
LOCATION OF CENTRAL NODES
IN TIME VARYING COMPU TER NETWORKS

Ariel Orda

Depa rtment of Elec trical Engineer ing
Technion - Israe l Institute of Tec hnology

Haifa , Isra el 32000

Raphael Rom†

Sun Microsystems Inc.
Mountain View , CA 94043

Marc h 1989
Revised April 1990

ABSTRACT

Some computer and communication networks requir e the assignment of ce rtain nodes to perf orm specia l,
network wide functions such as routing, monitoring etc. The natura l question that arises is which is the
best network node to per form the function. This is the essenc e of the location problem.

Resear ch in network loca tion problems conc entra ted on static environme nts, wher ea s many problems, in
particular those rela ted to computer networ ks, are dynamic in nature . In this work we consider the single
fac ility dynamic-ne twork location problem in a continuous domain of time.

We first formulate the problem, make some gene ral observa tions, and then solve it for a discrete time
domain. Ha ving bec ome ac quainted with the specificities of the problem we then off er a solution to the
continuous time domain. Finally, a distributed version of the algorithm is outlined and discussed.

Keywor ds: Networ ks, location, time-depe ndenc y.

† On leave from the Technion - Israel Instit ute of Technology. This research was supported in part by the Foundation for

Research in Electronics, Computers and Communications , Administered by the Israel Academy of Science and Humanities

I. INTRODUCTION

The control and opera tion of some computer and communica tions networks sometimes re quires the

existence of a ce ntral node which assumes "leader ship" for exec ution of specia l networ k tasks, e.g., by hav-

ing specific hardw are or proce ssing ca pabilities. For exa mple, choosing one node in a computer networ k to

serve as a "routing ce nter" that offer s routing service s to its subscriber s [1] or that per forms networ k moni-

toring func tions[2]. The network designer is there fore fa ced with a location dec ision namely whe re to

locate the "leader" from among a set of alter native locations and, if the func tion can cha nge its location,

when and how should this be done. Henc efor th, we shall use the term "fac ility" to re fer to the centra l node.

Consider for example a computer network in which all nodes re port periodica lly the condition of their out-

going links to some routing cente r which then disiminates a digest of this information to the individual

nodes of the network (a s curr ently done in the ARPANET[3]). Obviously, it is pref era ble to locate the

routing ce nter within a node which is as close as possible to all others. Howe ver, bec ause of time-varying

load conditions, ea ch potential node may be overloa ded at differ ent times of the day or may not be

`sufficiently close’ to all other nodes all the time. In other words, eac h potential node is "close" to the rest

at cer tain times but "far" at others. Thus, we may pre fer to cha nge the identity of the routing ce nter based

on time. This change consists of transmitting the networ k state betwe en the old and new cente rs (whic h,

for a networ k with m links, is an O (m) table) ; in many circ umstances the improvement due to the new

location of the cente r exce eds the pena lty of having to re locate it.

The above ar e instance s of a class of problems known as network location problems that wer e the

subject of extensive rese ar ch during the past fe w yea rs[4,5,6,7]. Apar t from computer networks, these

problems are of interest in the fields of transpor tation, city planning, and transmission.

A location problem can be desc ribed as the selec tion of one or more locations from among a set of

possible choice s, in order to satisfy re quirements imposed by a set of users or "customers". To solve a

location problem one must define a performance criterion that depends on the "transportation" costs

betwee n users and fac ilities such as trave l distance s or response time. Onc e defined the problem is then to

choose the locations that optimize the perf ormanc e criter ion. Two typical exa mples of the location prob-

lem ar e finding the (single) cente r i.e., a point in the network whose maximal distance to any customer is

minimal (the "minimax" criterion) or, finding the "median", i.e., a location whose ave rage distance to all

customers is minimal (the "minisum" criterion) [4].

Many location problems are pre sented as gra ph problems in which the vertice s of the graph re prese nt

the users while the arc s (and ver tices) are the points of potential fac ility location. Whe n ref err ing to nodes

and ar cs we ac tually ref er to the location problem as prese nted on a graph. Notew orthy is the fac t that the

optimal location of a fa cility does not nec essar ily coincide with the network nodes; in such ca ses the fac il-

ity is said to be located on an arc and the distance to the nea rest node is the fra ction of the total arc length.

One of the first and most fundame ntal results in networ k location theory was that of Hakimi[8] who

showed that under some simple assumptions there is always at least one node which is a median. Hakimi’s

result was expande d to a large variety of location problems (se e [4]). In fac t, a cla ss of problems having a

solution in the network nodes are re fer red to as having the Hakimi prope rty.

Resear ch in network location problems conc entra ted mainly on static environments, i.e., fixed topol-

ogy and fixed distance s betwee n nodes. Dynamic location problems were har dly trea ted and ar e cle arly of

interest in many networ ks--computer networks in particula r. In these networks topology and distance s ar e

subject to constant cha nge with time. Analysis of dynamic networ ks is fac ilitated since quite often the way

a networ k change s with time may be pre dicted or observe d or rec orded (se e [9] for a discussion of some

examples rela ted to computer networks) .

