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• Background

– Codes On Graphs

– Capacity-Achieving Code Ensembles for the BEC

– Irregular Repeat Accumulate (IRA) Codes

• Achieving Capacity for the BEC with Bounded Complexity

– Check-Regular Construction

– Bit-Regular Construction

• Puncturing Rate Versus Complexity: Information-theoretic bound for
punctured codes on graphs. The bound is valid for general memoryless binary-
input output-symmetric channels with a refinement for the BEC.

• Simulation Results
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Codes On Graphs (1)
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• Low Density Parity Check (LDPC) Codes

– Message passing iterative (MPI) decoding introduced by Gallager

– Irregular and capacity-achieving codes for the BEC introduced by Luby et al.

– An ensemble of irregular codes is defined by the degree distribution (d.d.)

– Let λ(x) =
∑
n≥2

λnx
n−1 andρ(x) =

∑
n≥2

ρnx
n−1, whereλn andρn

are the fraction of edges attached to bit and check nodes of degreen
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Codes On Graphs (2)

•Density Evolution (DE)

– Erasure prob. vs. iteration

– xi+1 = p λ (1− ρ(1− xi))

• Successful Decoding Rule

– p λ (1− ρ(1− x)) < x.

– Can rewrite forλ(·) givenρ(·)
asλ(x) < 1

p

(
1− ρ−1(1− x)

)

•Concentration Theorem (R&U)

– Performance of MPI decoding
converges to DE analysis
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Capacity-Achieving Ensembles (1)

• Sequence of Check-Regular LDPC Codes (Shokrollahi)

– Check d.d. is regular with degreek + 1 and given byρ(k)(x) = xk

– Bit d.d. given by truncatingλ(k)(x) = 1
p

(
1− (1− x)1/k

)
so that̃λk(1) = 1

•Outline of Proof

1. DE satisfied with equality before truncation:p λ(k)
(
1− ρ(k)(1− x)

)
= x

2. Power series expansion ofλ(k)(x) is non-negative

3. Truncated bit d.d.̃λ(k)(x) satisfies̃λ(k)(1) = 1 andλ̃(k)(x) < λ(k)(x)

4. Decoding condition satisfied:p λ̃(k)
(
1− ρ(k)(1− x)

)
< x for all x ∈ (0, 1]

•Drawback: Achieving(1− ε) of capacity requiresk ∼ ln 1
ε
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Capacity-Achieving Ensembles (2)

•Complexity to Achieve a Fraction(1− ε) of BEC Capacity

– MPI decoding complexity proportional to number of edges in graph

– Shokrollahi showed number of edges∼ ln 1
ε for LDPC codes

•Complexity for More General Channels

– Define minimum complexity of encoding and decoding asχE(ε) andχD(ε)

– Based on analysis, Khandekar et al. conjectured:χD(ε) = O
(

1
ε ln 1

ε

)

– Edges in graph proportional to parity-check matrix density

– How sparse can the parity-check matrix be in terms ofε ?

– Sason and Urbanke showed density must grow likeK1+K2 ln 1
ε

1−ε for LDPC codes

– Question: Can we get better trade-offs with other graphical models?

5



Systematic IRA Codes
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x1 = 1− (1− x2) R(1− x0),

x2 = p x1,

x3 = 1− (1− x2)
2 ρ(1− x0),

x0 = p λ(x3)
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Non-Systematic IRA Codes

code bits
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x1 = 1− (1− x2) R(1− x0),

x2 = p x1,

x3 = 1− (1− x2)
2 ρ(1− x0),

x0 = λ(x3)
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IRA Code Comparison

• Systematic IRA Codes (Jin, Khandekar, McEliece)

– Capacity-achieving d.d. sequences with complexity∼ ln 1
ε (S&U)

– DE fixed point condition forx ∈ (0, 1]

p0 λ

(
1−

[
1− p

1− pR(1− x)

]2

ρ(1− x)

)
= x where R(x) =

∫ x

0

ρ(t) dt

∫ 1

0

ρ(t) dt

– If we assumeρ(0) = 0, then this implies thatλ(1) = 1/p0

•Non-Systematic IRA Codes

– Analysis above implies that a properly normalizedλ(·) must havep0 = 1

– Non-sys IRA codes satisfy the DE equation withρ(1) = 1 andλ(1) = 1
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Non-Systematic IRA Code Issues

