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Degree Distributions of LDPC Code Ensembles

Degree Distributions of LDPC Code Ensembles

Consider the case where transmission takes place over a memoryless,
binary-input output-symmetric (MBIOS) channel.

Let a designate the pdf of the log-likelihood ratio (LLR) at the
channel output given that the channel input is zero. Then, the
symmetry property holds (i.e., a(l) = ela(−l) for l ∈ R).

Consider LDPC code ensembles whose design rate forms a
fraction 1 − ε of the channel capacity with a target bit error
probability Pb.

Question
What can be said about the degree distributions of the LDPC code
ensembles in this setting ?
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Degree Distributions of LDPC Code Ensembles (Cont.)

In this work

Linear programming (LP) bounds on the degree distributions of
LDPC code ensembles are derived.

They provide upper bounds on the fraction of edges or nodes up
to degree k where k is a parameter.

They are general since they hold even under ML decoding (and,
hence, also under any sub-optimal decoding algorithm).

The bounds also apply to finite-length codes.

Analytical solutions of these bounds are obtained via Lagrange
duality, and these bounds are easy to calculate.
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A Brief Outline of the Derivation of the LP Bounds

A lower bound on the conditional entropy for binary linear block
codes transmitted over MBIOS channels gets the form
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dl , p ∈ N.

and Γ(x) ,
∑

k Γkxk forms the degree distribution of the
parity-check nodes, from the node perspective, of an arbitrary
representation of the code by a full-rank parity-check matrix
(Wiechman & Sason, IEEE Trans. on IT, Feb. 2007).
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Fano inequality.

gp ≥ (g1)
p, for every p ∈ N, with equality for the BSC.

An adaptation of these results to LDPC code ensembles, whose
parity-check matrices are not necessarily full rank (i.e., the
parity-check equations are linearly dependent), is needed.

The above IT bound is proved to hold for every code from a binary
LDPC code ensemble when the code rate R is replaced by the
design rate (Rd) of the ensemble (R ≥ Rd).

The derivation of the LP bounds finally relies on the equality

1
2 ln 2

∞
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= 1 − h2

(
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u
2

)

, ∀ u ∈ [0, 1].

where h2 designates the binary entropy function on base 2.
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LP1 bound for the degree distribution of the
parity-check nodes for LDPC code ensembles
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where the optimization variables are {ρi}i≥1. The quantity g1 above
depends on the channel statistics only.
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LP2 bound for the degree distribution:
Universal for all equi-capacity MBIOS channels

Replace the parameter g1 with the channel capacity C (where, in
general, g1 ≥ C with equality for the BEC).
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Figure: The universal LP2 bound versus the heavy-tail Poisson degree
distribution, and the degree distribution of the right-regular LDPC ensemble.
It refers to the fraction of edges which are attached to parity-check nodes of
degree ≤ k for an integer k ≥ 2. Considered here is a BEC whose capacity is
1
2 bit per channel use, and where 99.9% of capacity is achieved under
iterative message-passing decoding with vanishing bit erasure probability.
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Asymptotic Behavior of the Degree Distributions

Corollary
If the asymptotic bit error/ erasure probability vanishes, then the
following properties hold for an arbitrary finite degree i

Li = O(1) , Ri = O(ε) ,

λi = O

(

1

ln 1
ε

)

, ρi = O

(

ε

ln 1
ε

)

.

where {Li} and {Ri} are the degree distributions of the variable and
parity-check nodes, respectively, and {λi} and {ρi} are the
corresponding degree distributions from the edge perspective.
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These bounds hold under ML decoding (or any other algorithm).