Of the few works that investigated dynamic location problems most considere d a discre te time

domain. We solowsky’s work[10] is one such exa mple. There , the problem is to locate a fac ility at eac h

"time period" so as to minimize the sum of the costs (during all periods) associa ted with the distance

betwee n the customers and the fac ility as well as the costs incurr ed by reloca ting the fac ility. In We solow-

sky and Truscott[11] a relate d problem is trea ted with more than a single fac ility and locations re stricted to

nodes of a networ k. These two works use integer progr amming and dynamic progra mming techniques to

rea ch the solution. Berma n and Odoni [12] treate d a problem close to that of [11] but assumed networ k

distances to be Markovia n variable s and tried to minimize the expec ted cost. It is prove d that Hakimi’s

result (see above) is valid in this ca se too. Howeve r, as observe d by the authors, their method of solution

becomes over ly complex for large networks or for a large time domain. In fac t, their problem is NP-har d

(this ca n be prove d using a reduc tion from the clique problem). They do, howeve r, off er an optimal solu-

tion for the limited ca se of a single fac ility and a tree shaped network.

In this work we consider a single-fa cility dynamic-ne twork location problem with a continuous

(rathe r than discrete) domain of time. We assume the network state change s constantly and thus at eac h

moment a differ ent point may be the best choice for fac ility loca tion. We take into acc ount the cost of

switching the fac ility from one node to another since this switching consumes resour ces (although switch-

ing does not nec essar ily involve physical reloca tion, the cost results from the nee d to reloca te the function).

Moreover , we assume these costs to be time depe ndent. We point out that we deal with a dete rministic

environment, and thus all functions are dete rministic. Introducing time depende ncy into network par ame-

ters was pre viously treate d in sever al works[9,13] . Results from these works are used in this pape r to

define the model as we ll as the problem.

The paper is orga nized as follows. In Section II we define and formulate the problem. Section III

presents an algorithm for a discre te time domain followed by Section IV wher e an algorithm for the gene ral

problem is pre sented, validated, and some spec ial case s discussed. A distributed ver sion is discussed in

Section V.

- 2 -

II. PROBLEM FORMU LATION

We consider a directe d network G (V ,E ,L) with V ={1,2,...n } being the set of nodes, E ⊆V ×V the

set of links, and L ={lik (t) (i ,k)∈E } a set of time depende nt link "lengths". Each func tion lik (t) is a

strictly positive func tion of time defined for [0,∞) that desc ribes some transportation cost on link (i ,k) at

time t . For exa mple, the cost might be the delay of a message leaving node i on link (i ,k) at time t . Net-

works of this type wer e previously studied[9] fr om which it is known that the time-distance betwe en any

two nodes ca n be efficiently found and we denote by l̃ik (t) the time distance betwee n two nodes i ,k ∈V .

As stated in the introduction there are seve ral plausible criter ia by which optimal locations ca n be

defined. These criter ia define the relation betwee n the objec tive function and the link costs. Since we dea l

with a time var ying environme nt the perf ormanc e measure itself will be a function of time denoted by

Ci (t). In other words, Ci (t) is the cost of having the fac ility locate d at node i at time t (we do assume the

function Ci (t) to be integrable) . For example, the minisum (or median) strategy is re prese nted by a cost

function Ci (t) =
k ∈V
Σ l̃ik (t) which must be minimized; the "minimax" strategy measuring the longest distance

from the cente r to any other node is repr esente d by the cost func tion Ci (t) =
k ∈V
max{l̃ik (t)}. Also, since in

gener al we do not require l̃ik (t)≠l̃ki (t) we ca n define direc ted strategie s such as the "in-minisum", "out-

minisum", a combination of the two, and so on.

To gain insight into the problem consider the simple three -node example depicte d in Figure 1 where

the arc lengths are denoted along the ar cs and are consider ed to be the dela y functions of traver sing the

arc s. De note x (t) the frac tional distance fr om node 2 of a point on link (2,1) at time t , that is, the dela y of

the point to node 2 is l 12
.x (t) and the dela y to node 1 is l 21

.[1−x (t)]. Then, it ca n be ea sily verified that the

location of the median (i.e., optimal location ac cording to the minisum cr iterion) is given by

1 2 3

l 21=4

l 12=1

l 32=∞

l 23(t)=





4

6t −2

1

1≤t

0.5≤t < 1

0≤t < 0.5

Figure 1: Example of minisum location with continuous functions

- 3 -

x (t) =





1

0

0.5−t

0.666≤t

0.5≤t < 0.666

0≤t < 0.5

Two intere sting observa tions result. First, we note that at times the fac ility must be loca ted on the

link, meaning that Ha kimi’s proper ty does not hold. The sec ond is that although all func tions involved are

continuous the location function x (t) is not, meaning that the median "jumps" (in our exa mple at t =0.666).

