
A Fast Bypass Algorithm for High-Speed Networks

Israel Cidon�

Sun Microsystems

Mountain View, CA 94043-1100

Raphael Romy Yuval Shavitt

Department of Electrical Engineering

Technion, Haifa, Israel

Abstract

In this work we suggest an algorithm that increases
the reservation success probability for bursty tra�c
in high speed networks by adding exibility to the
construction of the routes. The algorithm is sim-
ple enough to be implemented by cheap hardware. It
causes no additional delay to packets that use the orig-
inal route, and a very small delay to the packets that
are rerouted. In addition, the presented algorithm has
a minimal communication overhead due to the local
nature of its work. Two high-speed network models
are considered: source routing and ATM.

1 Introduction

High speed networks are intended to support ap-
plications with widely varying tra�c characteristics:
from short database queries to long video streams. In
order to use the network resources e�ciently, band-
width reservations are made to ensure high probability
of data arrival to their destinations. For applications
such as constant bit rate video or voice conversations
this is the right approach. However, for bursty traf-
�c, i.e., tra�c whose intensity varies in time, reserva-
tion itself introduces non-negligible overhead. More-
over, the widely varying nature of bursty tra�c in-
dicates that a simplistic burst reservation mechanism
would not su�ce. The scheme must consider the burst
size and the timing constraints in its operation, as we
briey explain below.

Short bursts are those whose transmission time is
not more than a few round trip delays. For such

�Also with the Department of Electrical Engineering, Tech-

nion, Haifa, Israel.
yThis work was supported in part by the Technion V.P.R.

fund and the Fund for the Promotion of Research at the Tech-

nion. Also with Sun Microsystems, Mountain View, CA 94043-

1100.

bursts waiting for a reservation, that itself takes a
few round trip delays, is clearly not acceptable. The
best method for this type of bursts is to make an ini-
tial zero-bandwidth reservation and subsequently to
send the data without reservation and use time-outs
(possibly at a higher layer) to detect failures. Turner
[12] suggested an on-the-y reservation scheme. In
his scheme a burst that arrives to an ATM switch
and �nds su�cient bandwidth for its cells, reserves
the required bandwidth (to prevent new bursts from
disturbing this one) and proceeds to the next switch
towards its destination. This scheme does not guar-
antee that a burst that succeeds in reserving enough
bandwidth in one switch will also succeed in the next
one along the route. Hence the choice of the route is
crucial in the success of the on-the-y reservation.

The same solution does not �t longer bursts. Here,
the overhead of reservation is not as bothersome so
traditional reservation algorithms can be used. Note,
however, that this approach is valid only if there is
enough storage at the source to hold the burst data
until positive acknowledgment is received for the reser-
vation signaling [2, 6]. Thus, such an approach would
be useful for bursty data applications such as FTP in
which the data can be easily kept in the source. This
approach would not be useful for bursty real-time ap-
plication, e.g., variable bit rate video, which (for stor-
age reasons) cannot tolerate long waiting times for a
reservation process to complete.

In this work we suggest an algorithm that increases
the probability to successfully transfer bursty tra�c
by adding exibility to the burst routing. We assume
that bursty applications reserve no bandwidth during
their set-up process. Instead, bandwidth is requested
for each burst separately (with either on-the-y or tra-
ditional fast reservation algorithms) and is freed im-
mediately after the burst transmission. The suggested
bypass algorithm is simple enough to be implemented
by cheap hardware. Before proceeding, we describe
two routing approaches for high speed networks with

which our algorithm can be used: source routing and
ATM.

Source routing, or Automatic Network Routing
(ANR) [5], is a routing method where each packet
carries in it the entire route it should traverse. In
our discussion, we will assume that the route is placed
in the header as a list of port-IDs (or link-IDs), and
each node along the packet route strips the ID it uses
from the head of the list (in practice, there are other
methods for handling the source route that only di�er
in technicalities and can be integrated with our algo-
rithm [5]). In networks that employ source routing,
the route for the session is computed at the source
node using data that is distributed by a topology up-
date algorithm. It is therefore plausible that routes
thus computed are not optimal (and may not even be
feasible). Changing the route on-the-y amounts to
modifying the source route in the packet's header.

