On Achievable Rates and Complexity of LDPC Codes for Parallel Channels: Information-Theoretic Bounds and Applications

Igal Sason Gil Wiechman

Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel {sason@ee, igillw@tx}.technion.ac.il

2006 International Symposium on Information Theory Seattle, Washington July 10, 2006

Outline



2 Information-Theoretic Bounds for Parallel Channels

3 Application: Intentionally Punctured Codes



Sac

2/21

## **Parallel Channels**

- Transmission takes place over a set of J independent memoryless binary-input output-symmetric (MBIOS) channels.
- Each code bit is a-priori assigned to one of the J channels.
- A fraction  $p_i$  of the code bits is transmitted over the *j*'th channel.



< 🗆 🕨

# Why Parallel Channels ?

Parallel channels are used to model various scenarios:

- Punctured LDPC codes.
- Non-uniformly error protected codes.
- Multi-level codes.
- LDPC coded modulation.
- etc.

< □ ▶

# Fundamental Questions Regarding LDPC Codes

#### Question

How good can LDPC codes be, even under ML Decoding ?

- Answer to this question  $\Rightarrow$ 
  - Quantitative measure of the inherent loss of sub-optimal and practical iterative message-passing decoding algorithms.

- + Ξ **>** 

# Fundamental Questions Regarding LDPC Codes

#### Question

How good can LDPC codes be, even under ML Decoding ?

Answer to this question  $\Rightarrow$ 

 Quantitative measure of the inherent loss of sub-optimal and practical iterative message-passing decoding algorithms.

#### Question

How sparse can parity-check matrices of binary linear codes be, as a function of their gap (in rate) to capacity?

Answer to this question  $\Rightarrow$ 

• Lower bounds on the decoding complexity per iteration.

# Bounds on Achievable Rates

Information-theoretic bounds for a single MBIOS channel

- Gallager (Ph.D. thesis 1961)
- Burshtein et al. (IEEE Trans. on IT, September 2002)
- Sason and Urbanke (IEEE Trans. on IT, July 2003)
- Wiechman and Sason (Allerton 2005)

Bounds referring to ensemble averages for a single MBIOS channel

Sar

6/21

**ISIT 2006** 

- Meason et al. (ITW 2004)
- Montanari (IEEE Trans. on IT, September 2005)

## Bounds on Achievable Rates

Bounds for punctured codes

• Pfister et al. (IEEE Trans. on IT, July 2005)

Bounds for parallel MBIOS channels

- Pishro-Nik et al. (IEEE Trans. on IT, July 2005)
- Liu et al. (IEEE Trans. on Information Theory, April 2006)
- Sason and Goldenberg (Arxiv, July 2006)

# Information-Theoretic Bounds on Parity-Check Density

Goal: Achieving a fraction  $1 - \varepsilon$  of channel capacity

### Theorem (Sason & Urbanke, IEEE Trans. on IT, July 03)

- For any sequence of binary linear block codes achieving a fraction  $1 - \varepsilon$  of capacity, parity-check density grows at least like  $\ln \frac{1}{\varepsilon}$ .
- Logarithmic behavior achievable under ML decoding for any MBIOS channel.
- For the BEC, it is achievable under iterative decoding.

### Un-Quantized Approach (Wiechman & Sason, Allerton 2005)

- Work directly with the soft LLR values at the output of the channel.
- Tightens the coefficient of the logarithmic growth for all MBIOS channels, except for the BEC and the BSC.

Sac

< < >> < <</p>

## Main Results

The main Results of this work:

- Generalization of the information-theoretic bounds for parallel MBIOS channels.
- The bounds serve to evaluate the tradeoff between performance and decoding complexity per iteration for codes transmitted over parallel channels.
- Application of these bounds towards assessing the performance-complexity tradeoff of randomly and intentionally punctured LDPC codes transmitted over an MBIOS channel.

~ a ~

# The Un-Quantized Approach

- Define an *equivalent* channel whose output is the LLR of the original communication channel.
- LLR is divided into sign and absolute value.
- Channel symmetry property

 $\Rightarrow$  new channel is a multiplicative channel, where the binary input (converted to +1,-1) multiplies an independent noise.

- Noise is distributed according to the *pdf* of the LLR of the original channel, given that the transmitted symbol is 0.
- Use output magnitude as side information on the noise, and calculate the syndrome w.r.t. the *sign* of the received sequence.

