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Abstract— We derive simple lower bounds on the number of a large class of channels, if the design rate of a suitably
iterations which are required to communicate over the binay designed ensemble forms a fractian— ¢ of the channel
erasure channel when graph-based code ensembles are used "?:apacity, then the decoding complexity (per informatiot) bi

conjunction with an iterative message-passing decoder. Hse les likelloo L The | ithmic t in thi .
bounds refer to the asymptotic case where we let the block lgth ~ SCI€S lIKeZ log =. The logarithmic term in this expression

tend to infinity, and the bounds apply to general ensembles déw- Was attributed to the graphical complexity (i.e., the decgd
density parity-check (LDPC) codes, irregular repeat-accmulate  complexity per iteration), and the number of iterations was

(IRA) and accumulate-repeat-accumulate (ARA) codes. It is conjectured to scale likel. There is one exception: For
demonstrated that, under a mild condition, the number of e BEC, the complexity under the iterative message-pgssin
iterations required for s_uccessful decoo!lng scales at lehdike decoding algorithm behaves like L (see [5], [11], [12] and
the inverse of the gap (in rate) to capacity. ) . e s L==h .
[14]). This is true since the absolute reliability providbg
|. INTRODUCTION the BEC allows every edge in the graph to be used only
The number of iterations, used by an iterative messagwice during the iterative decoding. Hence, for the BEC, the
passing decoder for graph-based codes, forms an importanmber of iterations performed by the decoder serves mainly
factor in the evaluation of the decoding delay and compjexitto measure the delay in the decoding process, while the
Another important factor which affects the complexity otsu decoding complexity is closely related to the complexity of
decoders is related to the graphical complexity of the Tanrike Tanner graph which is chosen to represent the code.
graphs used to represent these codes (this graphical cxitgple
is strongly related to the decoding complexity per itenatid
message-passing decoders).

This paper provides simple lower bounds on the number of

iterations which are required for successful messageangass

The extrinsic information transfer (EXIT) charts, pionegr decoding of graph—bgsed code ensembles. The transmission
of these ensembles is assumed to take place over the BEC,

by Stephan ten Brink [15], form a powerful tool for an efﬁdjenand the bounds refer to the asymptotic case where the block
design of codes defined on graphs by tracing the convergeqnce

. T . . ngth tends to infinity. The simplicity of the bounds dedve
behavior of their iterative decoders. For the binary BRSUL 1 ic baner stems from the fact that they are easily evadliat
channel (BEC), the EXIT charts coincide with the densit pap y Y

: . P . ¥nd are expressed in terms of some basic parameters of the
evolution analysis, and both are simplified in this case to a P P

. . . considered ensemble. These bounds demonstrate that the num
one-dimensional analysis. ; . : .
: - Lo ber of iterations which are required for successful message
A numerical approach for the joint optimization of the

design rate and decoding complexity of LDPC code ense%qssmg decoding scales at least like the inverse of the gap

. ; A . -~~~ (in rate) to capacity, provided that the fraction of degeee-
bles was pr0\_/|ded in [2]. For -S|mpl|fy|ng this Optln.nzatlpnvariable nodes of these turbo-like ensembles does notlvanis
problem, a suitable approximation of the number of iteratio

; o . g]ence, the number of iterations becomes unbounded as the
was used in order to convert the original problem into

convex optimization problem. This approach applies to Hiap to capacity vanishes). The behavior of these lower tound

L matches well with the experimental results and the conjestu
case where the transmission takes place over a memoryless

binary-input output-symmetric (MBIOS) channel, and we | ?]aﬂr:gerll::n:r?(; (I\)/Tclée"r:ég)?j] and complexity, as provided by
the block length tend to infinity. An alternative approach, '
used to approximate the number of iterations for LDPC codeThis paper is structured as follows: Section Il presentsesom
ensembles operating over the BEC is addressed in [6].  preliminary background, definitions and notation, Sectibn
An analytical approach used to characterize the asymptatitroduces the main results of this work and discusses some
complexity of iterative decoders, under the assumptionresheof their implications, outlines for the proofs of the main
the block length tends to infinity, was suggested by Khastatements are provided in Section IV. Finally, Section ¥su
dekar and McEliece [4]. The questions raised in [4] and thearizes this paper. Due to space limitations, the full pspaé
following conjectures are related to the tradeoff betwe®sn twell as several discussions, are omitted; the interestaedere
asymptotic achievable rates and the complexity undertitera is referred to the full paper version which is available oa th
message-passing decoding. It was conjectured in [4] that &rxiv [13].



