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ABSTRACT

Some computer and communication networks require the assignment of certain nodes to perform special,
network wide functions such as routing, monitoring etc. The natural question that arises is which is the
best network node to perform the function. Thisis the essence of the location problem.

Research in network location problems concentrated on static environments, whereas many problems, in
particular those related to computer networks, are dynamic in nature. In this work we consider the single
facility dynamic-network location problem in a continuous domain of time.

We first formulate the problem, make some general observations, and then solve it for a discrete time
domain. Having become acquainted with the specificities of the problem we then offer a solution to the
continuous time domain. Finally, adistributed version of the algorithm is outlined and discussed.
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I.INTRODUCTION

The control and operation of some computer and communications networks sometimes requires the
existence of a central node which assumes "leadership" for execution of special network tasks, e.g., by hav-
ing specific hardware or processing capabilities. For example, choosing one node in a computer network to
serve as a "routing center” that offers routing services to its subscribers[1] or that performs network moni-
toring functiong[2]. The network designer is therefore faced with a location decision namely where to
locate the "leader" from among a set of alternative locations and, if the function can change its location,
when and how should this be done. Henceforth, we shall use the term "facility” to refer to the central node.
Consider for example a computer network in which all nodes report periodically the condition of their out-
going links to some routing center which then disiminates a digest of this information to the individual
nodes of the network (as currently done in the ARPANET[3]). Obvioudly, it is preferable to locate the
routing center within a node which is as close as possible to all others. However, because of time-varying
load conditions, each potential node may be overloaded at different times of the day or may not be
“sufficiently close' to all other nodes all the time. In other words, each potentia node is"close" to the rest
at certain times but "far” at others. Thus, we may prefer to change the identity of the routing center based
on time. This change consists of transmitting the network state between the old and new centers (which,
for a network with m links, is an O(m) table); in many circumstances the improvement due to the new
location of the center exceeds the penalty of having to relocate it.

The above are instances of a class of problems known as network location problems that were the
subject of extensive research during the past few yearg4,5,6,7]. Apart from computer networks, these
problems are of interest in the fields of transportation, city planning, and transmission.

A location problem can be described as the selection of one or more locations from among a set of
possible choices, in order to satisfy requirements imposed by a set of users or "customers'. To solve a
location problem one must define a performance criterion that depends on the "transportation” costs
between users and facilities such as travel distances or response time. Once defined the problem is then to
choose the locations that optimize the performance criterion. Two typical examples of the location prob-
lem are finding the (single) center i.e., a point in the network whose maximal distance to any customer is
minimal (the "minimax" criterion) or, finding the "median”, i.e., a location whose average distance to all
customersis minimal (the "minisum" criterion)[4].

Many location problems are presented as graph problems in which the vertices of the graph represent
the users while the arcs (and vertices) are the points of potential facility location. When referring to nodes
and arcs we actually refer to the location problem as presented on a graph. Noteworthy is the fact that the
optimal location of afacility does not necessarily coincide with the network nodes; in such cases the facil-
ity issaid to be located on an arc and the distance to the nearest node is the fraction of the total arc length.

One of the first and most fundamental results in network location theory was that of Hakimi[8] who
showed that under some simple assumptions there is always at least one node which isamedian. Hakimi’'s



result was expanded to a large variety of location problems (see [4]). In fact, a class of problems having a
solution in the network nodes are referred to as having the Hakimi property.

Research in network location problems concentrated mainly on static environments, i.e., fixed topol-
ogy and fixed distances between nodes. Dynamic location problems were hardly treated and are clearly of
interest in many networks--computer networks in particular. In these networks topology and distances are
subject to constant change with time. Analysis of dynamic networks is facilitated since quite often the way
a network changes with time may be predicted or observed or recorded (see [9] for a discussion of some
examples related to computer networks).

