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Abstract—We consider routing games where the performance of 

each user is dictated by the worst (bottleneck) element it employs. 

We are given a network, finitely many (selfish) users, each 

associated with a positive flow demand, and a load-dependent 

performance function for each network element; the social (i.e., 

system) objective is to optimize the performance of the worst 

element in the network (i.e., the network bottleneck). Although we 

show that such "bottleneck" routing games appear in a variety of 

practical scenarios, they have not been considered yet. Accordingly, 

we study their properties, considering two routing scenarios, 

namely when a user can split its traffic over more than one path 

(splittable bottleneck game) and when it cannot (unsplittable 

bottleneck game).  First, we prove that, for both splittable and 

unsplittable bottleneck games, there is a (not necessarily unique) 

Nash equilibrium. Then, we consider the rate of convergence to a 

Nash equilibrium in each game. Finally, we investigate the 

efficiency of the Nash equilibria in both games with respect to the 

social optimum; specifically, while for both games we show that the 

price of anarchy is unbounded, we identify for each game 

conditions under which Nash equilibria are socially optimal. 

Keywords- Bottleneck Objectives; Selfish Routing; Nash Equili-

brium; Price of Anarchy; Unregulated Traffic.  

I.  INTRODUCTION  

Traditional communication networks were designed and 
operated with systemwide optimization in mind. Accordingly, 
the actions of the network users were determined so as to 
optimize the overall network performance. Consequently, users 
would often find themselves sacrificing some of their own 
performance for the sake of the entire network. However, it has 
been recognized that systemwide optimization may be an 
impractical paradigm for the control of modern networking 
configurations  [2], [3], [17], [18], [21], [24], [27], [31], [34]. Indeed, 
control decisions in large scale networks are often made by 
each user independently, according to its own individual 
interests. Such networks are henceforth called noncooperative, 
and Game Theory  [25] provides the systematic framework to 
study and understand their behavior.   

Game theoretic models have been employed in various 
networking contexts, such as flow control  [1], [18], [34], routing 
 [3], [14], [17], [21], [24], [31] and bandwidth allocation  [22]. 
These studies mainly investigated the structure of the network 
operating points i.e., the Nash equilibria of the respective 

games. Such equilibria are inherently inefficient  [13] and, in 
general, exhibit suboptimal network performance. As a result, 
the question of how much worse the quality of a Nash 
equilibrium is with respect to a centrally enforced optimum has 
received considerably attention e.g.,  [12], [20], [30], [31]. In 
order to quantify this inefficiency, two conceptual measures 
have been proposed in the literature. The first, termed the price 
of anarchy  [26], corresponds to a worst-case analysis and it is 
the ratio between the worst Nash equilibrium and the social 
optimum. The second, termed the price of stability  [4] is the 
ratio between the best Nash equilibrium and the optimum, and 
it quantifies the degradation in performance when the solution 
is required to be stable (i.e., with no agent having an incentive 
to independently defect out of it once being there). 

The above studies focused on the case where the structure 
of the user performance objective is additive i.e., performance 
is determined by the sum of link cost functions. Yet, another 
fundamental case is that of bottleneck objectives (also known 
as Max-Min or Min-Max objectives), in which performance is 
determined by the worst component (link). Accordingly, in this 
study we investigate the case where users route traffic selfishly 
so as to optimize the performance of their bottleneck elements, 
given the routing strategies of all other users. Such settings 
give rise to a non-cooperative game, which is henceforth 
termed the bottleneck game.  

Bottleneck games emerge in many practical scenarios. One 
major framework is wireless networks, where each node has a 
limited battery (i.e., transmission energy) so that the node's 
lifetime depends on the total flow that emanates from it. In 
such settings, the social (i.e., system) objective is to maximize 
the minimum battery lifetime in the network  [10], [35], while 
each user would route traffic so as to maximize the smallest 
battery lifetime along its routing topology (hence, maximizing 
its connection's lifetime). Bottleneck games also arise when 
users attempt to enhance their ability to accommodate 
momentary traffic bursts. In these cases, the users aim at 
maximizing the smallest residual capacity of the links they 
employ (while the social objective is to maximize the minimum 
residual capacity of a link in the network  [11]). Traffic 
engineering is another major framework where bottleneck 
games are encountered. For example, in view of the limited 
size of transmission buffers, each of the users is interested in 



minimizing the utilization of its most utilized buffer in order to 
avoid deadlocks and reduce packet loss  [7]. Similarly, in 
congested networks it is often desirable to minimize the 
utilization of the most utilized links so as to move traffic away 
from congested hot spots to less utilized parts of the network  
 [5], [33]. Other scenarios where bottleneck games appear can be 
found, for example, in frameworks where users attempt to 
enhance the ability to survive malicious attacks. Since such 
attacks are naturally aimed against the links (or nodes) that 
carry the largest amount of traffic, each user would be 
interested in minimizing the maximum amount of traffic that a 
link transfers in its routing topology. 

As mentioned, in spite of their fundamental importance, 
bottleneck games have not been considered in the literature. 
Accordingly, in this study we consider two classes of 
bottleneck games. In the first, each user can split its traffic 
among any number of paths (henceforth, splittable bottleneck 
game), while in the second, each user routes its traffic along a 
single path (henceforth, unsplittable bottleneck game).  

A. Our Results 

First, we prove that, for both splittable and unsplittable 
bottleneck games, there is a (not necessarily unique) Nash 
equilibrium; we note that, for the splittable case, a major 
complication is the inherent discontinuity of the objective 
functions. Then, we turn to consider the rate of convergence of 
best response dynamics in both games. For unsplittable 
bottleneck games, we show that convergence to a Nash 
equilibrium is always achieved within a finite number of steps; 
moreover, when the number of users is small (i.e., O(1)), 
convergence time is polynomial in the network size. For 
splittable bottleneck games, we show that the convergence time 
may be unbounded.  

Next, we investigate the efficiency of the Nash equilibrium. 
Specifically, for each game we compare the network bottleneck 
(i.e., the performance of the worst element in the network) at 
Nash equilibrium with that of an optimal flow (i.e., a flow that 
minimizes the network bottleneck). In particular, for both 
games, we analyze the price of anarchy and identify conditions 
under which Nash equilibria are efficient. Considering first the 
unsplittable case, we show that the price of anarchy may be 
unbounded

1
. Yet, we show that a best Nash equilibrium 

coincides with the social optimum; hence, the price of stability 
is 1. We also show that calculating such a best equilibrium is 
NP-hard. Consider now the efficiency of Nash equilibria in 
splittable bottleneck games. Here too, we show that the price of 
anarchy is unbounded. Yet, we show that, if at a Nash 
equilibrium the users route their traffic along paths with a 
minimum number of bottleneck links, the Nash equilibrium is 
socially optimal. This finding might motivate the employment 
of pricing mechanisms that penalize the use of paths with an 
excessive number of bottleneck links.  

B. Organization 

The rest of this paper is organized as follows. In section 2, 
we formulate the model and terminology. In section 3, we 

                                                           

 

1
 Yet, in the special case of link performance functions that are polynomial 

with a degree p, we show that the price of anarchy is ( ) ,p
O M  where M is the 

number of network links; we also show that this result is tight. 

establish the existence (and non-uniqueness) of splittable and 
unsplittable bottleneck games. In section 4, we consider the 
convergence properties of each game. In section 5, we 
investigate the price of anarchy of both games and identify for 
each game conditions under which Nash equilibria are socially 
optimal. Finally, we conclude the paper in section 6. For ease 
of presentation most proofs appear in an appendix. 

II. MODEL AND TERMINOLOGY 

We consider a finite set of users U, which share a 

communication network that is modeled by a graph ( ),G V E . 

Each user u U∈  is associated with a positive throughput 

demand 
u
γ  and a pair of source-destination nodes ( ),

u u
s t . We 

denote by ( ),u us t
P  the set of all paths from the source 

u
s  to the 

destination 
u

t  and by P the set of all the paths in the network; 

assume that the source and destination nodes of each user are 

connected i.e., ( ),
1u us t

P ≥  for each u U∈ . 

A user u U∈  needs to send 
uγ  units of flow from 

us  to 
ut  

along the paths ( ),u us t
P . We denote by u

pf  the flow of user 

u U∈  on a path ( ),u us t
p P∈ . A user u can assign any value to 

u
pf , as long as 0

u
pf ≥  (nonnegativty constraint) and  

( ),

u

p u

u u
p P

s t

f γ
∈

=∑  (demand constraint); this assignment of traffic to 

paths shall also be referred to as the user strategy. The set of all 
possible strategies of a user is referred to as the user strategy 
space. The product of all user strategy spaces is termed the 
joint strategy space; each element in the joint strategy space is 
termed a (flow vector) profile; effectively it is a global 
assignment of traffic to paths that satisfies the demands of all 
users. 

Given a profile { }u
pf f=  and a path ,p P∈  denote by 

pf  

the total flow that is carried over p i.e., ;u
p p

u U

f f
∈

=∑  also, denote 

by u
ef  the total flow that user u transfers through e i.e., 

u u
e p

pe p

f f
∈

= ∑ . Finally, for a flow vector f and a link ,e E∈  

denote the total flow carried by e as 
ef .  

