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Abstract—This paper applies several concentration inequalities variables, and Azuma [1] who later extended it to bounded-
to prove concentration results for the crest factor of OFDM difference martingales. In the context of communicatiod an

signals. The considered approaches are, to the best of ourihformation theoretic aspects, Azuma’s inequality wasduse
knowledge, new in the context of establishing concentratio for

OFDM signals. during the last decade in the coding literature for esthlvis
Index Terms—Concentration of measures, crest-factor, OFDM concentration results for codes defined on graphs andiiterat
signals. decoding algorithms (see, [8] and references therein).eSom

other martingale-based concentration inequalities wisrera-
I. INTRODUCTION cently applied to the performance evaluation of randomrgdi

over non-linear communication channels [14]. McDiarmid’s

Orthogonal-frequency-division-multiplexing (OFDM) is ainequality is an improved version of Azuma’s inequality in
modulation that converts a high-rate data stream into a eimkhe special case where one considers the concentration of a
of low-rate steams that are transmitted over parallel marrofunction f : R” — R of n independent RVs when the variation
band channels. OFDM is widely used in several internationgf f(z,, ..., x,) w.r.t. each of its coordinates is bounded (and
standards for digital audio and video broadcasting, and f@hen all the othem — 1 components are kept fixed). Under
wireless local area networks. For a textbook providing &eyir this setting, it gives an improvement by a factor of 4 in the
on OFDM, see e.g. [7, Chapter 19]. exponent. This inequality is applied in this paper in order t

One of the problems of OFDM is that the peak amplitudgrove the concentration of the crest factor of OFDM signals
of the signal can be significantly higher than the averaggound the expected value.
amplitude. This issue makes the transmission of OFDM sggnal A second approach for proving concentration inequalities
sensitive to non-linear devices in the communication path product spaces was developed by Talagrand in his seminal
such as digital to analog converters, mixers and high-powgsper [11]. It forms in general a powerful probabilistic oo
amplifiers. As a result of this drawback, it increases thet®yim for establishing concentration results for coordinatseniiph-
error rate and it also reduces the power efficiency of OFDRthitz functions of independent random variables (see, also
signals as compared to single-carrier systems. Commdrdy, &.g., [2, Section 2.4.2] and [6, Section 4]). This approaals w
impact of nonlinearities is described by the distributioh q;sed in [4] to prove concentration inequalities, in the éarg
the crest-factor (CF) of the transmitted signal [5], but itgystem limit, for a code division multiple access (CDMA)
calculation involves time-consuming simulations even dor system. Talagrand’s inequality is used in this paper to @rov
small number of sub-carriers. The expected value of the GFconcentration result (near the median) of the crest fauftor
for OFDM signals is known to scale like the logarithm ofoFDM signals, and it also enables to obtain an upper bound
the number of sub-carriers of the OFDM signal (see [5], [%n the distance between the median and the expected value.
Section 4] and [13]). A stronger concentration inequality for the crest factor of

In this paper, we consider two of the main approaches feyrDM signals was introduced in [5, Theorem 3] under some
proving concentration inequalities, and apply them to\aeri assumptions on the probability distribution of the conmide
concentration results for the crest factor of OFDM sign@lee  problem (the reader is referred to the two conditions in [5,
first approach is based on martingales, and the other agproggeorem 3], followed by [5, Corollary 5]). These requirertgen
is Talagrand’s method for proving concentration ineqiesit gre not needed in the following analysis, and the derivation

in product spaces. It is noted that some of these concentratyf the concentration inequalities here is rather simple iand
inequalities can be derived using ideas from informati@otli  provides some further insight to this issue.

(see, e.g., [6] and references therein).

