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ABSTRACT

Consider M − HChoose P − T communications: T users or less, out of M potential users,

are chosen at random to simultaneously transmit binary data over a common channel. A method

for constructing codes that achieve error-free M − HChoose P − T communication over the noise-

less Adder Channel (AC), at a nominal rate of 1/ T bits per channel symbol per active user, is

described and an efficient decoding procedure is presented. The use of such codes is referred

to as Forward Collision Resolution (FCR), as it enables correct decoding of collided messages

without retransmissions. For any given T a code is available that yields a stable throughput arbi-

trarily close to 1 message/slot. Furthermore, if the occurrence of collisions is made known to the

transmitters, such a throughput can be maintained for arbitrary T , T ≤ M as well. If such feed-

back is not available, and T is random, the probability of an unresolved collision is significantly

smaller than the probability of a collision in an uncoded system, at comparable message-arrival

and information rates.
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I. INTRODUCTION

The problem of sharing a common channel by several users has been mostly treated within

the framework of either of the two categories described by Gallager in his review paper [1 and

references cited therein]:

(i) The multiuser channel: All users transmit simultaneously with their transmissions mutually

interfering. The number of users is usually not large and certainly finite. Feedback is typically

unavailable and redundant coding is used to enable correct reception of messages in the pres-

ence of interference [2].

(ii) The random access channel: A very large number, often modeled as infinite, of potential users

is assumed, each having a very small, even vanishing rate of message generation.Then with

high probability not more than a single transmission occurs in the channel in any specific

transmission interval. In general, no provisions are made to correctly decode the messages

when they interfere: interfering messages are assumed to be lost and their retransmission is

scheduled by a collision resolution algorithm (CRA), which presumes some form of feedback [3].

Recently, new techniques for accessing channels that do not depend on feedback have been

introduced [4, 5] and analyzed [5].

Pointing out this (unnatural) dichotomy of research efforts in his review paper, Gallager

suggests that what is needed is a coding technology that is applicable for a large set of

transmitters of which a small, but variable subset, simultaneously use the channel. One avenue

in this direction is the formulation of the problem of M-Choose-T communication: A finite popula-

tion of M potential users is given and a number T or fewer users (T ≤ M) are active, that is only

they are transmitting in any given time. The number and identity of the active users is not known

to the receiver(s). Thus each receiver has to identify all active users and their respective mes-

sages. We distinguish among the following cases: T is given, arbitrary, or random. Tsybakov

and Likhanov [6] and Bassalygo and Pinsker [7] have treated the M − HChoose P − T problem
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with given T over the collision channel that was defined in [5], and have shown that asymptoti-

cally (as M and T→ ∞), a throughput of e− 1 is achievable.

In [8] Dyachkov and Rykov considered M-Choose-T Communication over the discrete-time

and fully synchronized noiseless adder channel (AC). There, Bs-codes and (s,t)-plans were

used to identify the active transmitters and the destinations of the messages that were sent.

After the identification stage, the active users share the channel on a TDMA basis. Lower and

upper-bounds for the length of the codewords needed to find the active users were derived, for a

given predetermined value of T.

Another related work by Lindstrom [9] addresses the problem of finding defective elements

within a finite set by unramified experiments. In his work Lindstrom describes a method for con-

structing a matrix, such that distinct subsets of T columns in the matrix have distinct sums (the

summation of the columns is carried over the real numbers). Matrices with this property will also

be used by us, in the construction of codebooks for M-Choose-T Communication.

Recently, Mathys [10] also considered the M–Choose–T Communication over the AC. For

a given value of T, he showed a construction of M codebooks, one for each potential user, such

that if the decoder knows the set of active users, the sum of codewords of any T or fewer users

is uniquely decodable. When the set of active users is not known to the receiver, it is shown that

this set can be identified uniquely (in addition to unique decodability) provided that at most T /2

users are active simultaneously. When the inputs to the channel are binary, the information rate

of each codebook approaches 1/ T from above. Thus, the aggregate information rate of the

codes is 1 bit per channel symbol when the set of active users is known to the decoder and it

reduces to 0.5 bits per channel symbol when this set is not known.

In the present paper, we also address the M − HChoose P − T Communication problem

over the fully synchronized noiseless AC. The time-discrete noiseless AC is defined [2] by the

following relation between its output Z and its inputs Xi ,i = 1 , 2 ,... ,T:
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Z =
i = 1
Σ
T

Xi , Xi ∈ { 0 , 1 } ,

Each input Xi , i = 1 , 2 , . . . , T to the channel is either 0 or 1, and the channel output Z is the

sum of the inputs where summation is over the real numbers.

