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Abstract — The performance of maximum-likelihood
(ML) decoded binary linear block codes is addressed
via the derivation of tightened upper bounds on their
decoding error probability. The upper bounds on
the block and bit error probabilities are valid for
any memoryless, binary-input and output-symmetric
communication channel. The effectiveness of these
bounds is exemplified for ensembles of turbo-like
codes.

I. Introduction

Since the advent of information theory, the search for efficient
coding systems has motivated the introduction of efficient
bounding techniques tailored to specific codes or some care-
fully chosen ensembles of codes. The incentive for introducing
and applying such bounds has strengthened with the intro-
duction of various families of codes defined on graphs which
closely approach the channel capacity with feasible complexity
(e.g., turbo codes, repeat-accumulate codes, and low-density
parity-check (LDPC) codes). Clearly, the desired bounds must
not be subject to the union bound limitation, since for long
blocks these ensembles of turbo-like codes perform reliably at
rates which are considerably above the cutoff rate (R0) of the
channel (recalling that union bounds for long codes are not
informative at the portion of the rate region above R0, where
the performance of these capacity-approaching codes is most
appealing). Although maximum-likelihood (ML) decoding is
in general prohibitively complex for long codes, the deriva-
tion of bounds on the ML decoding error probability is of
interest, providing an ultimate indication of the system per-
formance. Further, the structure of efficient codes is usually
not available, necessitating efficient bounds on performance
to rely only on basic features, such as the distance spectrum
and the input-output weight enumeration function (IOWEF)
of the examined code (for the evaluation of the block and bit
error probabilities, respectively, of a specific code or ensem-
ble).

A basic inequality which serves for the derivation of many
previously reported upper bounds is the following:

Pr(word error) ≤ Pr(word error, y ∈ R) + Pr(y /∈ R) (1)

where y denotes the received vector at the output of the re-
ceiver, and R is an arbitrary geometrical region which can be
interpreted as a subset of the observation space. This cate-
gory includes the tangential bound of Berlekamp where the
volume R is a half-space separated by a plane, the sphere
bound by Herzberg and Poltyrev [6] where R is a hyper-
sphere, Poltyrev’s tangential-sphere bound [8] (TSB) where
R is a circular cone, and Divsalar’s bound [1] where R is a
hyper-sphere with an additional degree of freedom with re-
spect to the center of the sphere.

Another approach is the Gallager bounding technique
which provides a conditional upper bound on the ML decoding

error probability given an arbitrary transmitted (length-N)
codeword cm (Pe|m). The conditional decoding error proba-
bility is upper bounded by (see [3])
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where 0 ≤ ρ ≤ 1 and λ ≥ 0. Here, ψm

N (y) is an arbitrary prob-
ability tilting measure (which may depend on the transmitted
codeword cm), and pN (y|c) designates the transition prob-
ability measure of the channel. Connections between these
two seemingly different bounding techniques in (1) and (2)
were demonstrated in [14], showing that many previously re-
ported bounds (or their Chernoff versions) whose derivation
originally relied on the concept shown in inequality (1) can in
fact be re-produced as particular cases of the bounding tech-
nique used in (2); to this end, one simply needs to choose the
suitable probability tilting measure ψm

N which serves as the
”kernel” for reproducing various previously reported bounds.
The observations in [14] relied on some fundamental results
which were reported by Divsalar [1].

The tangential-sphere bound (TSB) of Poltyrev often hap-
pens to be the tightest upper bound on the ML decoding error
probability of block codes whose transmission takes place over
a binary-input AWGN channel. However, in the random cod-
ing setting, it fails to reproduce the random coding exponent
[5] while the second version of the Duman and Salehi (DS2)
bound does (see [14]). The Shulman-Feder bound (SFB) can
be derived as a particular case of the DS2 bound (see [14]),
and it achieves the random coding error exponent. Though the
SFB is informative for some structured linear block codes with
good Hamming properties, it appears to be a loose bound,
for example, when considering sequences of linear block codes
whose minimum distance grows sub-linearly with the block
length. However, the tightness of this bounding technique is
significantly improved by combining the SFB with the union
bound; this approach was exemplified for some structured en-
sembles of LDPC codes (see e.g., [7] and the proof of [12,
Theorem 2.2]).

