Improved Bounds on Guessing Moments via Rényi Measures

Igal Sason (Technion)
Joint work with Sergio Verdú (Princeton)

ISIT 2018
Vail, Colorado, USA
June 17-22, 2018
Introduction

Guessing

The problem of guessing discrete random variables has found a variety of applications in

- Shannon theory,
- coding theory,
- cryptography,
- searching and sorting algorithms,

etc.

The central object of interest:
The distribution of the number of guesses required to identify a realization of a random variable, taking values on a finite or countably infinite set.
Guessing Moments, $H_\alpha(X|Y)$ and $\varepsilon_{X|Y}$

Guessing and Ranking functions

- X is a discrete random variable taking values on $\mathcal{X} = \{1, \ldots, |\mathcal{X}|\}$.
- One wishes to guess the value of X by repeatedly asking questions of the form “Is X equal to x?” until X is guessed correctly.
- A **guessing function** is a 1-to-1 function $g: \mathcal{X} \to \mathcal{X}$ where the number of guesses is equal to $g(x)$ if $X = x \in \mathcal{X}$.
- For $\rho > 0$, $\mathbb{E}[g^\rho(X)]$ is minimized by selecting g to be a **ranking function** g_X, for which $g_X(x) = k$ if $P_X(x)$ is the k-th largest mass.
- Having side information $Y = y$ on X, we refer to the **conditional ranking function** $g_{X|Y}(\cdot|y)$.
- $\mathbb{E}[g_{X|Y}^\rho(X|Y)]$ is the ρ-th moment of the number of guesses required for correctly identifying the unknown object X on the basis of Y.
The Rényi Entropy

Let P_X be a probability distribution on a discrete set \mathcal{X}. The Rényi entropy of order $\alpha \in (0, 1) \cup (1, \infty)$ of X is defined as

$$H_\alpha(X) = \frac{1}{1 - \alpha} \log \sum_{x \in \mathcal{X}} P_X^\alpha(x)$$

(1)

By its continuous extension, $H_1(X) = H(X)$.
The Arimoto-Rényi Conditional Entropy

Let P_{XY} be defined on $\mathcal{X} \times \mathcal{Y}$, where X is a discrete random variable.

- If $\alpha \in (0, 1) \cup (1, \infty)$, then

$$H_\alpha(X|Y) = \frac{\alpha}{1 - \alpha} \log \mathbb{E} \left[\left(\sum_{x \in \mathcal{X}} P^\alpha_{X|Y}(x|Y) \right)^{\frac{1}{\alpha}} \right]$$

(2)

$$= \frac{\alpha}{1 - \alpha} \log \sum_{y \in \mathcal{Y}} P_Y(y) \exp \left(\frac{1 - \alpha}{\alpha} H_\alpha(X|Y = y) \right),$$

(3)

where (3) applies if Y is a discrete random variable.

- Continuous extension at $\alpha = 0, 1, \infty$ with $H_1(X|Y) = H(X|Y)$.

I. Sason & S. Verdú

ISIT 2018, Vail, Colorado

June 17-22, 2018 5 / 21
Guessing Moments, $H_\alpha(X|Y)$ and Guessing Moments

Theorem (Arikan '96)

Let X and Y be discrete random variables taking values on the sets $\mathcal{X} = \{1, \ldots, M\}$ and \mathcal{Y}, respectively. For all $y \in \mathcal{Y}$, let $g_{X|Y}(\cdot|y)$ be a ranking function of X given that $Y = y$. Then, for $\rho > 0$,

$$\frac{1}{\rho} \log \mathbb{E}[g_{X|Y}^\rho(X|Y)] \geq H_{1+\rho}(X|Y) - \log(1 + \log e M),$$

(4)

$$\frac{1}{\rho} \log \mathbb{E}[g_{X|Y}^\rho(X|Y)] \leq H_{1+\rho}(X|Y).$$

(5)
Theorem (Arikan ’96)

Let X and Y be discrete random variables taking values on the sets $\mathcal{X} = \{1, \ldots, M\}$ and \mathcal{Y}, respectively. For all $y \in \mathcal{Y}$, let $g_{X|Y}(\cdot|y)$ be a ranking function of X given that $Y = y$. Then, for $\rho > 0$,

\[
\frac{1}{\rho} \log \mathbb{E}[g_{X|Y}^\rho(X|Y)] \geq H_{\frac{1}{1+\rho}}(X|Y) - \log(1 + \log_e M), \quad (4)
\]

\[
\frac{1}{\rho} \log \mathbb{E}[g_{X|Y}^\rho(X|Y)] \leq H_{\frac{1}{1+\rho}}(X|Y). \quad (5)
\]

Arikan’s result yields an asymptotically tight error exponent:

\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}[g_{X^n|Y^n}^\rho(X^n|Y^n)] = \rho H_{\frac{1}{1+\rho}}(X|Y)
\]

when $(X_1, Y_1), \ldots, (X_n, Y_n)$ are i.i.d. $[X^n := (X_1, \ldots, X_n)]$.