We associate with each link e E∈  a performance function 

( )eq ⋅  that depends on the total flow ef  carried over e. We 

assume that, for all e E∈ , ( )e eq f  is continuous and increasing 

in 
ef . We define the network bottleneck ( )B f  of a flow f as the 

performance of the worst link in the network i.e., 

( ) ( ){ }max e e
e E

B f q f
∈

� . Similarly, we define the bottleneck of a 

user u U∈  as the performance of the worst link that u employs 

i.e., ( ) ( ){ }
0

maxu e e
u
ee E f

b f q f
∈ >

� .  

Users are selfish i.e., each minimizes its own bottleneck. 
Since the bottleneck of a user u U∈  depends on the flow 

configuration of all users, we are faced with a non-cooperative 
game  [25]. We consider two types of games. The triple 

{ }, , eG U q  is termed a splittable bottleneck game if each user 

may route its traffic along more than a single path; it is termed 
an unsplittable bottleneck game if each user can employ only a 



single path. Similarly, a profile { },u
pf f u U p P= ∈ ∈  is said to 

be an unsplittable flow vector if { }0,u
p uf γ∈  for each u U∈  

and p P∈ ; otherwise, f is said to be a splittable flow vector. 

A profile is said to be at Nash equilibrium if each user 
considers its chosen strategy to be the best under the given 
choices of other users. More formally, considering a splittable 

(alternatively, unsplittable) bottleneck game, { }u
pf f=  is a 

splittable (correspondingly, unsplittable) Nash flow if, for each 

user �u U∈  and splittable (correspondingly, unsplittable) flow 

vector { }u

pg g=  that satisfies u u

p pg f=  for each �{ }\ ,u U u∈  it 

holds that � ( ) � ( )u u
b f b g≤ . 

Remark 1:  In our model, a higher bottleneck value means 
poorer performance. Clearly, all the results of this study can be 
adapted to the case where the link performance functions 

( ){ }e eq f  are continuous and decreasing in the flows { },ef  and 

the goal (of the users and the network) is to maximize the 
(corresponding) bottleneck values. 

III. EXISTENCE AND NON-UNIQUENESS  

OF NASH EQUILIBRIA 

In this section we establish the existence and non-
uniqueness of a Nash equilibrium in splittable and unsplittable 
bottleneck games. We begin with the splittable case.  

In general, there are several standard techniques to establish 
the existence of a Nash equilibrium in infinite games (e.g., 
Kakutani's fixed-point theorem  [19] and its generalization  [16], 
Rosen's theorem  [29] and Debreu's theorem  [13]). However, 
these techniques cannot be employed for splittable bottleneck 

games, since the utility function of each user (i.e.,  ( )ub ⋅ ) is 

discontinuous, as shown by the following example. 

 Specifically, we now show that, since the max operation in 

the user utility function ( ) ( ){ }
0

max
u
e

u e e
e E f

b f q f
∈ >

=  is defined 

over a strategy-dependent set, it is discontinuous in the user's 
strategy space. Indeed, for a single user that needs to transfer 
one unit of flow from s to t in the network of Fig. 1, both 

1 2
, 1

e e
g f fε ε= = = −  and 

1 2
0, 1e eh f f= = =  are feasible flow 

vectors that satisfy 2g h ε− = ⋅ . However, while 0g h− →  

for 0,ε → it holds that ( ) ( ) 1u ub g b h− >  for all 0.ε >  

 

Consequently, we proceed to construct an existence proof 
that does not rely on the continuity of the cost functions. Given 

a splittable bottleneck game ( ) ( ){ }, , , eG V E U q ⋅ , denote for each 

user u U∈  the set of strategies available to u by 
uF  and let 

u
u U

F F
∈
×� . In addition, let 

uF−  denote the set of strategies of all 

users other than u i.e., 
\

wu
w U u

F F− ∈
×� . Finally, for each user 

,u U∈  let the pair ( ),u u u uf f F F− −∈ ×  denote a profile in F with 

a strategy of 
uf  for the user u and a strategy profile 

uf−  for all 

other users.  

Definition 1: A splittable bottleneck game ( ) ( ){ }, , , eG V E U q ⋅  

is compact if each 
uF  is a nonempty compact subset of a 

topological vector space and each user bottleneck function 

( )u
b ⋅  is bounded in F. 

Lemma 1: Splittable bottleneck games are compact. 

The proof Appears in Appendix A.1. 

Definition 2: A user u can secure a bottleneck b∈�  at a 

profile f F∈  if there exists a reply u uf F∈ , such that  

�( ),u u ub f f b− ≤  for all �
uf−  in some neighborhood of 

uf− . 

In other words, a bottleneck can be secured by a user u at 

f F∈ if u has a strategy that guarantees that bottleneck even if 

the other users slightly deviate from f. 

For the next definition, we introduce the following notation. 
Given a profile f F∈ , denote the vector of all user bottlenecks 

by ( )b f  i.e., ( ) ( ) ( ) ( )( )1 2
, , .

U
u u ub f b f b f b f� �  The set of the 

user bottleneck vectors is the subset of  U
F ×�  given by 

( )( ){ },f b f f F∈ . 

Definition 3: Given a splittable bottleneck game 

( ) ( ){ }, , , eG V E U q ⋅ , the pair ( )* *,
U

f b F∈ ×�  is in the closure of 

the user bottleneck vector set if there exists a sequence of 

profiles { }n
f F⊆  such that ( ) ( )( )* *, lim ,n n

n
f b f b f

→∞
= . 

Considering Definition 3, we show in the proof of lemma 2 

that *
f F∈  and therefore, ( )*

ub f  is well-defined for all u; 

however, it is important to note that, since the user bottleneck 

function is discontinuous, it is possible that ( )* *
b b f≠ . 

Definition 4: A splittable bottleneck game ( ) ( ){ }, , , eG V E U q ⋅  

is better-reply secure if, whenever ( )* *,f b  is in the closure of 

the user bottleneck vector set, and *f  is not an equilibrium, 

some user u U∈  can secure a bottleneck strictly below *
ub  at f

*
. 

In other words, a game is better-reply secure if, for every 

non-equilibrium profile *
f F∈  and sequence { }n

f F⊆  such 

that ( ) ( )( )* *, lim , ,n n

n
f b f b f

→∞
=  there exists a user u U∈  that 

can attain a bottleneck below *
ub  even if the others slightly 

deviate from *
f . 

Lemma 2: Splittable bottleneck games are better-reply 
secure. 

The proof Appears in Appendix A.1. 

  t  s 

( )
2 2 2e e eq f f=  

( )
1 1 1

2e e eq f f= +  

Fig. 1: Discontinuous user objectives in splittable bottleneck games 



Fig. 3: Unbounded price of anarchy for unsplittable bottleneck games 

Fig. 2: Non-uniqueness of flow at Nash Equilibrium 

 

Definition 5: A function :f F → �  is said to be quasi-

convex on F if, for a each α ∈� , the set ( ){ }x F f x α∈ ≤  is 

convex.    

Definition 6: A splittable bottleneck game ( ) ( ){ }, , , eG V E U q ⋅  

is quasi-convex if, for each ,u U∈  the set 
uF  is convex and, for 

every ,u uf F− −∈  the payoff function ( )  ,u ub f−⋅  is quasi-

convex on 
uF . 

Lemma 3: Splittable bottleneck games are quasi-convex.  

The proof Appears in Appendix A.1. 

We are finally ready to prove the existence of a Nash 
equilibrium in a splittable bottleneck game. 

Theorem 1: A splittable bottleneck game admits a Nash 
equilibrium. 

Proof: In  [28] it is shown that, if a game G is better reply 
secure, quasi-convex and compact, then it possesses a Nash 
equilibrium. This, together with Lemmas 1- 3, establish the 
Theorem.  ■ 

For unsplittable bottleneck games, the existence of a Nash 
equilibrium follows directly from Theorem 3 (see Section 
V.A.2).  

Corollary 1: An unsplittable bottleneck game admits a 
Nash equilibrium. 

Finally, we now show, by way of an example, that a Nash 
equilibrium may not be unique both in splittable and 
unsplittable bottleneck games. 

Consider the network presented in Figure 2. Suppose that 
there exists a single user that needs to transfer one unit of flow 
from s to t, and assume that each link e E∈  is assigned with a 

performance function qe(fe)=fe. Let ( )1 1 3,p e e=  and ( )2 2 3,p e e= . 

One can see that, for both splittable and unsplittable bottleneck 

games, the flow vectors 
1 2

1, 0p pf f= =  and 
1 2

0, 1p pf f= =  

minimize the user bottleneck. For the case of a single-user 
game, each of these is a Nash flow.  

 

IV. CONVERGENCE TO NASH EQUILIBRIUM 

In this section we address the convergence properties of 
best response dynamics in splittable and unsplittable bottleneck 
games. We shall focus on the Elementary Stepwise System 
(ESS)  [24], in which players update their actions sequentially, 
and at each update a player uses the best response action given 
the actions of the other players

1
. We begin with the unsplittable 

case. 

                                                           

 
1  We note that, if all players are allowed to move simultaneously, the system 

might oscillate and never reach a Nash equilibrium. 

Theorem 2: In an unsplittable bottleneck game with |U| 
users, starting out of any flow configuration, the ESS scheme 

converges to a Nash equilibrium within at most 
2

2
UU

E⋅  steps. 

The proof appears in Appendix A.2.  

