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Abstract— We derive simple lower bounds on the number of
iterations which are required to communicate over the binary
erasure channel when graph-based code ensembles are used in
conjunction with an iterative message-passing decoder. These
bounds refer to the asymptotic case where we let the block length
tend to infinity, and the bounds apply to general ensembles oflow-
density parity-check (LDPC) codes, irregular repeat-accumulate
(IRA) and accumulate-repeat-accumulate (ARA) codes. It is
demonstrated that, under a mild condition, the number of
iterations required for successful decoding scales at least like
the inverse of the gap (in rate) to capacity.

I. I NTRODUCTION

The number of iterations, used by an iterative message-
passing decoder for graph-based codes, forms an important
factor in the evaluation of the decoding delay and complexity.
Another important factor which affects the complexity of such
decoders is related to the graphical complexity of the Tanner
graphs used to represent these codes (this graphical complexity
is strongly related to the decoding complexity per iteration of
message-passing decoders).

The extrinsic information transfer (EXIT) charts, pioneered
by Stephan ten Brink [15], form a powerful tool for an efficient
design of codes defined on graphs by tracing the convergence
behavior of their iterative decoders. For the binary erasure
channel (BEC), the EXIT charts coincide with the density
evolution analysis, and both are simplified in this case to a
one-dimensional analysis.

A numerical approach for the joint optimization of the
design rate and decoding complexity of LDPC code ensem-
bles was provided in [2]. For simplifying this optimization
problem, a suitable approximation of the number of iterations
was used in order to convert the original problem into a
convex optimization problem. This approach applies to the
case where the transmission takes place over a memoryless
binary-input output-symmetric (MBIOS) channel, and we let
the block length tend to infinity. An alternative approach,
used to approximate the number of iterations for LDPC code
ensembles operating over the BEC is addressed in [6].

An analytical approach used to characterize the asymptotic
complexity of iterative decoders, under the assumption where
the block length tends to infinity, was suggested by Khan-
dekar and McEliece [4]. The questions raised in [4] and the
following conjectures are related to the tradeoff between the
asymptotic achievable rates and the complexity under iterative
message-passing decoding. It was conjectured in [4] that for

a large class of channels, if the design rate of a suitably
designed ensemble forms a fraction1 − ε of the channel
capacity, then the decoding complexity (per information bit)
scales like 1

ε
log 1

ε
. The logarithmic term in this expression

was attributed to the graphical complexity (i.e., the decoding
complexity per iteration), and the number of iterations was
conjectured to scale like1

ε
. There is one exception: For

the BEC, the complexity under the iterative message-passing
decoding algorithm behaves likeln 1

ε
(see [5], [11], [12] and

[14]). This is true since the absolute reliability providedby
the BEC allows every edge in the graph to be used only
once during the iterative decoding. Hence, for the BEC, the
number of iterations performed by the decoder serves mainly
to measure the delay in the decoding process, while the
decoding complexity is closely related to the complexity of
the Tanner graph which is chosen to represent the code.

This paper provides simple lower bounds on the number of
iterations which are required for successful message-passing
decoding of graph-based code ensembles. The transmission
of these ensembles is assumed to take place over the BEC,
and the bounds refer to the asymptotic case where the block
length tends to infinity. The simplicity of the bounds derived
in this paper stems from the fact that they are easily evaluated
and are expressed in terms of some basic parameters of the
considered ensemble. These bounds demonstrate that the num-
ber of iterations which are required for successful message-
passing decoding scales at least like the inverse of the gap
(in rate) to capacity, provided that the fraction of degree-2
variable nodes of these turbo-like ensembles does not vanish
(hence, the number of iterations becomes unbounded as the
gap to capacity vanishes). The behavior of these lower bounds
matches well with the experimental results and the conjectures
on the number of iterations and complexity, as provided by
Khandekar and McEliece [4].

This paper is structured as follows: Section II presents some
preliminary background, definitions and notation, SectionIII
introduces the main results of this work and discusses some
of their implications, outlines for the proofs of the main
statements are provided in Section IV. Finally, Section V sum-
marizes this paper. Due to space limitations, the full proofs, as
well as several discussions, are omitted; the interested reader
is referred to the full paper version which is available on the
arxiv [13].



II. PRELIMINARIES

This section provides preliminary background and intro-
duces notation for the rest of this paper.