Guessing Moments, $H_\alpha(X|Y)$ and $\varepsilon_{X|Y}$
Key Result

Theorem

Given a discrete random variable X taking values on a set \mathcal{X}, an arbitrary non-negative function $g : \mathcal{X} \rightarrow (0, \infty)$, and a scalar $\rho \neq 0$, then

$$
\sup_{\beta \in (-\rho, +\infty) \setminus \{0\}} \frac{1}{\beta} \left[H_{\frac{\beta}{\beta+\rho}}(X) - \log \sum_{x \in \mathcal{X}} g^{-\beta}(x) \right]
$$

$$
\leq \frac{1}{\rho} \log \mathbb{E}[g^\rho(X)] \tag{6}
$$

$$
\leq \inf_{\beta \in (-\infty, -\rho) \setminus \{0\}} \frac{1}{\beta} \left[H_{\frac{\beta}{\beta+\rho}}(X) - \log \sum_{x \in \mathcal{X}} g^{-\beta}(x) \right]. \tag{7}
$$

Letting $\beta = 1$ yields the lower bound by Courtade and Verdú (ISIT ’14).
Theorem: Consequence of Key Result

Let \(g : \mathcal{X} \to \mathcal{X} \) be an arbitrary guessing function. Then, for every \(\rho \neq 0 \),

\[
\frac{1}{\rho} \log \mathbb{E} [g^\rho(X)] \geq \sup_{\beta \in (-\rho, \infty) \setminus \{0\}} \frac{1}{\beta} \left[H_{\frac{\beta}{\beta + \rho}}(X) - \log u_M(\beta) \right]
\]

with

\[
u_M(\beta) = \begin{cases}
\log_e M + \gamma + \frac{1}{2M} - \frac{5}{6(10M^2 + 1)} & \beta = 1, \\
\min \left\{ \zeta(\beta) - \frac{(M+1)^{1-\beta}}{\beta-1} - \frac{(M+1)^{-\beta}}{2}, u_M(1) \right\} & \beta > 1, \\
1 + \frac{1}{1-\beta} \left[(M + \frac{1}{2})^{1-\beta} - (\frac{3}{2})^{1-\beta} \right] & |\beta| < 1, \\
\frac{M^{1-\beta} - 1}{1-\beta} + \frac{1}{2} \left(1 + M^{-\beta} \right) & \beta \leq -1.
\end{cases}
\]

\(u_M(\beta) \) is an upper/lower bound on \(\sum_{n=1}^{M} \frac{1}{n^\beta} \) for \(\beta > 0 \) or \(\beta < 0 \), resp.;

\(\gamma \approx 0.5772 \) is Euler’s constant;

\(\zeta(\beta) = \sum_{n=1}^{\infty} \frac{1}{n^\beta} \) is Riemann’s zeta function for \(\beta > 1 \).
Lower Bound: Special Case

Specializing to $\beta = 1$, and using

$$u_M(1) = \sum_{j=1}^{M} \frac{1}{j} \leq 1 + \log_e M, \quad M \geq 2,$$ \hspace{1cm} (10)

we obtain

$$\frac{1}{\rho} \log \mathbb{E}[g^\rho(X)] \geq H_{\frac{1}{1+\rho}}(X) - \log(1 + \log_e M)$$ \hspace{1cm} (11)

for $\rho \in (-1, \infty)$. Bound (11) was obtained for $\rho > 0$ by Arikan.
Upper Bounds on Optimal Guessing Moments

- We also derive upper bounds on the ρ-th moment of optimal guessing (i.e., if $g = g_X$);
- In the non-asymptotic regime (finite M), they improve
 - the asymptotically tight bound by Arikan (1996);
 - its refinement by Boztaş (1997).
Upper Bounds on Optimal Guessing Moments

- We also derive upper bounds on the ρ-th moment of optimal guessing (i.e., if $g = g_X$);
- In the non-asymptotic regime (finite M), they improve
 ▶ the asymptotically tight bound by Arikan (1996);
 ▶ its refinement by Boztaş (1997).