In particular, for a number of users that is constant in the 
size of the network, the number of steps required to reach a 
Nash equilibrium is polynomial. Hence, since the best response 
action of each user (i.e., the establishment of a path with an 
optimal bottleneck) can be computed in polynomial time  [23], 

for ( )1O  users the ESS scheme provides a polynomial-time 

algorithm for computing a Nash equilibrium. 

For splittable bottleneck games, it is shown in Appendix 
A.2 that convergence time is unbounded even for two users.  

V. (IN)EFFICIENCY OF NASH EQUILIBRIA  

In this section, we investigate the degradation in network 
performance due to the selfish behavior of users. For both 
games we show that the price of anarchy is unbounded. Yet, for 
each game we identify conditions under which Nash equilibria 
are socially optimal. We begin with the unsplittable case.  

A. (In)Efficiency of unsplittable Nash equilibria  

We begin with a simple example that shows that, in 
general, unsplittable bottleneck games have unbounded price of 
anarchy. 

Example 1: Consider the network presented in Fig. 3, and 
suppose there are two users, each with the same source s and 

destination t. For each γ >0, the first user (user A) has to 

transfer a demand of γ  units and the other user (user B) has to 

transfer a demand of  2·γ  units. Finally, assume that both users 
must transfer their demands unsplittably. In the optimal 
solution, A is assigned to the upper link and B is assigned to 
the lower link; the corresponding bottleneck is 

{ }22 1
3 2max ,e e e
γ γ γ⋅ ⋅⋅

= . On the other hand, a profile where A 

chooses the lower link and B chooses the upper link  
is an unsplittable Nash flow with a bottleneck of 

{ }2
42 1

3 32max ,e e e
γγ γ⋅ ⋅
⋅

= . Hence, the price of anarchy is 

( ) ( )* 3B f B f e

γ

= ; as γ  can be arbitrarily large, this ratio is 

unbounded. 

 

  t  

( )
2
3 e

e e

f
q f e

⋅
=  

s 

( )
1
2

e e

ef
q f e

⋅
=  

3
e  

1
e  

2
e  

t  s  



In Appendix A.3 we show that, when the link performance 
functions are polynomial with a degree p, the price of anarchy 

is ( )p
O E ; we also show that the latter result is tight.  

While we have shown that in unsplittable bottleneck games 
the price of anarchy is unbounded, we now show that the price 
of stability is 1. Thus, although in the worst case unsplittable 
Nash equilibria can be very inefficient, every unsplittable 
bottleneck game has at least one Nash equilibrium that 
optimizes the network bottleneck. Hence, finding such an 
equilibrium provides an optimal solution that is also stable, 
with no user having an incentive to discard it once adopted by 
all other users.   

Theorem 3:  Given a flow vector *f  for the unsplittable 

bottleneck game { }, , ,eG U q   there exists a Nash flow f such 

that ( ) ( )*
B f B f≤ ; hence, the price of stability is 1.  

The proof appears in Appendix A.3. 

The existence of "good" Nash equilibria is of major 
importance in the design of efficient protocols. Indeed, in many 
networking applications, a collective solution is proposed to all 
users. Therefore, it is in the interest of the protocol designer to 
seek the best solution that selfish users can agree upon i.e., the 
best Nash equilibrium. Unfortunately, while Theorem 3 
guarantees that, in an unsplittable bottleneck game, there exists 
a Nash equilibrium that is socially optimal, the following 
theorem shows that computing it is NP-hard. 

Theorem 4: Given an unsplittable bottleneck game 

( ) { }, , ,
e

G V E U q  and a value B, it is NP-hard to determine if 

the game has a Nash equilibrium with a bottleneck of at most 
B. 

The proof of the theorem appears in Appendix A.3, and is 
based on a reduction from the Disjoint Connecting Paths 
Problem  [15]. 

B. (In)Efficiency of splittable Nash equilibria  

We now turn to consider the efficiency of Nash equilibria 
in splittable bottleneck games. Again, we first quantify the 
price of anarchy and then provide conditions under which Nash 
equilibria are optimal.  

1) The price of anarchy of splittable bottleneck games 

The following example shows that the price of anarchy of 
splittable bottleneck games is unbounded.  

Example 2: Consider the network depicted in Fig. 4. 
Assume that each link e E∈  has a performance function 

( ) 2
f

e e
eq f = . There are two users A and B, each with a flow 

demand of g units. The source-destination pairs of A and B are 

(s1,t1) and (s2,t2), correspondingly. Let ( )1 1 2 1, , , ,p s s u t=  

( )2 1 2 1, , ,p s v t t= ,  ( )3 2 2, , ,p s u v t=  and ( )4 2 2, ,p s v t= . It is easy 

to see that the path flow 
1 2 3 4

, , , 0
2 2

p p p pf f f f
γ γ

γ= = = =  is at 

Nash equilibrium with a (network) bottleneck of 
3

22
γ⋅

, while the 

path flow 
1 2 3 4

, 0, 0,p p p pf f f fγ γ= = = =  is an optimal solution 

with a bottleneck of 2
γ . Therefore, the ratio between the 

bottlenecks is 22
γ

; as γ  can be arbitrarily large, the price of 

anarchy is unbounded. 

2) When are splittable Nash equilibria optimal? 

Note that in the (inefficient) Nash equilibrium of Example 
2, user B is not routing along paths with a minimum number of 
bottlenecks; indeed, user B could shift its flow demand from 
the path 

3
p  (that contains two bottlenecks) to the path 

4p  (that 

contains only one bottleneck) without affecting its 
performance. Thus, B unnecessarily ships traffic through an 
excessive number of network bottlenecks and, as a  
result, affects user A that shares one of these bottlenecks.  
On the other hand, in the optimal solution 

1 2 3 4
, 0, 0, ,

p p p p
f f f fγ γ= = = =  users A and B are at Nash 

equilibrium and each routes its traffic along paths with a 
minimum number of bottlenecks. 

In the following, we generalize the above observation to all 
splittable bottleneck games. More specifically, we prove that 
the (network) bottleneck of a splittable Nash equilibrium is 
optimal if the users route their traffic along paths that consist of 
a minimum number of bottlenecks. To that end, we need the 
following definition. 

Definition 7: Given a Nash flow f for the splittable 
bottleneck game ( ) ( ){ }, , , eG V E U q ⋅  and a path ,p P∈  denote 

the number of network bottlenecks over p by ( )fN p  i.e.,  

( ) ( ) ( ){ }efN p e p q f B f∈ =� . Then, f is said to satisfy the 

efficiency condition if all users route their traffic along paths 
with a minimum number of bottlenecks i.e., for each  

u U∈  and ( )
1 2

,
, u us t

p p P∈  with 
1

0u
pf >  it holds that 

( ) ( )1 2f fN p N p≤ . 

In the reminder of this section, we show that every 
splittable Nash flow that satisfies the efficiency conditions is a 
social optimum. To that end, we introduce the notion of 
induced flow, which is defined as follows.  

Definition 8: Given a splittable bottleneck game 

( ) ( ){ }, , , eG V E U q ⋅  and a feasible flow vector f, denote by ( )fΓ  

the set of users that ship traffic through a network bottleneck 

i.e., ( ) ( ) ( ){ }uf u U b f B fΓ = ∈ = . Then, the flow vector 

( ) { }: 0g P f
+×Γ → ∪�  is induced by f iff for each p P∈  it holds 

that 
( )

0 else

u
pu

p

f u f
g

 ∈Γ
= 


. 

s1 

t1 

u 

s2 

t2 

v 

Fig. 4: Unbounded price of anarchy for splittable bottleneck games 



In other words, given a flow vector f, the induced flow g is 
attained by deleting and zeroing the flows of all users that are 
not shipping traffic through any network bottleneck. The 
following lemma claims that an induced flow of a splittable 
Nash flow that satisfies the efficiency condition is at Nash 
equilibrium (with respect to the new game that corresponds to 
the reduced set of users); moreover, the new flow satisfies the 
efficiency condition and keeps the bottleneck of each user 

( )u f∈Γ  equal to that of the network.  

Lemma 4: Given a splittable bottleneck game 

( ) ( ){ }, , , eG V E U q ⋅  for which f is a Nash flow that satisfies the 

efficiency condition, the induced flow g satisfies the demands 
of all users in ( ),fΓ  such that the following two properties 

hold: 

(i) g is a Nash flow that satisfies the efficiency 

condition; 

(ii)  the bottleneck of each user ( )u f∈Γ  in the flow 

vector g equals to that of the network i.e., ( ) ( )ub g B g=  

for each ( )u f∈Γ .  

The proof of Lemma 4 appears in Appendix A.4. While the 
details are rather tedious, the basic idea is quite straightforward, 
namely, the removal of users that are not in ( )fΓ  cannot 

change the flow on any of the bottleneck links in the network.  

Lemma 5: Given is a splittable bottleneck game 

( ) ( ){ }, , , ,eG V E U q ⋅  for which f is a Nash flow that satisfies the 

efficiency condition; let g be the flow that is induced by f. 
Then, g has the smallest network bottleneck among all 
splittable flow vectors that satisfy the demands of the users in 

( )fΓ  i.e., ( ) ( )B g B h≤  for each flow vector h that has 

( ),s tu u

u

p u

p P

h γ
∈

=∑  for each ( )u f∈Γ . 

