted signal outside th&'-dimensional circular cone

corresponds to a point aWi-dimensional sphere centered at th?r;rr:g:;i?tgglesiegxvauopsgnrpﬂgnixels t?\(i)snpuiccftsiotg?scmghn m%?l(jj/ the

origin, but finer details of the modulation are not CO”Sideredecreasing iM. The tightest lower bound on the decoding error
This assumption implies that every Voronoi cell (i.e., thgrobability is therefore achieved f@y (N, R) which satisfies
convex region containing all the points which are closehto t
considered signal than any other code signal) is a polybedri W
cone limited by at mostxp(N R)—1 hyper planes intersecting Qn(m)
at the origin. To measure the size of the Voronoi regionSplving this equation to find the optimal andgle(V, R) is a
Shannon introduced the solid angle of a cone which is defingtlious task which considerably increases the computdtion
to be the area of the sphere of unit radius which is cut out lepmplexity of the evaluating the SP59 bound. To simplify
the cone. Since the Voronoi cells partition the spREg the the calculation of the bound, [6] provides asymptoticaifht
sum of their solid angles must be the area of\&limensional upper and lower bounds on the rai )
sphere of unit radius. The derivation of the SP59 boundgelie Lemma 2 (Bounds on the Solid Angle&g]): The solid an-
on two main observations: gle of a circular cone of half anglé in the Euclidean space
« Among the cones of a given solid angle, the lowest enrdy satisfies the inequality
probability is achieved by the circular cone whose axig(4)(sing)V ! ( . tan29) <) _ LX) (sing)¥ "
connects the code signal with the origin. 2T (NA1) /7 cos 0 N = Qn(m) ~ 20 (X)) rcosd |
o Itis bestto sharg the_total solid angle equally among theCoroIIary 1 (SP59 Bound (Cont.)): If 6* satisfies
exp(N R) Voronoi regions.
From these observations it follows that the average Voronoi D(5)(sing")" ( _ tan® 9*) _exp(-NR) (3
cell of any code cannot be better than a circular cone with 2 (834) /7 cos 0 N
a solid angle equal texp(—NR) of the solid angle ofR Qn (0%)
centered around the code signal. The solid angle of a c'rrcuﬁa ()
cone is given by the following lemma. _ Po(ML) > Pspg(N, 0%, A). (4)
Lemma 1 (Solid Angle of a Circular Qone]\LQ]): The solid ] .
angle of a circular cone of half angtein RN is given by ~ The use of¢* instead of the optimal valug, (N, R) causes

= exp(—NR).

> exp(—NR), and therefore

N1, some loss in the tightness of the SP59 bound. However, due
Qn(8) = FQ”N: / (sin )V 2 dop . to thg asym_ptotic tightness of the _bounds Néfr)) thg
(55) Jo loss in the tightness of the bound in Corollary 1 vanishes
In particular, the solid angle d&? is asymptotically asV — oo. In [8], it was numerically observed
N that the loss is marginal even for relatively small values\Vof
Qn () = 2”; . and R.
(%) The calculation of the SP59 bound is numerically challeng-

Theorem 1 (The 1959 Sphere-Packing (SP59) Bound [6]):  ing and causes over and under flows in the floating point
Assume that a block code of lengfki and rateR? nats per operations when the block length exceeds several hundreds;
dlmetnSIIOS IS t_’t'aﬂﬁm't_lﬁﬁd overa':m Al\\/IV\IiGdN chgnnelt\;]vlth NOIS@creasing the precision of the floating point numbers does
spectra’. density’; . Then, under ecoding, the €rrone 1o increase the range where the bound can be calcllate
probability satisfies X . .

To overcome this, [6] provides some asymptotic formulas
PuML) > Pspa(N, 0, A), A2 [2Es which give an accurate estimation of the bou_nd \_/vhen the
No block lengths become very large. These approximationsvallo

where E is the average energy per code symlgok [0, 7] the calculation to be made in the logarithmic domain which

satisfies the inequalitpg=NE < gwgﬂ, virtually eliminates the possibility of floating point ers
n(m) Theorem 2: [6]: Defining
NAZ?
N —1)e =
Poe(N,0,4) £ Q(/Na)y N =Dz \/)2% - Gy & AcosftvAicosh+d
B A? — AG(9 0 —2In(G(0)sin 6
/9 (sing)™~* fn(VNAcos o) do (1) EL() = i 2 ZUUL
and then
roo 2 N -1 =t+1n24+3 _
fN([L‘) 2 m / ZN—I exp (_% + Zil?) dz (2) PSPB(N7 97 A) > me 2 e N EL(9>' (5)
2 ——) J0
: This lower bound is valid for any block lengtN. However,
wherez ¢ R and N € N. the ratio of the left and right terms in (5) stays bounded