In this paper, we introduce improved upper bounds on both
the bit and block error probabilities. Section II presents some
preliminary material. In Section III, we introduce an up-
per bound on the block error probability which is in general
tighter than the SFB, and combine the resulting bound with
the union bound. Similarly, an appropriate upper bound on
the bit error probability is introduced. By applying the new
bounds to ensembles of turbo-like codes over the binary-input
AWGN channel, we demonstrate in Section IV the usefulness
of the new bounds, especially for some coding structures of
high rates.

For a tutorial paper on performance bounds of linear codes,
the reader is referred to [11]. Due to space limitations, the



proofs of the new bounds in this paper and further discussion
are provided in [15]. Moreover, the effect of expurgating the
distance spectrum is exemplified in [15], showing that for some
ensembles, this expurgation further tightens the bounds.

II. Preliminaries

It is well known that at rates below the channel capacity, the
block error probability of the ensemble of fully random block
codes vanishes exponentially with the block length. In the
following, the Shulman and Feder bound is introduced, as a
preparatory step to the continuation of our discussion.

We consider here the transmission of a binary linear block
code C where the communication takes place over a memo-
ryless binary-input output-symmetric (MBIOS) channel. The
analysis refers to the decoding error probability under soft-
decision ML decoding.

The Shulman and Feder bound (SFB) [13] on the block er-
ror probability of an (N, K) binary linear block code C, trans-
mitted over a memoryless channel is given by

Pe ≤ 2−NEr(R+
log α(C)

N
) (3)

where

Er(R) = max
0≤ρ≤1

(E0(ρ) − ρR) (4)

E0(ρ) , − log2
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Er is the random coding error exponent [5], R , K
N

designates
the code rate in bits per channel use, and

α(C) , max
1≤l≤N

Al

2−N(1−R)
(

N

l

) . (6)

In the RHS of (6), {Al} denotes the distance spectrum of
the code. Hence, for fully random block codes, α(C) is equal
to 1, and the Shulman-Feder bound (SFB) particularizes to
the random coding bound [5]. In general, the parameter α(C)
in the SFB (3) measures the maximal ratio of the distance
spectrum of a code (or ensemble) and the average distance
spectrum which corresponds to fully random block codes of
the same block length and rate.

The original proof of the SFB is quite involved. In [14],
a simpler proof of the SFB is derived, and by doing so, the
simplified proof reproduces the SFB as a particular case of the
DS2 bound (see Eq. (2)). To this end, we choose a suitable
tilting measure ψm

N in (2) which provides an elegant proof of
the SFB (see [14, Section 4A]); this proof also shows that the
SFB forms as a particular case of the DS2 bound in (2) [3, 14].

In order to tighten the SFB bound for linear block codes,
Miller and Burshtein [7] suggested to partition the original
linear code C into two subcodes, namely C′ and C′′; the sub-
code C′ contains the all-zero codeword and all the codewords
with Hamming weights of l ∈ U ⊆ {1, 2, ..., N}, while C′′ con-
tains the other codewords which have Hamming weights of
l ∈ Uc = {1, 2, ..., N} \ U and the all-zero codeword. From
the symmetry of the channel, the union bound provides the
following upper bound on the ML decoding error probability:

Pe = Pe|0 ≤ Pe|0(C
′) + Pe|0(C

′′) (7)

where Pe|0(C
′) and Pe|0(C

′′) designate the conditional ML de-
coding error probabilities of C′ and C′′, respectively, given that

the all zero codeword is transmitted. We note that although
the code C is linear, its two subcodes C′ and C′′ are in general
non-linear.

III. Improved Upper Bounds

As a continuation of Section II, one can rely on different up-
per bounds on the conditional error probabilities Pe|0(C

′) and
Pe|0(C

′′), i.e., we may bound Pe|0(C
′) by the SFB, and rely on

an alternative approach to obtain an upper bound on Pe|0(C
′′).