In ATM networks, cells travel along Virtual Cir-
cuits (VCs) that are constructed by a concatenation
of Virtual Paths (VPs). The VC and VP identi�ers
are written in the cell header and possibly swapped
in every switch. Tables in the switches are used to
determine the route based on local identi�ers [1]. For
our purpose it is important to note that the routing
information is distributed in the switches along the
path the cells traverse. Modifying a cell's route on
the y requires changing the routing information in
several switches { an operation that is neither simple
nor fast [9]. In particular, bu�ering requirements for
the cells while a new route is created makes on-the-y
rerouting look impractical.

The algorithm we suggest in this work increases
the probability of a successful short burst transmis-
sion or the probability of a successful reservation for
longer bursts by using local route-deections. Because
the route is determined based on somewhat inaccurate
data, and because a proper reservation process is not
undertaken, it is possible that the determined route
may actually not be able to accommodate the band-
width of the burst. To overcome this possible lack of
bandwidth local route deections are constructed. To
use these deections our algorithm uses load informa-
tion from the immediate neighboring nodes. This does
not require dissemination of large volumes of load-data
across the network, keeps the information fairly up to
date, and increases the probability of reservation suc-
cess.

Most high speed networks are constructed as an in-
terconnection of specially constructed packet switches.
Unlike traditional switches these switches must sup-
port extremely fast streams of packets (or small cells

in the case of ATM) meaning that switching speed is
very high and implying that the use of a software oper-
ated general-purpose processor is out of the question.
A typical switch is constructed as an interconnection
of link processors (LPs) each supporting a single link
[5, 4]. The routing of packets that arrive at the in-
put links is done directly by these LPs. Only pack-
ets that require more complex processing (e.g., control
packets) are forwarded to a more sophisticated control
unit. Naturally, the suggested algorithm is designed
to be performed by the LPs.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the fast bypass algorithm for net-
works that employ source routing. Next we describe
in section 3 the fast bypass algorithm for ATM net-
works. In section 4 we analyze the performance of the
algorithm in terms of reservation success probability,
and in section 5 we give our concluding remarks.

2 A Fast Bypass Algorithm for Net-
works with Source Routing

The LPs in a switch share the routing tables that
are used for the presented algorithm. Thus, it is con-
venient to treat the switch LPs (the hardware) and the
controlling algorithms as a single abstract entity, the
node. The algorithm we present in this section works
by exchanging load information in a close locality of
every node. To that end, we make use of the following
de�nitions. The 2-neighborhood of a node is the set of
nodes that are at most two hops away. A local segment
is a single link or a concatenation of two links leading
from a node to another node in its 2-neighborhood. A
local segment is typically a part of a longer path be-
tween source and destination nodes. Note that every
local segment uniquely identi�es a node, but several
local segments may identify the same node. The local
segment group is the collection of all the local segments
that identify the same node. We use (l1; l2) to signify a
two-hop local segment comprised of links l1 and l2 (in
that order), and (l1) for a one-hop local segment. The
bypass algorithm will, in congested situations, replace
one local segment with another.

The Bypass Algorithm, BA, is based on frequent
load measurements (typically the load indicator is the
sum of the total reserved bandwidth and the average
number of bu�ers occupied by nonreserved tra�c) of
the outgoing links at every node, and on sharing this
information with the immediate neighbors. This way
every node has updated knowledge of the load on all
the local segments emanating from it. This informa-

S

I

1

D S

I

D

B

CC

1 2

3

4 5

6

7

(A) (B)

a

c

c

bb

Figure 1: An example network with the three bypass types

tion is maintained in a local RoutingTable that has
an entry for each local segment. Each entry in the
RoutingTable contains a �eld that indicates the avail-
ability of the local segment, and the preferred alter-
nate local segment should the original one be blocked
(see below). RoutingTable size is quadratic in the
output degree of the nodes, and in most practical net-
works is not expected to have more than a few tens of
entries.

