
1

A RECONFIGURATION ALGORITHM
FOR A

DOUBLE-LOOP TOKEN-RING LOCAL AREA
NETWORK 1

Raphael Rom
Nachum Shacham
SRI International

Menlo Park, California
July 1985

ABSTRACT

An algorithm to reconfigure a fault-tolerant double-loop token-ring local area network following
topological changes is presented. The algorithm guarantees that at all operational times the net-
work is organized to provide maximum possible connectivity among the nodes - either one loop
that encompasses all nodes in the network or several subloops each of which operates as a separate
token ring network. Tokens are generated or eliminated as necessary to result in one and only one
token in each (sub)loop. The algorithm is formally specified and its properties are verified.

1.0 INTRODUCTION

Token ring is a well known architecture for local area networks (LANs) which is preferred by
many over the bus architecture because of its inherent advantages:

1. High speed - a token ring can operate at speeds of hundreds of Mbps which are much higher
than is practical for bus LANs.

2. Guaranteed delay - unlike the contention-based access to the bus, the token passing algorithm
guarantees that each node will have an access to the communication medium at least once per
token cycle thereby providing an upper bound on the delay.

3. Longer distances - whereas the performance of contention bus LAN is highly sensitive to the
cable length, token ring network can operate over rather long distances.

The disadvantage of the token ring lies in its relative poor reliability: a single link or node failure
disrupts the operation of the whole network. Several techniques have been proposed to overcome
this deficiency. For example, the star-shaped ring[1] attempts to alleviate the above problem by
concentrating all the switching elements in a central office thereby making the maintenance easier.
Other schemes enhance the ring’s reliability by adding more cables to it. Two famous architectures
-- the daisy chain[2] and the double loop[3]--have each node connected to four unidirectional

1. This work was partially supported by FMC Corporation under SRI Project 7390

links, two incoming and two outgoing. Thus when one loop is broken the nodes can use the other
one for transmission. Of the two architecture the double loop, shown in Figure 1, has a less com-
plex topology and requires much simpler routing procedures which implies overall simplicity and
lower cost nodes.

Theding1 double loop network also provides for simpler addition and deletion of nodes and easier
installation due to simpler wiring procedures. These features make the double loop LAN very
attractive in situations where frequent topological changes are expected, such as in military envi-
ronment. Its behavior under such changes is the topic of this paper.

During normal operating conditions, that is, when both loops are intact and all nodes are opera-
tional, the double loop network uses only one of the loops in a normal token passing protocol[4].
This statement is made to simplify the discussion below; the algorithms we present here work
equally well if both loop are used whenever possible. When the loop on which the network oper-
ates breaks, the network switches to the other loop and continues to operate under the normal pro-
tocol. However when both loops are broken at one or more places the nodes cannot keep operating
normally and network reconfiguration is called for.

Reconfiguration is done by means of “loopback” which amounts to reflecting the traffic received
at a node from a neighbor back to that neighbor via the second loop instead of forwarding it to the
next node on the same loop. As depicted in figure 2, this is done when a node discovers that it is
disconnected from one of its two neighbors. In Figure 2(a) there is a double failure between two
nodes and the loopback results in one large ring that spans all nodes over both cables. Figure 2(b)
depicts the case where failures occur at two different spots of the LAN and on the two cables, in
which case the most the network can do is reconfigure itself into two subloops, one containing
nodes A,B, and C while the other contains the rest. This basic loopback operation, which is done
on a local basis, provides the network with the capability to organize itself in various forms of
loops that should yield the maximum possible connectivity in the network.

Figure 1: A Double-Loop LAN

Loop A

Loop B

However, the network should exercise this feature with care, otherwise it may result in suboptimal
operation conditions. For example, even if local connectivity indicates that a loopback may be nec-
essary, loopback should not be carried out if one of the loops is intact and can serve the whole node
population. Moreover, while carrying out the loopback operation or while removing loopback
upon recovery, the number of subloops may change which implies the need to generate or elimi-
nate tokens. If several such events occur within a small time interval, various messages and tokens
may “float” in the network and may severely disrupt operation unless filtered out in an orderly
manner.