We introduce (in section II) a class of codes that achieve an aggregate rate of 1 bit/channel

use. A simple decoding procedure appropriate for the case of given T is presented in section III.

We refer to the use of such codes as Forward Collision Resolution (FCR); they ensure correct

reception of collided messages without the need for their retransmission. The aggregate

transmission rate using these codes is 1 bit per channel symbol if T users are simultaneously

active. If less than T users are active, the aggregate rate decreases proportionally.

Note however that an aggregate rate of 1 bit/channel use is far below the capacity of the AC. It

is well known [11] that when all M users are simultaneously active, the capacity of the AC is

approximately
2
1_ _ logM. For M-Choose-T Communications, applying the coding theorem of [12]

to the AC case, reveals that the capacity is approximately
2
1_ _ logT. (This result is only an

existence proof derived by random coding arguments).

In a realistic situation the value of T is neither constant nor can it be predetermined. In

such a case, if feedback about collisions is available at the transmitters, we show in section IV

that the FCR codes can be used in an efficient channel-accessing algorithm. The algorithm is

adaptive in the sense that if L users are active simultaneously, the transmission rate for each

user adjusts to 1/ L, such that an aggregate rate of unity is maintained. Furthermore, it is shown

that such performance is available with bounded transmission delay. This case is treated in sec-

tion IV.

In other applications, such as the hidden terminal case [13], feedback about collisions is not

available. In such cases an appropriate performance criterion is the probability of errorless

reception. This can be evaluated if T is considered a random variable. It is shown in section V

that if FCR codes are used, the probability of erroneous reception of messages is considerably
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reduced.

II. CODING FOR M-CHOOSE-T COMMUNICATIONS OVER THE ADDER CHANNEL

We consider a symmetrical situation in which the information rate for each user is R, and

each codeword has exactly N binary digits. In addition, perfect block and bit synchronization

among the M potential users is assumed througout the paper.

Code construction:

Assign to each user i of the M users a codebook Ci, with Ci = 2RN binary codewords

(i = 1 , ... ,M). A necessary condition for error free M − HChoose P − T communication is

{ Ci } ∩ { Cj } = ∅ , j≠i. Denoting by C the set
i = 1
∪
M

Ci , the requirement that C = M2RN

follows. Let the codebook C be the columns of a parity check matrix H of a T-error correcting

primitive BCH code [14 ch. 7. 6]. Partition these columns equally among the M users to con-

struct the codebooks Ci i = 1 , 2 , . . . M.

Claim: The construction ensures error free M − HChoose P − T communication at a rate of 1/T

per active user.

Proof: We first demonstrate the error-freedom property. This hinges on the property of a linear

T-error correcting code that any 2T columns of its parity check matrix are linearly independent

[14, pp. 33]. Thus, the sum of any T or fewer columns of H, differs from that of any other T or

fewer columns, which is a sufficient condition to uniquely decode the transmitted codewords,

when T or less users are active. Furthermore, since the columns are distinct it follows that

{ Ci } ∩ { Cj } = ∅ (i , j = 1 , 2 , ... ,M ; i≠ j). Hence correct decoding of the messages

also uniquely identify the transmitters.

We next estimate the rate of error-free transmission. The matrix H has 2m − 1 columns of

m . T bits each, where m is an arbitrarily large, free design parameter. The code rate R of each
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user is given by setting N = mT and M . 2RN = 2m − 1. Then

R =
T . m

1_ ______ . log
M

2m − 1_ _______
m >> 1

∼∼
T
1__ ( 1 −

m
log M_ _____ )

m→ ∞
→

T
1__

It follows from the above relation that, in order to achieve a rate of
T

( 1 − ε)______ per user, the

codeword length N = mT ∼∼ T log (
ε
M_ __ ) increases only logarithmically with M. For example if

M = 200 , T = 10 and the designed aggregate sum rate is 0.95, then we have m = 153 and

N = mT = 1530. Although the codebook size for each user is ( 2m − 1 )/ M = 5. 71 . 1043 ,

the encoding complexity is proportional to the complexity of raising the primitive element α of

GF( 2m ) to the appropriate powers, as can be seen from the structure of H in Fig. 1a. There

the construction of the H matrix is illustrated in terms of the binary m-tuple α which is the genera-

tor of the multiplicative group of GF( 2m ) [14, p. 204]. The symbol 1_ _ represents the m-tuple

( 1 0 0 . . . 0 ). An example for T = 2 and m = 4 is presented in Fig. 1b: every 4 columns are

linearly independent over GF( 2 ).