Considering the martingale approach for proving concentra
tion results, the Azuma-Hoeffding inequality is by now a el
known methodology that has been often used to prove condn the following, we present briefly essential background on
centration of measures. It is due to Hoeffding [3] who provecbncentration inequalities that is required for the arialys
this inequality for a sum of independent and bounded randdhis paper. In the next section, we will apply these prolistixl

II. SOME CONCENTRATION INEQUALITIES



tools for obtaining concentration inequalities for the strewhere~ and¢ are introduced in (3).
factor of OFDM signals. Proof: This inequality follows from Theorem 2 (see [10,

A. Azuma’s Inequality Appendix H]). n

Azuma’s inequality forms a useful concentration inequalityC. McDiarmid’s Inequality
for bounded-difference martingales [1]. In the followiriis  In the following, we state McDiarmid’s inequality (see [6,
inequality is introduced. Theorem 3.1]).

Theorem 1:[Azuma’s inequality] Let { X, F}32, be @  Theorem 3:Let X = (Xi,...,X,) be a family of inde-
discrete-parameter real-valued martingale sequence thath pendent random variables witki;, taking values in a sefi;,

for everyk € N, the condition| X, — Xj._1| < dj. holds a.s. for eachk. Suppose that a real-valued functigndefined on
for some non-negative constarig; }7° ;. Then [1, Ax, satisfies

) Vr>0. (1) 169 = F6)] <
whenever the vectors andx’ differ only in the k-th coordi-

The concentration inequality stated in Theorem 1 wdte. Letu = E[f(X)] be the expected value ¢f( X). Then,
proved in [3] for independent bounded random variablef®r everya > 0,

2

T
B(1X, — Xo| > 1) < 2exp (—77
23, i

followed by a discussion on sums of dependent random 202

variables; this inequality was later derived in [1] for boied- P(If(X) = pl = ) < 2exp (_W) :

difference martingales. The reader is referred, e.g., doi6 bk

a proof. This inequality is proved with the aid of martingales. It has

B. A Refined Version of Azuma’s Inequality some nice applications which were exemplified in the context

The following refined version of Azuma’s inequality wad @lgorithmic discrete mathematics (see [6, Section 3]).

introduced in [10] (which includes some other approaches fg Talagrand’s inequality

refining Azuma’s inequality). s o .
Theorem 2:Let { Xy, 7.} , be a discrete-parameter real- Talagrand’s inequality is an approach used for establgshin

valued martingale. Assume that, for some constanis> 0, concentration results on product spaces, and this tecangs

the following two requirements are satisfied a.s introduced in Talagrand's landmark paper [11].
9 g o We provide in the following two definitions that will be

| X5 — Xi—1] < d, required for the introduction of a special form of Talagrand
Var(X|Fr—1) = E[(Xx — Xp—1)?| Fr-1] < 0° mequz_allltl.es. . .
Definition 1 (Hamming distance).et x, y be twon-length
for everyk € {1,...,n}. Then, for everyn > 0, vectors. The Hamming distance betwegnand y is the
S+ v number of coordinates whese andy disagree, i.e.,
P(|Xp, — Xo| > an) < 2exp (—nD(mHm>) (2) N
A
where dn(x,y) = Zl{fvﬁéyi}
A 0_2 § A 2 (3) =1
e 0T where] stands for the indicator function.

and The following suggests a generalization and normalization

N p 1—p of the previous distance metric.
D(pllg) = pln(a) +(1-p) ln(l — q), Vp,a€[0,1] (4)  Definition 2: Leta = (a1, ...,a,) € R? (i.e.,a is a non-
is the divergence (a.k.a. relative entropy or Kullbackblei

negative vector) satisfjja||> = >, (a;)*> = 1. Then, define
distance) between the two probability distributioips1 — p) A —
and(q,1 — q). If § > 1, then the probability on the left-hand do(x,¥) £ ) ailfa 2y
side of (2) is equal to zero. =1

Proof: The idea of the proof of Theorem 2 is essentialljience,dy(x,y) = v/nda(x,y) for a = (
similar to the proof of [2, Corollary 2.4.7]. The full proo§i  The following is a special form of Ta

|-

1
agrand’s inequalities

H

provided in [10, Section Il1]. B ([6, Chapter 4], [11], [12]).
Proposition 1: Let { X}, Fi.}72, be a discrete-parameter Theorem 4 (Talagrand’s inequality):-et the random vector
real-valued martingale. Then, for evety> 0, X = (Xi,...,X,) be a vector of independent random
2 variables with X, taking values in a sef;, and letA =