A. Accumulate-Repeat-Accumulate Codes

Accumulate-repeat-accumulate (ARA) codes form an attrac-
tive coding scheme of turbo-like codes due to the simplicityof
their encoding and decoding (where both scale linearly with
the block length), and due to their remarkable performance
under iterative decoding [1].

Ensembles of irregular and systematic ARA codes, which
asymptotically achieve the capacity of the BEC with bounded
graphical complexity, are presented in [9]. This bounded com-
plexity result stays in contrast to LDPC code ensembles, which
have been shown to require unbounded graphical complexity
in order to approach channel capacity, even under maximum-
likelihood decoding (see [11]). The setting and notation used to
characterize ensembles of irregular and systematic ARA codes
and their iterative decoders are introduced in [9, Section II]
(due to space limitations, we refer the reader to [9]).

B. Big-O notation

The termsO, Ω andΘ are widely used in computer science
to describe asymptotic relationships between functions. In our
context, we refer to the gap (in rate) to capacity, denoted by
ε, and discuss in particular the case where0 ≤ ε � 1 (i.e.,
sequences of capacity-approaching ensembles). Accordingly,
we define

• f(ε) = O
(
g(ε)

)
means that there are positive constants

c andδ, such that0 ≤ f(ε) ≤ c g(ε) for all 0 ≤ ε ≤ δ.
• f(ε) = Ω

(
g(ε)

)
means that there are positive constants

c andδ, such that0 ≤ c g(ε) ≤ f(ε) for all 0 ≤ ε ≤ δ.
• f(ε) = Θ

(
g(ε)

)
means that there are positive constants

c1, c2 andδ, such that0 ≤ c1 g(ε) ≤ f(ε) ≤ c2 g(ε) for
all 0 ≤ ε ≤ δ.

For all the above definitions, the values ofc, c1, c2 andδ must
be fixed for the functionf and should not depend onε.

III. M AIN RESULTS

In this section, we present lower bounds on the required
number of iterations used by a message-passing decoder for
code ensembles defined on graphs. The communication is
assumed to take place over a BEC, and we consider the asymp-
totic case where the block length of these code ensembles
tends to infinity.

Definition 3.1: Let
{
Cm

}
m∈N

be a sequence of code en-
sembles. Assume a common block length (nm) of the codes
in Cm which tends to infinity asm grows. Let the transmission
of this sequence take place over a BEC with capacityC. The
sequence

{
Cm

}
is said to achieve a fraction1 − ε of the

channel capacity under some given decoding algorithmif the
asymptotic rate of the codes inCm satisfiesR ≥ (1 − ε)C
and the achievable bit erasure probability under the considered
algorithm vanishes asm becomes large.
In the continuation, we consider a standard iterative message-
passing decoder for the BEC, and address the number of

iterations which are required in terms of the achievable fraction
of the channel capacity under this decoding algorithm.

Theorem 3.1:[Lower bound on the number of iterations
for LDPC code ensembles transmitted over the BEC]. Let{
(nm, λ, ρ)

}
m∈N

be a sequence of LDPC code ensembles
whose transmission takes place over a BEC with erasure
probability p. Assume that this sequence achieves a fraction
1−ε of the channel capacity under message-passing decoding.
Let L2 = L2(ε) be the fraction of variable nodes of degree 2
for this sequence. In the asymptotic case where the block
length tends to infinity, letl = l(ε, p, Pb) denote the number of
iterations which are required to achieve an average bit erasure
probability Pb over the ensemble. Under the mild condition
that Pb < p L2(ε), the required number of iterations satisfies
the lower bound

l(ε, p, Pb) ≥
2

1 − p

(√
p L2(ε) −

√
Pb

)2 1

ε
. (1)

Discussion 3.1:[On the dependence of the bounds on
the fraction of degree-2 variable nodes]The lower bound on
the number of iterations in Theorem 3.1 becomes trivial when
the fraction of variable nodes of degree 2 vanishes. In fact,
for various sequences of capacity approaching LDPC code
ensembles known to date (see [5], [7], [14]), the statement in
[10, Lemma 5] implies that the fraction of degree-2 variable
nodes tends to12 irrespectively of the erasure probability of
the BEC, as can be verified directly for these code ensembles.