Figure 1A shows an example of a �ve node network.
The routing table of node S has 10 entries for the
following local segments: (4) and (3; 5) to node B;
(4; 5), (3), and (1; 2) to node D; (1), (3; 2), and (6; 7)
to node I; and (6) and (1; 7) to node C. Suppose a
packet arrives to node S with the route (1; 2) written
in its header and �nds link 1 blocked. Three types of
bypasses are possible for this packet (see �gure 1B):

a) the direct link to D (a shortcut) that avoids both
links 1 and 2,

b) a two-link bypass via node B (identical length)
that again avoids links 1 and 2, or

c) a two-link bypass of link 1 to node I (a long bypass)
that is followed by link 2.

These types are the only ones considered in this algo-
rithm.

When a packet arrives at a switch, its entry in
RoutingTable is examined to check if the local seg-
ment it should traverse is not blocked. If it is blocked
RoutingTable is �rst searched for a bypass that does
not increase the length (types a and b) and then for
one that bypasses only this link (bypass type c). If
the search succeeds the new local segment replaces
the original one in the packet header and the packet

is forwarded along the deected route; otherwise, the
packet is discarded.

To maintain RoutingTable, we keep for every en-
try the load of the preferred route. An entry in
RoutingTable is updated when one of the following
occurs:

� The load on the preferred route is changed.

� A bypass route with more residual bandwidth
(lower load) than the preferred route is found.

Link failures are treated as a maximal decrease in the
available bandwidth as will be explained in section 2.1.

To expedite the processing of regular packets
RoutingTable is sorted according to the local seg-
ments. This, however, poses an update problem since
there may be several local segments that identify the
same node and it is natural to maintain their bypass
information simultaneously. To allow simultaneous
updates of all the entries in RoutingTable that re-
fer to the same node, a second table, HostTable, is
used. HostTable is sorted by node-IDs1 with a sin-
gle entry for every node in the 2-neighborhood. Each
entry contains the node-ID and a list of all the local
segments that identify this node, i.e., its local segment
group. HostTable can be initialized either when the
network is started or can be built by a topology update
algorithm [11].

2.1 A Detailed Description

Two tables are maintained and used by the algo-
rithm: RoutingTable has an entry for each local seg-
ment that comprises four �elds:

1Node IDs can be global or locally assigned by higher level

algorithms.

� The id of the node at the end of the local segment.

� The load of the local segment.

� The preferred alternative local segment.

� The load of the preferred alternative local seg-
ment.

The maintenance of this table is described below.
HostTable has an entry for each node in the 2-
neighborhood that lists all the local segments in the
local segment group of the node.

Every node periodically measures the loads on the
links that emanate from it. The way these measure-
ments are made is out of the scope of this paper. For
our purpose, it is enough to assume that the result-
ing load indicator is based on both reserved and non-
reserved tra�c. The load indicators are sent to the
immediate neighbors and are locally used to update
RoutingTable as follows. For every emanating link,
the load entry of the one-hop local segment is updated.
If the direct link is the preferred local segment then
the preferred local segment load �eld in the entries of
its l ocal segment group are updated. If its load is
lighter than the load of the preferred local segment of
its local segment group then the local segment is writ-
ten in the preferred local segment �eld and its load
is written in the preferred local segment load �eld in
the entries of all the members of the local segment
group. The members of the group are easily located
with HostTable.

The measurements are sent to the neighbors as a list
of number pairs, a link id and its load. For every link
in the list, the load of the corresponding local segment
is updated. If this local segment is the preferred local
segment the load �eld of the preferred route in the
entries of all the members in the local segment group
is updated. If the local segment load is lighter than
the one of the preferred local segment then the �rst
becomes the preferred local segment and the entries
of the local segment group are changed to reect this,
i.e., the local segment is written in the preferred local
segment �eld and its load is written in the preferred
local segment load �eld.

A failure in a link that is not directly connected to
a node is treated as if the available bandwidth of this
link dropped to zero, and can be reported by sending
a measurement list. A failure in a link adjacent to a
node requires a pass through the entire RoutingTable
(typically, few tens of entries) to search for all the en-
tries that have this link as part of their preferred local
segment, and then to update their load to the max-
imum, so that every new measurement of a di�erent

local segment will update it. This process is not e�-
cient, but is used only in the rare event of link failure
and only in the two nodes at the ends of the failed
link.