For example, if we consider the binary-input AWGN channel,
then the TSB (or even union bounds) may be used in order
to obtain an upper bound on the conditional error probability
Pe|0(C

′′) which corresponds to the subcode C′′. In order to
obtain the tightest bound in this approach, one should look
for an optimal partitioning of the original code C into two sub-
codes, based on the distance spectrum of C. The solution of
the problem is quite tedious, because in general, if the subset
U can be an arbitrary subset of the set of integers {1, . . . , N},
then one has to compare

∑N

i=0

(

N

i

)

= 2N different possibilities
for U . However, we may use practical optimization schemes to
obtain good results which may improve the tightness of both
the SFB and TSB. By relying on the SFB in order to obtain
an upper bound on the conditional decoding error probabil-
ity of the subcode C′ (i.e., an upper bound on Pe|0(C

′)), one
can see from (6) that the parameter α in this case is equal
to the maximal ratio of the distance spectrum of the original
code C (or ensemble) and the corresponding binomial distri-
bution which represents the average distance spectrum of fully
random block codes; this maximal value is taken w.r.t. the
Hamming weights referred to the set U .

An easy way to make an efficient partitioning of a linear
code C is to compare its distance spectrum (or the average
distance spectrum for an ensemble of linear codes) with the
average distance spectrum of the ensemble of fully random
block codes of the same rate and block length. Let us desig-
nate the latter distance spectrum by

Bl , 2−N(1−R)

(

N

l

)

l = 0, 1, N. (8)

Then, it is suggested to partition the set of codewords of C
in a way so that all the codewords with Hamming weight l
for which Al

Bl
is smaller than some threshold (which should be

larger than 1 but close to it) are associated with a subcode
C′, and the other codewords are associated with C′′ which is
the complementary subcode of C′ w.r.t. C. The following
algorithm is proposed for the calculation of the upper bound
on the block error probability under ML decoding:
Algorithm 1

1. Set
U = Φ, Uc = {1, 2, ...N}, l = 1

where Φ designates an empty set, and set the initial value of
the upper bound to be equal to 1.

2. Compute the ratio Al

Bl
where {Al} is the distance spectrum

of the binary linear block code (or the average distance of an
ensemble of such codes), and {Bl} is the binomial distribution
introduced in (8).

3. If this ratio is smaller than some threshold (where the value
of the threshold is typically set to be slightly larger than 1),
then the element l is added to the set U , i.e.,

U := U + {l}, Uc := Uc \ {l}.



4. Update correspondingly the upper bound in the RHS of (7)
(we will derive later the appropriate upper bounds on Pe|0(C

′)
and Pe|0(C

′′).

5. Set the bound to be the minimum between the RHS from
Step 4 and its previous value.

6. Set l = l + 1 and go to Step 2.

7. The algorithm terminates when l gets the value N (i.e.,
the block length of the code) or actually, the maximal value
of l for which Al does not vanish.1

From the discussion above, it is clear that the combination
of the SFB with another upper bound has the potential to
tighten the overall upper bound on the ML decoding probabil-
ity. This improvement is expected to be especially pronounced
for ensembles whose average distance spectrum resembles the
binomial distribution over a relatively large range of Ham-
ming weights, but whose average distance spectrum deviates
significantly from the binomial distribution for relatively low
and large Hamming weights (e.g., ensembles of uniformly in-
terleaved turbo codes possess this property, as indicated in [9,
Section 4]). This bounding technique was successfully applied
by Miller and Burshtein [7] and also by Sason and Urbanke
[12] to ensembles of regular low-density parity-check (LDPC)
codes where the SFB was combined with union bounds. If the
range of Hamming weights where the average distance spec-
trum of an ensemble resembles the binomial distribution is
relatively large, then according to the above algorithm, one
would expect that C′ typically contains a very large fraction
of the overall number of the codewords of a code from this en-
semble. Hence, in order to obtain an upper bound on Pe|0(C

′′),
where C′′ is expected to contain a rather small fraction of the
codewords in C, we may use a simple bound such as the union
bound while expecting not to pay a significant penalty in the
tightness of the overall bound on the decoding error probabil-
ity (Pe).