The upper bounds on the left degree distribution look at first
glance looser than those for the right degree distribution (due to
the additional factor ε in the latter case).
However, it is not an artifact of the bounding technique, as it
indeed reflects reality, e.g.:

I For various capacity-achieving degree distributions on the BEC with
iterative message-passing decoding, the fraction of degree-2
variable nodes tends to 1

2 .
I The upper bound on the fraction of edges connected to degree-2

variable nodes (λ2) is shown in this work to be obtained for the
right-regular LDPC code ensemble of Shokrollahi which achieves
capacity on the BEC under iterative decoding.
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Information-Theoretic Lower Bounds on the Tradeoff
Between the Graphical Complexity and Performance

Question
Consider the representation of a finite-length binary linear block code
by an arbitrary bipartite graph. How simple can such a graphical
representation be as a function of the channel model, target block error
probability, and code rate ?

Answer ⇒
Information-theoretic lower bounds which measure the inherent
graphical complexity of finite-length LDPC codes as a function of
their achievable gap to capacity.

Provides a measure of the sub-optimality of explicit constructions
of LDPC codes by comparing to information-theoretic bounds.
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Graphical Complexity versus Performance (Cont.)

We provide in this work an information-theoretic lower bound on
the graphical complexity which depends on the channel model,
target block error probability, and the code rate.
This bound relies on two previous information-theoretic results:

I A new lower bound on the average left/ right degrees in the bipartite
graph as a function of the channel, target block/ bit error probability,
and the achievable gap to capacity.

I Sphere-packing lower bounds: We rely here on the classical 1959
sphere-packing bound of Shannon, and the recently introduced ISP
bound (Wiechman & Sason, IEEE Trans. on IT, May 2008).

The graphical complexity, defined as the number of edges in the
bipartite graph, is simply the product of the block length and the
average left degree.
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Figure: A comparison between the graphical complexity of various efficient
LDPC code ensembles and an information-theoretic lower bound.
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Cardinality of the Fundamental System of Cycles of
Good LDPC Code Ensembles

Binary Linear block codes which are represented by cycle-free
bipartite graphs are not good even under ML decoding.

A theoretical treatment of cycle-free codes was provided by
T. Etzion, A. Trachtenberg and A. Vardy, “Which codes have
cycle-free Tanner graphs ?,” IEEE Trans. on Information Theory,
vol. 45, no. 6, pp. 2173–2181, September 1999.

Question
What can be said about the cardinality of the fundamental system of
cycles of LDPC code ensembles as a function of the achievable gap
(in rate) to capacity ?
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Theorem
Let

{(

n, λ, ρ
)}

be a sequence of LDPC code ensembles transmitted
over an MBIOS channel. Suppose that the design rate is a fraction
1 − ε of the channel capacity C, and the average bit error probability of
this sequence vanishes under some decoding algorithm as n → ∞.
Consider the average cardinality of the fundamental system of cycles,
βn(G), where the graphs G are chosen uniformly at random from the
LDPC code ensemble (n, λ, ρ). Then, the following result holds:

lim inf
n→∞

E
[

βn(G)
]

n
≥

(1 − C) ln
(

g1

[

1 − 2h−1
2

(

1−C
1−(1−ε)C

)]−2
)

ln
(

1
g1

) − 1

where g1 , E

[

tanh2 (L
2

)

]

and L forms the LLR at the channel output.
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Corollary
The average cardinality of the fundamental system of cycles grows at
least like log 1

ε
where the achievable design rate forms a fraction 1 − ε

of the channel capacity.

⇒ The fundamental system of cycles becomes unbounded as the
achievable gap to capacity vanishes (even under ML decoding).

Essence of the proof of this theorem: A combination of an improved
lower bound on the average right degree (which behaves like log 1

ε
),

which follows from the lower bound on the conditional entropy, with
some simple arguments from graph theory.
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Figure: Asymptotic lower bounds on the average cardinality of the
fundamental system (see Theorem 1). The bounds refer to the BSC,
BIAWGNC and BEC where the design rate is 1

2 bit per channel use.
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Full Paper Version

I. Sason, “On Universal Properties of Capacity-Approaching LDPC
Code Ensembles”, accepted to IEEE Trans. on Information Theory,
February 2009.
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