In the conte xt of computer networ ks these observa tions are not of particula r intere st since locating fac ilities

on arc s is meaningless. They are of interest in the gene ral context of networ k problems. In the context of

computer networks it is noteworthy to point out that eve n with continuous func tions it is not guara nteed

that the optimal location jumps betwe en neighboring nodes.

Having defined the cost functions Ci (t), we ca n now mea sure the total weight of having the fac ility

located at a node i during some interval [t ,τ]. This is given by

Wi (t ,τ)=
∆

t

∫
τ

Ci (y)dy

Switching the location, as we mentioned, consumes resourc es. Henc e the switching must come at a

cost which must depe nd on the following:

• The identity of the curr ent and the new location.

• The duration of time ava ilable for making the switch (making a faster switch is costlier) ; the avail-

able time is measure d from the moment the first node starts to "host" the fac ility until the new

node take s over .

• The time in which the switch takes place . In a time depe ndent system there may be times in which

the switching is costlier than in others.

Thus, for eac h pair of nodes i ,k ∈V we define a switching cost func tion Sik (t ,τ) to acc ount for

switching the fac ility from node i to node k (k ≠i) when node i hosts the fa cility during the per iod [t ,τ).

The following assumptions ar e made rega rding these func tions:

1. Switching always comes at a cost thus it must be that \⁄−i ,k ≠i ,t ,τ> t Sik (t ,τ)> 0.

2. For ea ch t 0, Sik (t 0,τ) is non increa sing with re spect to τ and for eac h τ0, Sik (t ,τ0) is non decr eas-

ing with respe ct to t .

3. Since switching the fa cility must take time we require that
τ−t →0
lim Sik (t ,τ)=∞.

4. For all pra ctical purposes we may assume that Sik (t ,τ) is continuous or piece wise continuous in t

and τ. Also, in order to guara ntee the existenc e of an optimal solution to the problem (se e

below) we requir e that for eac h τ0 and for all t Sik (t ,τ0)≤min{Sik (t −,τ0),Sik (t +,τ0)} and for eac h

t 0 and for all τ Sik (t 0,τ)≤min{Sik (t 0,τ
−),Sik (t 0,τ

+)}.

- 4 -

To formulate the problem we need two more definitions:

Definition 1: A Location Sequenc e (ls) for an interva l [0,t] is a finite sequenc e of orde red pairs

ls = 
(v 0,t 0),(v 1,t 1), . . . , (vm ,tm) 

 such that v 0,v 1, . . . , vm ∈V is a sequenc e of fa cility loca-

tions and 0=t 0< t 1< . . . < tm < t are the moments of fa cility reloc ation. We say that this

sequenc e is of length m +1. The set of all loca tion sequenc es for the interva l [0,t] is

denoted LS (t).

Definition 2: The Location Sequenc e Cost (C (ls ,t)), namely the cost of locating the fac ility during the

interval [0,t] as dictated by the loca tion sequenc e ls is given by

C (ls ,t) =
∆

i =0
Σ

m −1

Wv

i
(ti ,ti +1) + Sv

i
,v

i +1
(ti ,ti +1)


 + Wv

m
(tm ,t)

With the above definitions the Time Varying Loca tion (TVL) Problem is defined as follows:

Problem TVL: For an interva l [0,T] find a location sequenc e ls * ∈LS (T) such that

\⁄−ls ∈LS (T) C (ls * ,T)≤C (ls ,T) .

Using standar d methods, it ca n be ver ified that the fourth proper ty of the func tions Sik (t ,τ) and the

continuity of the functions Wi (t ,τ) guara ntee the existence of a solution to problem TVL.

The third prope rty of the functions Sik (t ,τ) rules out an infinite optimal loca tion sequenc e, and there-

fore the solution of problem TVL will give us an optimal location policy.

- 5 -

III. A DISCRETE DOMAIN PROBLEM

In order to gain insight into the continuous ca se of TVL problems and their solutions we pre sent first

a solution to a discre te ver sion of the problem. Let the time axis be divided into slots, or periods, that are

numbered seque ntially. The fac ility ca n be switched betwe en nodes only at the beginning of a slot. We

consider a time interva l [0,T] wher e T is an integer and define for ea ch slot m (m =0,1, . . . , T −1) the fol-

lowing varia bles, similar to those defined for TVL:

- The weight of node i at slot m : W i (m)=
∆
Wi (m ,m +1).

- The cost of switching the fa cility from node i to node k at the end slot m :

Sik (m)=
∆
Sik (m ,m +1) for i ≠k and Sii (m)≡0.

- A discrete location sequenc e (ls ) which is a finite seque nce ls =(v 0,v 1, . . . , vT −1) wher e

vm ∈V is the loca tion of the fac ility during slot m . The set of all discre te loca tion sequenc es

is denoted LS .