Sac

< 行 >

→ Ξ →

## Lower Bound on Cond. Entropy for an MBIOS Channel

Let C be a binary linear block code of length n and design rate  $R_d$ .

- Communication over MBIOS channel with capacity C bits/ch. use.
- **x**, **y** transmitted codeword and received sequence, respectively.
- *a pdf* of the LLR given that the transmitted symbol is 0.
- For an arbitrary parity-check matrix of C, let  $\Gamma_k$  designate the fraction of the parity-checks involving *k* variables, and define  $\Gamma(x) \triangleq \sum_k \Gamma_k x^k$ .

# Lower Bound on Cond. Entropy for an MBIOS Channel

Let C be a binary linear block code of length n and design rate  $R_d$ .

#### Theorem

The conditional entropy of the transmitted codeword given the received sequence satisfies

$$\frac{H(\mathbf{X}|\mathbf{Y})}{n} \ge 1 - C - (1 - R_d) \left(1 - \frac{1}{2\ln(2)} \sum_{p=1}^{\infty} \frac{\Gamma(g_p)}{p(2p-1)}\right)$$
$$g_p \triangleq \int_0^\infty a(I)(1 + e^{-I}) \tanh^{2p}\left(\frac{I}{2}\right) dI$$

# Lower Bound on Cond. Entropy for Parallel Channels

Let C be a binary linear block code of length n and design rate  $R_d$ .

#### Theorem

The conditional entropy of the transmitted codeword given the received sequence satisfies

$$\begin{array}{ll} \displaystyle \frac{H(\mathbf{X}|\mathbf{Y})}{n} & \geq & 1 - \sum_{j=1}^{J} p_j C_j - (1 - R_d) \\ & \quad \cdot \left( 1 - \frac{1}{2n(1 - R_d) \ln 2} \sum_{p=1}^{\infty} \frac{\sum_{m=1}^{n(1 - R_d)} \prod_{j=1}^{J} (\mathcal{G}_{j,p})^{\beta_{j,m}}}{p(2p - 1)} \right) \end{array}$$

where

$$g_{j,p} riangleq \int_0^\infty a(l;j) \ (1+e^{-l}) anh^{2p}\left(rac{l}{2}
ight) dl, \qquad j\in\{1,\ldots,J\}, \quad p\in\mathbb{N}.$$

< 口 > < 同

#### Problem

The values  $\beta_{j,m}$  are not usually known. Therefore the bound cannot be practically evaluated for specific codes.

Sac

< □ >

#### Problem

The values  $\beta_{j,m}$  are not usually known. Therefore the bound cannot be practically evaluated for specific codes.

#### Solution

Consider the expected conditional entropy over an ensemble of codes.

< □ ▶

#### Problem

The calculation of the expectation over the bound is not tractable

5990

< 🗆 🕨

< 一型

#### Problem

The calculation of the expectation over the bound is not tractable

### Suggestion

Bound the expectation using Jensen's inequality. Leads to an inherent loss in the tightness of the bounds.

Sac

• •

#### Problem

The calculation of the expectation over the bound is not tractable

### Observation

- We only consider sequences of ensembles where  $n \to \infty$ .
- We only need the limit of the expectation when  $n \rightarrow \infty$ .

#### Problem

The calculation of the expectation over the bound is not tractable

#### Observation

- We only consider sequences of ensembles where  $n \to \infty$ .
- We only need the limit of the expectation when  $n \rightarrow \infty$ .
- The calculation of the limit is possible
- The following bounds are valid only for sequences of *ensembles*.

## Upper Bound on the Achievable Rates

Consider a sequence of LDPC ensembles, whose block lengths tend to infinity.

- Transmission over *J* parallel MBIOS channels.
   Capacity of *j*'th channel: *C<sub>j</sub>* bits/ch. use.
- *p<sub>j</sub>* denotes the asymptotic fraction of code bits transmitted over the *j*'th channel.
- q<sub>j</sub> denotes the asymptotic fraction of edges in graph connected to code bits transmitted over the j'th channel.

## Upper Bound on the Achievable Rates

#### Theorem

A necessary condition for this sequence to achieve vanishing bit error probability (even under ML decoding) is that the design rate  $R_d$  satisfies

$$R_{d} \leq 1 - \frac{1 - \sum_{j=1}^{J} p_{j}C_{j}}{1 - \frac{1}{2 \ln 2} \sum_{p=1}^{\infty} \left\{ \frac{1}{p(2p-1)} \, \Gamma\left(\sum_{j=1}^{J} q_{j} \, g_{j,p}\right) \right\}}$$

where  $\Gamma(x) = \sum_{i=2}^{\infty} \Gamma_i x^i$  is the right degree distribution from the node perspective.