By assumption, the transmitted signal corresponds to posway from one for allN. A more accurate approximation
on the N-dimensional sphere of radiugN £, centered at the of Pspg(N,0, A) is given below, but without a determined
origin. The valuePspg(V, 6, A) in the RHS of (1) designatesinequality. As a consequence, the following approximai®n



not a proven theoretical lower bound on the error probabilitperforms the calculation of the integrand in the RHS of (1) in
For N > 1000, however, its numerical values become venhe log domain. This approach circumvents the numerical ove

close to the exact value, giving a useful approximation ef t ; i ;
SP59 bound. Following the notation of Theorem 2. [6] shovt/bnd under flows which become problematic in the calculation

that if § > cot—(A), then 6f the SP59 bound for large block lengths. We begin our
' derivation by representing the set of functiofty} defined

a(f)eNELO) (6) N (2) as a sum of exponents.

PSPB(N7 07 A) ~

VN Proposition 1. The set of functions{fx} in (2) can be
expressed in the form
where
N—-1
a(f) & < 7 (1+ G(0)2) sind (AG(@) sin20 — cos@))_ fn(z) = Z exp(d(N,j, :r)) , z€R, NeN
j=0

IIl. A RECURSIVEALGORITHM FOR CALCULATING THE
1959 S HEREPACKING BOUND [8]

In [8, Section 2], the SP59 bound is reviewed and &N, j, )
recursive algorithm to simplify its calculation is suggekt

where forallN e N, reRand;j =0,1...,N —1

z’ N J .
5 +InT (?> —InT (5 +1) —InT(N —j)

1>

This algorithm is given by the following theorem: +(N —=1-j)In <\/§ :v) - 1%2
Theorem 3 (Recursive Calculation of the SP59 Bound): 2
[8, Theorem 3]: The set of functionsfy} introduced in (2) +1In {1 +(-1) 5 <LL, L)} ®)
can be expressed in the alternative form 20 2
2 z 2 and
fn(e) = Pv@rn@en(y) [ ew-5rd, RN -
—o0 I'(a) 2 / t“le7'dt, Rela) >0 9)
where Py and @y are two polynomials, determined by the 01 "
same recursive equation for all > 5 (z,a) = a) / t*te7tdt, x €R, Rela) > 0(10)
0
2
Pn(z) = 2N —5+a2" Py _o(z) — N -4 Pn_4(z), designate the complete and incomplete Gamma functions,
N-1 N-1 tivel
ON 54 a2 N4 respectively. o _ _
Qn(z) = N Qn-_2(x) — N1 Qn-4(x) (7) The proof of this proposition is given in the Appendix.

Remark 1: Note that the exponentsi(N,j,z) in (8)
are readily calculated using standard mathematical func-
tions. The function which calculates the natural logarithm

with the initial conditions
Pi(z) =0, Qi(x)=1

2 2

of the Gamma function is implemented in the MATLAB

Py(z) = s Q2(x) = = software by ganmal n, and in the Mathematica software
. 1422 by LogGama. The function 4(a,b) is implemented in
Py(z) =3, Q) = — MATLAB by gammai nc(x, N) and in Mathematica by

GanmaRegul ari zed(N, 0, x).
To complete the calculation of the functigfy; in the log
domain, we employ the function

