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Motivation

In many interesting applications, the exact distribution of X is not
available or is numerically hard to compute.
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between X and another RV Y with a known p.m.f. can be valuable
to get a rigorous bound on |H(X)−H(Y )|.
This work is a follow-up of the papers:

1 S. W. Ho and R. W. Yeung, “The interplay between entropy and
variational distance,” IEEE Trans. on Info. Theory, vol. 56,
pp. 5906–5929, Dec. 2010.

2 Z. Zhang, “Estimating mutual information via Kolmogorov distance,”
IEEE Trans. on Info. Theory, vol. 53, pp. 3280–3282, Sept. 2007.

3 I. Kontoyiannis, P. Harremoës and O. Johnson, “Entropy and the law of
small numbers,” IEEE Trans. on Info. Theory, pp. 466–472, Feb. 2005.
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The new ingredient is a derivation of improved bounds on the entropy
difference that rely on both the local and total variation distances;
this is done via maximal coupling combined with Stein’s method.
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Definitions

Coupling

A coupling of a pair of two RVs (X,Y ) is a pair of two random variables
(X̂, Ŷ ) with the same marginal probability distributions as of (X,Y ).
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(X̂, Ŷ ) with the same marginal probability distributions as of (X,Y ).

Maximal Coupling

For a pair of RVs (X,Y ), a coupling (X̂, Ŷ ) is called a maximal coupling
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Definitions

Coupling

A coupling of a pair of two RVs (X,Y ) is a pair of two random variables
(X̂, Ŷ ) with the same marginal probability distributions as of (X,Y ).

Maximal Coupling

For a pair of RVs (X,Y ), a coupling (X̂, Ŷ ) is called a maximal coupling
if P(X̂ = Ŷ ) is as large as possible among all the couplings of (X,Y ).

Total Variation and Local Distances

Let X and Y be discrete RVs that take values in a set A, and let PX and
PY be their p.m.f. The local and total variation distances are

dloc(X,Y ) , sup
u∈A
|PX(u)− PY (u)|, dTV(X,Y ) ,

1
2

∑
u∈A
|PX(u)− PY (u)|.

The local distance is the l∞ distance between the p.m.f, the total variation
distance is half the l1 distance, and dloc(X,Y ) ≤ dTV(X,Y ).
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Known Results

Link Between Maximal Coupling and Total Variation Distance

If (X̂, Ŷ ) is a maximal coupling of (X,Y ) then P(X̂ 6= Ŷ ) = dTV(X,Y ).
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Known Results

Bound on the Entropy of Discrete Random Variables (Zhang, 07)

Theorem

Let X and Y be two discrete random variables that take values in a set A,
and let |A| = M . Then,

|H(X)−H(Y )| ≤ dTV(X,Y ) log(M − 1) + h
(
dTV(X,Y )

)
where h denotes the binary entropy function.
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Theorem

Let X and Y be two discrete random variables that take values in a set A,
and let |A| = M . Then,

|H(X)−H(Y )| ≤ dTV(X,Y ) log(M − 1) + h
(
dTV(X,Y )

)
where h denotes the binary entropy function.

Corollary

If dTV(X,Y ) ≤ ε, then

|H(X)−H(Y )| ≤

{
ε log(M − 1) + h(ε) if ε ∈

[
0, 1− 1

M

]
log(M) if ε > 1− 1

M
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Known Results

Simplified Proof of of Zhang’s inequality

∣∣H(X)−H(Y )
∣∣

=
∣∣H(X̂)−H(Ŷ )

∣∣
=
∣∣H(X̂|Ŷ )−H(Ŷ |X̂)

∣∣
≤ max

{
H(X̂|Ŷ ), H(Ŷ |X̂)

}
≤ P(X̂ 6= Ŷ ) log(M − 1) + h

(
P(X̂ 6= Ŷ )

)
= dTV(X,Y ) log(M − 1) + h

(
dTV(X,Y )

)
.
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∣∣
≤ max

{
H(X̂|Ŷ ), H(Ŷ |X̂)

}
≤ P(X̂ 6= Ŷ ) log(M − 1) + h

(
P(X̂ 6= Ŷ )

)
= dTV(X,Y ) log(M − 1) + h

(
dTV(X,Y )

)
.