) 1
P(| X, — Xo| > av/n) < 2eXp<72—) (1 + O(n’i)) (5) [Ii_; As. Let f: A — R satisfy the condition that, for every
" x € A, there exists a non-negative, normalizeténgth vector

IAzuma’s inequality is also known as the Azuma-Hoeffdingqimality. @ = a(x) such that
Since this inequality is referred several times in this pajevill be named
from this point as Azuma’s inequality for the sake of brevity fx) < fly) +odo(x,y), VyeA (6)



for some fixed valuer > 0. Then, for everyn > 0, B. Establishing Concentration of the Crest-Factor via
Azuma’s Inequality and a Refined Version

Oé2
P(f(X) —m| 2 a) < dexp (@) @) 1) Proving Concentration via Azuma’s Inequalityn the

following, Azuma'’s inequality is used to derive a concetitna
wherem is the median off (X) (i.e., P(f(X) <m) > 3 and result. Let us define

P(f(X) > m) > 1). The same conclusion in (7) holds if the
condition in (6) is replaced by Y; = E[CF.(s) | Xo,...,Xi—1], i=0,...,n (12)

f(y) < f(x) +oda(x,y), Vye€A (8) Based on a standard construction of Doob’s martingales,
{Y;, Fi}™, is a martingale wheré; is the o-algebra that is

] . . enerated by the firgtsymbols(Xy, ..., X;_1) in (9). Hence,
Remark 1:In the special case where the condition for th(%o C 7, C...C F, is a filtration. This martingale has also

function f in Theorem 4 (Talagrand’s inequality) is satisfie :

with the additional property that the vectoon the right-hand ounded jumps, and
side of (6) isindependentf x (i.e., the value of this vector Y, =Y 4| < 2

is fixed), then the concentration inequality in (7) followsrh i = NG

McDiarmid’s inequality. To verify this observation, theader . i ) o i
is referred to [6, Theorem 3.6] followed by the discussion iff ¢ € {1,...,n} since revealing the additionaith coordi-

6, p. 211] (leading to [6, Egs. (3.12) and (3.13)]. nate X; affects the CF, as is defined in (10), by at m%bt
(see the first part of Appendix A). It therefore follows from
[1l. APPLICATION: CONCENTRATION OF THE Azuma’s inequality that, for every > 0,
CRESTFACTOR FOROFDM SIGNALS o2
A. Background P(|CFn(s) — E[CF,(s)]| = ) < 2exp (g) (12)

Given ann-length codeword{X;}"~ !, a single OFDM

baseband symbol is described by which demonstrates the concentration of this measure droun

its expected value.

n—1 . .

s(t: Xo, o) X 1) = 1 3, eXp(J 2mt)7 0<t<T. 2 Proof of Concentration via Proposition 1in the fol-

Vn =0 T lowing, we rely on Proposition 1 to derive an improved

(9) concentration result. For the martingale sequefitg’., in

Lets assume thaky, ..., X,,_; are i.i.d. complex RVs with (11), Appendix A gives that a.s.
|X;| = 1. Since the sub-carriers are orthonormal of¢efl’],
then a.s. the power of the signabver this interval is 1. The  |y; —v; 4| < i’ E[(Y; - Yi—1)?|Fiza] <
CF of the signals, composed of. sub-carriers, is defined as vn

S

(13)

CFa(s) 2 max |s(t)]- (10) for everyi € {1, .. Zn}. Note that the F:_ont_ditioning on the-
0<t<T algebraF;_; is equivalent to the conditioning on the symbols