2.2 Avoiding Loops

�
�� �

��
HHHH

��
��

�
��
A 3

B

C1

2

Figure 2: An example of a bypass loop

Deection routing in general and BA in particular
may cause a packet to cycle in loops. We next demon-
strate how BA can cause a message to travel in a two
link loop. Consider the network of Figure 2 and sup-
pose a packet reaches node A and is trying to reach
node C through link 3. At the time the packet arrives
at node A, the bu�ers of link 3 are all full, there are
free bu�ers in front of link 1, and RoutingTable indi-
cates that the preferred bypass for the local segment
(3) is the local segment (1; 2). The packet is, thus, sent
via the bypass (1; 2). Suppose the packet is somewhat
delayed in the queue and when it reaches node B link
2 has no free bu�ers but according to RoutingTable
the preferred bypass to segment (2) is (1; 3) since links
1 and 3 are not totally full now. As a result the packet
is deected back to node A.

On the one hand, going in circles or busy waiting,
can be considered as a good solution since instead of
discarding the packet we use the network as storage.
On the other hand, if the bu�ers of the switches are
all almost full we might create a livelock where mes-
sages travel around and never reach their destinations,
or do so after consuming too much network resources.
To disable routing loops, a bit in the packet header
can be set the �rst time the packet is deected and if
a second deection is needed the packet is discarded.
If more routing exibility is needed a few bits can be
allocated in the packet header to bound the number
of deections above one. Two or more allowed deec-
tion may theoretically cause a packet to go in cycles,
but in practice, the probability for this is small if the
number of allowed bypasses is kept small. The analy-
sis in section 4 shows that allowing only one deection
signi�cantly decreases the rejection probability, while
the residual contribution of additional deections to

the success probability of the packet decreases for ev-
ery additional allowed bypass.

3 A Fast Bypass Algorithm for ATM
Networks

In this section we adapt the bypass algorithm pre-
sented in the previous section to ATM networks. In
networks that employ source routing, once we identify
a blocked link and know about a local segment that by-
passes it, we can deect the message by changing the
routing information in its header. In ATM networks
the routing information is not carried in the cells but
is scattered in the switches along the path it traverses.
Changing the routing information in several switches
to create a deection route is therefore neither simple
nor fast [9]. In particular, bu�ering requirements for
storing the cells while the new route is created make
on-the-y deection look impractical.

We suggest, instead, to preprepare for congestion
when a VP is constructed. Upon a VP construction,
loaded areas are identi�ed and bypass routes are cre-
ated to be used when the primary route is blocked.
Each VPi is assigned two VPIs: VPIi for the primary
route and VPI0

i
for the bypass route. In �gure 3A

the primary VP is drawn with solid lines and the by-
pass routes with dotted lines. In the same way, bypass
routes can be preprepared per VC in an ATM network
that is constructed of VC switches without the use of
VPs, but then the relative cost of the preparation for
a single VC is higher.

As already stated, bursty VCs are brought up with
no bandwidth reservation. We shall concentrate here
on applications that use fast reservation algorithms
whenever there is a burst to transmit [2], on-the-y
reservation [12] is shortly discussed in section 5. In
ATM networks, fast reservation algorithms use mono-
cell messages that traverse the VC route, reserve
bandwidth in one direction, and acknowledge/reject
a reservation request in the reverse direction. Since
ATM VCs are unidirectional, the reverse direction
does not necessarily use the same physical links.

We now show how reservation cells are deected to
create bypass VCs, and how the switches identify and
route cells that belong to bypass VCs. We term the
switches where a bypass starts (switches 2 and 4 in �g-
ure 3A) junction switches. A reservation cell starts its
way on the VP with the primary VPI. Non-junction
switches do not participate in the deection process.
When a reservation cell arrives at a junction switch
that is unable to ful�ll the burst request for band-

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

?

?

?

?

?

Z
ZZ~

S
S
SSw

��=

..........................+

?

?

?

?

?

=

....

w

.......

�
....

~

. . . .