These examples demonstrate that whereas the loopback operation is simple, its ramifications are
not, and there is a need for a proper set of distributed algorithms that provide the right transitions
upon topological changes and make sure that following those transitions the network has the right
number of token that provide for proper operation. In this paper we present such algorithms which
are rigorously specified and verified. In Section II we describe the model of the network nodes that
execute the algorithms. Section III presents a description of the two major elements of the algo-
rithms, provide a specification for them and prove their correctness.

2.0 MODEL

The system consists of nodes interconnected in a double loop structure. Every node is connected
to each of its neighbors via two unidirectional links--an incoming and an outgoing link. The two
loopsthus formed are referred to as loop-A and loop-B (the nodes themselves are not aware of this
labeling). Having two incoming links and two outgoing ones each node associates every incoming
link with a single outgoing one. One such association is callednormaland forms the double loop
connection. The other association (made only when full connectivity cannot be achieved on either
loop) is calledloopback. Nodes making a loopback association are referred to asloopback nodes

Figure 2: Reconfiguration Using Loopbacks

A B

C

D

E

F

G

A

B

C

D

E F

G

Loopbacks

(a) Without Network Partitioning (b) Network With Two Subloops

or in theloopback mode. When one or more of the nodes are in the loopback mode, one or more
subloops are formed (note that a subloop may contain all network nodes, such as in figure 2a).

A standard token passing scheme governs the access to the network[3][4][5]. Only a node that
“owns” the token may transmits a packet of information. The transmitting node is responsible to
remove the message from the network. Having transmitted a packet, the node must unconditionally
pass the token (this avoids indefinite token capturing by any node). At any time the token can be
either owned by a node (e.g., when it is transmitting a packet) or on its way between nodes. To
“destroy” a token, which is sometimes required by the reconfiguration algorithm, it must be first
owned by a node.

When not transmitting its own packet a node forwards every incoming packet on the outgoing link
associated with the link from which the packet arrived. To achieve maximum connectivity a recon-
figuration algorithm is implemented in the network. To execute the algorithm nodes exchangemes-
sages(as opposed to packets in the normal communication). Each node is capable of transferring
a message to its next neighbor if the link between them is operational. Thus messages can pass
along links over which packets do not (for example, the link marked 1 in figure 2b). The node is
assumed to know on which link a message arrived. Messages are sent only from a node to its
immediate neighbor and do not require a token. In effect, messages have priority over packets in
that a node may abort an ongoing transmission of a packet if it needs to send a message to its neigh-
bor. Because the links between nodes are unidirectional and because the sender does not necessar-
ily know the status of a link, the sender does not know whether the message actually arrived.

The reconfiguration algorithm we present is an event driven algorithm and does not use timeouts.
The relevant events are the failure or recovery of an incoming link or the receipt of a message. A
node is assumed to be able to determine whether or not an incoming link is operational (this is usu-
ally done by sensing the clock on that link). We assume a node cannot sense the state of an outgo-
ing link. Also, the reconfiguration algorithm is concerned with the link state transitions but not
with the reason for the transition. It is only required that the events “link failed” and “link recov-
ered” are defined within every node. It is possible, for example, for a node not to declare a link as
operational until it is active for some time thereby avoiding flutter.

Every node processes events in the order it becomes aware of them. Each such processing may be
arbitrary long but finite. It is assumed that a node can conduct alocal connectivity test with its
neighbor after which it can determine whether both links connecting the two are operational. We
consider this test a single basic operation. Because of the potential disturbances it may cause, the
use of this test is kept to a minimum--only in cases where there is no other way to acquire that same
information. Each node has a unique ID stored within it which may be included in messages. In
addition the node stores the following information:

• SA andSB. These are two records, one bit each, indicating whether the respective loop is per-

ceived by this node to be connected (SA =0 indicates that the node perceives loop A to be bro-

ken).

• MEMORY. This is a memory cell in which a unique ID of some other node can be temporarily
stored.

• SCTA, SCTB, SLT, SLE. These are auxiliary (state) variables, one bit each. Their exact function

is described when they are first use.