- The cost of a discrete location seque nce given by

C (ls ) =
∆

m =0
Σ

T −2

W v

m
(m) + Sv

m
,v

m +1
(m) 

 + W v
T −1

(T −1)

With the above the discre te time varying location (DTV L) problem ca n be stated as follows:

Problem DTVL: For an interval [0,T] find a discre te location sequenc e ls * ∈LS  such that

\⁄−ls ∈LS  C (ls *
)≤C (ls ) .

Our solution is base d on construc ting a graph G∧(V∧,E∧,L∧) der ived from G (V ,E ,L) which we do in

two steps. First we derive the graph G (V ,E ,L) in the following manner :

• The set of nodes V  is derive d by having ea ch node of V split into T nodes, that is

V  = {v 0,v 1, . . . , vT −1  \⁄−v ∈V } .

Note that there is a par enthood re lation P :V →V that associate s with ea ch node in V  one node in

V . We re fer to node vi ∈V  as being the leve l i desce ndent of node P (vi).

• The set of links is defined as

E  = {(vi ,ui +1) vi ,ui +1∈V  0≤i ≤T −2}

that is, ever y node of level i is connec ted with eve ry node of level i +1, even if they corr espond to

the same pare nt. In other words, in the definition above it is possible that P (vi)=P (ui +1) (this will

corre spond to the fac ility being hosted in a node for more than a single slot).

• The set of link costs L={l(e) e∈E } where the cost of the individual link is given by

- 6 -

l((vi ,ui +1)) =
∆

W P (v
i
)(i) + SP (v

i
),P (u

i +1
)(i)

Next we derive G∧ from G  by introducing two additional nodes re fer red to as "source" (s) and "desti-

nation" (d) and sever al links. We add zer o-cost links betwee n node s and eve ry node of V  of level 0.

Also, we add a link betwe en ever y node of V  of level T −1 to node d . The cost of a link (vT −1,d) is given

by l((vT −1,d))=
∆
W P (v

T −1
)(T −1).

There is a one-to- one corre spondenc e betwee n the set of paths in G∧ betwee n nodes s and d and the

set of discre te location sequenc es LS . The sequenc e of nodes corr espond to the nodes along the path and

the sequenc e of times corr espond to the level of the nodes. The cost of a sequenc e, C (ls ), is clea rly the

sum of the costs of the links along the path. Thus, solving the DTVL problem on gra ph G is equivale nt to

solving a re gular shortest path problem on graph G∧ which ca n be done in any of the many ava ilable algo-

rithms[14]. A typical and simple algorithm will requir e O (V 2T 2) oper ations.

It is interesting to compar e this result with those of Berman and Odoni[12] since in both ca ses a

discrete time varying environment is investigated. In our ca se the varia tions in time are assumed known

where as in[12] only the invaria nt switching proba bilities ar e known. This differ ence in models leads to the

ability to find a polynomial solution (in both V  and T ) for our problem compare d to the inability of

doing so in the other case .

- 7 -

IV. THE ALGORITHM

The discussion in the previous chapte r suggests that problem TVL may be solved by shortest path

algorithms. Since we deal with a time varying environment, the shortest path algorithm should be one of a

class desc ribed in [9]. In this section we first specif y an algorithm and then prove that it solves problem

TVL. For brevity we divide the algorithm into two par ts: the first and main one, ca lled Algorithm Cost,

computes the cost of the optimal location seque nce while the sec ond (and much simpler one) , called Algo-

rithm Sequence , ca lculates the seque nce itself. Some specia l ca ses ar e discussed at the end.

A. Specification

Algorithm Cost gets as input an instance of the TVL problem name ly, the interval [0,T] and the two

sets of functions Wi (t ,τ) and Sik (t ,τ) all defined for that interva l. It computes two sets of functions Xi (t)

and Yik (t) from which the cost of the optimal location sequenc e is computed and from which the optimal

location sequenc e ca n be der ived by Algorithm Sequence .

Notably differ ent fr om typical algorithms, these algorithms opera te on functions i.e., assignment,

addition, or any other oper ation is per formed on entire functions. In particula r, we nee d to be able to detec t

functions that change during the exe cution of an algorithm step. We use the term "just change d" to mean

that there exists at least one time instance t for which a func tion cha nged its value during the most re cent

opera tion perf ormed on that function.

The algorithms make use of two internal functions of time defined for [0,T] as follows:

- For eac h node i ∈V , Xi (t) is the best known cost (at that stage of algorithm exe cution) of a

location sequenc e in the interval [0,t] in which i is the last node.

- For eac h pair of nodes i ,k ∈V , i ≠k , Yik (t) is the best known cost (at that stage of algorithm

exec ution) of a location sequenc e in the interval [0,t] in which the last switch is fr om node i

to k and take s plac e at time t .