•Getting Decoding Started

– DE update has a fixed point atx = 1

λ

(
1−

[
1− p

1− pR(1− x)

]2

ρ(1− x)

)
< x

• Solutions

– Systematic bits, degree 1 checks, and/or pilot bits

– LT codes and Bi-Regular IRA codes (ten Brink) use degree 1 checks

– Pilots bits are really the same as doping
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Bit-Regular Construction

• Ensemble of bit-regular non-sys IRA codes withλ(x) = xq−1

– The parity-check d.d. which satisfies the DE equality for thisλ(x) is

ρ(x) =
1− (1− x)

1
q−1

[
1− p

(
1− qx + (q − 1)

[
1− (1− x)

q
q−1

])]2

– Forq = 3, the power series expansion ofρ(x) is non-negative iffp ∈ [0, 1/13]

• Truncating the check d.d. to degreeM(ε) (via degree 1 checks)

– Let ρε(x) =
(
1−

∑
M(ε)
n=1 ρn

)
+

∑
M(ε)
n=1 ρnx

n−1 where

∑∞
n=M(ε)+1ρn <

ε

q(1− p)
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Bit-Regular Construction (Cont.)

• In this case, bit erasure probability converges to zero and

RIRA ≥ (1− ε)(1− p) .

• Complexity (edges per info bit) upper bounded byq + 2
(1−p)(1−ε).
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Check-Regular Construction
• Ensemble of check-regular non-sys IRA codes withρ(x) = x2.

– The information-bit d.d. which satisfies the DE equality for thisρ(x) is

λ(x) = 1 +

2p(1− x)2 sin

(
1
3 arcsin

(√
−27p(1−x)

3
2

4(1−p)3

))

√
3 (1− p)4

(
−p(1−x)

3
2

(1−p)3

)3
2

.

– Can show the power series expansion ofλ(x) is non-negative forp ∈ [0, 0.95].

• Truncating the bit d.d. to degreeM(ε) (via pilot bits).

– Treat all information bits with degree> M(ε) as pilot bits.
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Check-Regular Construction (Cont.)

• Effective bit d.d.λε(x) =
∑

M(ε)
n=2 λnx

n−1 where

∞∑

n=M(ε)+1

λn

n
<

(1− p)ε

3

• Again, bit erasure probability converges to zero andRIRA ≥ (1− ε)(1− p)

• Complexity (edges per info bit) upper bounded by5
1−p (this bound is tight when

the gap to capacity vanishes, i.e.,ε → 0).

⇒ Achieving capacity of the BEC with bounded complexity per information bit.
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Puncturing Rate Versus Complexity
for the BEC

• Let {C ′m} be a sequence of binary linear block codes, and let{Cm} be a sequence
of codes which is constructed by randomly puncturing information bits from the
codes in{C ′m}.
– The communication of the punctured codes takes place over a BEC.

The erasure probability of the BEC isp.

– Assume the sequence{Cm} achieves a fraction1− ε of the channel capacity
with vanishing bit erasure probability.

– Let Ppct designate the puncturing rate of the information bits, and let

Peff , 1− (1− Ppct)(1− p).

– Let lmin designate the minimum number of edges which connect a parity-
check node with the nodes of the parity bits.
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Puncturing Rate Versus Complexity for the BEC (Cont.)

By information-theoretic tools, we prove that:

With probability 1 w.r.t. the random puncturing patterns, and for an arbitrary repre-
sentation of the sequence of codes{C ′m} by Tanner graphs, the asymptotic decoding
complexity under MPI decoding satisfies

lim inf
m→∞

χD(Cm) ≥ p

1− p




ln
(

Peff
ε

)

ln
(

1
1−Peff

) + lmin




To achieve capacity with bounded complexity requiresPpct = 1 − O(ε), i.e., the
puncturing rate of the information bits should go to 1.
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Puncturing Rate Versus Complexity
for Memoryless Binary-Input Output-Symmetric Channels

• Let {C ′m} be a sequence of binary linear block codes, and let{Cm} be a sequence
of codes which is constructed by randomly puncturing information bits from the
codes in{C ′m}.
– The communication of the punctured codes takes place over a memoryless

binary-input output-symmetric (MBIOS) channel with capacityC bits per
channel use.