1st Upper Bound on Optimal Guessing Moments

For $\rho > 0$

$$
\mathbb{E}[g_X^\rho(X)] \leq \frac{1}{1 + \rho} \left[\exp\left(\rho H_{1+\rho}^\frac{1}{\rho}(X) \right) - 1 \right] + \exp\left((\rho - 1)^+ H_{\frac{1}{\rho}}(X) \right)
$$

where $(x)^+ \triangleq \max\{x, 0\}$ for $x \in \mathbb{R}$.
2nd Upper Bound on Optimal Guessing Moments

1) For $\rho \in [0, 1]$

$$
\mathbb{E}[g^\rho_X(X)] \leq \frac{1}{1 + \rho} \exp\left(\rho H_{\frac{1}{1+\rho}}(X)\right) \\
+ \frac{\rho - (1 - \rho)(2^\rho - 1)(1 - p_{\text{max}})}{1 + \rho}.
$$

(12)

2) For $\rho \in [1, 2]$

$$
\mathbb{E}[g^\rho_X(X)] \leq \frac{1}{1 + \rho} \exp\left(\rho H_{\frac{1}{1+\rho}}(X)\right) + \frac{1}{\rho} \exp\left((\rho - 1)H_{\frac{1}{\rho}}(X)\right) \\
+ \frac{\rho^2 - \rho - 1}{\rho(1 + \rho)}.
$$

(13)

Furthermore, both (12) and (13) hold with equality if X is deterministic.
3rd Upper Bound on Optimal Guessing Moments

\[\mathbb{E}[g^\rho_X(X)] \leq 1 + \sum_{j=0}^{\lfloor \rho \rfloor} c_j(\rho) \left[\exp \left((\rho - j) H_{\frac{1}{1+\rho-j}}(X) \right) - 1 \right], \quad (14) \]

where \{c_j(\rho)\} is given by

\[
c_j(\rho) = \begin{cases}
\frac{1}{1 + \rho} & j = 0 \\
\frac{1}{2} & j = 1 \\
\frac{\rho \ldots (\rho - j + 2)}{2^j} & j \in \{2, \ldots, \lfloor \rho \rfloor - 1\} \\
\frac{\rho \ldots (\rho - j + 2)}{2^{j-1} (\rho - j + 1)} & j = \lfloor \rho \rfloor
\end{cases} \quad (15)
\]

and \lfloor x \rfloor denotes the largest integer that is smaller than or equal to \(x \).
Numerical Results

Let X be geometrically distributed restricted to $\{1, \ldots, M\}$ with the probability mass function

$$P_X(k) = \frac{(1 - a) a^{k-1}}{1 - a^M}, \quad k \in \{1, \ldots, M\}$$

where $a = 0.9$ and $M = 32$. Table 1 compares $\frac{1}{3} \log_e \mathbb{E}[g_X^3(X)]$ to its various lower and upper bounds (LBs and UBs, respectively).

Table: Comparison of $\frac{1}{3} \log_e \mathbb{E}[g_X^3(X)]$ and bounds.

<table>
<thead>
<tr>
<th>Arikan’s LB</th>
<th>Improved LB</th>
<th>$\frac{1}{3} \log_e \mathbb{E}[g_X^3(X)]$ exact value</th>
<th>Improved UB</th>
<th>Arikan’s UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.864</td>
<td>2.593</td>
<td>2.609</td>
<td>2.920</td>
<td>3.360</td>
</tr>
</tbody>
</table>
Bounds on Guessing Moments with Side Information

- Our lower and upper bounds extend to allow side information Y for guessing the value of X.
- These bounds tighten the results by Arikan for all $\rho > 0$.
- With side information Y, all bounds stay valid by the replacement of $H_\alpha(X)$ with the Arimoto-Rényi conditional entropy $H_\alpha(X|Y)$.
Hypothesis Testing

- **Bayesian M-ary hypothesis testing:**
 - X is a random variable taking values on \mathcal{X} with $|\mathcal{X}| = M$;
 - a prior distribution P_X on \mathcal{X};
 - M hypotheses for the \mathcal{Y}-valued data $\{P_{Y|X=m}, m \in \mathcal{X}\}$.
Hypothesis Testing

• **Bayesian \(M \)-ary hypothesis testing:**
 - \(X \) is a random variable taking values on \(\mathcal{X} \) with \(|\mathcal{X}| = M\);
 - a prior distribution \(P_X \) on \(\mathcal{X} \);
 - \(M \) hypotheses for the \(\mathcal{Y} \)-valued data \(\{P_{Y|X=m}, m \in \mathcal{X}\} \).

• \(\varepsilon_{X|Y} \): the minimum probability of error of \(X \) given \(Y \)
 - achieved by the *maximum-a-posteriori* (MAP) decision rule. Hence,

\[
\varepsilon_{X|Y} = \mathbb{E} \left[1 - \max_{x \in \mathcal{X}} P_{X|Y}(x|Y) \right].
\]
(17)
Hypothesis Testing

- **Bayesian M-ary hypothesis testing:**
 - X is a random variable taking values on \mathcal{X} with $|\mathcal{X}| = M$;
 - a prior distribution P_X on \mathcal{X};
 - M hypotheses for the \mathcal{Y}-valued data $\{P_{Y|X=m}, m \in \mathcal{X}\}$.