Proof: For simplicity, we assume that the traffic demand 
between each source-destination pair belongs to at most one 
user. It is easy to see

1
 that this assumption incurs no loss of 

generality for splittable flows. 

Let f and g satisfy the hypothesis of the theorem. Assume, 
by way of contradiction, that the bottleneck ( )B g  is not the 

minimum among the (network) bottlenecks of all (splittable) 
flow vectors that satisfy the demands of the users in ( )fΓ . 

Hence, there exists a feasible flow vector h that satisfies the 
demands of all users in ( )fΓ  such that ( ) ( )B h B g< . Denote by 

E  the set of all network bottlenecks with respect to g. In 

addition, for each ,e E∈  denote by ( )P e  the set of all paths 

that traverse through e.  

Since g is induced by the Nash flow f it follows according 
to Lemma 4 that g is at Nash equilibrium. Therefore, every path 

( ),
,u us t

p P∈  where ( ),u f∈Γ  must traverse through at least one 

network bottleneck from E ; indeed, otherwise a user ( )u f∈Γ  

could have decreased its bottleneck value (which, according to 
Lemma 4 equals to the network bottleneck ( )B g ) by rerouting 

                                                           

 

1
 By adding fictitious sources and destinations and zero-cost fictitious links.   

flow into paths whose bottlenecks are lower. Therefore, 
( ) ( ),

e E

u us t
P P e

∈
⊆ ∪  for each ( )u f∈Γ .  

Since we assume that ( ) ( ) ,B h B g<  it follows that 

( ) ( )e e e eq h q g<  for each e E∈ . Therefore, since ( )eq ⋅  is 

increasing, it holds that 
e eh g<  for each e E∈ . Therefore, for 

each ,e E∈  the total traffic that traverses the paths ( )P e  is 

smaller in h than in g i.e., 
( ) ( )

p p

p P e p P e

h g
∈ ∈

<∑ ∑  for each e E∈ . 

Therefore, 

  

( ) ( )
p p

e E p P e e E p P e

h g
∈ ∈ ∈ ∈

<∑ ∑ ∑ ∑             (1) 

Recall that, by Definition 7, the number of links that belong to 

the set E  and a path p P∈  is ( )gN p  i.e., ( )gN p p E= ∩ . Thus, 

( )
( )

( )
p p g

p P ee E p P e
e E

h h N p

∈∈ ∈
∈

= ⋅∑ ∑ ∑
∪

 and 

( )
( )

( )p P e

p p g

e E p P e
e E

g g N p
∈∈ ∈
∈

= ⋅∑ ∑ ∑
∪

. 

Therefore, from (1), ( )
( )

( )
( )

p g p g

p P e p P e

e eE E

h N p g N p
∈ ∈
∈ ∈

⋅ < ⋅∑ ∑
∪ ∪

.  Thus, 

if we define ( ) ( ) ( ),u us t

e E

u P e P
∈

 
Π ∩ 

 
� ∪  for each ( )u f∈Γ , then 

( ) ( )
( )

( ) ( )
( )( )

0 0 

e E

p p g p p g

p P e p uu f

g h N p g h N p

∈
∈ ∈Π∈Γ

− ⋅ > ⇒ − ⋅ > ⇒∑ ∑ ∑
∪

 

( ) ( )
( )

( ) ( )
( )( ) 0 0

 0 p p g p p g

p pu f p pu g u g

N p N pg h g h
∈Γ ∈ ∈Π > Π =

⋅ ⋅

 
 ⇒ − + − > ⇒
 
 

∑ ∑ ∑

( ) ( )
( )

( )
( )( ) 0 0

 0.
p p pg g

p p
u f p pu g u g

g h N p h N p

∈Γ ∈ ∈Π > Π =

− ⋅ ⋅
 
 ⇒ − >
  
 

∑ ∑ ∑  

Since the given flow vector g is induced by a Nash flow 
that satisfies the efficiency condition, it holds (by Lemma 4) 
that the efficiency condition is satisfied for g as well. Hence, by 

definition ( ) ( )1 2g gN p N p≤  for each ( )u f∈Γ  and ( )
1 2

,
, u us t

p p P∈  

with 
1

0;u
pg >  in particular, ( ) ( ) ( )

1 2

,u us t

g gN p N p N= �  for each 

( )
1 2

,
, u us t

p p P∈  with 
1

0u
pg >  and 

2
0u

pg > . Hence, 

( ) ( )

( )
( )

( )( )

,

0 0

0;
p p p

u us t

g

u f
p pp pu g u g

g h h NN p
∈Γ ∈Π ∈Π> =

− ⋅ ⋅
 
 − >
  
 

∑ ∑ ∑  on the 

other hand, the efficiency condition guarantees that  
( ) ( ),u us t

gN N p≤  for each path ( )p u∈Π  with 0
p

g = . Thus, it 

holds that  ( ) ( )

( )

( )

( )( )

,,

0 0

0;
p p p

u f

u u u u

p p

s t s t

p pu g u g

g h h NN
∈Γ ∈ ∈Π > Π =

− ⋅ ⋅
 
 − >
  
 

∑ ∑ ∑  

consequently, ( ) ( )
( )

( )
( )( )

,

0 0

0;
p p p p

u f

u u

p p

s t

p u p ug g

g h g hN
∈Γ ∈ ∈Π > Π =

− −
 
 ⋅ + >
 
 

∑ ∑ ∑  

therefore, ( ) ( )
( )( )

,
0.

p p

u us t

u f p u

g hN
∈Γ ∈Π

−⋅ >∑ ∑  



Finally, since we have shown that ( ) ( ),
,u us t

e E

P P e
∈

⊆ ∪  it 

holds that ( ) ( )( ) ( ) ( ), ,u u u us t s t

e E

u P e P P
∈

Π = =∪ ∩  for each 

( )u f∈Γ . Therefore, it is satisfied for each user ( )u f∈Γ  that 

               ( ) ( )
( )( ) ,

,
 0

p p

p P

u u

s tu u

s t

u f

g hN

∈∈Γ

−⋅ >∑ ∑ .           (2)              

Yet, as 
( ) ( ), ,s t s tu u u u

p p u

p P p P

g h γ
∈ ∈

= =∑ ∑  it holds that ( )
( ),

0
p p

s tu u
p P

g h

∈

− =∑  

for each ( )u f∈Γ ; hence, ( ) ( )
( )( ) ,

,
 0

p p

u u

s t

s t

u uu f p P

g hN
∈Γ ∈

−⋅ =∑ ∑ . 

Obviously, the latter contradicts (2). ■ 

The following lemma establishes a useful relation between 
any splittable flow vector f and the flow that is induced by f.  

Lemma 6: Given a flow vector f for the splittable bottleneck 

game ( ) ( ){ }, , ,
e

G V E U q ⋅ , denote by g the flow that is induced 

by f. If g has the smallest network bottleneck among the flow 

vectors that satisfy the demands of the users in ( )fΓ , then f has 

the smallest network bottleneck among the flow vectors that 
satisfy the demands of the users in U. 

The proof of Lemma 6 appears in Appendix A.4. We are 
finally ready to introduce the main result of this section, which 
follows directly from Lemmas 5 and 6.  

Corollary 2: Given a splittable bottleneck game 

( ) ( ){ }, , ,
e

G V E U q ⋅ , a feasible flow vector *f  and a splittable 

Nash flow f that satisfies the efficiency condition, it holds that 

( ) ( )*
B f B f≤ ; hence,  a splittable Nash equilibrium that 

satisfies the efficiency condition is socially optimal. 

Remark 4: The Braess paradox  [9] shows that addition of 
links to a noncooperative network can negatively impact the 
performance of both the network and each of the users. 
However, for the case that ( )0 0eq =  for each e E∈ , it holds 

that the bottleneck of the network is also a bottleneck of some 
user in U. Hence, for this case, it follows from Theorem 5 that 
the efficiency condition is sufficient to guarantee that the 
paradox does not show up; indeed, at least the bottleneck of the 
"poorest" user (which equals the bottleneck of the network) is 
minimized.  

Remark 5: In  [6] we use the results of this section to show 
that, when the efficiency condition is satisfied, the average 
performance across all links at a splittable Nash equilibrium is 
at most |E| times larger than the minimum value (obtained by a 
flow that minimizes the average link performance); we also 
provide an example that shows that this result is tight. On the 
other hand, we show that, without the efficiency condition, the 
average link performance of a splittable Nash flow may be 
arbitrarily larger than the optimum. 

VI. CONCLUSION 

Although bottleneck objectives emerge in many practical 
scenarios, the behavior of selfish users optimizing such 
objectives has not been considered before. Accordingly, in this 
study we investigated bottleneck games in noncooperative 
networks, both for the case where users can split their traffic 
between several paths, and for the case where they cannot. We 

have shown that a bottleneck game always admits a Nash 
equilibrium; moreover, best response dynamics in unsplittable 
games converge to a Nash equilibrium in finite time. Yet, we 
have shown that a Nash equilibrium (both in splittable and 
unsplittable bottleneck games) can be very inefficient. In order 
to cope with this inefficiency, we investigated for each game 
"reasonable" conditions under which Nash equilibria are 
socially optimal; these conditions suggest network design rules 
for ensuring that selfish behavior in bottleneck games result in 
a desirable outcome. Specifically, for unsplittable bottleneck 
games we have shown that a best Nash equilibrium is a social 
optimum, and for splittable bottleneck games we have shown 
that a Nash equilibrium is optimal if all users route their traffic 
along paths with a minimum number of bottlenecks. 
Accordingly, a major direction for future research is the 
establishment of pricing mechanisms that would steer users to 
choose particular Nash equilibria, or to incorporate additional 
(reasonable) criteria in the routing decision, thus optimizing the 
overall network performance.    
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APPENDICES 

Appendix A.1:  Existence of Nash Equilibrium in 

Splittable Bottleneck Games 

In this Appendix we provide the proofs of Lemmas 1, 2 and 
3 that are used to establish the existence of a Nash equilibrium 
in splittable bottleneck games.   