From [9, Section 4] and [13], it follows that the CF scaleshwitX0; - - -» Xi—2, and there is no conditioning for= 1. Let Z; =
high probability Iike\/m for largen. In [5, Theorem 3 \/nY;. Proposition 1 therefore implies that for an arbitrary
and Corollary 5], a concentration inequality was derived f¢* ~ 0

the CF of OFDM signals. It states that for every> 2.5 P(|CF,(s) — E[CFn(s)]] > )

P(‘CFn(s)— log(n)‘ <%°g(”)) :1—0(%). =P(|Y, — Y| = a)
log(n) (log(n)) =P(|Z, — Zo| > a/n)
Remark 2: The analysis used to derive this rather strong a? 1
concentration inequality (see [5, Appendix C]) requiresiso < 2exp | —— (1 + O(%) (14)

assumptions on the distribution of th¥;'s (see the two

conditions in [5, Theorem 3] followed by [5, Corollary 5]).(since§ = & and~ = 3 in the setting of Proposition 1).
These requirements are not needed in the following analydi¥ote that the exponent of the last concentration inequaity
and the derivation of the two concentration inequalities i@oubled as compared to the bound that was obtained in (12) via
this paper is simple, though weaker concentration resuéts @zuma'’s inequality, and the term which scales li ﬁ%

obtained. on the right-hand side of (14) is expressed explicitly foitéin

In the following, Azuma’s inequality and a refined versio® (S€€ [10, Appendix H]).
of this inequality are considered under the assumption that
{Xj};?;(} are independent complex-valued random variables
with magnitude 1, attaining thé&/ points of anM-ary PSK In the following, McDiarmid’s inequality is applied to
constellation with equal probability. prove a concentration inequality for the crest factor of D

Establishing Concentration via McDiarmid’s Inequality



signals. To this end, let us define is a non-negative unit-vector of length (note thata in this
N . _ _ case is independent af). Hence, Talagrand’s inequality in
U= o?%XT‘S(t’ Xoyooos Ximay Xiy o X)) Theorem 4 implies that, for every > 0,
V £ max |s(t; Xo,..., X/, Xi,..., Xno1)|. o2
0<t<T P(|CF(5) — mn| > @) < 4exp(—1—6), Va>0 (18)

Then, this implies that i i
where m,, is the median of the crest factor for OFDM

U-V|< o@ﬁXT‘S(ﬁ;XO’ s Xim1, Xy oo, Xnm1) signals that are composed of sub-carriers. This inequality
- demonstrates the concentration of this measure around its
median. As a simple consequence of (18), one obtains the
B 1 x X7 J2mit following result.
= O?E“SXT % ‘( i—1— i71) eXp( )‘ Corollary 1: The median and expected value of the crest
, factor differ by at most a constant, independently of the
| Xion —Xi | _ 2 b _carri
= Tl o 2 (15) number of sub-carriers.
Vn Vvn Proof: By Talagrand’s inequality in (18), it follows that
where the last inequality holds sin¢&,;_;| = |X/_;| = 1.
T L e [E[CF,.(s)] — my,|
Hence, McDiarmid’s inequality in Theorem 3 implies that; fo
everya > 0, < E|CF,(s) — my

2 @ - S)—m (8% (0%
P(|CF.(s) — E[CF,(s)]| > a) < Qexp(—%) (16) *A P(|CF.(s) nl > a)d

—S(t;Xo, e 7X1{717Xi7 .. -;Xn—l)|

o) 2
which demonstrates concentration around the expecte@.valu < / 4eXp(—%) da
It is noted that McDiarmid’s inequality provides an impreve 0
ment in the exponent by a factor of 4 as compared to Azuma’s =8y

inequality. It also improves the exponent by a factor of gnere equality (a) holds since for a non-negative random
as compared to Proposition 1 in the considered case (Whgggiaple 7

1 o]
Y= 5)- _

The same kind of result applies easily to QAM-modulated E[Z] = A P(Z 2 t)dt.
OFDM signals, since the RVs are bounded which therefore

[ |
enables to get a similar result to (15).