Example where Equality is Achieved

If ε ∈ [0, 1− 1
M ], the bound is tight when

X ∼ PX =
(
1− ε, ε

M − 1
, . . . ,

ε

M − 1

)
, Y ∼ PY = (1, 0, . . . , 0)
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New Results

Note

In this example, dloc(X,Y ) = dTV(X,Y ).
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New Results

Note

In this example, dloc(X,Y ) = dTV(X,Y ).

Main Observation I

If the local distance between two probability distributions on a finite
alphabet is smaller than the total variation distance, then the bounds on
the entropy difference can be significantly strengthened.
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New Results

A Refinement of the Bound (Finite Alphabets)

Theorem

Let X and Y be discrete RVs taking values in a set A, and let |A| = M .
Then,

|H(X)−H(Y )| ≤ dTV(X,Y ) log(Mα− 1) + h
(
dTV(X,Y )

)
(1)

where α , dloc(X,Y )
dTV(X,Y ) denotes the ratio of the local and total variation

distances (so, α ∈ [ 2
M , 1]), and h denotes the binary entropy function.
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Let X and Y be discrete RVs taking values in a set A, and let |A| = M .
Then,

|H(X)−H(Y )| ≤ dTV(X,Y ) log(Mα− 1) + h
(
dTV(X,Y )

)
(1)

where α , dloc(X,Y )
dTV(X,Y ) denotes the ratio of the local and total variation

distances (so, α ∈ [ 2
M , 1]), and h denotes the binary entropy function.

Furthermore, if 1
2 ≤

PX
PY
≤ 2 whenever PX , PY > 0, then the bound in (1)

is tightened to

|H(X)−H(Y )| ≤ dTV(X,Y ) log
(
Mα− 1

4

)
+ h
(
dTV(X,Y )

)
.
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New Results

Concept of Proof of the New Theorem

The previous simplified proof only relies on the total variation distance.
Not clear how the local distance can be helpful to improve the bound.

1 The proof relies on a specific construction of maximal coupling.

2 The derivation of the bound leads to a non-convex optimization
problem of the form:

maximize

(
−

M∑
i=1

si log(si) +
M∑
i=1

ti log(ti)

)
subject to

si, ti ≥ 0, si + ti ≤ α
siti = 0, ∀ i ∈ {1, . . . ,M}

M∑
i=1

si =
M∑
i=1

ti = 1

with the 2M variables s1, t1, . . . sM , tM .
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New Results

Concept of proof (Cont.)

Fortunately, this non-convex optimization problem admits the following
closed-form solution:

g(α) = log
(
M −

⌈
1
α

⌉)
+ α

⌊ 1
α

⌋
logα+

(
1− α

⌊ 1
α

⌋)
log
(

1− α
⌊ 1
α

⌋)
.

No need for Fano’s inequality in this case. This proof is completely
different from the previous (simplified) proof of Zhang’s inequality.
Full details in the paper:
I. Sason, “Entropy bounds for discrete random variables via coupling,”
submitted to IEEE Trans. on Info. Theory, Sept. 2012.
http://arxiv.org/abs/1209.5259.
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New Results

Special Cases of the New Bound

Since, in general, α ≤ 1 then the case where α = 1 is the worst case
for the new bound. In the latter case, it is particularized to the bound
by Zhang (2007).
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New Results

Special Cases of the New Bound

Since, in general, α ≤ 1 then the case where α = 1 is the worst case
for the new bound. In the latter case, it is particularized to the bound
by Zhang (2007).

If α ≤ 1
N for some integer N (since α ∈

[
2
M , 1

]
then it yields that

N ∈ {1, . . . , bM2 c}), the new bound implies that

|H(X)−H(Y )| ≤ dTV(X,Y ) log
(
M −N
N

)
+ h
(
dTV(X,Y )

)
.