In the asymptotic case where the block length tends to
infinity and the transmission takes place over the BEC, suitable
constructions of capacity-achieving systematic ARA ensem-
bles enable a fundamentally improved tradeoff between their
graphical complexity and their achievable gap (in rate) to
capacity under iterative decoding, as compared to LDPC code
ensembles (see [9],[11]). This raises the question whetherthe
number of iterations required to achieve a desired bit erasure
probability under iterative decoding, can be reduced by using
systematic ARA ensembles. The following theorem shows
that similarly to the result for LDPC code ensembles (see
Theorem 3.1), the required number of iterations for systematic
ARA codes scales at least like the inverse of the gap to
capacity.

Theorem 3.2:[Lower bound on the number of iterations
for systematic ARA ensembles transmitted over the BEC].
Let

{
(nm, λ, ρ)

}
m∈N

be a sequence of systematic ARA en-
sembles whose transmission takes place over a BEC with
erasure probabilityp. Assume that this sequence achieves a
fraction 1 − ε of the channel capacity under message-passing
decoding. LetL2 = L2(ε) be the fraction of ‘punctured
bit’ nodes of degree 2 for this sequence (see [9, Fig. 2]
where the two edges related to the accumulator are not taken
into account). Let the block length tend to infinity, and let
l = l(ε, p, Pb) denote the required number of iterations to
achieve an average bit erasure probabilityPb of the systematic

bits. Under the mild condition that1 −
√

1 − Pb
p

< p L2(ε),



this number of iterations satisfies the lower bound

l(ε, p, Pb) ≥ 2p (1− ε)



√

p L2(ε) −

√√√√1 −
√

1 − Pb

p




2

1

ε
.

(2)

The following theorem, which refers to irregular repeat-
accumulate (IRA) code ensembles, is proved in a conceptually
similar way to the proof of Theorem 3.2.

Theorem 3.3:[Lower bound on the number of iterations
for IRA code ensembles transmitted over the BEC].
Let

{
(nm, λ, ρ)

}
m∈N

be a sequence of (systematic or non-
systematic) IRA code ensembles whose transmission takes
place over a BEC with erasure probabilityp. Assume that
this sequence achieves a fraction1 − ε of the channel ca-
pacity under message-passing decoding. LetL2 = L2(ε) be
the fraction of ‘information bit’ nodes of degree 2 for this
sequence. In the asymptotic case where the block length tends
to infinity, let l = l(ε, p, Pb) designate the number of iterations
required to achieve an average bit erasure probabilityPb of the
information bits. For systematic codes, ifPb < p L2(ε), then
the number of iterations satisfies the lower bound

l(ε, p, Pb) ≥ 2(1 − ε)
(√

p L2(ε) −
√

Pb

)2 1

ε
. (3)

For non-systematic codes, ifPb < L2(ε), then

l(ε, p, Pb) ≥ 2(1 − ε)
(√

L2(ε) −
√

Pb

)2 1

ε
. (4)

IV. OUTLINE FOR THE PROOFS OF THEMAIN RESULTS

A. Outline for the Proof of Theorem 3.1

Let
{
x(l)
}

l∈N
designate the expected fraction of erasures in

messages from the variable nodes to the check nodes at the
l’th iteration of the message-passing decoder (where we start
counting atl = 0). From density evolution, in the asymptotic
case where the block length tends to infinity, the average bit
erasure probability after thel’th decoding iteration is given by

P
(l)
b = p L

(
1 − ρ(1 − x(l))

)
(5)

wherep is the erasure probability of the BEC andL designates
the left degree distribution of the ensemble from the node
perspective. Density evolution also implies that an average bit
erasure probability ofPb is attainable under iterative decoding
if and only if

c(x) < v(x) , ∀x ∈ (x∗, p]

where the functionsc andv are defined as

c(x) , 1 − ρ(1 − x), v(x) ,

{
λ−1

(
x
p

)
0 ≤ x ≤ p

1 p < x ≤ 1
(6)

andx∗ is the unique solution ofPb = p L
(
1−ρ(1−x∗)

)
. Since

we assume that vanishing bit erasure probability is achievable
under message-passing decoding, it follows thatc(x) < v(x)

for all x ∈ (0, p]. Figure 1 shows a plot of the functionsc(x)
and v(x) for an ensemble of LDPC codes which achieves
vanishing bit erasure probability under iterative decoding as
the block length tends to infinity. The horizontal and vertical
lines, labeled

{
hl

}
l∈N

and
{
vl

}
l∈N

, respectively, are used
to track the expected fraction of erased messages from the
variable nodes to the check nodes at each iteration of the
message-passing decoding algorithm. The expected fraction
of erased left to right messages in thel’th decoding iteration
(where we start counting at zero) is equal to thex value at
the left tip of the horizontal linehl. The right-angled triangles
shaded in gray will be used later in the proof.