[l. PRELIMINARIES iterations which are required in terms of the achievabletfoa
This section provides preliminary background and intrdf the channel capacity under this decoding algorithm.

duces notation for the rest of this paper. Theorem 3.1:[Lower bound on the number of iterations
for LDPC code ensembles transmitted over the BEC]Let

Accumulate-repeat-accumulate (ARA) codes form an attraghose transmission takes place over a BEC with erasure
tive coding scheme of turbo-like codes due to the simpliofty probability p. Assume that this sequence achieves a fraction
their encoding and decoding (where both scale linearly with-¢ of the channel capacity under message-passing decoding.
the block length), and due to their remarkable performantet L, = Ls(c) be the fraction of variable nodes of degree 2
under iterative decoding [1]. for this sequence. In the asymptotic case where the block

Ensembles of irregular and systematic ARA codes, whidangth tends to infinity, let = i(e, p, P,) denote the number of
asymptotically achieve the capacity of the BEC with boundetrations which are required to achieve an average biuezas
graphical complexity, are presented in [9]. This bounded-co probability B, over the ensemble. Under the mild condition
plexity result stays in contrast to LDPC code ensemblesghvhithat B, < p Ls(e), the required number of iterations satisfies
have been shown to require unbounded graphical complexite lower bound
in order to approach channel capacity, even under maximum- 9 21
likelihood decoding (see [11]). The setting and notatioed.® I(e,p, Py) > —— (\/p La(e) — \/Fb) LD
characterize ensembles of irregular and systematic ARA&sod 1-p <
and their iterative decoders are introduced in [9, Sectlpn |

(due to space limitations, we refer the reader to [9]). Discussion 3.1:[On the dependence of the bounds on

the fraction of degree-2 variable nodesJrhe lower bound on
B. Big-O notation the number of iterations in Theorem 3.1 becomes trivial when
éhe fraction of variable nodes of degree 2 vanishes. In fact,
for various sequences of capacity approaching LDPC code
é)sembles known to date (see [5], [7], [14]), the statement i
F 0, Lemma 5] implies that the fraction of degree-2 variable
odes tends to} irrespectively of the erasure probability of
e BEC, as can be verified directly for these code ensembles.

The terms0, Q and© are widely used in computer scienc
to describe asymptotic relationships between functiomsuir
context, we refer to the gap (in rate) to capacity, denoted
e, and discuss in particular the case wherg ¢ <« 1 (i.e.,
sequences of capacity-approaching ensembles). Accdydin
we define

- fle) = O(g(g)) means that there are positive constants In the asymptotic case where the block length tends to

< < <e< e o !
. ; ({i r)1d:55 (uc(f;)t)h?;[)ea_ni ('frza? tchg EZ) ;?; alcl)soitaegc_orf.stan{gf'mty and the transmission takes place over the BEC, blgta
. and_é sugch that) < ¢ g(c) < f(c) for 2” 0<e<s constructions of capacity-achieving systematic ARA ensem

fle) = @(g(a)) means that there are positive constanpsles enable a fundamentally improved tradeoff betweerr thei
¢1, ¢ ands, such tha < ¢ g(e) < f() < e g(e) for graphical complexity and their achievable gap (in rate) to
aII’ 0<e< 6 - - - capacity under iterative decoding, as compared to LDPC code
- ensembles (see [9],[11]). This raises the question wheiiger
For all the above definitions, the valuesot:, c; andd must  , her of iterations required to achieve a desired bit eeasu
be fixed for the functiory’ and should not depend an probability under iterative decoding, can be reduced byaisi
1. M AIN RESULTS systematic ARA ensembles. The following theorem shows
t similarly to the result for LDPC code ensembles (see

In this section, we present lower bounds on the requir 31) th red ber of iterati f "
number of iterations used by a message-passing decoder fi porem o. ) the require number ot terations Tor Systema
ARA codes scales at least like the inverse of the gap to

code ensembles defined on graphs. The communication is i
assumed to take place over a BEC, and we consider the asy&apoac' Y.

totic case where the block length of these code ensemb#e;heorem :_3.2:[L0wer bound on the ngmber of iterations
tends to infinity. or systematic ARA ensembles transmitted over the BEC]