This inequality and Theorem 7 by Ho and Yeung (2010) are similar
but they hold under different conditions where none of them implies
the other.
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New Results

Main Observation II

There is an extension of the new bound to countably infinite alphabets,
where just knowing the total variation distance between two distributions
does not imply anything about the difference of the respective entropies
(i.e., one has discontinuity of entropy).
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New Results

Main Observation II

There is an extension of the new bound to countably infinite alphabets,
where just knowing the total variation distance between two distributions
does not imply anything about the difference of the respective entropies
(i.e., one has discontinuity of entropy).

Specifically, if one of the distributions is finitely supported, then knowing
also something about the local distance and the tail behavior of the other
distribution allows to bound the difference of entropies in this case.
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New Results

The entropy difference for countably infinite alphabets - New Bound

Let A = {a1, a2, . . .} be a countably infinite set. Let X and Y be discrete
RVs where X takes values in the set X = {a1, . . . , am} for some m ∈ N,
and Y takes values in the set A. Assume that for some η1, η2, η3 > 0,

η2 ≤ dTV(X,Y ) ≤ η1, dloc(X,Y ) ≤ η3

where η3 ≤ η2.
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The entropy difference for countably infinite alphabets - New Bound

Let A = {a1, a2, . . .} be a countably infinite set. Let X and Y be discrete
RVs where X takes values in the set X = {a1, . . . , am} for some m ∈ N,
and Y takes values in the set A. Assume that for some η1, η2, η3 > 0,

η2 ≤ dTV(X,Y ) ≤ η1, dloc(X,Y ) ≤ η3

where η3 ≤ η2. Let M be an integer such that

∞∑
i=M

PY (ai) ≤ η3, M ≥ max
{
m+ 1,

η2

(1− η1)η3

}
and let η4 > 0 satisfy −

∑∞
i=M PY (ai) logPY (ai) ≤ η4.
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New Results

The entropy difference for countably infinite alphabets - New Bound

Let A = {a1, a2, . . .} be a countably infinite set. Let X and Y be discrete
RVs where X takes values in the set X = {a1, . . . , am} for some m ∈ N,
and Y takes values in the set A. Assume that for some η1, η2, η3 > 0,

η2 ≤ dTV(X,Y ) ≤ η1, dloc(X,Y ) ≤ η3

where η3 ≤ η2. Let M be an integer such that

∞∑
i=M

PY (ai) ≤ η3, M ≥ max
{
m+ 1,

η2

(1− η1)η3

}
and let η4 > 0 satisfy −

∑∞
i=M PY (ai) logPY (ai) ≤ η4. Then, the

following inequality holds:

|H(X)−H(Y )| ≤ η1 log
(
Mη3

η2
− 1
)

+ h(η1) + η4.
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An Example: The Poisson Approximation

Poisson Approximation

Example: The entropy of a sum of a large number (n) of Bernoulli
RVs (Xi ∼ Bern(pi)) that none of them dominates the sum; their
distribution is close to the Poisson distribution with parameter
λ =

∑n
i=1 pi (Law of Small Numbers - Kontoyiannis et al., 2005).
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An Example: The Poisson Approximation

Poisson Approximation

Example: The entropy of a sum of a large number (n) of Bernoulli
RVs (Xi ∼ Bern(pi)) that none of them dominates the sum; their
distribution is close to the Poisson distribution with parameter
λ =

∑n
i=1 pi (Law of Small Numbers - Kontoyiannis et al., 2005).

In this work, we derive improved bounds on the entropy of a sum of
independent Bernoulli RVs (not necessarily identically distributed).
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An Example: The Poisson Approximation

Bounds on the Total Variation Distance (Barbour and Hall, 1984)

Let W =
∑n

i=1Xi be a sum of n independent Bernoulli random variables
with E(Xi) = pi for i ∈ {1, . . . , n}, and E(W ) = λ. Then, the total
variation distance between the probability distribution of W and the
Poisson distribution with mean λ satisfies

1
32

(
1 ∧ 1

λ

) n∑
i=1

p2
i ≤ dTV(PW ,Po(λ)) ≤

(
1− e−λ

λ

) n∑
i=1

p2
i

where a ∧ b , min{a, b} for every a, b ∈ R.