We shall prove that at the end of exec ution the functions Xi (t) and Yik (t) ar e the best respe ctive cost

functions, from which the optimal location seque nce can be derive d.

Algorithm Cost

1. \⁄−i ∈V Xi (t)←Wi (0,t)

2. \⁄−i ,k ∈V , k ≠i

Yik (t)←
0≤τ< t
min{Xi (τ)+Wi (τ,t)+Sik (τ,t)}

3. \⁄−k ∈V Xk (t)←
i ∈V ,i ≠k ,τ< t

min {Yik (τ)+Wk (τ,t)}

4. If for some i ∈V Xi (t) just cha nged then go to step 2, else stop.

- 8 -

Some explana tion of the computation is called for . In step 1 we assume that there will be no switch

and node i will host the fac ility for the entire period. In step 2 we consider a switch from node i to k to

take place at time t . Assuming Xi (τ) to repr esent the optimal cost (known so fa r) of a loca tion sequenc e in

the interval [0,τ] with i the last node we have that the cost of making a switch at time t > τ is

Xi (τ)+Wi (τ,t)+Sik (τ,t) incorpor ating the additional cost of staying at node i during the interva l [τ,t] and

the cost of switching in that interval. We then choose the optimal τ to yield the proper value of Yik (t). In

step 3 we use the new values of Yik (t) to update the value s of Xk (t).

In ana logy to the solution of the discrete problem, the algorithm prese nted above rese mbles a shortest

path algorithm in a time varying environment betwee n fictitious sourc e and destination nodes. Paths and

sequenc es cor respond to one anothe r as in the discrete algorithm.

Having computed the functions Xi (t) and Yik (t) for all i and k , Algorithm Sequenc e ca lculates the

sequenc e itself. In the desc ription we use the opera tor "&" to mean conc atena tion, i.e., prepe nding a com-

ponent to a seque nce.

Algorithm Sequence

1. k ←min{j \⁄−i ∈V Xj (T)≤Xi (T)}, t ←T , ls ←∅.

2. If Xk (t)=Wk (0,t) then

a. ls ←(k ,0) & ls .

b. Stop.

3.

a. Find a node l and a time τ< t such that Xk (t)=Ylk (τ)+Wk (τ,t).

b. ls ←(k ,τ) & ls .

c. k ←l , t ←τ.

d. Go to step 2.

The algorithm builds the location sequenc e bac kwar ds starting with an empty list. We know the

identity of an optimal location at time T : this is a node for which Xj (T) is minimal. Given that at time t

the fac ility is located at node k we look, in step 3, for the time τ and node l in which the most re cent node

switch ocurr ed (step 3.a) . Having identified these we pre pend the component (k ,τ) to the location

sequenc e. Step 2 assure s termination and the addition of the first component to the sequenc e.

B. Validation

Algorithm Cost gener ates as its output the func tions Xi (t) and Yik (t) yet we are intereste d in location

sequenc es; hence it is nec essary to define a corr espondenc e betwee n location seque nces and the

algorithm’s output. As a first step we establish a cor responde nce betwe en the func tion Xi (t) and the cost of

a location sequenc e.

- 9 -

From the structure of Algorithm Cost it is clea r that at any stage of exe cution for eac h i ∈V and time

t∧ ∈[0,T] there is at least one location sequenc e ls =[(v 0,t 0),(v 1,t 1), . . . , (vm =i ,tm ≤t∧)], whose cost with

respec t to interva l [0,t∧] equa ls Xi (t∧). In other words there is a location sequenc e the last node of which is

node i , the last switching time takes place not afte r t∧, and the cost of the sequenc e is exa ctly Xi (t∧).

Suppose that af ter Algorithm Cost stops node j is such that \⁄−i ∈V Xj (T)≤Xi (T), i.e., Xj (T) is

minimal. The optimal loca tion sequenc e ls * is the loca tion sequenc e that corr esponds to Xj (T). We prove

this cla im via a main theore m that we prec ede by auxiliary lemmas.

Observing the exe cution of Algorithm Cost we note that it exe cutes step 1 once and then steps 2

through 4 repe atedly. We thus define ever y passage through step 2 as an "iteration" of the algorithm, and

the exec ution of step 1 (the initialization) as the ze roth iteration.

Lemma 1: For ea ch node j ∈V and time t∧ ∈[0,T], af ter the N -th iteration, Xj (t∧) equa ls the cost of an

optimal location sequenc e for the interval [0,t∧] among all location sequenc es of length at most N +1 whose

last node is j .