The first step in the proof of Theorem 3.1 is calculating the
area bounded by the curvesc(x) andv(x). This is done in the
following lemma which is based on the area theorem for the
BEC [3].

Lemma 4.1:
∫ 1

0

(
v(x) − c(x)

)
dx =

C − R

aL

whereC = 1− p is the capacity of the BEC,R is the design
rate of the ensemble, andaL is its average left degree.

Let us consider the two sets of right-angled triangles shown
in two shades of gray in Figure 1. The triangles shaded in dark
gray are defined so that one of the legs of triangle numberi

(counting from right to left and starting at zero) is the vertical
line vi, and the slope of the hypotenuse is equal toc′(0) =
ρ′(1). The area of thei’th triangle in this set is

Ai =
1

2
|vi|

( |vi|
ρ′(1)

)
=

|vi|2
2ρ′(1)

(7)

where |vi| is the length ofvi. The triangles shaded in light
gray are defined so that one of the legs of triangle number
i (again, counting from the right and starting at zero) is the
vertical linevi and the slope of the hypotenuse is given by

v′(0) =
1

p

(
λ−1

)′
(0) =

1

pλ′(0)
=

1

pλ2

where the second equality follows sinceλ(0) = 0. The area
of the i’th triangle in this second set of triangles is given by

Bi =
1

2
|vi| (|vi| pλ2) =

pλ2 |vi|2
2

. (8)

Sincec(x) andv(x) are monotonically increasing withx and
concave, both sets of triangles form a subset of the domain
bounded by the curves ofc(x) andv(x). By their definitions,
the i’th dark triangle is on the right ofvi, and thei’th light
triangle lies to the left ofvi; therefore, the triangles do not
overlap. Combining (7), (8) and the fact that the triangles do
not overlap, and applying Lemma 4.1, we get

C − R

aL
≥ 1

2

(
1

ρ′(1)
+ pλ2

) l−1∑

i=0

|vi|2 (9)

wherel is an arbitrary natural number. Since we assume that
the bit erasure probability vanishes under message-passing
decoding, the stability condition implies that1

ρ′(1) ≥ p λ2.
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Fig. 1. Plot of the functionsc(x) andv(x) for an ensemble of LDPC codes which achieves vanishing bit erasure probability under iterative message-passing
decoding when communicated over a BEC whose erasure probability is equal top. The horizontal and vertical lines track the evolution of the expected fraction
of erasure messages from the variable nodes to the check nodes at each iteration of the message-passing decoding algorithm.

Applying the stability condition and the equalityR = (1−ε)C
in (9) gives

Cε ≥ aL pλ2

l−1∑

i=0

|vi|2. (10)

Figure 1 implies that for an arbitrary iterationl

1 − ρ(1 − x(l)) = c(x(l)) = 1 −
l∑

i=0

|vi| .

Substituting it in (5) yields that the average bit erasure prob.
after decoding iteration numberl − 1 can be expressed as

P
(l−1)
b = p · L

(
1 −

l−1∑

i=0

|vi|
)

. (11)

Let l designate the number of iterations required to achieve an
average bit erasure probabilityPb over the ensembles, i.e.,l is
the smallest integer which satisfiesP

(l−1)
b ≤ Pb since we start

counting atl = 0. Although we consider an expectation over
the LDPC ensemble, note thatl is deterministic as it is the
smallest integer for which the average bit erasure probability
does not exceedPb. SinceL is monotonically increasing, (11)
provides a lower bound on

∑l−1
i=0 |vi| of the form

l−1∑

i=0

|vi| ≥ 1 − L−1

(
Pb

p

)
. (12)

From the Cauchy-Schwartz inequality, we get
(

l−1∑

i=0

|vi|
)2

≤ l

l−1∑

i=0

|vi|2. (13)

Combining (10), (12) and (13), and solving forl gives

l ≥
aL pλ2

(
1 − L−1

(
Pb
p

))2

(1 − p)ε
. (14)

To continue the proof, we derive a lower bound on1−L−1(x)
for x ∈ (0, 1). Since the fraction of variable nodes of degree
i is non-negative for alli, we haveL(x) ≥ L2x

2 for x ≥ 0.
Substitutingt = L(x) and applying some algebra, we get

1 − L−1(t) ≥ 1 −
√

t

L2
, ∀t ∈ (0, 1) . (15)

Under the assumptionPb
p

< L2, substituting (15) in (14) gives

l ≥ aL λ2

(√
p L2 −

√
Pb
)2

L2 (1 − p)ε
. (16)

The lower bound in (1) is obtained by substituting the equality
L2 = λ2 aL

2 into (16).