22+ 2?2 23z + 23
P4(x):\/; 3 Q4(w):\/; 3

Observing the recursive equations By, and @ in (7),
we notice that the coefficients of the higher powers @hnish max* (21 zm) 2 1n f: e m e N, (11)
exponentially asN increases. When performing the calcu- o P oz, 2m ER

lation using double-precision floating point numbers, Ghe%vhich is commonly used in the implementation of the log-

coefficients cause underflows when is larger than several yomain BCIR algorithm. The functiamax * is calculated in
hundreds, and are replaced by zeros. However, examining ¢he log domain using the recursive equation

we observe that the functioffy(z) is typically evaluated
at  ~ O(V/N). Hence, asN becomes larger than several
hundreds, the underflows in the calculation of the coeffisien
for the higher powers oX cause a considerable accuracy iRyith the initial condition
the calculation ofPspg in (1). For further discussion on the
effect of these numerical difficulties the reader is reféne
[10, Section 4.2]

max*(xl,...,merl) = max*(max*(xh...,CL’m),l’er1),

m € N\ {1}, z1,...,Zm+1 €R

max *(z1,r2) = max(z1,z2) + In (1 + e_‘””_”‘) .

Combining Proposition 1 and the definition of the function

IV. AL oG-DOMAIN APPROACH FORCOMPUTING THE max * in (11), yields a log domain algorithm for the calcula-
' tion of the set of functiong fn }.

1959 SPHEREPACKING BOUND Corollary 2: The set of functionq fx} defined in (2) can
The numerical difficulties which makes the calculation dpe rewritten in the form
the SP59 bound intractable for moderate to large block hasngth(I) — exp [max*(d(N, 0,2),d(N,1,2),...,d(N,N — Lm))]
can be overcome by performing the calculation in the loga-
rithmic domain. In this section, we present a method whickhered(N, j, ) is introduced in (8).



Substituting the log domain form ofy in the RHS of the SP67 bound fails to provide informative results for ade
(1), we get an efficient algorithm for the calculation of th@f small to moderate block lengths. In [8], Valembois and
SP59 bound in the log domain; this algorithm is given in thEossorier revisit the derivation of the SP67 bound, thisetim

following theorem: focusing on the error-probability of finite length codes. én
sphere-packing bound is derived in [8] which dramatically
Theorem 4 (Log domain calculation of the SP59 bound): improves the tightness of the SP67 bound for codes with short

The termPspg(/N, 0, A) in the RHS of (1) can be rewritten asto moderate block lengths; the new bound also extends the
validity of the bound to memoryless channels with discrete

™

3 NAZ 1 , . e .
Pspg(N,0,A) = / exp {hﬂ(N —1) - —— -5 input and continuous output. This improvement motivated us
(N —2)Insiné to investigate the possibility of further enhancing thétigess

of the sphere-packing technique. In [10], [11], we derive
+max*({d(N,i,\/NACOS¢)}£V:BI)}d¢ the ISP bound which improves the tightness of the SP67
. and Valembois-Fossorier bounds. Under a mild condition,

+Q(VNA),  NeN 0€0,5], AER" e SP bound is valid for general discrete-time memoryless

Lo , , channels. The new bound is applied to M-ary PSK block
whered(N, j,z) is defined in (8). coded modulation over the AWGN channel and its tightness
Using Theorem 4, it is possible to calculate the exact vafue ig compared with the SP59 bound which is valid for any set

the SP59 lower bound for very large block lengths. Figure df equal energy signals over the AWGN channel.
shows a comparison of the exact value of the SP59 bound

and its asymptotic value as given in Theorem 4 and Eq. (€ 1
respectively. This comparison is shown for a code rate.of . e 109
bits per channel use per dimension and block length¥ ef

10

T
P =10 "
— e

p =107
e

102,10* and10*. The calculations of the exact and asymptotic " BPSK |

expressions were done usitg from (3); due to the large
block lengths, the loss incurred by using this suboptimalea
is negligible. It is observed that the asymptotic exprasso
indeed quite accurate for the two larger block lengthgvof
1,000 and10, 000, and its accuracy is improved by increasin
the block length and the SNR.

Block length (bits)
[
o
T
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T
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Exact bounds
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Fig. 2. Regions in the two-dimensional space of code rate &tk bength
where a bound is better than the two others for three diffesggets of block
error probability (). The figure compares the tightness of the 1959 sphere-
packing (SP59) bound of Shannon [6], the improved spherkipadISP)
bound [10], and the capacity-limit bound (CLB). The plot rsféco BPSK
modulated signals whose transmission takes place over the AdlaNnel,
and the considered code rates lie in the range between 0.1