Proof: We note that for any given value of t the value of the func tions Xi (t) and Yik (t) (for all i ,k)

cannot increa se from one itera tion to the next. We proc eed to prove the lemma by induction on N . The

claim is clea rly true for N =0. Assuming truth for N −1 we prove for N . Let

lsN = [(v 0,t 0),(v 1,t 1), . . . , (vm =j ,tm)] (m ≤N) be an optimal location seque nce for interval [0,t∧] among all

location sequenc es of length no more than N +1 whose last node is j . Denote

lsN −1 = [(v 0,t 0),(v 1,t 1), . . . , (vm −1,tm −1)]. By the inductive assumption af ter N −1 iterations

Xv
m −1

(tm −1)≤C (lsN −1,tm −1). Thus afte r perfor ming step 2 at the N th itera tion we have

Yv
m −1

,v
m
(tm) ≤ Xv

m −1
(tm −1)+Wv

m −1
(tm −1,tm)+Sv

m −1
,v

m
(tm −1,tm) ≤

≤ C (lsN −1,tm −1)+Wv
m −1

(tm −1,tm)+Sv
m −1

,v
m
(tm −1,tm) = C (lsN −1,tm)+Sv

m −1
,v

m
(tm −1,tm)

In the above inequality the first transition stems from the fa ct that Y is chosen as the minimum in step 2;

the second transition incorpora tes the inductive assumption; the last transition is mere ly a time extension

(without switching) at the last node. After perf orming step 3 at that iteration we have

Xv
m
(t∧) ≤ Yv

m −1
,v

m
(tm)+Wv

m
(tm ,t∧) ≤ C (lsN −1,tm)+Sv

m −1
,v

m
(tm −1,tm)+Wv

m
(tm ,t∧) = C (lsN ,t∧) .

In this inequality the first transition is due to the minimality of X (step 3), the sec ond transition incor-

porates the pre vious inequality, and the last transition is by the definition of C (lsN ,t∧). Since lsN is optimal

we have Xv
m
(t∧)=C (lsN ,t∧).

Lemma 2: Algorithm Cost stops after a finite number of iterations; when this happens there is a node j for

which Xj (T)=C (ls * ,T) wher e ls * is an optimal location seque nce (f or [0,T]) whose last node is j .

Proof: Let LSi (t) denote the set of location sequenc es for interval [0,t] ea ch having i as its last node.

As was previously explaine d, an optimal location seque nce for any finite interva l is finite. Thus, there is a

finite N such that \⁄−i ∈V , t∧ ∈[0,T], there is an ls∧∈LSi (t∧) such that \⁄−ls ∈LSi (t∧) C (ls∧,t∧)≤C (ls ,t∧) and the

length of ls∧ is at most N . It follows from the algorithm and from Lemma 1 that af ter N iterations Xi (t)

- 10 -

stops changing for all i ∈V . It also follows from Lemma 1 that if j is the last node in an optimal location

sequenc e ls * (for [0,T]) then when the algorithm stops Xj (T)=C (ls * ,T).

Lemma 3: Algorithm Sequenc e stops af ter a finite number of steps and produce s (in the variable ls) an

optimal location sequenc e.

Proof: As a re sult of Lemmas 1 and 2 the value of Xi (T) equa ls the cost of an optimal loca tion

sequenc e for the interval [0,T] with i the last node of the sequenc e. Algorithm Sequenc e choose s (step 1)

that node for which Xj (T) is minimal. To prove the lemma we nee d theref ore to prove that for a given j

Algorithm Sequence computes, in a finite number of steps, a location seque nce whose cost is Xj (T).

Denote ea ch passage through step two as an "iteration", and assume that at a ce rtain iteration k =k 0

and t =t′ . Then, either the loca tion sequenc e [(k 0,0)] corr esponds to Xk
0
(t′), in which case step 2a is per -

formed and the algorithm stops in step 2b, or there is a location seque nce ls′ =[(v 0,t 0) , . . . ,

(vm −1,tm −1),(k 0,tm)] such that ls′ corre sponds to Xk
0
(t′) and step 3 is exec uted. In this ca se we find vm −1

(ca lled l in this step of the algorithm) and tm (ca lled τ in this step) and make the appr opriate setting. We

are now left with a new value Xv
m −1

(tm) which corr esponds to the loca tion sequenc e

[(v 0,t 0), . . . , (vm −1,tm −1)]. The above ar guments indicate that the algorithm does not dea dlock, that is,

either step 2a or 3 ar e perf ormed in ea ch iteration and that a location seque nce cor responding to Xj (T) is

constructed. Since (fr om Lemma 1) such a seque nce is finite and since eac h itera tion incre ases the length

of the loca tion sequenc e by unity, it follows that the algorithm is finite.

The properties of the algorithm proven in the above lemmas ca n be there fore summarized in a single

theorem whose proof follows direc tly from the lemmas:

Theorem: A solution to problem TVL ca n be found within a finite number of steps by exe cuting

Algorithm Cost followed by Algorithm Sequenc e.

The above claims and theore m show that the algorithm has a "universality" proper ty: afte r complet-

ing the computation for an interva l [0,T] we ca n identify an optimal location sequenc e for any subinterval

[0,t], t ≤T by running Algorithm Sequenc e with t replac ing T . Howeve r, the solution itself is not univer-

sal, i.e., an optimal location seque nce for [0,t] is not nec essar ily a prefix to any optimal one for a larger

time interval.