Of the few works that investigated dynamic location problems most considered a discrete time
domain. Wesolowsky’s work[10] is one such example. There, the problem is to locate a facility at each
"time period" so as to minimize the sum of the costs (during all periods) associated with the distance
between the customers and the facility as well as the costs incurred by relocating the facility. In Wesolow-
sky and Truscott[11] arelated problem is treated with more than a single facility and locations restricted to
nodes of a network. These two works use integer programming and dynamic programming techniques to
reach the solution. Berman and Odoni [12] treated a problem close to that of [11] but assumed network
distances to be Markovian variables and tried to minimize the expected cost. It is proved that Hakimi’'s
result (see above) is valid in this case too. However, as observed by the authors, their method of solution
becomes overly complex for large networks or for a large time domain. In fact, their problem is NP-hard
(this can be proved using a reduction from the clique problem). They do, however, offer an optimal solu-
tion for the limited case of a single facility and a tree shaped network.

In this work we consider a single-facility dynamic-network location problem with a continuous
(rather than discrete) domain of time. We assume the network state changes constantly and thus at each
moment a different point may be the best choice for facility location. We take into account the cost of
switching the facility from one node to another since this switching consumes resources (although switch-
ing does not necessarily involve physical relocation, the cost results from the need to relocate the function).
Moreover, we assume these costs to be time dependent. We point out that we deal with a deterministic
environment, and thus all functions are deterministic. Introducing time dependency into network parame-
ters was previoudly treated in several workg[9,13]. Results from these works are used in this paper to
define the model as well asthe problem.

The paper is organized as follows. In Section Il we define and formulate the problem. Section |11
presents an algorithm for a discrete time domain followed by Section |V where an algorithm for the general
problem is presented, validated, and some specia cases discussed. A distributed version is discussed in
Section V.



II.PROBLEM FORMULATION

We consider a directed network G (V,E,L) with V={1,2,...n} being the set of nodes, E0V XV the
set of links, and L={l; (t) @i k)JE} a set of time dependent link "lengths'. Each function I, (t) is a
strictly positive function of time defined for [0,c0) that describes some transportation cost on link (i k) at
timet. For example, the cost might be the delay of a message leaving nodei on link (i k) at timet. Net-
works of this type were previoudy studied[9] from which it is known that the time-distance between any
two nodes can be efficiently found and we denote by ﬂk (t) the time distance between two nodesi ,k[IV.

As stated in the introduction there are several plausible criteria by which optimal locations can be
defined. These criteria define the relation between the objective function and the link costs. Since we deal
with a time varying environment the performance measure itself will be a function of time denoted by
G (t). Inother words, C, (t) isthe cost of having the facility located at node i at timet (we do assume the
function C; (t) to be integrable). For example, the minisum (or median) strategy is represented by a cost

function G (t) = ¥ ﬁk (t) which must be minimized; the "minimax" strategy measuring the longest distance
kOV
from the center to any other node is represented by the cost function C; (t) = max{[ (t)}. Also, since in
kOV

general we do not require ﬂk (t)#fki (t) we can define directed strategies such as the "in-minisum"”, "out-
minisum", a combination of the two, and so on.

To gain insight into the problem consider the simple three-node example depicted in Figure 1 where
the arc lengths are denoted along the arcs and are considered to be the delay functions of traversing the
arcs. Denote x (t) the fractional distance from node 2 of apoint on link (2,1) at timet, that is, the delay of
the point to node 2 is|,:x (t) and the delay to node 1isl,;-[1-x(t)]. Then, it can be easily verified that the
location of the median (i.e., optimal location according to the minisum criterion) is given by
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Figure 1: Example of minisum location with continuous functions
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Two interesting observations result. First, we note that at times the facility must be located on the
link, meaning that Hakimi’s property does not hold. The second is that although all functions involved are
continuous the location function x (t) is not, meaning that the median "jumps" (in our example at t=0.666).
In the context of computer networks these observations are not of particular interest since locating facilities
on arcsis meaningless. They are of interest in the general context of network problems. In the context of
computer networks it is noteworthy to point out that even with continuous functions it is not guaranteed
that the optimal location jumps between neighboring nodes.

Having defined the cost functions C; (), we can now measure the total weight of having the facility
located at anodei during someinterval [t,t]. Thisisgiven by

T

W (t,T2[C, (y)dy
t

Switching the location, as we mentioned, consumes resources. Hence the switching must come at a
cost which must depend on the following:

» Theidentity of the current and the new location.

» Theduration of time available for making the switch (making a faster switch is costlier); the avail-
able time is measured from the moment the first node starts to "host" the facility until the new
node takes over.