– The sequence{Cm} achieves a fraction1 − ε of the channel capacity with
vanishing bit error probability.

– Let Ppct designate the puncturing rate of the information bits.
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Puncturing Rate Versus Complexity for MBIOS Channels (Cont.)

With probability 1 w.r.t. the random puncturing patterns, and for an arbitrary repre-
sentation of the sequence of codes{C ′m} by Tanner graphs, the asymptotic decoding
complexity per iteration under MPI decoding satisfies

lim inf
m→∞

χD(Cm) ≥ 1− C

2C

ln
(

1
ε

1−(1−Ppct)C

2C ln 2

)

ln
(

1
(1−Ppct)(1−2w)

)

where

w , 1

2

∫ +∞

−∞
min (f (y), f (−y)) dy

andf (y) , p(y|x = 1) designates the conditionalpdf of the channel, given the
input isx = 1.
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Puncturing Rate Versus Complexity (Cont.)

•We assumerandom puncturingof information bits.
For achieving capacity of an arbitrary MBIOS channel with bounded complexity
per iteration, the puncturing rate of the information bits should go to 1.

• The lower bounds on the decoding complexity in the last two theorems clearly
also hold if we require vanishingblock error/ erasure probability.

• The lower bound on the decoding complexity that we get for the BEC isat least
twice largerthan the lower bound for the BEC which we get from the theorem
which applies to general MBIOS channels.
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Simulation Setup
•Code Design

– Pick one d.d. and compute the other via power series truncation

– Bit-regular truncation: Setρn = 0 for n > M and renormalize
Then add some systematic bits to get decoding started (e.g., 100-200)

– Check-regular truncation: Force bits of degree> M to be pilot bits

– Vary ”design”p to get the desired code rate

•Code Construction

– Quantize the algebraic d.d. to integers based on block length

– First, construct by randomly matching bit and check edges

– Next, swap ”bad” edges randomly to remove mult. edges and 4-cycles
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Simulation Results: Bit-Regular

•Design Details (Rate=0.925)

– ”Irreg”: Best ofM = 25, 50, 75

– ”Reg”: Sys-IRA d.d. (3,37)

•Observations

– No apparent error floor

– Number of sys bits required
doesn’t grow with length

– Rate loss is small for largeN
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Simulation Results: Check-Regular

•Design Details (Rate=0.5)

– ”IRA”: Best of M = 25, 50, 75

– ”LDPC”: Check-regq = 8, 9

•Observations

– Performance very similar

– Error floor in both ensembles
due to marginal stability
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Summary
• Previous constructions for the BEC have provably unbounded complexity which

grows at least likeO(ln 1
ε)

• Our main results are:

– Showing theexistence of capacity-achieving codes for the BEC with bounded
complexity. We show that under message-passing iterative (MPI) decoding,
this new bounded complexity result is only possible because we allow a suf-
ficient number ofstate nodesin the Tanner graph representing a code ensem-
ble. The state nodes in the Tanner graph of the examined IRA ensembles are
introduced by puncturing all the information bits.

– Derivation of aninformation-theoretic lower bound on the decoding com-
plexity of randomly punctured codes on graphs. The bound holds for every
memoryless binary-input output-symmetric channel with a refinement for the
BEC.
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Summary (Cont.)

• The central point in this paper is that by allowing state nodes in the Tanner
graph, one may obtain a significantly better tradeoff between performance and
complexity as the gap to capacity vanishes.

• Under MPI decoding and the random puncturing assumption, it follows from the
information-theoretic bound that a necessary condition to achieve the capacity
with bounded complexity (or with bounded complexity per iteration for a general
MBIOS channel) is thatthe puncturing rate of the information bits goes to one.
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Summary (Cont.)

• For fixedcomplexity, the new codes eventually (forn large enough) outperform
any code proposed to date. On the other hand, theconvergence speedto the
ultimate performance limit happens to be quite slow, so for small to moderate
block lengths, the new codes are not necessarily record breaking.

• Further research into the construction of codes with bounded complexity is likely
to produce codes with better performance for small to moderate block lengths.

Full Paper

• The full paper is submitted toIEEE Transactions on Information Theory.

• It is athttp://www.ee.technion.ac.il/people/sason/PSU.pdf
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