Remark 3:This result applies in general to an arbitrary

D. Establishing Concentration via Talagrand's Inequality ~ function f satisfying the condition in (6), where Talagrand's

In the following, Talagrand’s inequality is applied to peo& inequality in (7) implies that (see, e.g., [6, Lemma 4.6])

concentration inequality for the crest factor of OFDM silgna |IE[f(X)] — m‘ < Adov/7.
Let us assume thaty, Yy,..., X,_1,Y,_1 are i.i.d. bounded . . )
complex RVs, and also for simplicity Remark 4:By comparing (18) with (16), it follows that Mc-
Diarmid’s inequality provides an improvement in the expune
| Xi| = Yi| = 1. This is consistent with Remark 1 and the fixed value of the

In order to apply Talagrand’s inequality to prove conceiarg  "ON-negative normalized vector in (17).

note that IV. SUMMARY

max | s(t; Xo,..., Xn_1)| — max |s(t;Y0,...,Ya-1)|  This paper derives four concentration inequalities for the
0<t<T 0<t<T . .
< X X v v crest-factor (CF) of OFDM signals under the assumption
= ()?t2XT| 5t Xos ooy Xmt) = s(t: Y, Yoo)| that the symbols are independent. The first two concentratio
= Coit inequalities rely on Azuma’s inequality and a refined versio
< — Z(Xi —E)exp(‘] m ) of it, and the last two concentration inequalities are based
vn i=0 T on Talagrand’s and McDiarmid’s inequalities. Althoughgbe
1 ol concentration results are weaker than some existing sesult
<= Z | X — Y] from the literature (see [5] and [13]), they establish cance
i=0 tration in a rather simple way and provide some insight to
9 1! the problem. The use of these bounding techniques, in the
< ﬁ Z Laiyy context of concentration for OFDM signals, seems to be new.
et : AT o
The improvement of McDiarmid’s inequality is by a factor
=2d.(X,Y) of 4 in the exponent as compared to Azuma'’s inequality, and
where by a factor of 2 as compared to the refined version of Azuma’s

inequality in Proposition 1. Note however that Proposition

(17) may be in general tighter than McDiarmid’s inequality (if

(>
»
Elle
<



v < i in the setting of Proposition 1). It also follows fromis obtained. SincéIE(Z))2 < E(Z?) for a real-valued RVZ,
Talagrand’s method that the median and expected value of then from (19) and (20)

CF differ by at most a constant, independently of the number ) 1 P
of sub-carriers. E[(Y; = Yi-1)? |[Fia] < - Bxr [ Xio1 — Xi_4 | 7]
Some other new refined versions of Azuma’s inequalityhere F; is the s-algebra that is generated B, ..., X;_1.

were introduced in [10], followed by some applications iDue to a symmetry argument of the PSK constellation, then
information theory and communications. This work is aimeq follows that

to stimulate the use of some refined versions of concentratio E[(Y- V2R ]

inequalities, based on the martingale approach and Taldigra ! i1 =1

approach, in information-theoretic aspects. < ZEx [IXi_1 - X! 7 |]:,]
n i—1 1= g
APPENDIXA _ L w2 .
PROOF OF THE PROPERTIES II{13) FOR OFDM SIGNALS o B[lXi1 = Xia P [ X0, X
Consider an OFDM signal from Section Ill-A. The sequence = 1 E[|Xi—1 — X|_1*| Xi1]
in (11) is a martingale due to basic properties of martirgjale 71‘ -
From (10), for everyi € {0,...,n} == IE{|XZ-,1 — X! P X1 = e’ﬂ
Y E|: max ‘ (t X(),...,anl)“X(),...,Xi,1 . = Z ‘ JA_I — -7(2l+1)7r
T M

The conditional expectation for the RY;_; refers to the
case where onlyXy,...,X,;_o are revealed. LefX/ ; and B AN
X,_, be independent copies, which are also independent of ~— nAf Z s (M) T
Xo,..., Xi—2,Xi,...,Xn_1. Then, for everyl <i <n, =1