» Thetimein which the switch takes place. In atime dependent system there may be timesin which
the switching is costlier than in others.

Thus, for each pair of nodes i ,k[OV we define a switching cost function Sy (t,T) to account for
switching the facility from node i to node k (k#i) when node i hosts the facility during the period [t,1).
The following assumptions are made regarding these functions:

1. Switching always comes at a cost thusit must be that k#i ,t, 1>t S (t,1)>0.

2. Foreachtg, Sy (to,T) isnon increasing with respect to T and for each 1, S, (t,Tg) is hon decreas-
ing with respect to t.

3. Since switching the facility must take time we require that lim S, (t,t)=co.
-t-0

4. For all practical purposes we may assume that S, (t,t) is continuous or piecewise continuousin t
and 1. Also, in order to guarantee the existence of an optimal solution to the problem (see
below) we require that for each 1, and for al t Sy (t,To)<min{S, (t7,10),Sk(t",To)} and for each
toand for al T Sy (to,T)<min{ Sy (to.1),Sk (to,T)}.



To formulate the problem we need two more definitions:
Definition 1. A Location Sequence (Is) for an interval [0,t] is a finite sequence of ordered pairs
Is = gvo,to),(vl,tl), ey (Vimotm) Esuch that vg,vy, . . ., VOV isasequence of facility loca-
tions and 0=t <t;< ---<t,<t are the moments of facility relocation. We say that this

sequence is of length m+1. The set of al location sequences for the interval [0,t] is
denoted LS(t).

Definition 2: The Location Sequence Cost (C(Is,t)), namely the cost of locating the facility during the
interval [0,t] as dictated by the location sequence Is is given by

m-1

U T BN, (6 8 10) + S, (6 400) T+ W (1)
i=0

With the above definitions the Time Varying Location (TVL) Problem is defined as follows:
Problem TVL: For aninterval [0,T] find alocation sequence Is’ OLS(T) such that
MsOLS(T) C(Is”,T)<C(s.T) .
Using standard methods, it can be verified that the fourth property of the functions Sy (t,t) and the

continuity of the functions W, (t,T) guarantee the existence of a solution to problem TVL.

The third property of the functions S, (t,t) rules out an infinite optimal location sequence, and there-
fore the solution of problem TVL will give us an optimal location policy.



[1l. A DISCRETE DOMAIN PROBLEM

In order to gain insight into the continuous case of TVL problems and their solutions we present first

a solution to a discrete version of the problem. Let the time axis be divided into slots, or periods, that are

numbered sequentially. The facility can be switched between nodes only at the beginning of a lot. We

consider atimeinterval [0,T] where T is an integer and define for each slot m (m=0,1, . .., T-1) the fol-

lowing variables, similar to those defined for TVL:

The weight of nodei at slot m: W, (m)A:VVi (m,m+1).

The cost of switching the facility from node i to node k a the end dot m:
5, (M)ZS, (m,m+1) for i #k and §, (M)=0.

A discrete location sequence (Is) which is a finite sequence Is=(vq,Vvy, - . ., vr_1) Where
V,, 0V isthelocation of the facility during slot m. The set of all discrete |ocation sequences
isdenoted LS.

The cost of a discrete location sequence given by

T-2
C®)= 3 0, (m)+5, , (m)Drw, (T-1)

m=0

With the above the discrete time varying location (DTV L) problem can be stated as follows:

Problem DTVL: For aninterval [0,T] find a discrete location sequence [s OCS such that

WsOCS C (5 )<C(I3) .

Our solution is based on constructing a graph G(\JED derived from G (V,E,L) which we do in
two steps. First we derive the graph G (V,E L) in the following manner:

 The set of nodes V isderived by having each node of V splitinto T nodes, that is

V={voVy, ...,V WOV} .

Note that there is a parenthood relation P:V - V that associates with each node in V one node in

V. Werefer to node v, OV asbeing the level i descendent of node P (v; ).

* The set of linksis defined as

E= {(Vi Ui +1) Wi Ui +lD\7 O<i ST_Z}

that is, every node of level i isconnected with every node of level i +1, even if they correspond to

the same parent. In other words, in the definition above it is possible that P (v )=P (u; ;) (thiswill

correspond to the facility being hosted in a node for more than asingle slot).