1

6

2

3

4

8

5

7

4'

2'

1

6

2

3

4

8

5

7

A. A VP with
bypass routes.

B. A tree repre-
sentation of A.

Figure 3: A VP with bypass routes and its tree repre-
sentation

width in the primary route it tries to reserve band-
width in the �rst link of the bypass. Upon a success,
the reservation cell is forwarded to the bypass link and
its VPI is set to the secondary VPI. In addition, the
junction switch registers the VC in a separate table,
BypassTable. The values registered in BypassTable
are the secondary VPI (cells of this burst will use it as
their VPI), the VCI, and the rest of ATM switching
data, i.e., the local VPI in the next hop and the output
port-ID. A bandwidth release cell that follows the end
of the burst causes the deletion of the corresponding
entry from BypassTable.

Usually, the arrival of a reservation cell to the
switch at the end of the VP triggers the transmis-
sion of an Ack to the VC-switch at the beginning of
the VP. Similarly, the successful arrival of a reserva-
tion cell with the secondary VPI to the end of the VP
triggers the transmission of a similar message, Ack0,
signaling the local source that the cells of this burst
should be switched through the secondary VPI (or, if
the source is the origin of the cells, it should initiate
the cells with the secondary VPI). When a data cell
arrives with the secondary VPI at a junction switch,
BypassTable is searched and if a match is found the
cell is routed according to the data in the table. Oth-
erwise, if no match is found in BypassTable the cell
is routed according to the ATM switching table.

The suggested bypass algorithm o�ers 2m potential

routes (where m is the number of junction switches)
for the price of only two VP identi�ers and less than
four switching table entries in every switch. The
switching information to the next switch in the pri-
mary route is saved in two entries: one for the pri-
mary VPI and one for the secondary VPI. The two
entries have identical switching information. If a VC
reserves bandwidth for a burst in a bypass route, an
entry in BypassTable keeps the switching information
of the deected route. This entry is created only in
the junction switches where the VC is deected, and is
deleted when the bandwidth is freed. In the switches
of the bypass routes one entry for the secondary VPI
is kept in the regular switching tables. There is no
need for an entry for the primary VPI.

In practice, a network manager might wish to
bound the number of bypasses to keep the stretch fac-
tor, i.e., the ratio between the original VP length (in
hops) and the length of the VC with the bypasses, low.
A small counter in the reservation cell can be used to
implement any practical bound, and in particular one
bit can be used to allow only one bypass.

Examining the VP with the bypasses of �gure 3A
one can easily identify a tree rooted at the destination
as depicted in �gure 3B. This suggests an alternative
way to look at the bypass scheme: instead of building
a shoelace VP, we build a VP with a tree structure,
such that every leaf except the VP entry point must
also be an internal node of another branch of the tree.
An interesting extension to this algorithm will enable
to bypass a bypassed route, e.g., in �gure 3 if the link
between switches 7 and 5 is loaded one may wish to
use a direct link between switches 7 and 6. Other uses
of tree shaped VPs can be found in [8].

4 Analysis

In this section we compute the improvement in the
reservation success probability when our algorithm
is used in several networks with regular structure.
Throughout the analysis we assume that the proba-
bility to succeed in reserving bandwidth on a link is p
for all the links, and this probability is independent for
every link. The independence is justi�ed by the fact
that a burst is mainly competing against other ap-
plications that have constant bit rate, and not against
other bursts. We assume that the original routes (VPs
in the case of ATM) are all shortest path routes.

The way the algorithm is implemented impacts its
performance. For source routing, we suggested in sec-
tion 2 that the availability of the local segment will

be checked at every switch, and that if no local seg-
ment with su�cient bandwidth is found the burst (or
reservation cell) will be discarded. For the case where
only the second hop is blocked and especially in the
case of fast reservation algorithms when a reservation
cell is sent, it might be better to forward the reserva-
tion request in the hope that a bypass will be found.
The implementation of this variant might increase the
switch complexity and cost. Another variant is to
check RoutingTable only if the burst can not be for-
warded, which implys no extra handling for the bursts
if the route in not loaded. The performance of this
implementation is the worst since it does not allow a
bypass from a bypass route. We choose this variant
for the analysis of this section.