M_

To clarify the last equality, note that if € R andm € N

j— / . .
Yi1 —E{Ogltax | (t; XO""’Xifl’X“""X”—l)‘ i (lz) m+1 sm((m—i-l)m) cos(mzx)
sin? (lx) .
2sin(x
XO)"'aXi—2:| ( )
I
ZE[O@&XAS@;XOa---’ 1 Xy X)) REFERENCES
[1] K. Azuma, “Weighted sums of certain dependent randoniatbdes,”
Xo, ..., Xiza, Xifl]- Tohoku Mathematical Journatol. 19, pp. 357-367, 1967.
) [2] A. Dembo and O. Zeitounil.arge Deviations Techniques and Applica-
Since|E(Z)| < E(|Z|), then fori € {1,...,n} tions Springer, second edition, 1997.

[3] W. Hoeffding, “Probability inequalities for sums of boded random
variables,” Journal of the American Statistical Associatiowol. 58,
no. 301, pp. 13-30, March 1963.

[4] S. B. Korada and N. Macris, “Tight bounds on the capacitybimary

where input random CDMA systemsJEEE Trans. on Information Theory

a vol. 56, no. 11, pp. 5590-5613, November 2010.
U= max } (t Xoy ooy Xic1, Xy - ;Xn71)| [5] S. Litsyn and G. Wunder, “Generalized bounds on the dgegtbr
0=t=T distribution of OFDM signals with applications to code dgsi IEEE
V2 max | (t; Xo, -, X{_1, Xiy oo, X)) |- Trans. on Information Theorwol. 52, pp. 992—1006, March 2006.
0<t<T [6] C. McDiarmid, “Concentration,Probabilistic Methods for Algorithmic
Discrete Mathematigspp. 195-248, Spinger, 1998.
From (9) [7] A. F. Molisch, Wireless Communicationgohn Wiley and Sons, 2005.
[8] T. Richardson and R. Urbankévlodern Coding Theory Cambridge
|U - V| < max | (t; X0, .., Xic1, Xy oo, Xnm1) University Press, 2008.
ost< [9] R. Salem and A. Zygmund, “Some properties of trigonoineseries
—s(t; Xoy ooy Xi 1, Xiy o - 7Xn_l)‘ whose terms have random signgtta Mathematicavol. 91, no. 1,
pp. 245-301, 1954.
(j 27Tit) ‘ [10] I. Sason, “On refined versions of the Azuma-Hoeffdingdguoality with

Vi —Yi| SExs | xpx [|U V|‘XO,...,Xi_1] (19)

Xn-1

1
= Of<ﬂta<XT ﬁ (Xi71 - X{q) ex applications in information theory,” a survey paper withreooriginal
== results (an un-published work). [Online]. Available: httarxiv.org/abs/
|X- _x/ | 1111.1977.
— M. (20) [11] M. Talagrand, “Concentration of measure and isopeaniatinequalities
\/ﬁ in product spaces,Publications Mathématiques de I'l.H.E.8ol. 81,
pp. 73-205, 1995.
By assumption|X;_| = | X/_,| = 1, and therefore a.s. [12] M. Talagrand, “A new look at independencefnnals of Probability
9 vol. 24, no. 1, pp. 1-34, January 1996.
/ 13] G. Wunder and H. Boche, “New results on the statistigatrithution of
|Xi71 - Xi—1| <2= |Yz - Yi71| < ﬁ 13l the crest-factor of OFDM signals|EEE Trans. on Information Theory
vol. 49, no. 2, pp. 488-494, February 2003.

In the following, an upper bound on the conditional varianc84] K. Xenoulis and N. Kalouptsidis, "Achievable rates foonlinear
\olterra channels,IEEE Trans. on Information Theoryol. 57, no. 3,

Var(}/i |-F'L71> _ E[(}/Z o }/;71)2 |-Fi71] pp. 1237-1248, March 2011.