The derivation of the upper and lower bounds is based on the Chen-Stein
method for Poisson approximation.
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An Example: The Poisson Approximation

Improved Lower Bound on the Total Variation Distance (I.S., ITA ’13)

Let W =
∑n

i=1Xi be a sum of n independent Bernoulli random variables
with E(Xi) = pi for i ∈ {1, . . . , n}, and E(W ) = λ. Then, the following
inequality holds:

K̃1(λ)
n∑
i=1

p2
i ≤ dTV(PW ,Po(λ)) ≤

(
1− e−λ

λ

) n∑
i=1

p2
i

where

K̃1(λ) ,
e

2λ
1− 1

θ

(
3 + 7

λ

)
θ + 2e−1/2

θ , 3 +
7
λ

+
1
λ
·
√

(3λ+ 7)
[
(3 + 2e−1/2)λ+ 7

]
.
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An Example: The Poisson Approximation

Upper Bound on the Local Distance (Barbour et al., 1992)

dloc(PW ,Po(λ)) ≤ 4 min

{√
2
eλ
, 2e−λ I0(λ)

}(
1− e−λ

λ

) n∑
i=1

p2
i

where I0 denotes the modified Bessel function of order zero.
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An Example: The Poisson Approximation

Application of the New Bound for the Poisson Approximation

The new bound on the entropy difference enables to get a rigorous bound
on the entropy difference H(Po(λ))−H(W ) with the constants

η1 ,
λ(1− e−λ)

n

η2 ,
e

2
1− 1

θ

(
3 + 7

λ

)
θ + 2e−1/2

λ

n

η3 , min
{

1, 4

√
2
πλ
, 8e−λ I0(λ)

}
λ
(
1− e−λ

)
n

η4 ,

[(
λ log

( e
λ

))
+

+ λ2 +
6 log(2π) + 1

12

]
· exp

{
−
[
λ+ (M − 2) log

(
M − 2
λe

)]}
M , max

{
n+ 2,

η2

η3(1− η1)
, λe2, ln

( 1
η3

)
− λ

}
.
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An Example: The Poisson Approximation

Poisson Approximation

This leads to very accurate estimates of the entropy of sums of
independent Bernoulli RVs (not necessarily i.i.d.). For details, see:
I. Sason, “Entropy bounds for discrete random variables via coupling,”
submitted to IEEE Trans. on Info. Theory, Sept. 2012.
http://arxiv.org/abs/1209.5259.
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I. Sason, “Entropy bounds for discrete random variables via coupling,”
submitted to IEEE Trans. on Info. Theory, Sept. 2012.
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Poisson Approximation (Cont.)

Weaker bounds on the entropy of sums of dependent, non-identically
distributed Bernoulli RVs were derived (that only depend on the total
variation distance), and their application was exemplified. See:
I. Sason, “On the entropy of sums of Bernoulli random variables via the
Chen-Stein method,” Proceedings of ITW 2012, pp. 542–546, Lausanne,
Switzerland, Sept. 2012. http://arxiv.org/abs/1207.0436.
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Summary and Conclusions

Summary and Conclusions

This work refines bounds on the entropy difference of two discrete
RVs via the use of maximal couplings, leading to sharpened bounds
that depend on both the local and total variation distances.
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Summary and Conclusions

Summary and Conclusions

This work refines bounds on the entropy difference of two discrete
RVs via the use of maximal couplings, leading to sharpened bounds
that depend on both the local and total variation distances.

The derivation of the new bounds relies on the notion of maximal
coupling, which is also known to be useful for the derivation of error
bounds via Stein’s method.

The link between Stein’s method and information theory was
pioneered by Barbour et al. (2010) in the context of the compound
Poisson distribution. A recent work by Ley & Swan, (2012) further
links between information theory and Stein’s method.

The new bounds were exemplified in the context of the Poisson
approximation, showing remarkable improvement in their tightness.
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