» Theset of link costs L={T(e) [@0E} where the cost of the individual link is given by



T ) EWo) (1) + S e (1)

Next we derive Glfrom G by introducing two additional nodes referred to as "source" (s) and "desti-
nation" (d) and several links. We add zero-cost links between node s and every node of V of level 0.
Also, we add a link between every node of V of level T-1to node d. The cost of alink (vy_;,d) is given
by T(Vr-1,0) W, (T-D)

There is a one-to-one correspondence between the set of paths in Gl between nodes s and d and the
set of discrete location sequences LS. The sequence of nodes correspond to the nodes along the path and
the sequence of times correspond to the level of the nodes. The cost of a sequence, C(Is), is clearly the
sum of the costs of the links along the path. Thus, solving the DTVL problem on graph G isequivaent to
solving aregular shortest path problem on graph Glwhich can be done in any of the many available algo-
rithms[14]. A typical and simple algorithm will require O ([V (3T?) operations.

It is interesting to compare this result with those of Berman and Odoni[12] since in both cases a
discrete time varying environment is investigated. In our case the variations in time are assumed known
whereas in[12] only the invariant switching probabilities are known. This difference in models leads to the
ability to find a polynomial solution (in both [V Oand [T [J for our problem compared to the inability of
doing so in the other case.



IV.THE ALGORITHM

The discussion in the previous chapter suggests that problem TVL may be solved by shortest path
algorithms. Since we deal with atime varying environment, the shortest path algorithm should be one of a
class described in [9]. In this section we first specify an algorithm and then prove that it solves problem
TVL. For brevity we divide the algorithm into two parts: the first and main one, called Algorithm Cost,
computes the cost of the optimal |ocation sequence while the second (and much simpler one), called Algo-
rithm Sequence, calculates the sequence itself. Some special cases are discussed at the end.

A. Specification

Algorithm Cost gets as input an instance of the TVL problem namely, the interval [0,T] and the two
sets of functions W, (t,t) and Sy (t,1) all defined for that interval. It computes two sets of functions X; (t)
and Y;, (t) from which the cost of the optimal location sequence is computed and from which the optimal
location sequence can be derived by Algorithm Sequence.

Notably different from typical algorithms, these agorithms operate on functions i.e., assignment,
addition, or any other operation is performed on entire functions. In particular, we need to be able to detect
functions that change during the execution of an algorithm step. We use the term "just changed” to mean
that there exists at least one time instance t for which a function changed its value during the most recent
operation performed on that function.

The agorithms make use of two interna functions of time defined for [0, T] as follows:

- For each node i OV, X; (t) is the best known cost (at that stage of algorithm execution) of a
location sequence in theinterval [0,t] inwhichi isthe last node.

- For each pair of nodesi ,kV, i £k, Y;(t) is the best known cost (at that stage of algorithm
execution) of alocation sequence in the interval [0,t] in which the last switch isfrom node i
to k and takesplace at timet.

We shall prove that at the end of execution the functions X; (t) and Y;, (t) are the best respective cost
functions, from which the optimal location sequence can be derived.

Algorithm Cost
1. %OV X (t) W (0t)
2. % kOV, k#i
Yik (1) ‘—OTTiDt{Xi (O+W; (T,0)+Sk (T.1)}

3. WOV X (1)« min  {Y, (0)+W, (T,)}
iav,izk, <t

4. If for somei OV X; (t) just changed then go to step 2, else stop.



Some explanation of the computation is called for. In step 1 we assume that there will be no switch
and node i will host the facility for the entire period. In step 2 we consider a switch from node i to k to
take place at timet. Assuming X; (T) to represent the optimal cost (known so far) of alocation sequence in
the interval [0,t] with i the last node we have that the cost of making a switch at time t>1 is
X (T)+W, (T,t)+S, (T,t) incorporating the additional cost of staying at node i during the interval [1,t] and
the cost of switching in that interval. We then choose the optimal T to yield the proper value of Y;, (t). In
step 3 we use the new vaues of Y, (t) to update the values of X, (t).