- $\varepsilon_{X|Y}$: the minimum probability of error of X given Y
 - achieved by the *maximum-a-posteriori* (MAP) decision rule. Hence,

$$
\varepsilon_{X|Y} = \mathbb{E} \left[1 - \max_{x \in \mathcal{X}} P_{X|Y}(x|Y) \right].
$$

(17)

- **Identity:**

$$
\varepsilon_{X|Y} = 1 - \mathbb{P}[g_{X|Y}(X|Y) = 1].
$$

(18)
Exact Locus of \((\varepsilon_{X|Y}, \mathbb{E}[g^\rho_{X|Y}(X|Y)])\)

Let \(X\) and \(Y\) be discrete random variables taking values on sets \(\mathcal{X} = \{1, \ldots, M\}\) and \(\mathcal{Y}\), respectively. Then, for \(\rho > 0\),

\[
f_\rho(\varepsilon_{X|Y}) \leq \mathbb{E}[g^\rho_{X|Y}(X|Y)] \leq 1 + \left(\frac{2^\rho + \cdots + M^\rho}{M - 1} - 1\right) \varepsilon_{X|Y} \tag{19}
\]

where the function \(f_\rho : [0, 1) \rightarrow [0, \infty)\) is given by

\[
f_\rho(u) = (1 - u) \sum_{j=1}^{k_u} j^\rho + [1 - (1 - u)k_u](k_u + 1)^\rho, \tag{20}
\]

\[
k_u = \left\lfloor \frac{1}{1 - u} \right\rfloor. \tag{21}
\]
The Upper and Lower Bounds Are Tight

Let

$$p_{\text{max}}(y) = \max_{x \in \mathcal{X}} P_{X|Y}(x|y)$$

for $y \in \mathcal{Y}$. The lower bound is attained if and only if

1. $p_{\text{max}}(y) = p_{\text{max}}$ is fixed for all $y \in \mathcal{Y}$;
2. conditioned on $Y = y$, X has $\left\lfloor \frac{1}{p_{\text{max}}} \right\rfloor$ masses equal to p_{max}, and an additional mass equal to $1 - p_{\text{max}} \left\lfloor \frac{1}{p_{\text{max}}} \right\rfloor$ if $\frac{1}{p_{\text{max}}}$ is not an integer.

The upper bound is attained if and only if regardless of $y \in \mathcal{Y}$, conditioned on $Y = y$, X is equiprobable among its $M - 1$ conditionally least likely values on \mathcal{X}.
\[\varepsilon_{X|Y} \leftrightarrow \mathbb{E}[g_{X|Y}^\rho(X|Y)] \]

Figure: locus of attainable values of \((\varepsilon_{X|Y}, \log_e \mathbb{E}[g_{X|Y}(X|Y)]) \). The random variable \(X \) takes \(M = 8 \) (left plot) or \(M = 64 \) (right plot) possible values.
\[\varepsilon_{X|Y} \longleftrightarrow \mathbb{E}[g^\rho_{X|Y}(X|Y)] \]

Let \(X \) and \(Y \) be discrete random variables taking values on sets \(\mathcal{X} = \{1, \ldots, M\} \) and \(\mathcal{Y} \), respectively. For an integer \(k \geq 0 \), let

\[z_k = \left. \frac{d^k}{d\rho^k} \mathbb{E}[g^\rho_{X|Y}(X|Y)] \right|_{\rho=0}. \]

Then,

\[\varepsilon_{X|Y} = 1 - \frac{1}{c_M} \begin{bmatrix} z_0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ z_{M-1} & \log_e^{M-1} 2 & \cdots & \log_e^{M-1} M \end{bmatrix} \]

with

\[c_M = \begin{cases} \log_e 2, & M = 2, \\ \prod_{k=2}^M \log_e k \prod_{2 \leq i < j \leq M} \log_e \left(\frac{j}{i} \right), & M \geq 3. \end{cases} \]
Summary

- Derivation of new upper and lower bounds on the optimal guessing moments of a random variable taking values on a finite set when side information may be available.
- Similarly to Arikan’s bounds, they are expressed in terms of the Arimoto-Rényi conditional entropy.
- Arikan’s bounds are asymptotically tight. However, the improvement of the new bounds is significant in the non-asymptotic regime.
- **Application**: improved non-asymptotic bounds for fixed-to-variable optimal lossless source coding without the prefix constraint (my ISIT talk to be given on Friday at 9:50 AM).
- Relationships between moments of the optimal guessing function and the MAP error probability are provided, characterizing the exact locus of the attainable values of $(\varepsilon_{X|Y}, H_\alpha(X|Y))$.
Journal Paper