Error probability

ts
el use

Fig. 2 presents regions of code rates and block lengths
for which the ISP bound outperforms the SP59 bound and
1 - 2 25 3 the capacity-limit bound (CLB); it refers to BPSK modulated

signals transmitted over the AWGN and considers block error
Fig. 1. Comparison of the approximate and exact expressiorthéoSP59 probabilities of10~=%, 10~° and10~°. It is reflected from this
bound (see Eq. (6) and Thm. 4, respectively)_. The examinedkllm;gths are figure that for any rat@ < R < 1, there exists a block Iength
N =100, 1000 and 10, 000 for a rate of0.5 bits per ch. use per dimension. N(R) such that the ISP bound outperforms the SP59 bound for
block lengths larger thatV(R) (the same property also holds
for the Valembois-Fossorier bound, but that the valu&/¢R?)
V. AN IMPROVED SPHERE PACKING BOUND is significantly larger in the latter case). It is also observ

The original focus in the derivation of the SP67 bound [#hat the valueN (R) is monotonically decreasing witR, and
was the asymptotic analysis of the error probability foriraal it approaches infinity as we lg® tend to zero. For relatively
codes when the block length tends to infinity. For this reasdiow code rates the SP59 bound outperforms the ISP bound for




block lengths of interest in modern communication systemshere (a) follows by substitutingt = “72 and the functions
For a further discussion and additional numerical restiits, I' and~ are defined in (9) and (10), respectively. Substituting

reader is referred to [10], [11].

VI. SUMMARY

the last equality in (A.1) and noting that
(N — 1) I'(N)

gives

This paper presents an algorithm which performs the calcu-

lation of Shannon’s 1959 sphere-packing (SP59) bound [6]f, ) “

in the logarithmic domain. This algorithm circumvents the
numerical difficulties associated with a previous algarith
suggested in [8], which performs the calculation in the prob
ability domain. The new algorithm is used to calculate the
bound for moderate to large block lengths, and to study the
tightness of the asymptotic approximations in [6]. This kvor
is part of a more general study of sphere-packing boun
[10]. A second part of this study is the derivation of an
improved sphere-packing (ISP) bound which applies to ggner

)=——2  _ NeN,je{0,1,....,N—1
j T(N—/)TG+1) { }
22 )
2 Nil{ e 2NTIIr(§) 279y N1
; = N—
j=0 (N —3j) VT ( +1) 2 o
1

r(3
(359}
b

= exp (d(N, j,z))
0

2

<.
Il

\ggere(a) follows from the equality

2u—1 1 1 3
T'(u) F<u+ 5) , u;éO,—E,—l,—f

T'(2u) = 2 3

yee
T

memoryless channels (the bound was recently presentec®fifl (¢) follows from the definition ofd(N, j, z) in (8).

[11]), and the application of this bound to M-ary PSK block
coded modulation over the AWGN channel. This allows tcm
compare the tightness of the SP59 and ISP bounds for differen
rates, block lengths and modulation parameters (see Fig. 2,
and for more details the reader is referred to [10], [11]). A

comprehensive tutorial on sphere-packing bounds is gimen [2]
[5, Chapter 5].

APPENDIX
PROOF OFPROPOSITIONL

From the definition offy in (2), it follows that

(3]

1 oo _ 22
In(®) = 47— Nt cxp(f? + zz) dz

2N2 1_‘(N;rl) 0
* N1 ( <z7w>2>
z exp | — dz

(4]

(5]

2

273 F(N+l) 0

o 2
R T S
273 F(N+1) oz 2

(6]

[(Nj-l)xw—l-j I p<ﬂ7> du} Y
(A1)

We now examine the integral in the RHS of (A.1). From
symmetry (anti-symmetry) considerations of the integréord
even (odd) values of, we get that

/ooujcx 711,72 du

—x P 2

:/ u’? exp<7u—> dqu(fl)]/ u’? exp<7u—> du
0 2 0 2

2
a o j—1 _ . 5 j—1 _
Q/ @) 7 e tdt+(—1)7/ T oantT et dt
JOo JO

x —
T Nt

In@) = F———
(

9]

2

J.T i—1
/ t72 e tdt
0

T oo -1 .
/ T et dt
0

)]

j—1 [oo j—1 B
=272 / et de - |14 (—1))
JO

i=1 _(j+1 o a?
=2 2 | =— 1 71J i
(55) [1+ (5

[10] G. Wiechman and |I.
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