In analogy to the solution of the discrete problem, the algorithm presented above resembles a shortest
path algorithm in a time varying environment between fictitious source and destination nodes. Paths and

seguences correspond to one another as in the discrete algorithm.

Having computed the functions X; (t) and Y;, (t) for all i and k, Algorithm Sequence calculates the
sequence itself. In the description we use the operator "&" to mean concatenation, i.e., prepending a com-

ponent to a sequence.

Algorithm Sequence
1 kemin{j DOV X (T)=X(T)}, tT,Is 0.
2. If X (t)=W (0O;t) then
a Is<(k,0) & Is.
b. Stop.

a. Findanodel and atime 1<t such that X, (t)=Y, (1)+W,(t,1).
b. Is<(k,1) & Is.

c. kel,teT1.

d. Gotostep 2.

The algorithm builds the location sequence backwards starting with an empty list. We know the
identity of an optimal location at time T: thisis a node for which X; (T) is minimal. Given that at time t
the facility is located at node k we look, in step 3, for the time T and node | in which the most recent node
switch ocurred (step 3.a). Having identified these we prepend the component (k,T) to the location
seguence. Step 2 assures termination and the addition of the first component to the sequence.

B. Validation

Algorithm Cost generates as its output the functions X; (t) and Y;, (t) yet we are interested in location
sequences; hence it is necessary to define a correspondence between location sequences and the
algorithm’s output. Asafirst step we establish a correspondence between the function X; (t) and the cost of

alocation sequence.



From the structure of Algorithm Cost it is clear that at any stage of execution for each i OV and time
tI0[0,T] there is at least one location sequence Is=[(Vq,to),(Vi,ta), - - -, (V=i 1, <0], whose cost with
respect to interval [0,] equals X; (§). In other words there is a location sequence the last node of which is
nodei, the last switching time takes place not after €] and the cost of the sequence is exactly X; ().

Suppose that after Algorithm Cost stops node j is such that X OV X;(T)<X;(T), i.e, X;(T) is
minimal. The optimal location sequence Is" isthe location sequence that corresponds to X; (T). We prove
this claim viaa main theorem that we precede by auxiliary lemmas.

Observing the execution of Algorithm Cost we note that it executes step 1 once and then steps 2
through 4 repeatedly. We thus define every passage through step 2 as an "iteration” of the algorithm, and
the execution of step 1 (the initialization) as the zeroth iteration.

Lemma 1: For each node j0V and time tI[0,T], after the N-th iteration, X; (f) equals the cost of an
optimal location sequence for the interval [0,f] among all location sequences of length at most N +1 whose
last nodeisj.

Proof: We note that for any given value of t the value of the functions X; (t) and Y, (t) (for al i k)
cannot increase from one iteration to the next. We proceed to prove the lemma by induction on N. The
clam is clearly true for N=0. Assuming truth for N-1 we prove for N. Let
Isy =[(Vote),(Vite), - - - (V=i otm)] (M=<N) be an optimal location sequence for interval [0,f] among all
location sequences of length no more than N+1 whose last node is |j. Denote
Isvo1 = [(Vote)(Vite), - - o (Vp-tstm-1)]. By the inductive assumption after N-1 iterations
va_l(tm_l)sC(Is,\,_l,tm_l). Thus after performing step 2 at the Nth iteration we have

Ymel'Vm (tm) s vail(tm—l)"'wvmil(tm—l!tm)+S/m71,vm (tm—latm) <
< C(lSN—1!tm—1)+va71(tm—1’tm)+S/mil,vm(tm—litm) =C (ISN—lftm)'FS/mil,vm (tm—litm)

In the above inequality the first transition stems from the fact that Y is chosen as the minimum in step 2;
the second transition incorporates the inductive assumption; the last transition is merely a time extension
(without switching) at the last node. After performing step 3 at that iteration we have

X, (O=Y, (o)W, (tn0 < CUS1tn)*S, y (tnstn) W, (0 = ClS) -

In this inequality the first transition is due to the minimality of X (step 3), the second transition incor-
porates the previous inequality, and the last transition is by the definition of C (Isy,f). Sincelsy isoptimal
we have X, (D=C(Isy,D. O

Lemma 2: Algorithm Cost stops after a finite number of iterations; when this happens there isa node j for
which X; (T)=C(Is",T) wherels" isan optimal location sequence (for [0,T]) whose last nodeiis j .