3.0 RECONFIGURATION ALGORITHMS

The objective of the reconfiguration algorithm is to establish the maximum connectivity in every
segment of the loop. This implies operating on a single cable that joins all the nodes, if such a con-
nection is possible. Otherwise, subloops of maximum size must be formed. Upon cable severance,
either the nodes switch to the other cable (if it is not broken) or a new subloop is established.

When a new subloop is established the residues of the previous state, such as control messages and
token(s) are first cleared. Then, a new token is generated allowing the nodes on the subloop to
operate as in an ordinary token-ring network.

Upon link recovery, either a fully connected loop results, in which case all nodes switch to the con-
nected loop, or possibly, the number of subloops is reduced requiring the elimination of one of the
existing tokens.

We present the algorithm gradually. The basic algorithm that is introduced first, updates the node’s
perception of the state of the two loops. The correctness of this algorithm is proven. Then the algo-
rithm is extended to exchange the necessary information for looping back, and then the token con-
trol algorithm is presented. In the last subsection we indicate how all these pieces fit together to
form a single unified algorithm.

3.1 The Basic Algorithm

The basic algorithm deals only with loop status. Its goal is to assure that after topological changes
all nodes reach the same (correct) perception of the status of both loops. It does not deal with loop-
ing back or token control. To execute the algorithm neighboring nodes exchange the following
messages:

FT indicates a Failure on This loop, i.e., on the loop on which this message is received. This
message carries a link-status bit.

CT indicates a Connectivity Test. This message carries the ID of its originator.

CE indicates that Connectivity has been Established.

The idea behind the algorithm is as follows. A node that senses a link failure sends an FT message
to its next neighbor along the loop that just failed thereby notifying everybody of the failure. This
message is sent unconditionally, even if the loop was broken before the recent, failure since all pre-
vious failures might have recovered at the same time the new failure occurred (if the loop had been
broken before this message reaches only those still connected to the originator). When a link

recovers, the node sensing it tries to find out if this recovery caused the entire loop to be connected.
This is done by sending the CT message and forwarding it from node to node. Thus, like the FT
message, the CT message propagates up to the next broken link. If there is no broken link the orig-
inator of the CT message (identified by the ID carried by the message) receives its own message
back, knows the loop is connected, and notifies everybody by a CE message which is forwarded in
the same manner.

Each node uses the state variablesSCTA, SCTB, SCEA, andSCEB to denote that it has sent CT and
CE messages on loop A and loop B respectively.

In the description of the algorithm we denote byX the relevant loop and by the other loop. The
description consists of the actions taken by a node in response to every possible event.

1. X-link failed
1.a. Send FT onX
1.b.SX ← 0
1.c.SCTX ← 0 SCEX ← 0

2. X-link recovered
2.a. Send CT onX
2.bSCTX ← 1 SCEX ← 0

3. Receive FT onX
3.a. Send FT onX
3.b.SX ← 0
3.c.SCTX ← 0 SCEX ← 0

4. Receive CT(ID) onX
4.a. ID = MyID

4.a.1. Send CE onX
4.a.2.SCTX ← 0 SCEX ← 1

4.b. ID ≠ MyID
4.b.1. Send CT(ID) onX

5. Receive CE onX
5.a. ifSCEX = 0 send CE onX
5.b.SX ← 1
5.c.SCTX ← 0 SCEX ← 0

Notable in this algorithm is the mutual independence of the status bit of the two loops. This is evi-
dent because the setting ofSX is never conditioned upon . This means that subsequent proofs of
properties need be done only with respect to one loop.

The following proposition proves the main property of the basic algorithm.

Proposition 1: Within a finite time after a topological change, either all nodes have the same status
record (SX) or another topological change occurs.

Proof:The proposition is interesting only in the case where no more topological changes occur and
the system is allowed to settle. We prove by contradiction.

X

S
X

Suppose that after an arbitrarily long time there are two nodesα’ andβ’ with different status bit of
loop A. This means that there exist two neighboring nodesα andβ with differing view of the A-
loop status. Without loss of generality we assume thatα precededβ in the direction of the loop and
that atα SA =0 and atβ SA = 1. We consider the last event atβ.

Failure of link on loop A. This is impossible since a failure in an incoming A-link would result in
SA =0 atβ. Subsequently, we shall make use of the fact the link fromα to β is operational.