The following bound introduced in Theorem III.1 is derived
as a particular case of the DS2 bound [3]. The beginning of
its derivation is similar to the steps in [14, Section 4A], but
we later deviate from the analysis there in order to modify the
SFB. We finally obtain a tighter version of the SFB.

Theorem III.1 (Modified Shulman and Feder Bound)
Let C be a binary linear block code of length N and rate R,
and let {Al} designate its distance spectrum. Let this code be
partitioned into two subcodes, C′ and C′′, where C′ contains
the all-zero codeword and all the other codewords of C whose
Hamming weights are in an arbitrary set U ⊆ {1, 2, , . . . , N};
the second subcode C′′ contains the all-zero codeword and the
other codewords of C which are not included in C′. Assume
that the communication takes place over a memoryless
binary-input output-symmetric (MBIOS) channel with
transition probability measure p(y|x), x ∈ {0, 1}. Then, the
block error probability of C under ML decoding is upper
bounded by

Pe ≤ Pe|0(C
′) + Pe|0(C

′′)

1The number of steps can be reduced by factor of 2 for binary
linear codes which contain the all-ones codeword (hence maintain
the property Al = AN−l). For such codes, the update equation in
Step 3 becomes: U := U + {l, N − l}, Uc := Uc − {l, N − l} and
the algorithm terminates when l gets the value dN

2
e.

where for 0 ≤ ρ ≤ 1

Pe|0(C
′) ≤ SFB(ρ) ·

·

[

∑

l∈U
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N

l

)
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A(ρ)

A(ρ) + B(ρ)

)l (

B(ρ)

A(ρ) + B(ρ)

)N−l
]ρ

(9)
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1
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1
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.

The multiplicative term, SFB(ρ), in the RHS of (9) designates
the conditional Shulman-Feder upper bound of the subcode C′

given the transmission of the all-zero codeword, i.e.,

SFB(ρ) = 2−N

(

E0(ρ)−ρ(R+
log(α(C′))

N
)
)

, 0 ≤ ρ ≤ 1 (10)

and E0 is introduced in (5). An upper bound on the con-
ditional block error probability for the subcode C′′, Pe|0(C

′′),
can be either a standard union bound or any other bound.

Discussion: In [7, Theorem 1], Miller and Burshtein intro-
duced an upper bound which combines the Shulman and Feder
bound with the union bound, and applied it to two ensembles
of LDPC codes. In [12, Theorem 2], Sason and Urbanke ap-
plied the same bounding technique to obtain an upper bound
on the average ML decoding error probability of Gallager’s
ensemble of regular LDPC codes. Based on this bound which
applies to optimal ML decoding over MBIOS channels, it was
proved in [7, 12] that for suitable constructions of these en-
sembles, the average block error probability vanishes asymp-
totically (as the block length tends to infinity) at rates which
can be made arbitrarily close to the channel capacity.

The improvement of the bound introduced in Theorem III.1
stems from the introduction of the ρ-dependent factor which
multiplies SFB(ρ) in the RHS (9); this multiplicative term
cannot exceed 1 since

∑

l∈U

(

N

l

)

(

A(ρ)

A(ρ) + B(ρ)

)l (

B(ρ)

A(ρ) + B(ρ)

)N−l

≤

N
∑

l=0

(

N

l

)

(

A(ρ)

A(ρ) + B(ρ)

)l (

B(ρ)

A(ρ) + B(ρ)

)N−l

= 1.

This multiplicative factor which appears in the new bound
(9) is useful for finite-length codes with small to moderate
block lengths. The upper bound (9) on Pe|0(C

′) is clearly at
least as tight as the corresponding conditional SFB. We refer
to the upper bound (9) as the modified SFB (MSFB). The
conditional block error probability of the subcode C′′, given
that the all-zero codeword is transmitted, can be bounded
by a union bound or any improved upper bound conditioned
on the transmission of the all-zero codeword. In general, one
is looking for an appropriate balance between the two upper
bounds on P

(1)

e|0 and P
(2)

e|0 (see Algorithm 1). The improvement
that is achieved by using the MSFB instead of the correspond-
ing SFB is exemplified later (see Section IV) for ensembles of
uniformly interleaved turbo codes.