Proof: Let LS (t) denote the set of location sequences for interval [0,t] each having i asitslast node.
Aswas previously explained, an optimal location sequence for any finiteinterval isfinite. Thus, thereisa
finite N such that ¥ OV, €0[0,T], there is an ISLS () such that MsOLS (£) C(I80<C(Is,f) and the
length of I§lis at most N. It follows from the algorithm and from Lemma 1 that after N iterations X (t)

-10-



stops changing for all i V. It also follows from Lemma 1 that if | isthe last node in an optimal location
seguence s’ (for [0, T]) then when the algorithm stops X; (T)=C (Is* ). O

Lemma 3: Algorithm Sequence stops after a finite number of steps and produces (in the variable Is) an
optimal location sequence.

Proof: As a result of Lemmas 1 and 2 the value of X;(T) equals the cost of an optimal location
sequence for the interval [0,T] with i the last node of the sequence. Algorithm Seguence chooses (step 1)
that node for which X; (T) is minimal. To prove the lemma we need therefore to prove that for a given j
Algorithm Sequence compuites, in afinite number of steps, alocation sequence whose cost is X; (T).

Denote each passage through step two as an "iteration", and assume that at a certain iteration k=k
and t=t'. Then, either the location sequence [(k(,0)] corresponds to Xko(t’ ), in which case step 2a is per-
formed and the agorithm stops in step 2b, or there is a location sequence IS =[(vqyto) ...,
(Vm-1-tm-1):(Ko:,tm)] such that IS corresponds to Xko(t') and step 3 is executed. In this case we find v,,,_;

(called | inthis step of the algorithm) and t,, ( called T in this step) and make the appropriate setting. We
ae now left with a new value val(tm) which corresponds to the location sequence

[(Vosto)s -« -y (V—1stm-1)]. The above arguments indicate that the algorithm does not deadlock, that is,
either step 2a or 3 are performed in each iteration and that a location sequence corresponding to X; (T) is
constructed. Since (from Lemma 1) such a sequence is finite and since each iteration increases the length
of the location sequence by unity, it follows that the algorithm isfinite. O

The properties of the algorithm proven in the above lemmas can be therefore summarized in asingle
theorem whose proof follows directly from the lemmas:

Theorem: A solution to problem TVL can be found within a finite number of steps by executing
Algorithm Cost followed by Algorithm Sequence. O

The above claims and theorem show that the algorithm has a "universality" property: after complet-
ing the computation for an interval [0,T] we can identify an optimal location sequence for any subinterval
[Ot], t<T by running Algorithm Sequence with t replacing T. However, the solution itself is not univer-
sal, i.e, an optimal location sequence for [0,t] is not necessarily a prefix to any optimal one for a larger
timeinterval.

C. Special cases
The solution presented above to problem TVL can be easily modified to deal with some common

special cases, as follows:

» Transition between neighbors only. In many cases it makes sense to move the facility only
between neighbors in the graph. By setting S, (t,1)=co for (i ,k)JE the agorithm will exclude the
undesired transitions.

 Restricted locations. Assume that the location of the facility is restricted to a few nodes. Then,
setting Wi (t,1)=c for al nodesi which may not host the facility will ensure that the agorithm will
not dictate locating there the facility.

-11-



» Bounded switching time. It may be useful to restrict the rate of switching which can be done by
ensuring that the facility stays at a node for a minimum time period 6 (0<0<T). Setting §; (t,1)=00
for eachi ,kOV and al t<t+0 will enforce this requirement.

 Limited number of switches. It may also be desirable to restrict the number of switches during the
period in question. This can be had by running Algorithm Cost for at most N iterations. Lemma 1
guarantees that at that stage we have an optimal sequence among those limited to length N +1.

-12 -



V. A DISTRIBUTED PROTOCOL

Since we deal with computer communication networks it is of interest to consider a distributed exe-
cution of the algorithm. The structure of the algorithm resembles the shortest path algorithms presented in
[15] that lend themselves easily to distributed computation. In the following we outline one possible distri-
buted implementation of the protocol.