For ATM, we suggested in section 3 to check in ev-
ery junction switch the local segment, and to deect
the burst if the local segment is blocked. In the analy-
sis of this section we assume, as for the source routing
model, the less e�cient implementation where only if
the �rst hop in the local segment is blocked a bypass
is searched.
Hypercubes
In hypercubes every two-hop route has exactly one

two-hop bypass, every h-hop route can be bypassed in
h�1 points, and none of the bypass routes share links.
It is clear that the success probability of a reservation
along an h hop route is ph. If we allow only one bypass
for a burst route, allow every link to be bypassed, and
build the VP-tree to contain h�1 bypass routes (in the
ATMmodel) the success probability of the reservation
grows to

ph[1 + (h� 1)(1� p)] (1)

in both network models. If we do not limit the number
of bypass the success probability along an h-hop route,
S(h), is given by the recurrence

S(0) = 1 (2)

S(1) = p (3)

S(h) = pS(h � 1) + (1� p)p2S(h � 2) (4)

The solution of this recurrence (see [10]) gives the ex-
pression for S(h), h � 2

S(h) =
1

2

�
1 +

1p
5� 4p

��
p(1 +

p
5� 4p)

2

�h
+

1

2

�
1� 1p

5� 4p

��
p(1�p5� 4p)

2

�h
(5)

Figure 4 compares the probability for a burst to
succeed in reserving bandwidth along its route as a
function of the probability to �nd enough bandwidth

0 0.2 0.4 0.6 0.8 1

50 Hop Path

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

10 Hop Path

0.2

0.4

0.6

0.8

1

Figure 4: The e�ect of the Bypass Algorithm on the
success probability of bursts as a function of the link
load

on a link. The solid line depicts the success proba-
bility without bypasses, the dashed line depicts the
case when only one bypass is allowed, and the dashed-
dotted line depicts the case when there is no restric-
tion on the number of bypasses. It is clear from these
graphs (and others omitted due to space restrictions)
that the e�ectiveness of the bypass algorithm grows
with the length of the VP. Note also that even when
only one bypass is allowed the improvement is signif-
icant. In fact, it is shown in [7] that the contribution
of the �rst bypass is the most signi�cant while the
improvement of the third bypass and on is negligible.
This may lead us to implement the algorithm with
the one bypass option which is the easiest and most
e�cient implementation.

Triangulated Graphs

Figure 5: A lattice of triangles

A planar graph where every region is bounded by a
circuit of three edges is said to be triangulated [3].
Consider, �rst, a lattice of triangles (�gure 5). A

shortest path route in a triangular lattice has no 60�

turns. The probability that a two-hop segment is con-
gested is 1� p2.

We look, �rst, at networks that employ source rout-
ing. If there are no turns in a path, a congested link
can be bypassed by one of two possible two-link type
c bypasses with probability 1� (1� p2)2. If there is a
120� turn in the path the bypass probability is higher
since an additional type b bypass can be found. When
only one bypass is allowed the success probability of
reservation along an h hop route is at least

ph
�
1 + h(1� p)[1� (1� p2)2]=p

�
(6)

We assume that in an ATM network only one by-
pass route is prepared per link. The success proba-
bility under this assumption when only one bypass is
allowed is at least

ph (1 + h(1� p)p) (7)

If K bypasses are allowed the success probability is

ph
KX
k=0

�
h

k

�
(1� p)kpk (8)

For K = h we get

ph
�
1 + p� p2

�h
(9)

Note that the success probability of the algorithm for
source routing is higher than for ATM networks since
in the later we prepare only one bypass per link.