Definition 3.1: Let {C,,} _. be a sequence of code enket {(nm, X, p)}, .y be a sequence of systematic ARA en-

sembles. Assume a common block length,} of the codes sembles whose_.transmission takes_place over a B!EC with
in C,, which tends to infinity asn grows. Let the transmission €7@Suré probability. Assume that this sequence achieves a
of this sequence take place over a BEC with capaCityThe fractlo_n 1 —¢ of the channel capacity unc_ier mes‘sage-passmg
sequence{C,, } is said toachieve a fractionl — ¢ of the d_e,codmg. Letly = Lo(e) be_the fraction of punctur_ed
channel capacity under some given decoding algoriththe bit' nodes of degree 2 for this sequence (see [9, Fig. 2]
asymptotic rate of the codes @, satisfiesR > (1 — £)C where the two edges related to the accumulator are not taken

and the achievable bit erasure probability under the censiti N0 account). Let the block length tend to infinity, and let
algorithm vanishes as: becomes large l = l(e,p, P,) denote the required number of iterations to

In the continuation, we consider a standard iterative ngessaaf:hieve an averag.e bit erqgure probabifiyof 26 systematic
passing decoder for the BEC, and address the numberb§f. Under the mild condition that — /1 — 22 < p Ls(e),



this number of iterations satisfies the lower bound for all z € (0, p]. Figure 1 shows a plot of the function&r)

2 and v(x) for an ensemble of LDPC codes which achieves
B, | 1 vanishing bit erasure probability under iterative decgdas
I(e,p, By) = 2p(1—¢) pLa(e) - 1= e the block length tends to infinity. The horizontal and vextic

lines, Iabeled{hl}lEN and {”l}leN’ respectively, are used
(2) to track the expected fraction of erased messages from the
variable nodes to the check nodes at each iteration of the
The following theorem, which refers to irregular repeaimessage-passing decoding algorithm. The expected fractio
accumulate (IRA) code ensembles, is proved in a conceptualk erased left to right messages in thgh decoding iteration
similar way to the proof of Theorem 3.2. (where we start counting at zero) is equal to thealue at
Theorem 3.3:[Lower bound on the number of iterations  the left tip of the horizontal liné,;. The right-angled triangles
for IRA code ensembles transmitted over the BEC.] shaded in gray will be used later in the proof
Let {(nm, A, p)}m y be a sequence of (systematic or non- The first step in the proof of Theorem 3.1 is calculating the
systematic) IRA code ensembles whose transmission talgga bounded by the curvegr) andu(x). This is done in the

place over a BEC with erasure probabiliy Assume that following lemma which is based on the area theorem for the
this sequence achieves a fraction- ¢ of the channel ca- BEC [3].

pacity under message-passing decoding. Let= Ly(e) be Lemma 4.1:

the fraction of ‘information bit' nodes of degree 2 for this 1

sequence. In the asymptotic case where the block lengtls tend / (v(z) — c(z))dz =

to infinity, let! = (e, p, P,) designate the number of iterations 0

required to achieve an average bit erasure probalfijjityf the whereC =1 — p is the capacity of the BECR is the design

information bits. For systematic codes,fif < p L»(¢), then rate of the ensemble, and is its average left degree.

the number of iterations satisfies the lower bound Let us consider the two sets of right-angled triangles shown
2 in two shades of gray in Figure 1. The triangles shaded in dark

l(e,p, P) 22(1—¢) (\/PL2(€) - \/Fb) % - (3) gray are defined so that one of the legs of triangle nuniber
(counting from right to left and starting at zero) is the ieat
line v;, and the slope of the hypotenuse is equat®) =

2 / oy . . . .
le,p, Py) > 2(1 — ¢ (\/ﬁ \/Fb) é 4) p'(1). The area of thé’th triangle in this set is

C—-—R
aL

For non-systematic codes, i, < L»(¢), then

1 |vi |vi]®
sl (55) = 2t ™
IV. O_UTL'NE FOR THEPROOFS OF THEMAIN RESULTS \ 1iere |y, is the length ofv;. The triangles shaded in light
A. Outline for the Proof of Theorem 3.1 gray are defined so that one of the legs of triangle number

Let {«(V},_ designate the expected fraction of erasures in(2gain, counting from the right and starting at zero) is the
messages from the variable nodes to the check nodes at'‘t@ical linev; and the slope of the hypotenuse is given by
I'th iteration of the message-passing decoder (where we star , 1, 1 1
counting atl = 0). From density evolution, in the asymptotic v (0) = » ( ) (0) = ]T(O) = Pha
case where the block length tends to infinity, the average bit

erasure probability after théth decoding iteration is given by Where the second equality follows singe0) = 0. The area
z of the ¢'th triangle in this second set of triangles is given by
R =pL(1-p(1—2")) (5)