C. Special cases

The solution prese nted above to problem TVL ca n be easily modified to dea l with some common

special case s, as follows:

• Transiti on betwee n neighbors only. In many case s it makes sense to move the fa cility only

betwee n neighbors in the graph. By setting Sik (t ,τ)=∞ for (i ,k)/∈E the algorithm will exc lude the

undesired transitions.

• Restricted locations. Assume that the loca tion of the fac ility is restric ted to a fe w nodes. Then,

setting Wi (t ,τ)=∞ for all nodes i which may not host the fa cility will ensure that the algorithm will

not dictate loca ting there the fac ility.

- 11 -

• Bounded switching time. It may be useful to re strict the ra te of switching which ca n be done by

ensuring that the fac ility stays at a node for a minimum time period θ (0< θ≤T). Setting Sik (t ,τ)=∞
for eac h i ,k ∈V and all τ< t +θ will enfor ce this re quirement.

• Limited number of switches. It may also be desira ble to restric t the number of switches during the

period in question. This can be had by running Algorithm Cost for at most N iterations. Lemma 1

guara ntees that at that stage we have an optimal sequenc e among those limited to length N +1.

- 12 -

V. A DISTRIBUTED PROTOCOL

Since we dea l with computer communica tion networks it is of intere st to consider a distributed exe-

cution of the algorithm. The structure of the algorithm rese mbles the shortest path algorithms pre sented in

[15] that lend themselves ea sily to distributed computation. In the following we outline one possible distri-

buted implementation of the protocol.

We assume that ea ch node i ∈V rec ognizes the values of T , Wi (t ,τ), and Sik (t ,τ) (for all k ∈V) in the

interval [0,T]. The protocol has to find an optimal location sequenc e for an interval [0,T] and it is assumed

that it begins well bef ore t =0 so that it terminates in time for the results to be used. The protocol oper ates

in phases on a prede fined spanning tree rooted at some node s . The function of the root, beyond the regu-

lar computation re lated to the algorithm, is to dete rmine the beginning and end of phases; conseque ntly,

any node ca n be selecte d as root. It is assumed that eve ry node rec ognizes its fa ther and sons on the span-

ning tree . Finally, we assume the existenc e of an underlying routing mecha nism with no particula r re stric-

tion exce pt that it ensure s message deliver y in a bounded time.

The protocol begins by having node s rec eive an exter nal impetus. It then ca lculates the values of

Ysk (t) for all k ∈V and sends eac h such function in a Y-messa ge to node k . Every node i upon rec eiving a

Y-message from its fathe r, consider s it as an indication that a new phase has begun. Node i will then per -

form a ca lculation similar to that done by the root name ly, for ea ch k ∈V exce pt its father on the tree it ca l-

culates the value of Yik (t) and sends a Y-me ssage containing this func tion to node k .

Every node then wa its until it rec eives a Y-message from all other nodes in the network. The leave s

of the tree will cle arly be the ones to get it first. Node i Having re ceive d the Y-me ssage from all other

nodes in the network sends a Y-messa ge to its fathe r. Whe n node s rec eives Y-messa ges from all its sons

it knows that the pre vious iteration ended and a new itera tion may begin.

The protocol has to identify the end of exe cution of the algorithm. This is done by sending "no-

change" signals down the tree ; this is implemented by setting a spec ial bit in the Y-messa ge that node i

sends its fathe r. Whe n in a given iteration node i rec eives the "no-cha nge" signal fr om all its sons, and it

notes that its Xi (t) did not cha nge in the curr ent itera tion it sends a "no-cha nge" signal to its fathe r (in the

Y-message it is about to send). Whe n node s rec eives a no-cha nge signal fr om all its sons the protocol ter-

minates i.e., s would not start a new iteration.

The remaining task is to identify an optimal location seque nce. This is done in acc orda nce with the

proce dure to derive the location seque nce fr om the functions Xi (t) and Yik (t). First, with a single sea rch

along the tree the node with the minimal value of Xi (T) is identified. This will be the last node of the loca-

tion sequenc e. Then the bac ktrac king proc edure begins wher eby ever y node on the location seque nce

identifies its corr esponding interval and notifies the pre vious one, until the entire sequenc e is construc ted.

The opera tion of this protocol is based on the oper ation of the PIF protocol of [15] with the Y-

messages serving as both the control and data car rying message , and on the distribution conce pts pre sented

- 13 -

in [13]. Beca use of this similarity we omit here the formal specifica tion and validation.

The protocol prese nted above computes the location sequenc e for one finite interval [0,T]. To be

applicable to a computer networ k it must be extende d so that the entire time domain is consider ed. Our

approa ch is to divide the time axis into succe ssive interva ls of duration T and per form the computation for

eac h interval separ ately. The value of T is assumed to be large enough so that computation ends in time.