Lemma 1: Splittable bottleneck games are compact. 

Proof: Assume that we are given a splittable bottleneck 

game ( ) ( ){ }, , ,
e

G V E U q ⋅ . Note that, since we assume that the 

source-destination nodes of all users are connected, each user 
has at least one strategy for routing its flow demand; hence, 

u
F φ≠  for each u U∈ . 

Next we show that, for each ,u U∈  the set 
u

F  is a compact 

subset of 
P
� . To that end, note that, for each u U∈ , 

u
F  is the 

space of solutions of the following system (A1)-(A3): 

              
( ),

    
s tu u

u

p u

p P

f γ
∈

=∑    (A1) 

  ( ),
0                 u uu

p

s t
f p P≥ ∀ ∈  (A2) 

  ( ),
0                 \ u uu

p

s t
f p P P= ∀ ∈  (A3) 

In order to prove that the set P

uF ⊆ �  is compact, it is 

sufficient to show that 
u

F  is bounded and closed  [32]. We first 

show that 
u

F  is bounded. To that end, note that, for each 

strategy 
u u

f F∈  in the solution space of (A1)-(A3), it holds that 

0 u

p uf γ≤ ≤  for each p P∈ . Therefore, for each two strategies 

, ,
u u u

h g F∈  it holds that 
u u u

h g P γ− ≤ ⋅ . We turn to show 

that 
uF  is closed. To that end, note that the solution space of 

(A1)-(A3) is the surface of some polyhedron in P
� , which is 

closed in 
P
�   [32]. Therefore, the set P

uF ⊆ �  is compact. 

It remains to be shown that the bottleneck function ( )ub ⋅  is 

bounded on F for each u U∈ . To that end, note that 

( ) ( ){ } ( ){ }
0

max max
u
e

u e e
e Ee E f

b f q f q f
∈∈ >

= ≤  for each f F∈ . Moreover, 

since the function ( )max ⋅  is continuous in the Euclidean space 

,k�  and since for each e E∈  we assume that ( )eq ⋅  is 

continuous, it follows that the function ( ){ }max e
e E

q
∈

⋅  is 

continuous
1
. Therefore, since F is compact  (as a finite 

Cartesian product of compact metric spaces) ( ){ }max e
e E

q
∈

⋅  

                                                           

 
1 Although we have shown that the function ( ) ( ){ }max

0u
e

u e e
e E

b f q f
f∈

=
>

 is, in 

general, discontinuous in the strategy space, here we consider the function 

( ){ }max ,e e
e E

q f
∈

 in which the max operation is defined over the (strategy-

independent) set E.  



attains the maximum over F  [32]; hence, there exists an 0M >  

such that ( ) ( ){ }maxu e
e E

b f q f M
∈

≤ <  for each u U∈ .■ 

Lemma 2: Splittable bottleneck games are better-reply 
secure. 

Proof: Given a splittable bottleneck game 

( ) ( ){ }, , ,
e

G V E U q ⋅ , let ( )* *
,

U
f b F∈ ×�  be a pair in the closure 

of the user bottleneck vectors set. By definition,  

there exists a sequence { }n
f F⊆  such that 

( ) ( )( )* *, lim ,n n

n
f b f b f

→∞
= . Note that, since we established in 

Lemma 1 that F is compact, we have that *
,f F∈  and ( )*

u
b f  

is well-defined for all u.  

We first show that, for each ,u U∈  it holds that ( )* *

u u
b f b≤ . 

To that end, note that, since * lim ,n

n
f f

→∞
=  there must exist an 

integer 0,N >  such that, if in the profile *f  some user u U∈  

transfers a positive flow through some link e (i.e., * 

 0u

ef > ), it 

must also does so through each of the profiles { }
1

n

N
f

∞

+
 (i.e., 

,
0

n u

e
f >  for each n N> );  hence, for each u U∈  and n N> , 

the set of links that are employed by u in *f  is contained in the 

set of links that are employed by u in nf . Therefore, 

( ) ( ){ } ( ){ }
, * 

 

*

0 0
lim lim max lim max

n u u
e e

n n n

u u e e e e
n n ne E e Ef f

b b f q f q f
→∞ →∞ →∞∈ ∈> >

= = ≥  for 

each u U∈ . Moreover, since ( )e
q ⋅  is continuous for each 

,e E∈  it holds that ( ) ( )*lim n

e e e e
n

q f q f
→∞

=  for each e E∈ . Thus, 

( ){ } ( ){ } ( )
* * 
  

* * *

0 0
lim max max

u u
e e

n

u e e e e u
n e E e Ef f

b q f q f b f
→∞ ∈ ∈> >

≥ = =  for each 

u U∈ . 

Following the definition of better-reply security, assume 
that *

f  is not an equilibrium point. Hence, there exists a user 

u U∈  with a better reply ,
u

g  such that ( ) ( )* *,
u u u u

b f b g f−> . 

Therefore, since we have just shown that ( )* *

u u
b f b≤  for each 

u U∈ , it follows that 

          ( )* *, .
u u u u

b g f b− <           (A4)  

Literally, user u in profile *f  has a reply 
u

g  such that 

( )* *
,u u u ub f g b− < . We now show that the user u can secure a 

bottleneck below *

u
b  at *

f .  To that end, it is sufficient to 

show that, for the reply ,
u

g  there exists some neighborhood of 

*

u
f− , say ( )* ,

u
N f−  such that �( ) *,

u u u u
b g f b− <  for each 

� ( )*

u u
f N f− −∈ . 

Define 
( )* *,

0
2

u u u ub b g f
ε

−−
>� . Since ( )eq ⋅  is continuous for 

each e E∈ , there exists a neighborhood ( )* ,
u

N f−  such that, for 

each � ( )*

u uf N f− −∈  and ,e E∈  it holds that 

�( ) ( )*, ,e u u e u uq g f q g f ε− −− < ; hence, �( ) ( )*, ,u u u u u ub g f b g f− −− =  

�( ){ } ( ){ }*

0 0
max , max ,

u u
e e

e u u e u u
e E g e E g

q g f q g f ε− −
∈ > ∈ >

= − <  for each 

� ( )*

u uf N f− −∈ . Hence, it holds that �( ),
u u u

b g f− <  

( ) ( )* *

*
,

,
2

u u u u

u u u

b b g f
b g f ε

−

−

+
< + =  for each � ( )*

u u
f N f− −∈ . 

Therefore, from (A4), we obtain that �( ),u u ub g f− <  

( )* * * *

*
,

2 2

u u u u u u

u

b b g f b b
b

−+ +
< < =  for each � ( )*

.u uf N f− −∈  Thus, by 

definition, user u can secure a bottleneck strictly below *

u
b  at 

*
f . Hence, the game is better reply secure. ■ 

Lemma 3: Splittable bottleneck games are quasi-convex.  

Proof: Given is a splittable bottleneck game 

( ) ( ){ }, , , eG V E U q ⋅ . We first show that, for each ,u U∈  the set of 

feasible flow vectors 
u

F  is convex. Although the proof is quite 

immediate, we provide the details for completeness.  

For each value [ ]0,1λ∈  and pair of strategies  

(feasible flow vectors) ,
u u u

h g F∈ , it holds that 

( )
( ) ( )

( )
( ), , ,

1 1
s t s t s tu u u u u u

u u u u

p p p p

p P p P p P

g h g hλ λ λ λ
∈ ∈ ∈

⋅ + − ⋅ = ⋅ + − ⋅ =∑ ∑ ∑

( )1
u u u

λ γ λ γ γ= ⋅ + − ⋅ = . Moreover, since , 0u u

p ph g ≥  for each 

( ),u us t
p P∈  it holds that ( )1 0u u

p ph gλ λ⋅ + − ⋅ ≥  for each 

( ),u us t
p P∈ . Therefore, ( )1u uh gλ λ⋅ + − ⋅  is also a feasible flow 

vector i.e., ( )1u u uh g Fλ λ⋅ + − ⋅ ∈ ; Thus, by definition, 
u

F  is 

convex  [8].  

We turn to show that, for each u U∈  and for every 

,
u u

f F− −∈  the payoff function ( )  ,u ub f−⋅  is quasi-convex on 

u
F . By definition, we have to show that, for each ,u U∈ ,α ∈�  

and ,
u u

f F− −∈  the set ( ){ }  ,
u u u u u

f F b f f α−∈ ≤  is convex. 