Bi= L ol (Juilpa) = 22200 ®)
wherep is the erasure probability of the BEC ahdiesignates g A 2
the left degree distribution of the ensemble from the n0®ncec(x) andv(x) are monotonica”y increasing with and
perspective. Density evolution also implies that an avet@ij concave, both sets of triangles form a subset of the domain
erasure probability o, is attainable under iterative decodmgaounded by the curves ofz) andv(z). By their definitions,

if and only if the i'th dark triangle is on the right of;, and thei'th light
c(z) <v(x), Vae (@ p) triangle lies to.the left ofv;; therefore, the triangle_s do not
overlap. Combining (7), (8) and the fact that the triangles d
where the functions andv are defined as not overlap, and applying Lemma 4.1, we get
AT (2 0<z<
c(z)21-p(1—2), vz 2 (:D) ST>P C—R 1 5
(#) £ 1= p(l=2), o) {1 bere — =5 (s e Zm ©)
(6)

andz* is the unique solution af, = p L(1—p(1—z*)). Since Wwherel is an arbitrary natural number. Since we assume that
we assume that vanishing bit erasure probability is achievathe bit erasure probability vanishes under message-massin
under message-passing decoding, it follows tfay < v(z) decoding, the stability condition implies thag; > pXe.
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Fig. 1. Plot of the functiong(z) andwv(z) for an ensemble of LDPC codes which achieves vanishing a#fuge probability under iterative message-passing

decoding when communicated over a BEC whose erasure pliopabiequal top. The horizontal and vertical lines track the evolution af txpected fraction
of erasure messages from the variable nodes to the checls mp@ach iteration of the message-passing decoding algorit

Applying the stability condition and the equalify= (1—¢)C  To continue the proof, we derive a lower boundion L~ ()

in (9) gives for z € (0,1). Since the fraction of variable nodes of degree
=1 ) i is non-negative for alt, we haveL(z) > Lox? for z > 0.
Ce > aLph Z |vi] . (10) Substitutingt = L(z) and applying some algebra, we get
i=0
Figure 1 implies that for an arbitrary iteratién 1- L) >1— [t vt e (0,1) (15)
1 N Ly’ T
l l
1= p(1—2") = c(aV) =1 - Z |vil - Under the assumptioﬁ;} < L, substituting (15) in (14) gives
1=0
Substituting it in (5) yields that the average bit erasurebpr a s ( /p Ly — w/pb)Q
AU - 1> : (16)
after decoding iteration numbér- 1 can be expressed as Lo (1—p)e
-1
(-1 _ . . The lower bound in (1) is obtained by substituting the edyali
B =pt <1 ; |“1|> ‘ D 1, = %einto (16).

Let [ designate the number of iterations required to achieve Bn Outline for the Proof of Theorem 3.2

average bit erasure probabilify over the ensembles, i.é.is In [9, Section 11.C.2], a technique called ‘graph reduction
the smallest integer which satisfi§§l_1) < B since we start is introduced. This technique transforms the Tanner graph
counting atl = 0. Although we consider an expectation oveof a systematic ARA ensemble, transmitted over a BEC
the LDPC ensemble, note thatis deterministic as it is the whose erasure probability is, into a Tanner graph of an
smallest integer for which the average bit erasure proitygbilequivalent LDPC ensemble (where this equivalence holds in
does not exceedy,. SinceL is monotonically increasing, (11) the asymptotic case where the block length tends to infinity)

provides a lower bound 0[5;5 |v;| of the form Let (A, p) denote the degree distributions of the variable and
-1 parity-check nodes of the equivalent LDPC ensemble. The
Z lvi| >1— L1 <ﬂ> ) (12) main observation used in the derivation of Theorem 3.2 is
i—0 p provided in the following lemma (for a proof, see [13]).

From the Cauchy-Schwartz inequality, we get Lemma 4.2:Let (n,\,p) be an ensemble of systematic

I 9 I ARA codes whp_se transmi_ss_ion takes place over a BEC with

Z || < ZZ 2. (13) erasure probability. In the I|_m|t where the l_)lock Iength_tends

— ! T = ! to infinity, the number of iterations required to achieve an
average bit erasure probabilif}, for the systematic bits is
lower bounded by the number of iterations required to aghiev

2
L& an average bit erasure probability df— — D for the
N (1 L (p)) 9 p y of— /1 -2

Combining (10), (12) and (13), and solving fbgives

= (1—p)e ' (14) LDPC ensemble whose degree distributions arnd .
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