Consider the n th interval [nT ,(n +1)T] during which the following is perf ormed: (1) a loca tion proto-

col as desc ribed above is run for the n +1st interval; (2) a second, data- setting protocol is run for the n +2nd

interval[13] . This data- setting protocol initializes at ea ch node i the values of Wi (t ,τ) and Sik (t ,τ) for that

interval (r eca ll that these func tions depend, through the perf ormanc e measure , on the link functions lik (t)

assumed known at the individual nodes). Thus, at the termination of the data setting protocol eve ry node

has sufficient data to start the location protocol for the next interva l.

The choice of T is not quite arbitrar y. On one hand, as indicated, T is assumed large enough so that

these protocol finish in time. On the other hand, too large a T is inconvenie nt since it hampe rs the compa ct

repre sentation of functions in message s. it should be noted though, that if T happens to be somewha t too

small and one of the protocols does not finish in time, the par tial output obtained so fa r from the algorithm

can be used as an approximation to the exac t values require d.

One last issue is the sea m betwe en consec utive intervals. As mentioned in the pre vious sec tion an

optimal location sequenc e for the n th interval is not nec essar ily the pre fix of the one in the next interval.

Thus, the location protocol for consec utive interva ls identifies an optimal solution for the n +1st under the

constraint that the first node should be the last one chosen for the n th interva l. We rema rk her e that such a

solution is not nec essar ily optimal but that the diffe renc e should not be consider able if networ k state does

not cha nge too fast. The nature of the problem does not permit computing an optimal solution for all inter-

vals.

- 14 -

REFERENCES

1. M. Schwar tz and T.E. Stern, ‘‘Routing Technique s used in Computer Communication Networ ks,’’

IEEE Trans. on Communications COM-28(4) pp. 539-555 (Apr il 1980).

2. B.M. Leiner , D.L. Nielson, and F.A. Tobagi, ‘‘Issue s in Packe t Radio Networ k Design,’’

Procee dings of the IEEE 75(1) pp. 6-20 (Janua ry 1987).

3. J.M. McQuillan, I. Richer, and E.C. Rosen, ‘‘The New Routing Algorithm for the ARPANET,’’

IEEE Trans. on Communications COM-28(5) pp. 711-719 (Ma y 1980).

4. G.Y. Ha ndler and P.B. Mircha ndani, Location on Networks, Thoery and Algorithms, MIT Press,

Cambridge (1979).

5. R.L. Franc is and J.A. White, Facility Layout and Locations: An Analytical Approach, Prentice Hall,

Englewood Cliffs, New Jerse y (1974).

6. B.C. Tanse l, R.L. Franc is, and T.J. Lowe, ‘‘L ocation on Ne tworks: A Survey. Part I: The p-Center

and p-Media n Problems,’’ Manageme nt Scienc e 29(4) pp. 482-497 (Apr il 1983).

7. B.C. Tanse l, R.L. Franc is, and T.J. Lowe, ‘‘L ocation on Ne tworks: A Survey. Part II: Exploiting

Tree Networ ks Structure,’’ Manageme nt Scienc e 29(4) pp. 498-511 (Apr il 1983).

8. S.L. Hakimi, ‘‘Optimum Loca tions of Switching Centers and the Absolute Centers and Medians of a

Graph,’ ’ Operations Researc h 12 pp. 450-459 (1964).

9. A. Orda and R. Rom, ‘‘Shortest-Path and Minimum-Delay Algorithms in Networ ks with Time-

Depende nt Edge-L ength,’’ Journal of the ACM 37(3) pp. 607-625 (July 1990).

10. G.O. We solowsky, ‘‘Dyna mic Facility Loca tion,’’ Manageme nt Scienc e 19(11) pp. 1241-1248

(1973).

11. G.O. We solowsky and W.G . Truscott, ‘‘T he Multiperiod Loca tion-Allocation Problem with

Relocation of Facilities,’’ Manageme nt Scienc e 22(1) pp. 57-65 (1975) .

12. O. Berman and A.R. Odoni, ‘‘Loc ating Mobile Server s on a Ne twork with Markovian Proper ties,’’

Networks 12(1) pp. 73-86 (Spring 1982).

13. A. Orda and R. Rom, ‘‘D istributed Shortest-Path Protocols for Time-De pendent Networ ks,’’ pp.

439-445 in Procee dings of ICCC 88, Tel Aviv, Isra el (Nove mber 1988).

14. N. Deo and C.Y. Pang, ‘‘Shortest Path Algorithms: Taxonomy and Annotation,’’ Networks 14 pp.

275-323 (1984).

- 15 -

15. A. Segall, ‘‘Distributed Networ k Protocols,’’ IEEE Trans. on Information Theory, pp. 23-34

(Januar y 1983).

- 16 -