Accordingly, given a pair of feasible flow vectors ,
u u u

h g F∈  

with ( ) ,
u u u

b h f α− ≤  and  ( ) ,
u u u

b g f α− ≤ , it is sufficient to 

show that for each value [ ]0,1λ∈ , ( )1u uh gλ λ⋅ + − ⋅  is also a 

feasible flow vector with ( )( )1  ,u u u ub h g fλ λ α−⋅ + − ⋅ ≤ ; yet, 

since we have just proven that the set of all feasible flow 
vectors 

u
F  is convex, it follows that ( )1u u uh g Fλ λ⋅ + − ⋅ ∈  i.e., 

( )1u uh gλ λ⋅ + − ⋅  is a feasible flow vector. Thus, we only left to 

show that ( )( )1  ,u u u ub h g fλ λ α−⋅ + − ⋅ ≤  for each [ ]0,1λ∈ . 

Denote by u

e
f −  the flow that 

u
f−  induces on a link e. Then, 

given a value [ ]0,1λ∈ , we have to show by definition that 

( )( )1  
u u u

e e e eq h g fλ λ α−⋅ + − ⋅ + ≤  for each link eœE with 

( )1 0
u u

e e
h gλ λ⋅ + − ⋅ > .  

Given is a link eœE with ( )1 0.
u u

e e
h gλ λ⋅ + − ⋅ >  We only 

have to show that ( )( )1  
u u u

e e e eq h g fλ λ α−⋅ + − ⋅ + ≤ . Without 

loss of generality assume that u u

e e
h g≤ . Therefore, it follows 

that (i) ( )1
u u u

e e e
h g gλ λ⋅ + − ⋅ ≤  and (ii) 0u

e
g > . Considering 

(i), since qe(∙) is monotonically increasing, it holds that (iii) 

( )( ) ( )1
u u u u u

e e e e e e eq h g f q g fλ λ − −⋅ + − ⋅ + ≤ + . Finally, since we 

establish in (ii) that 0u

e
g >  and we assume that 

( ) ,
u u u

b g f α− ≤  it follows by definition (of ( )u
b ⋅ ) that 



( )u u

e e eq g f α−+ ≤ . This together with (iii) establish that 

( )( )1
u u u

e e e eq h g fλ λ α−⋅ + − ⋅ + ≤ . Thus, the lemma is 

established.  ■ 

Appendix A.2:  Convergence to Nash Equilibrium 

In this Appendix we provide the proof of Theorem 2, which 
claims that, for unsplittable bottleneck games, the ESS scheme 
converges to a Nash equilibrium within a finite number of 
steps. Then, for splittable bottleneck games, we show, by way 
of an example, that convergence time can be unbounded. 

Theorem 2: In unsplittable bottleneck games, starting with 
any flow configuration, the ESS scheme converges to a Nash 

equilibrium within at most 
2

2
UU

E⋅  steps. 

Proof:   Given a flow configuration f and a link e E∈ , 

denote by ( )U e U⊆  the collection of all users that ship their 

traffic through e. Note that since we consider unsplittable flows 

it holds that ( )
( )

e e e u

u U e

q f q γ
∈

 
=   

 
∑  for each link e E∈ ; hence, 

the number of values that ( )e eq f  can take is at most the 

number of different subsets ( )U e . Thus, since the latter equals 

2
U , it holds that in any flow configuration the performance on 

each link can take at most 2
U  different values. Therefore, 

since (by definition) the bottleneck of each user is equal to the 
performance of some link in E, the bottleneck values of each 
user in U in all possible flow configurations are included in a 

set of at most 2
U

E⋅  different values.  

Given a profile f denote by B(f) the vector of all user 

bottlenecks i.e., ( ) ( ) ( ) ( )( )1 2
, , ,

Uu u u
B f b f b f b f� … . Obviously, 

since the bottleneck of each user can take at most 2
U

E⋅  

different values, the number of different user bottleneck vectors 

is at most  ( ) 2

2 2
U UU U

E E⋅ = ⋅ . 

Let 
1 2, ,f f �  be the sequence of profiles obtained 

throughout the execution of the ESS scheme. By definition of 
the scheme, for each two consecutive profiles 

1,
i i

f f + , it holds 

that exactly one user in 
1i

f +  reroutes its traffic and improves its 

bottleneck with respect to 
i

f . Since there are at most 
2

2
UU

E⋅  

user bottleneck vectors, it follows that, after at most 
2

2
UU

E⋅  

transitions between successive profiles in 
1 2, ,f f � , we must 

encounter a pair of profiles ,
i j

f f  where 
2

2
UU

i j E< ≤ ⋅  such 

that ( ) ( )i j
B f B f= . Consider then the sequence of profiles 

1, ,i i jf f f+ � . Assume, by way of contradiction, that the EES 

scheme does not converge to a Nash equilibrium in 
2

2
UU

E⋅  

steps. Hence, for each profile in 
1, ,i i jf f f+ � , there exists at 

least one user that can improve its bottleneck. 

Let 
U U⊆  be the set of users whose bottleneck is not 

constant over all profiles of 
1, ,i i jf f f+ � . In addition, let 


u U∈  be a user that produces the worst (i.e., largest) bottleneck 

among all users of 
U  and over all profiles of 
1, ,i i jf f f+ � . 

Finally, let { }k
fΘ =  be the set of all profiles in 

1, ,i i jf f f+ �  

for which u achieves the worst bottleneck. Since ( ) ( )i jB f B f=  it 

holds that u has the same bottleneck in profiles
i

f  and 
j

f . 

Therefore, since the bottleneck of u is not constant over all 

profiles in 
1, ,i i jf f f+ � , it follows that there must exists at 

least one transition from a profile 
1k

f − ∉Θ  to a profile  
k

f ∈Θ  

(which increases the bottleneck of u) and at least one transition 
from a profile 

1l
f − ∈Θ  to a profile 

l
f ∉Θ  (which reduces the 

bottleneck of u). In order to achieve a contradiction it is 
sufficient to show that the transition from a profile 

1k
f − ∉Θ  to a 

profile  
k

f ∈Θ   is unattainable. 

Assume, by way of contradiction, that there exists a profile 

k
f ∈Θ  such that 

1k
f − ∉Θ . In the transition from the profile 

1k
f −  to the profile ,

k
f  there exists exactly one user 'u U∈  that 

reroutes its traffic in order to improve its bottleneck. Since 'u  

improves its bottleneck, it follows that the bottleneck of u' is 

not constant in 
1, ,i i jf f f+ � ; hence, 
'u U∈ . Next, since the 

bottleneck of u has a smaller value in 
1k

f −  than in 
kf , it follows 

that u' transfers a positive amount of flow through some 

bottleneck of u in the profile 
kf . Therefore, by definition, the 

bottleneck of u' in the profile 
kf  is equal to that of u. However, 

since the bottleneck of u in the profile 
kf  is maximal with 

respect to all users in 
U  and all profiles of 
1, ,i i jf f f+ � , the 

bottleneck of the user 'u U∈  is not improved in the transition 

from 
1k

f −  to 
k

f . This contradicts the way by which user 'u  

was selected; hence, a transition from a profile 
1k

f − ∉Θ  to a 

profile 
k

f ∈Θ  is unattainable. Thus, the Theorem is 

established.  ■ 

On the other hand we now show, by way of an example, 
that, for splittable bottleneck games, convergence time may be 
unbounded even for two users.  To that end, consider the 
network depicted in Fig. A.1. Assume that each link e E∈  has 

a performance function ( )e e e
q f f= . Assume that there are two 

users, A and B, each with a demand of two units. The source-
destination pairs of A and B are (s1,t1) and (s2,t2), 
correspondingly. Suppose that the initial flow configuration is 

1 2 3 4
1, 1, 0, 2p p p pf f f f= = = = . It is easy to see that, at the k

th
 

step of the ESS scheme, we have ( )
2 3

0

2 1 2 ,
k

ik k

p p

i

f f
=

+ = − −∑  for 

[ )0,k ∈ ∞ . Moreover, note that the (unique) Nash flow is 

1 2 3 4
4 3, 2 3, 2 3, 4 3p p p pf f f f= = = = ; hence,  a flow is at 

Nash equilibrium in this game only if 
2 3

4 3.p pf f+ =  However,  

( )
2 3

0

2 1 2 4 3
k

ik k

p p

i

f f
=

+ = − − ≠∑  for all finite values of k. 



 

Appendix A.3:  (In)Efficiency of Unsplittable Nash 

Equilibria 

In this Appendix, we show that the price of anarchy is 

( )p
O E  when the link performance functions are polynomial 

with a degree p; we also show by way of an example, that the 
latter result is tight. Then, we present the proof of Theorem 3, 
which shows that every unsplittable bottleneck game has at 
least one Nash equilibrium that optimizes the network 
bottleneck. Finally, we present the proof of Theorem 4, which 
shows that finding such "good" Nash equilibria is NP-hard. We 
begin with the following theorem that bounds the price of 
anarchy for polynomial link performance functions. 

Theorem A.1: Given an unsplittable bottleneck game 

( ) { }, , , eG V E U q , where ( ) ( ) p

e e e
q f a f= ⋅  for each ,e E∈  the 

price of anarchy is ( )p
O E .  