An Upper Bound on Bit Error Probability: Let C be a bi-
nary linear block code whose transmission takes place over an
arbitrary MBIOS channel, and let Pb designate the bit error
probability of C under ML decoding. In [10, Appendix A],



Sason and Shamai derived an upper bound on the bit error
probability of systematic, binary linear block codes which are
transmitted over fully interleaved fading channels with perfect
channel state information at the receiver. Here we generalize
the result of [10] for arbitrary MBIOS channels.

Theorem III.2 (The SFB version on the BER) Let C be
a binary linear block code of length N and dimension K, and
assume that the transmission of the code takes place over an
MBIOS channel. Let Aw,l designate the number of codewords
in C which are encoded by information bits whose Hamming
weight is w and their Hamming weight after encoding is l.
Then, the bit error probability of C under ML decoding is
upper bounded by

Pb ≤ 2−NEr(R+
log αb(C)

N
) (11)

where Er denotes the ransom coding error exponent (see (4)),
R = K

N
is the code rate of C, and

αb(C) , max
0≤l≤N

A′
l

2−N(1−R)
(

N

l

) , A′
l ,

K
∑

w=1

( w

K

)

Aw,l.

Similarly to the derivation of the combined upper bound
on the block error probability in Theorem III.1, we suggest to
partition the code into two subcodes in order to get improved
upper bounds on the bit error probability. Since the code is
linear and the channel is MBIOS, the conditional decoding
error probability is independent of the transmitted codeword
(so, we assume again that the all-zero codeword is transmit-
ted). By the union bound

Pb = Pb|0 ≤ Pb|0(C
′) + Pb|0(C

′′) (12)

where Pb|0(C
′) and Pb|0(C

′′) denote the conditional ML de-
coding bit error probabilities of two disjoint subcodes C′ and
C′′ which partition the block code C (except that these two
subcodes have the all-zero vector in common), given that the
all-zero codeword is transmitted. The construction of the sub-
codes C′ and C′′ is aimed to minimize the overall upper bound
on the bit error probability in (12).

Upper bound on Pb|0(C
′): Let Aw,l designate the number

of codewords of Hamming weight l which are encoded by a
sequence of information bits of Hamming weight w. Similarly
to the discussion on the block error probability, we use the bit-
error version of the SFB (see Eq. (11)) as an upper bound on
Pb|0(C

′). From Theorem III.2, it follows that the conditional
bit error probability of the subcode C′, given that the all-zero
codeword is transmitted is upper bounded by

Pb|0(C
′) ≤ 2

−NEr

(

R+
log αb(C′)

N

)

(13)

where

αb(C′) , max
l∈U

A′
l(C

′)

Bl

,

Al
′(C′) ,

{
∑NR

w=1

(

w
NR

)

Aw,l if l ∈ U
0 otherwise

(14)

and the set U in (14) stands for an arbitrary subset of
{1, . . . , N}.

Upper bound on Pb|0(C
′′): We may bound the conditional

bit error probability of the subcode C′′, Pb|0(C
′′), by an im-

proved upper bound. For the binary-input AWGN, the mod-
ified version of the TSB, as shown in [9] is an appropriate

bound. This bound is the same as the original TSB in [8], ex-
cept that the distance spectrum {Al} is replaced by {Al

′(C′′)}
where

Al
′(C′′) ,











NR
∑

w=1

( w

NR

)

Aw,l if l ∈ Uc

0 otherwise

(15)

and Uc stands for an complementary set of U in (14), i.e.,
Uc , {1, . . . , N} \ U . For the binary-input AWGN channel,
the TSB on the conditional bit error probability admits the
final form in [9]. As the simplest alternative to obtain an upper
bound on the conditional bit error probability of the subcode
C′ given that the all-zero codeword is transmitted, one may use
the union bound (UB) for the binary-input AWGN channel

Pb|0(C
′′) ≤

NR
∑

w=1

( w

NR

)

∑

l∈Uc

Aw,l Q

(

√

2lREb

N0

)

=
N

∑

l=1

A′
l(C

′′) Q

(

√

2lREb

N0

)

where Eb is the energy per information bit and N0
2

is the
two-sided spectral power density of the additive noise.