III. DECODING PROCEDURE FOR GIVEN T

Let Z_ _ be the output vector from the AC. From Z_ _ , a second vector Y_ _ is derived,via a sym-

bol by symbol modulo 2 operation, i.e. Y_ _ = Z_ _ mod 2. It follows from the code construction that

Y_ _ is a modulo 2 sum of up to T columns of H. Denote the transmitted columns by

X_ _ i1
, X_ _ i2

, . . . , X_ _ ir
(r ≤ T), where i1 , i2 , . . . , i r ∈ { 0 , 1 , 2 , . . . , 2m − 2 } are the ordinal

numbers of the corresponding columns, selected from H for transmission, increasing from left to

right. Owing to the structure of H (Fig. 1a), it is sufficient to recover from Y_ _ the first m bits of

each transmitted codeword X_ _ j, that is α j, j = i1 , . . . , i r; the remaining (T − 1 ) . m bits of each

codeword are found by raising α j to its odd powers from 1 up to 2T − 1, to yield

α3 j , α5 j , α( 2T − 1 ) j. Here, multiplications are in GF( 2m ).
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In error-correcting code terminology the term syndrome vector is used to denote the sum of

those columns of H whose indices correspond to the locations of "1" elements in the error vector

[14, p. 17]. The vector Y_ _ , being the mod 2 sum of T or fewer columns of H, can therefore play

the role of a syndrome in a T-error correcting BCH code; the indices i1 ,... ,i r playing the role of

the "1" elements in the error vector. Thus,the proposed decoding procedure uses steps from the

decoding of BCH codes. The computation of the syndrome, which is the initial step in BCH

decoding is not needed in our case since Y_ _ is the syndrome itself. The first step then, is to find

the error-locating polynomial. If the Berlekamp-Massey algorithm is used, this step requires

O( ( 2T + 1 )2 . log2 ( 2m − 1 ) ) ∼∼ O(N2 ) operations over GF( 2 ), since N = mT.

The next step is to find the roots of the error-locating polynomial in GF( 2m ). This yields

αi1 , αi2 , . . . αir , which are the first m bits of each transmitted codeword. This requires

O( ( 2T + 1 )3 . log3 ( 2m − 1 ) ) ∼∼O(N3 ) operations over GF( 2 ) [15]. The consecutive (T − 1 ) . m

bits of each codeword are found by rasing to the appropriate odd powers, as pointed out above.

The complexity of the decoding procedure is thus polynomial in the length N (of the order of

N3 operations), and the decoding can be implemented on sequential machines as discussed in

[15]. For the previous example, taking M = 200 , T = 10 and m = 153 , we find that

N∼∼3. 6 . 109 operations over GF( 2 ) . However, when m is not too large, implementation of

the decoding steps can be done with shift registers circuits, with m cells in each register.

IV. M-CHOOSE-T COMMUNICATION WITH ARBITRARY T

In a realistic situation the value of T is neither constant nor can it be predetermined. Then

if the actual number of active users is less than T, channel resources are wasted, and if larger

than T, disrupting collisions occur. However, we show below that for applications where feed-

back about collisions is available to all transmitters an efficient adaptive channel-accessing algo-

rithm, based on the FCR codes that overcomes this difficulty, does exist. The algorithm ensures
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errorless transmission at a throughput of unity for any number of active users up to M. More pre-

cisely, the proposed algorithm yields a nominal rate of 1/ L per active user, for any number L of

active users 1 ≤ L ≤ M. The algorithm is suited for a slotted system, in which the duration of

each slot is equal to the time needed for transmission of m bits by an active user. It also

assumes that there exists an independent, errorless feedback channel through which all users

are notified at the end of every slot about one of two outcomes success or collision.

A. The Algorithm

The algorithm is based on the observation that if exactly k users transmit, then a

M − HChoose P − k code is sufficient. It also requires the availability of a mechanism to deter-

mine whether more than k users had been active when a M − HChoose P − k code was used.

One such mechanism for the BAC is described below.

Denote by Hk the H matrix of a M − HChoose P − k code. In this notation Fig. 1a is an HT

matrix and Fig. 1b an H2 matrix.

The algorithm proceeds as follows: Each active user transmits an m-tuple which is the

column in H1 that corresponds to its message. If there was a single user the operation is suc-

cessfully completed and success is fed back. If however, there were more users, collision is fed

back, whereupon each active user transmits the second m-tuple of the column in H2 that

corresponds to its message. Two users will succeed at this stage.