B. Outline for the Proof of Theorem 3.2
In [9, Section II.C.2], a technique called ‘graph reduction’

is introduced. This technique transforms the Tanner graph
of a systematic ARA ensemble, transmitted over a BEC
whose erasure probability isp, into a Tanner graph of an
equivalent LDPC ensemble (where this equivalence holds in
the asymptotic case where the block length tends to infinity).
Let (λ̃, ρ̃) denote the degree distributions of the variable and
parity-check nodes of the equivalent LDPC ensemble. The
main observation used in the derivation of Theorem 3.2 is
provided in the following lemma (for a proof, see [13]).

Lemma 4.2:Let (n, λ, ρ) be an ensemble of systematic
ARA codes whose transmission takes place over a BEC with
erasure probabilityp. In the limit where the block length tends
to infinity, the number of iterations required to achieve an
average bit erasure probabilityPb for the systematic bits is
lower bounded by the number of iterations required to achieve

an average bit erasure probability of1 −
√

1 − Pb
p

for the

LDPC ensemble whose degree distributions areλ̃ and ρ̃.



The LDPC ensemble with the tilted pair of degree distributions
(λ̃, ρ̃) is transmitted over a BEC whose erasure probability is 1,
so the channel capacity is equal to zero and the multiplicative
gap to capacity is meaningless. This prevents, unfortunately, a
direct use of Theorem 3.1; however, the proof in [13] follows
along the same lines as the proof of Theorem 3.1 with some
necessary technical adjustments to relate between properties of
the systematic ARA and the equivalent LDPC code ensembles.

V. SUMMARY AND CONCLUSIONS

In this paper (for a full paper version, see [13]), we consider
the number of iterations which are required for success-
ful message-passing decoding of code ensembles defined on
graphs. In the considered setting, we let the block length
of these ensembles tend to infinity, and the transmission
takes place over a binary erasure channel (BEC). For various
families of code ensembles, Table I compares the number of
iterations and the graphical complexity which are required
to achieve a given fraction1 − ε (where ε can be made
arbitrarily small) of the capacity of a BEC with vanishing
bit erasure probability. The results in Table I are based
on lower bounds and some achievability results which are
related to the graphical complexity of various families of code
ensembles defined on graphs (see [8], [9], [11], [12]); the
results related to the number of iterations are based on the
lower bounds introduced here (for rigorous proofs, see [13]).

Theorems 3.1–3.3 demonstrate that for various attractive

Code Number of iterations Graphical complexity
family as function ofε as function ofε

LDPC Ω
`

1

ε

´

(Thm. 3.1) Θ
`

ln 1

ε

´

[11]

Systematic IRA Ω
`

1

ε

´

(Thm. 3.3) Θ
`

ln 1

ε

´

[12]

Non-systematic IRA Ω
`

1

ε

´

(Thm. 3.3) Θ(1) [8]

Systematic ARA Ω
`

1

ε

´

(Thm. 3.2) Θ(1) [9]

TABLE I

NUMBER OF ITERATIONS AND GRAPHICAL COMPLEXITY REQUIRED TO

ACHIEVE A FRACTION 1 − ε OF THE CAPACITY OF ABEC WITH

VANISHING BIT ERASURE PROBABILITY.

families of code ensembles (including LDPC codes, systematic
and non-systematic IRA codes, and ARA codes), the number
of iterations which are required to achieve a fixed bit erasure
probability scales at least like the inverse of the gap between
the channel capacity and the design rate of the ensemble.
This conclusion holds provided that the fraction of degree-
2 variable nodes in the Tanner graph does not vanish as the
gap to capacity vanishes (where under mild conditions, this
property is satisfied for sequences of capacity-achieving LDPC
code ensembles, see [10, Lemma 5]). The behavior of these
lower bounds matches well with the experimental results and
the conjectures of Khandekar and McEliece [4].
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