Sac

# **Example: Parallel BECs**

#### Example

For the particular case where the J parallel MBIOS channels are BECs where the erasure probability of the  $j^{th}$  channel is  $\varepsilon_j$ , the common design rate of the sequence of LDPC ensembles is upper bounded by

$$\mathcal{R}_d \leq 1 - rac{\displaystyle\sum_{j=1}^J \mathcal{P}_j arepsilon_j}{\displaystyle 1 - \Gammaigg(1 - \displaystyle\sum_{j=1}^J q_j \; arepsilon_jigg)}$$

This coincides with [Pishro-Nik et al. IEEE Trans. on IT, July 2005].

## Lower Bound on the Parity Check Density

- Consider a sequence of LDPC ensembles, whose block lengths tend to infinity.
- Assume this sequence achieves a fraction  $1 \varepsilon$  of the average capacity  $\overline{C} \triangleq \sum_{i=1}^{J} p_i C_i$  with vanishing bit-error probability.

#### Theorem

The asymptotic density of their parity-check matrices satisfies

$$\liminf_{m\to\infty}\Delta_m\geq K_1+K_2\ln\frac{1}{\varepsilon}$$

where  $K_1$  and  $K_2$  are coefficients which depend on the pdfs of the J parallel channels and on the values of  $p_i$  and  $q_i$ .

Same form as the bound for a single MBIOS channel.

- 一一 >

# Intentionally Punctured Codes

- Introduced by Ha and McLaughlin (IEEE Trans. on IT, November 2004)
- Code bits are separated according to the degree of the corresponding node.
- Each set is punctured at a different rate.

# Intentionally Punctured Codes

Intentional Puncturing Can be modeled as transmission over a set of parallel channels.

- Each channel transmits bits whose corresponding nodes have a fixed degree.
- The channels are composed of a concatenation of a BEC (which models the puncturing) and the communication channel.
- The fraction *q<sub>j</sub>* of edges transmitted over channel *j* depends on the left degree distribution of the ensemble.
- The bounds depend on both the left and right degree distributions.

Sac

< 口 > < 同 >

→ Ξ →

# Numerical Results

- Original ensemble design rate 1/2.
- Transmission over binary input AWGN channel.
- Puncturing patterns optimized for iterative decoding.
- Provides bound on inherent loss due to iterative decoding.

| Design | Capacity | Lower bound   | Iterative (IT) | Fractional gap to |
|--------|----------|---------------|----------------|-------------------|
| rate   | limit    | (ML decoding) | Decoding       | cap. (ML vs. IT)  |
| 0.500  | 0.187 dB | 0.270 dB      | 0.393 dB       | $\geq$ 40.3%      |
| 0.592  | 0.635 dB | 0.716 dB      | 0.857 dB       | $\geq$ 36.4%      |
| 0.671  | 1.083 dB | 1.171 dB      | 1.330 dB       | $\geq$ 35.6%      |
| 0.774  | 1.814 dB | 1.927 dB      | 2.115 dB       | $\geq$ 37.2%      |
| 0.838  | 2.409 dB | 2.547 dB      | 2.781 dB       | $\geq$ 37.1%      |
| 0.912  | 3.399 dB | 3.607 dB      | 3.992 dB       | $\geq$ 35.1%      |

## Summary

- Information-theoretic bounds on the thresholds and parity-check density of binary linear block codes for parallel channels.
- Can be applied to punctured codes, non-uniform error protection, multilevel codes and other scenarios
- Bounds on thresholds under ML decoding and exact thresholds under iterative decoding enable to assess the inherent loss due to ensemble structure and the sub-optimality of iterative decoding.
- Lower bounds on the parity-check density enable to assess the performance-complexity tradeoff under iterative decoding.
- The bounds enable the re-derivation of previously reported results or improved versions of those results.

Sac

< 口 > < 同 >

< = >

## **Further Reading**

This talk is based on the paper:

- I. Sason and G. Wiechman, "On achievable rates and complexity of LDPC codes for parallel channels with application to puncturing," accepted to *IEEE Trans. on Information Theory*, June 2006 (currently under revision).
- Available at:

http://arxiv.org/abs/cs.IT/0508072

# Thank you for your attention !