In order to tighten the upper bound (13), we obtain the
bit-error version of the MSFB (see Eq. (9)), by following the
steps of the derivation of Theorem III.1. A further tightening
of the bound on the bit error probability leads to the following
theorem:

Theorem III.3 (Simplified DS2 Bound) Let C be a bi-
nary linear block code of length N and rate R, and let Aw,l

designate the number of codewords which are encoded by in-
formation bits whose Hamming weight is w and their Ham-
ming weight after encoding is l (where 0 ≤ w ≤ NR and
0 ≤ l ≤ N). Let the code C be partitioned into two subcodes,
C′ and C′′, where C′ contains all the codewords in C with Ham-
ming weight l ∈ U ⊆ {1, 2, , . . . , N} and the all-zero codeword,
and C′′ contains all the other codewords of C and the all-zero
codeword. Let

Al
′(C′) ,

{
∑NR

w=1

(

w
RN

)

Aw,l if l ∈ U
0 otherwise

. (16)

Assume that the communication takes place over an
MBIOS channel. Then, under ML decoding, the bit error
probability of C, is upper bounded by

Pb ≤ Pb|0(C
′) + Pb|0(C

′′)

where

Pb|0(C
′) ≤ 2

−N

(

E0(ρ)−ρ

(

R+
log ᾱρ(C′)

N

))

, 0 ≤ ρ ≤ 1 (17)

ᾱρ(C
′
) ,

N
∑

l=0

{
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l(C
′)

2−N(1−R)
(

N

l

)
·

(N

l

)

(

A(ρ)

A(ρ) + B(ρ)

) l (

B(ρ)

A(ρ) + B(ρ)

)N−l

}

.

(18)

A(ρ), B(ρ) and E0 are introduced in Theorem III.1. As before,
an upper bound on the conditional bit error probability for
the subcode C′′, Pb|0(C

′′), can be either a union bound or any
other improved bound.



Evidently, the upper bound (17) is tighter than the bit-error
version of the SFB in (13), because ᾱρ(C

′) which is the ex-

pected value of
A′

l(C
′)

Bl
is not larger than αb(C′) which is the

maximal value of
A′

l(C
′)

Bl
.

IV. Numerical Results

This section presents numerical results regarding improved up-
per bounds on the ML decoding error probability of linear
block codes. We apply the bounds introduced in Sections III
to ensembles of turbo codes with components which are linear
binary block codes. It is assumed here that the encoded bits
are BPSK modulated, transmitted over an AWGN channel,
and coherently detected.

Figures 1 presents improved upper bound for the ensemble
of uniformly interleaved turbo (parallel concatenated) codes,
having two identical component codes chosen uniformly at
random and independently from the ensemble of systematic
binary linear block codes. We assume that the parameters of
the overall code are (N, K), so the parameters of its compo-
nent codes are (N+K

2
, K). In addition, the length of the inter-

leaver is K. The input-output weight enumeration of the con-
sidered ensemble is given in closed form in [15, Appendix] (this
result was originally derived by Soljanin and Urbanke, but
was not reported in the literature). We apply the improved
bounds on the performance bounds to this ensemble, where
we choose the parameters to be (N, K) = (1144, 1000) (hence,
the rate of the parallel concatenated ensemble is R = 0.8741
bits per channel use). The plots of various upper bounds on
the block and bit error probabilities are shown in Fig. 1. The
new bounds provide in this case the tightest reported upper
bounds on the block and bit error probabilities. For the block
error probability, the upper bound which combines the MSFB
with the union bound (see Theorem III.1) achieves a gain of
0.10 dB over the TSB, referring to a block error probability
of 10−4. Referring to bounds on the bit error probability, a
gain of 0.11 dB is obtained for a BER of 10−4; this gain over
the TSB is obtained by the bound which combines the union
bound with the simplified DS2 bound (see Theorem III.3).
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Figure 1: Comparison between upper bounds on the block and
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components are chosen uniformly at random from the ensemble of
(1072, 1000) binary systematic linear block codes; its overall code
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