Proof: Suppose f  and *
f  are an unsplittable Nash flow 

and an unsplittable optimal flow, respectively. It is easy to see 
that, since the performance functions of all links are identical, 
the worst possible network bottleneck can be obtained when 
the traffic of all users traverses some common link i.e., when 

the total flow through a link is 
u

u U

γ
∈
∑ . In that case, the network 

bottleneck is 
p

u

u U

a γ
∈

 
⋅ 
 
∑ ; hence,   

  ( )
p

u

u U

B f a γ
∈

 
≤ ⋅ 

 
∑ .   (A5) 

On the other hand, in every (feasible) unsplittable flow 
vector, there exists at least one link that transfers at least 

1
u

u UE
γ

∈

⋅∑  flow units. Thus, we conclude that, the network 

bottleneck is at least 1
p

u

u U

a
E

γ
∈

 
⋅ ⋅  
 
∑ ; hence,     

  ( )* 1
p

u

u U

B f a
E

γ
∈

 
≥ ⋅ ⋅  

 
∑ .     (A6) 

Combing (A5) and (A6) yields the following upper bound on 
the price of anarchy:  

 ( )
( )*

.
1

p

u
pu U

p

u
u U

a
B f

E
B f

a
E

γ

γ

∈

∈

 ⋅  
 ≤ =

 
⋅ ⋅ 
 

∑

∑

    ■ 

We proceed to show that the result of Theorem A.1 is tight. 
Specifically, we provide an example where the ratio between 

the Nash flow and the optimal flow is ( )p
EΩ . 

Example A.2: Consider the network presented in Fig. A.2, 

and suppose that there are U  users, each with a demand of γ  

flow units from source s to destination t. Assume that each link 

e E∈  has a performance function ( ) ( ) ,  0
p

e e e
q f f p= ≥ . It is 

easy to see that, when all users transfer their traffic through the 
path (s, v1, v2, v3,…, vk, t), they are at a (inefficient) Nash 

equilibrium with a network bottleneck of ( ) p

U γ⋅ . On the other 

hand, note that an optimal solution allocates a single path from 

( ) ( ) ( ) ( ){ }51 2 3 4 1, , , , , , , , , , , , , , ,k ks v t s v v t s v v t s v v t−Π� �  to a set of at 

most U 
 
Π  

 users from U. Obviously, the network bottleneck in 

that case is at most 
p

U
γ

  
⋅   Π   

. Hence, the price of anarchy is 

at least ( ) ( )
p

p pU
U γ γ

  
⋅ ⋅ = Ω Π   Π  

. Finally, note that 

1

2

k +
Π =  and ( )k E= Ω ; hence, the price of anarchy is  ( )p

EΩ . 

 

We turn to present the proof of Theorem 3, which 
establishes that the price of stability is 1 for unsplittable 
bottleneck games. 

Theorem 3:  Given a flow vector *
f  for the unsplittable 

bottleneck game { }, , ,eG U q   there exists a Nash flow f such 

that ( ) ( )*B f B f≤ ; hence, the price of stability is 1.  

Proof:  Note that, in an unsplittable game, each user selects 
one out of at most P  possible paths; hence, each user has at 

most P  strategies. Therefore, since there are U  users, the 

joint strategy space of the game is finite i.e., the game has 
finitely many profiles (feasible unsplittable flow vectors).  

p3 
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p4 

 
 

p2 
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Fig. A.2: A lower bound of ( )p
EΩ  on the price of anarchy of 

unsplittable bottleneck games with polynomial performance functions 

Fig. A.1: Unbounded convergence time for splittable games 



Given an unsplittable bottleneck game { }, , ,eG U q  

consider its (finite) set of unsplittable flow vectors Θ . For each 

,f ∈Θ  consider the set of all user bottlenecks ( ){ }u
b f u U∈ . 

Let ( )A f  be a vector that contains all the elements of 

( ){ }ub f u U∈  sorted in a non-increasing order and let ( )
i

A f  

denote the value of the i-th element in ( )A f . Finally, denote by 

U
F ⊆ �  the set of all vectors ( )A f  that correspond to a 

feasible flow vector for the game ( ) ( ){ }, , ,
e

G V E U q ⋅  i.e., 

( ){ } is a feasible flow vector for the given game .F A f f�  

We define the relation < over  U
�  as follows. For each 

( ) ( ),
U

A x A y ∈�  we say that ( ) ( )A x A y<  iff  there exists an 

1 i U< ≤  such that ( ) ( )
j j

A x A y=  for each [ ]1, 1j i∈ −  and 

( ) ( ) .
i i

A x A y<  Moreover, for each ( ) ,A x F∈  we say that 

( ) min A x F=  if there is no ( )A y F∈  such that ( ) ( )A y A x< . 

Obviously, since we have shown that there are finitely many 
feasible flow vectors in the game, F is finite as well. Therefore, 
there exists an ( )A f F∈  for which there is no ( )A g F∈  such 

that ( ) ( )A g A f< ; hence, there exists  an ( )A f F∈  such that 

( ) min A f F= .  

Let ( ) min A f F= . We now show that f is at Nash 

equilibrium. By definition, for each 1 ,i U< ≤  the bottleneck 

( )
i

A f  of user i is minimized with respect to all vectors 

( )A g F∈  that satisfy ( ) ( )
j j

A f A g=  for each [ ]1, 1j i∈ − . Thus, 

user i can improve its bottleneck only if the bottleneck ( )
j

A f  

of at least one user [ ]1, 1j i∈ −  is modified. Therefore, for each 

1 i U< ≤ , given the (fixed) flow of the users  1,2,…, i-1, user i 

cannot improve its bottleneck unless it modifies the bottleneck 

( )
j

A f  of at least one user [ ]1, 1j i∈ − . We distinguish between 

two cases in which user i can modify the bottleneck of users in 

[ ]1, 1i − . In the first case, user i increases the bottleneck ( )
j

A f  

of at least one user [ ]1, 1j i∈ − ; obviously, this can be done only 

if i ships a positive amount of traffic through one of the 

bottlenecks of j; hence, since ( ) ( )
j i

A f A f≥  for each 

[ ]1, 1 ,j i∈ −  such a strategy can only worsen the bottleneck of i. 

In the second case, user i only decreases (and never increases) 
the bottlenecks of users in [ ]1, 1i − . However, it is easy to see 

that such a strategy is unattainable since, by definition, it 
implies that there exists a feasible flow vector g that satisfies 

( ) ( )A g A f< ; obviously, this contradicts the selection of f i.e., 

the fact that  ( ) min A f F= . Thus, we conclude that, for each 

1 i U< ≤ , user i cannot improve its bottleneck; hence f is an 

unsplittable Nash flow. 

Finally, in order to prove the theorem, we have to show that 
f produces the optimal network bottleneck among all 
unsplittable flows. To that end, let g be an unsplittable flow 

vector for the game ( ) { }, , , .
e

G V E U q  We have to show that 

( ) ( )B f B g≤ . 

Since ( ) min ,A f F=  it holds by definition that the worst 

user bottleneck is optimized i.e., ( ){ } ( ){ }max max
u u

u U u U
b f b g

∈ ∈
≤ . 

Hence, ( ){ } ( ){ } ( ){ }
0 0

max max max max
e

e e e e u
e E f u U u Ue E u

ef
q f q f b f

∈ > ∈ ∈∈ >

 
= = ≤ 

 
 

( ){ } ( ){ } ( ){ } ( ){ }
00

max max max max max .
e

u e e e e e e
u U u U e E g e Ee E

u
eg

b g q g q g q g
∈ ∈ ∈ > ∈∈ >

 
≤ = = ≤ 

 
Moreover, since the performance functions are increasing,  

it holds that ( ) ( )0e e eq q g≤  for each e E∈ ; hence, 

( ){ } ( ){ } ( ){ }
0 0

max max 0 max
e e

e e e e e
e E f e E f e E

q f q q g
∈ = ∈ = ∈

= ≤ . Thus, since both 

( ){ } ( ){ }
0

max max
e

e e e e
e E f e E

q f q g
∈ > ∈

≤  and ( ){ } ( ){ }
0

max max
e

e e e e
e E f e E

q f q g
∈ = ∈

≤  

hold, we conclude that ( ){ } ( ){ }max maxe e e e
e E e E

q f q g
∈ ∈

≤  i.e., 

B(f)≤B(g). ■ 

Finally, we present the proof of Theorem 4, which 
establishes that it is intractable to compute a best Nash 
equilibrium. 

Theorem 4: Given an unsplittable bottleneck game 

( ) { }, , ,
e

G V E U q  and a value B, it is NP-hard to determine if 

the game has a Nash equilibrium with a bottleneck of at most 
B. 

Proof:  The reduction is from the Disjoint Connecting 
Paths Problem  [15]. Given a network G(V,E) and k distinct 
source-destination nodes ( ) ( ) ( )1 1 2 2, , , , , , ,k ks t s t s t…  the goal of the 

Disjoint Connecting Paths Problem is to find k mutually link-
disjoint paths connecting the k node pairs. Given an instance 

( ) ( ) ( ) ( ){ }1 1 2 2
, , , , , , , ,

k k
G V E s t s t s t…  of the Disjoint Connecting 

Paths Problem, associate with each link a performance function 

( )e e e
q f f=  and assign to each source-destination pair a user 

with a demand of B flow units. We show that there exists an 
unsplittable Nash flow with a network bottleneck of at most B 
iff there exist k mutually disjoint paths connecting the k node 
pairs. 