We assume that each node i [V recognizesthevaluesof T, W, (t,1), and Sy (t,T) (for all KOOV) in the
interval [0,T]. The protocol hasto find an optimal location sequence for an interval [0,T] and it is assumed
that it begins well before t=0 so that it terminates in time for the results to be used. The protocol operates
in phases on a predefined spanning tree rooted at some node s. The function of the root, beyond the regu-
lar computation related to the algorithm, is to determine the beginning and end of phases; consequently,
any node can be selected asroot. It isassumed that every node recognizes its father and sons on the span-
ning tree. Finally, we assume the existence of an underlying routing mechanism with no particular restric-
tion except that it ensures message delivery in a bounded time.

The protocol begins by having node s receive an external impetus. It then calculates the values of
Yy (t) for al kOV and sends each such functionin a'Y-message to node k. Every nodei upon receiving a
Y -message from its father, considers it as an indication that a new phase has begun. Node i will then per-
form a calculation similar to that done by the root namely, for each k[OV except itsfather on the tree it cal-
culates the value of Y;, (t) and sends a Y -message containing this function to node k.

Every node then waits until it receives a Y-message from all other nodes in the network. The leaves
of the tree will clearly be the ones to get it first. Node i Having received the Y-message from all other
nodes in the network sends a Y -message to its father. When node s receives Y-messages from al its sons
it knows that the previous iteration ended and a new iteration may begin.

The protocol has to identify the end of execution of the algorithm. This is done by sending "no-
change" signals down the tree; this is implemented by setting a special bit in the Y-message that node i
sends its father. When in a given iteration node i receives the "no-change" signal from all its sons, and it
notes that its X; (t) did not change in the current iteration it sends a "no-change" signal to its father (in the
Y -message it is about to send). When node s receives a no-change signal from all its sons the protocol ter-
minatesi.e., s would not start a new iteration.

The remaining task is to identify an optimal location sequence. This is done in accordance with the
procedure to derive the location sequence from the functions X; (t) and ;. (t). First, with a single search
along the tree the node with the minimal value of X; (T) isidentified. Thiswill be the last node of the loca-
tion sequence. Then the backtracking procedure begins whereby every node on the location sequence
identifiesits corresponding interval and notifies the previous one, until the entire sequence is constructed.

The operation of this protocol is based on the operation of the PIF protocol of [15] with the Y-
messages serving as both the control and data carrying message, and on the distribution concepts presented
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in[13]. Because of thissimilarity we omit here the formal specification and validation.

The protocol presented above computes the location sequence for one finite interval [0,T]. To be
applicable to a computer network it must be extended so that the entire time domain is considered. Our
approach is to divide the time axis into successive intervals of duration T and perform the computation for
each interval separately. Thevalue of T isassumed to be large enough so that computation endsin time.

Consider the nthinterval [nT,(n+1)T] during which the following is performed: (1) alocation proto-
col as described above isrun for the n+1st interval; (2) a second, data-setting protocol is run for the n+2nd
interval[13]. This data-setting protocol initializes at each node i the values of W, (t,1) and Sy (t,1) for that
interval (recall that these functions depend, through the performance measure, on the link functions I, (t)
assumed known at the individual nodes). Thus, at the termination of the data setting protocol every node
has sufficient data to start the location protocol for the next interval.

The choice of T isnot quite arbitrary. On one hand, as indicated, T is assumed large enough so that
these protocol finishintime. On the other hand, too large a T isinconvenient since it hampers the compact
representation of functions in messages. it should be noted though, that if T happens to be somewhat too
small and one of the protocols does not finish in time, the partial output obtained so far from the algorithm
can be used as an approximation to the exact values required.

One last issue is the seam between consecutive intervals. As mentioned in the previous section an
optimal location sequence for the nth interval is not necessarily the prefix of the one in the next interval.
Thus, the location protocol for consecutive intervals identifies an optimal solution for the n+1st under the
constraint that the first node should be the last one chosen for the nthinterval. We remark here that such a
solution is not necessarily optimal but that the difference should not be considerable if network state does
not change too fast. The nature of the problem does not permit computing an optimal solution for all inter-
vals.
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