For general triangulated networks, let h be the
number of links in a path of length H that are part of
a triangle. Note that since we consider only shortest
path routes, no two links in a route belong to the same
triangle. Based on our previous results, we can write
the following lower bounds for the success probability
when only one bypass is allowed (in the worst case
there is only one type c bypass for each of the h links
in both network models)

pH (1 + h(1� p)p) (10)

If K bypasses are allowed the success probability is

pH
KX
k=0

�
h

k

�
(1� p)kpk (11)

For K = h we get

pH
�
1 + p� p2

�h
(12)

5 Concluding Remarks

The algorithm presented here can be used in both
models, ATM and source routing, for short bursts
that may use on-the-y reservation and for longer
bursts that use fast reservation algorithms. For bursts
that use fast reservation, our algorithm adheres to the
reservation principle of the network whether it is ATM
based or source routing type. For non-reserved traf-
�c, one should be cautious not to allow this tra�c to
disturb the reserved tra�c. This can be achieved by
setting a low priority bit of the non-reserved tra�c
cells (in ATM the CLP bit; in the ANR model, such
a bit should be allocated in the packet header).

Deection of short bursts that do not reserve band-
width before transmission in ATM networks can be
done in two distinct ways: with or without reserva-
tion on-the-y. If on-the-y reservation is used each
burst is preceded by a reservation cell and succeeded
by a release cell. The cells are sent with VPI', the
secondary VPI, and are treated as described in sec-
tion 3 for bursts that use reservation, i.e., only if no
bandwidth is available in either route the burst is dis-
carded. If no reservation is used, non-reserved cells
should be identi�ed and switched to the primary or
the secondary route regardless of their VC. This might
cause a burst to have its head go in one route while
its tail goes in the other. However, the probability for
this happening is low since the time between switching
from route to route is long with respect to the short
burst length. Another possibility is to switch the route
only after an end-of-burst is detected. Further studies
are needed to investigate the implementation of the
last two methods.

One of the important merits of our algorithm is the
ability to implement it with simple hardware without
adversely e�ecting performance. In [7] we describe a
possible implementation of our algorithm for a source
routing based network. This implementation does not
add delay to packets that are not deected, and adds
only a small delay (a few byte transmission time) to
the ones that are deected.

References

[1] Jean-Yves Le Boudec. The asynchronous transfer
mode: a tutorial. Computer Networks and ISDN
Systems, 24:279 { 309, 1992.

[2] Pierre E. Boyer and Didier P. Trachier. A reserva-
tion principle with applications to the ATM traf-

�c control. Computer Networks and ISDN Sys-
tems, 24:321 { 334, 1992.

[3] Robert G. Busacker and Thomas L. Saaty. Fi-
nite Graphs and Networks: an introduction with
applications. McGraw-Hill, 1965.

[4] I. Cidon, I. Gopal, P. M. Gopal, R. Gu�erin,
J. Jannielo, and M. Kaplan. The plaNET/Orbit
high speed network. Technical Report RC-18270,
IBM, T. J. Watson Research Center, Yorktown
Heights, NY, March 1993.

[5] Israel Cidon and Inder Gopal. PARIS: an ap-
proach to integrated high-speed private networks.
International Journal of Digital and Analog Ca-
bled Systems, 1(2):77 { 86, April-June 1988.

[6] Israel Cidon, Inder Gopal, and Adrian Segall.
Fast connection establishment in high speed net-
works. In ACM SIGCOM'90, pages 287 { 296,
1990.

[7] Israel Cidon, Raphael Rom, and Yuval Shavitt.
Fast bypass algorithms for high-speed networks.
Technical Report EE PUB No. 924, Technion -
Israel Institute of Technology, June 1994.

[8] Reuven Cohen, Baiju Patel, Frank Scha�a, and
Marc Willebeek-LeMail. The sink tree paradigm:
Connectionless tra�c support on ATM LANs. In
INFOCOM'94, pages 821 { 828, June 1994.

[9] Reuven Cohen and Adrian Segall. Connection
management and rerouting in ATM networks. In
INFOCOM'94, pages 184 { 191, June 1994.

[10] Daniel H. Greene and Donald E. Knuth.
Mathematics for the Analysis of Algorithms.
Birkhauser, second edition, 1982.

[11] Adrian Segall. Distributed network protocols.
IEEE Transaction on Information Theory, IT-
29(1):23 { 35, January 1983.

[12] Jonathan S. Turner. Managing bandwidth in
ATM networks with burtsy tra�c. IEEE Net-
work, 6(5):50 { 58, September 1992.