In general if there are v users the algorithm will end when the columns of the Hv will have

been used, that is after exactly v slots. Thus, the algorithm does achieve an aggregate

throughput of unity for arbitrary number of users, up to M. One mechanism to determine the

required feedback is to require every active user to prefix the signal "1" to its transmitted m-tuple.

At the receiver of the AC these signals sum up so that at the end of the first slot the receiver

knows exactly the number of transmitters. Note, however, that the transmitters need not know

the number of active users, and therefore a success/collision feedback suffices.
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B. Delay-Throughput characteristics of the algorithm

In this section we use a network model that was presented in [16, 17] and discuss the aver-

age delay that a message incurs from the time it is generated until it is successfully transmitted

with the use of our channel access algorithm.

Consider M identical users each having a single-message buffer. Every user having an

empty buffer generates a message in any slot with probability p( = 1 − q); Once the user

schedules its message for tranmission (i.e, after having received success feedback in the previ-

ous slot) the buffer is considered empty and the generation process restarts. Transmission rules

follow our access method.

A detailed analysis of the delay-throughput characteristics of the algorithm can be found in

[18]. Fig. 2 depicts the average normalized delay versus throughput for message length m=200

and M=5,10,15. If D
_ _

is the average delay of a message then the normalized delay D is defined

by D =
M
D
_ _

_ __ . It can be seen that if the traffic is light the average delay is close to two slots. At high

load the average delay approaches 2M slots. We have compared these results with a slotted

ALOHA system having the same number of potential users and the same statistical assumptions

about arrivals. The average delay for ALOHA systems in moderate or heavy traffic is larger,

about 3M to 10M. Another advantage of our algorithm is that its maximal throughput is

( 1 −
m

logM_ _____ ), while for the finite ALOHA system the maximal throughput is about 0.4. However,

we mention again the necessity of full (block and bit) synchronization in our algorithm, which is

not required in the Slotted Aloha system.

A similar (but much more complex), analysis can be done in the case that each potential

user has a K-message buffer (K > 1 ) . With our channel access algorithm, the system remains

stable as long as the aggregate message generation rate does not exceed
2
M_ __ messages per

slot, since in heavy load M messages are successfully transmitted after a delay of 2M slots.
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V. COMMUNICATION WITHOUT FEEDBACK WITH RANDOM T

When feedback about collisions is not available, an appropriate performance measure is

the probability Pe of erroneous reception of messages. For its evaluation we assume Poisson

arrivals with an (aggregate) average of λ messages per slot. Our purpose is to compare the

merit of using FCR codes. If we keep the transmission bandwidth fixed, namely we use the

same symbol durations for encoded and uncoded messages, the encoded messages (which we

name packets) are 1/ R times longer after encoding. Therefore Pe is given by:

Pe =
T = T0 + 1

Σ
∞

T !
(λ/ R)T . e− λ/ R
_ ______________

where T0 is the number of resolvable colliding messages and is a design parameter of the sys-

tem. In the proposed FCR codes the rate is R∼∼1/ T0. Table I presents Pe for λ = 0. 5 and vari-

ous values of T0 which the advantage of the technique is apparent. Note that T0 = 1

corresponds to uncoded transmissions.

T0 Pe_ _________

1 .090
2 .080
4 .053
6 .034
8 .021

10 .014
12 .009
14 .006












Table 1: Error Probability For λ = 0. 5 against T0

An illustrative sample of messages arrivals and their encoded transmission with rate 1/2 coding

is given in Fig. 3. Because of the encoding of transmitted packets the slots used for transmis-

sion are twice as large as that needed without encoding. This lengthening does cause some col-

lisions that wouldn’t have occurred in the uncoded case; these events are however much rarer

than those resolved by the coding.
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H =










1_ _

.

.

.
1_ _
1_ _
1_ _

α2T − 1

α5

α3

α

α2 ( 2T − 1 )

α10

α6

α2 . . .

α( 2T − 1 ) ( 2m − 2 )

α5 ( 2m − 2 )

α3 ( 2m − 2 )

α2m − 2 










a. General Construction

H =













0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
0 0 1 0 1 0 0 1 0 1 0 0 1 0 1
0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
− − − − − − − − − − − − − − −
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 














24 − 1 = 15

b. Example for T = 2 , m = 4. 15 codewords of length 8

Fig. 1. Codebook H