:⇒  Assume that there exists an unsplittable Nash flow with a 

network bottleneck of at most B. Then, each of the k users 

transfers its traffic unsplittably without intersecting with the 

routing paths of the other users. Hence, there exist k mutually 

disjoint paths that connect the node pairs ( ) ( ) ( )1 1 2 2, , , , , ,k ks t s t s t… . 

:⇐  Assume there exist k mutually disjoint paths connecting 

the k node pairs. Assign B flow units to each path. It is easy to 

see that the resulting flow is an unsplittable Nash flow with a 

network bottleneck of at most B. ■ 

Appendix A.4:  (In)Efficiency of Splittable Nash 

Equilibria 

In this appendix, we present the proofs of Lemmas 4 and 6 
that are used in Section V.B to show that every splittable Nash 
flow that satisfies the efficiency condition is a social optimum. 
To that end, we first prove the following lemma. 

Lemma A.1: Given a flow vector f for the splittable 

bottleneck game ( ) ( ){ }, , , eG V E U q ⋅ , denote by 
E  the set of all 

links that are the bottlenecks of the network with respect to f 



i.e., 
 ( ) ( ){ }e eE e E q f B f∈ =� ; let g be the flow that is induced 

by f. Then, the following two properties hold: 

(i) The network bottleneck of g equals that of f i.e., 

( ) ( )B f B g= . 

(ii) For each 
e E∈  it holds that ( ) ( )eq g B g= . 

Proof: Let f, g and 
E  satisfy the hypothesis of the 
Theorem. We first show that ( ) ( )B f B g= . To that end, recall 

that ( )f UΓ ⊆  is the set of all users that ship traffic through one 

or more bottlenecks from 
E in the flow vector f; hence, by 

definition, the traffic that is carried over the links of 
E  belongs 

only to the users in ( )fΓ . Therefore, since u u

p p
g f=  for each 

( )u f∈Γ  and ,p P∈  it holds that 
e e

f g=  for each 
e E∈ . 

Therefore,  

 ( ) ( ) ( )e e e e
q g q f B f= =  for each 
e E∈ ;          (A7) 

Hence, ( ) ( ){ }
�

( ){ }
�

( ){ } ( )max max max .
e e e e e e

e e eE E E
B g q g q g q f B f

∈ ∈ ∈
= ≥ = =  

Finally, since g is induced by f it holds that 
e e

g f≤  for each 

e E∈ ; hence, since ( )e
q ⋅  is increasing, it holds that 

( ) ( )e e e e
q g q f≤  for each e E∈ ; therefore, ( ) ( )B g B f≤ . Thus, we 

conclude that 

    ( ) ( )B g B f= .        (A8) 

Consequently, item (i) of the Lemma is established by 

equation (A8) and item (ii) follows from the combination of 

equations (A7) and (A8). Hence, the lemma is established.    ■ 

We can now prove Lemmas 4 and 6. 

Lemma 4: Given a splittable bottleneck game 

( ) ( ){ }, , ,
e

G V E U q ⋅  for which f  is a Nash flow that satisfies the 

efficiency condition, the induced flow vector g satisfies the 

demands of all users in ( ),fΓ  such that the following two 

properties hold: 

(i) g is a Nash flow that satisfies the efficiency 

conditions; 

(ii)  the bottleneck of each user ( )u f∈Γ  in flow vector g 

equals to that of the network i.e., ( ) ( )u
b g B g=  for each 

( )u f∈Γ .  

Proof:  First, note that, since u u

p p
g f=  for each ( )u f∈Γ  and 

,p P∈  it holds that g is a splittable flow vector that  

satisfies the flow demands of all users in G(f) i.e., 

( ) ( ), ,s t s tu u u u

u u

p p u

p P p P

g f γ
∈ ∈

= =∑ ∑  for each ( )u f∈Γ . 

Next, we prove that, in g, the bottleneck of each user of 

( )fΓ  is equal to that of the network i.e., ( ) ( )u
b g B g=  for each 

( )u f∈Γ . To that end, denote by 
E  the set of all links that are 

the bottlenecks of the network with respect to f i.e., 

 ( ) ( ){ }e eE e E q f B f∈ =� . Consider a user ( )u f∈Γ . Since 

( ),u f∈Γ  it follows by definition that u must ship (positive) 

traffic through at least one network bottleneck 
e E′∈  in the 

flow vector f. Therefore, since u u

p p
g f=  for each ( )u f∈Γ  and 

,p P∈  it follows that user u must also ship (positive) traffic 

through the link e′  in the flow vector g. Finally, since g is 

induced by f, it holds according to Lemma A.1 that 

( ) ( )e
q g B g=  for each 
e E∈ ; in particular it holds  

that ( ) ( )eq g B g′ = ; hence, by definition ( ) ( )ub g B g= .  

We turn to prove that the efficiency condition is satisfied 

for g. To that end, first note that 
E  is also the set of network 
bottlenecks with respect to g; indeed, g is established by 
zeroing the flows of all users that are not shipping traffic 
through any network bottleneck in f; thus, since it follows that 

the performance of the links in 
E  remain unchanged in g and 

the performance of all other links is not worsen, 
E  is the set of 
network bottlenecks also with respect to g. Next, since we 
assume that the efficiency condition is satisfied for f, it holds 

by definition that ( ) ( )1 2f f
N p N p≤  for each u U∈  and 

( ),

1 2
, u us t

p p P∈  with 
1

0u

p
f > . Therefore, since u u

p p
g f=  for each 

( )u f∈Γ  and ,p P∈  it holds that ( ) ( )1 2g gN p N p≤  for each 

( )u f∈Γ  and ( )
1 2

,
, u us t

p p P∈  with 
1

0u

pg > ; hence, by definition, 

the efficiency condition is satisfied for g. 

We turn to show that g is at Nash equilibrium. To that end, 
recall that the flow vector g is constructed out of the given 
Nash flow f by removing the flows of all users that are not in 

( )fΓ . By definition, the users that are not in ( )fΓ  do not 

transfer (positive) flow through a network bottleneck (i.e., a 

link in 
E ). Hence, their removal can improve only the 
performance of the non-bottleneck links (i.e., links that before 
the removal had already better performance then the links in 

E ). Thus, since the performance of the bottleneck links 
E  
remain unchanged after the removal of ( )\U fΓ ,  each user in 

( )fΓ  can improve its bottleneck in the flow vector g only if it 

can reduce its flow from each link 
e E∈  that it employs, 

without increasing its flow over any other (unemployed) link 

'e E∈ . However, since before the removal (i.e., in flow vector 

f) all the users are at Nash equilibrium, it follows that there is 
no user ( )u f∈Γ in flow vector f that can reduce its flow from 

every network bottleneck 
e E∈  that it employs without 

increasing its flow over other network bottleneck 
'e E∈ ; 

indeed, otherwise a user ( )u f∈Γ  could have decreased its 

bottleneck value. Therefore, since all the strategies of the users 
in ( )fΓ  remain unchanged in g (i.e., u u

p p
g f=  for each ( )u f∈Γ  

and p P∈ ), the latter holds also for flow vector g (i.e., there is 

no user that can reduce its flow from each employed link 
e E∈ , 

without employing other link 
'e E∈ ).  Therefore, there is no 

user in g that can improve its bottleneck. Thus, g is a Nash flow 
and the Lemma is established. ■ 

Lemma 6: Given a flow vector f for the splittable bottleneck 
game ( ) ( ){ }, , ,

e
G V E U q ⋅ , denote by g the flow that is induced by 

f. If g has the smallest network bottleneck among the flow 
vectors that satisfy the demands of the users in ( )fΓ , then f has 

the smallest network bottleneck among the flow vectors that 
satisfy the demands of the users in U. 

Proof: Let *
f  be an optimal flow i.e., a flow that has the 

smallest (network) bottleneck with respect to all flow vectors 



that satisfy the demands of the users in U. Denote by Η  the set 
of all splittable flow vectors that satisfy the demands of the 

users in ( )fΓ . We transform the vector *
f  into a flow that 

belongs to the set Η  by zeroing the flow of all users in ( )\U fΓ  

i.e., by zeroing all the flows in ( ){ }*
, \

u
pf p P u U f∈ ∈ Γ ; denote 

the resulting flow vector by �*
f  and note that, by construction, 

�* *
e e

f f≥  for each e E∈ . Since ( )e
q ⋅  is increasing, it follows 

that ( ) �( )* *
e e e e

q f q f≥  for each e E∈ . Therefore, by definition,  

       

     ( ) �( )* * . B f B f≥          (A9) 

Yet, since �*f ∈Η , it follows that � ( ){ }* minB f B h h
  ≥ ∈Η 
 

. 

Therefore, from (A9), it follows that 

               ( ) ( ){ }* minB f B h h≥ ∈Η .              (A10) 

Let f and g satisfy the hypothesis of the Lemma and assume 

that g has the smallest network bottleneck among the flow 

vectors that satisfy the demands of the users in G(f) i.e., 

( ) ( ){ }minB g B h h= ∈Η . From (A10) it holds that B(f
*
)≥B(g). 

Therefore, since it follows from Lemma A.1
1
 that B(g)=B(f), it 

holds that B(f
*
)≥B(f); hence, since f

*
 is optimal, B(f

*
)=B(f). 

Thus, the lemma is established. ■ 

                                                           

 

1 Obviously, the conditions of Lemma A.1 are satisfied since g is induced by f.  