Recovery of link on loop A. Prior to the recovery, the link must have been in a failure mode andβ
must have hadSA =0. β sends a CT message but does not receive anything (the link recovery was
the last event atβ), nothing could have causedβ to set itsSA to 1.

Receipt of an FT message. This would have causedSA =0 (line 3.b of the algorithm).

Receipt of a CE message. Since the link fromα to β is operational,α must have seen that message
but since atα SA =0 this message was generated byα (otherwise it would have set itsSA to 1, step
5). Since the CE message did not make it back toα the loop must have been broken at some node
γ afterα’s CT message passed there.γ should have generated an FT message (line 1a) which
should have arrived atα, leading to a contradiction.

Receipt of a CT message containing the ID of some nodeγ. We first show that this message does
not make it toγ. Suppose it does, soγ would then send a CE message (line 4.a.1) which does not
arrive atβ. As in the previous case, a link betweenγ andβ must have failed after the CT message
passed; but thenβ should have received a FT message (line 1.a). Not making it back toγ means
that the loop is still broken and no CE message will be generated.

Since the CT message does not cause any change in the status bits, its occurrence can be ignored
altogether, and all the above arguments can be applied recursively with respect to the message pre-
ceding the last CT. Because there is a finite number of users only a finite number of consecutive
CT messages can be generated and thus the recursion is finite.

The last event to be considered is the receipt of a CT message withβ’s ID, which is responded with
a CE message (line 4.a.1) which does not make it back, meaning that a failure occurred at some
nodeγ after the CT message passed there and before the CE message did. But that should have
resulted in an FT message fromγ which should have arrived atβ.

The proposition assures synchronization only after a topological change occurs. If a network is ini-
tially operated in an unsynchronized state and no topological changes occur, the network will
remain unsynchronized. Thus, it is necessary to start the network properly; for example, by having
every node declare its link down at startup and then “recover” them.

Proposition 2: Within a finite time after a topological change, either all nodes have the correct sta-
tus record or another topological change occurs.

Proof: By proposition 1, within a finite time after a topological change all nodes have the same sta-
tus record. It is left to show that the algorithm converges to the correct value.

Suppose in all nodesSA = 1 yet the loop is broken. This is a contradiction since there is at least one
node whose incoming link is broken and whoseSA record must be therefore be set to0.

Suppose in all nodesSA =0 yet the loop is connected. Since there was a topological change and
since the loop is connected the last topological change must have been link recovery, possibly at
several nodes. Consider one of those nodes whose incoming link recovered and who therefore sent
a CT message. Since the loop is connected, that message makes it back to the originator who then
sends a CE message which must causeSA ← 1.

In the basic algorithm theSCEX variable is introduced for efficiency reasons only. It is tested only
in step 5a but the same result could be obtained if the CE message had carried an ID (resulting in
longer messages). Also, if several nodes concurrently generate CE messages, it is not necessary
that each of these complete a round (as would be the case if the user ID would be the criterion); it
is sufficient to ensure that each user receives one such message. Note that any event other then
receiving somebody else’s CT, causes the resetting ofSCEX.

Tracing the activities of the basic algorithm when recovery occurs in more than one place, reveals
that all the CT messages travel once around the loop and several CE messages traverse each a por-
tion of the loop so that every node sees a single CE message. This is somewhat of a waste since it
would be sufficient for one CT message to complete round and cause its originator to generate a
CE message that would go around the entire loop. To achieve this we make use of the ID carried
by each CT message and theSCTX flag (heretofore unused). When a node originates a CT message
it will not forward other CT messages that carry an ID lower then its own. This is equivalent to
choosing a leader in the manner described in[6] (where its correctness is proved).

To incorporate this into the basic algorithm requires only a change in step 4, that would now
become:

4. Receive CT(ID) onX
4.a. IfSCTX = 0

4.a.1. Send CT(ID) onX
4.b. If SCTX = 1

4.b.1 If ID = MyID
4.b.1.a. Send CE onX
4.b.1.b.SCTX ← 0 SCEX ← 1

4.b.2 If ID>MyID
4.b.2.a. Send CT(ID) onX
4.b.2.b.SCTX ← 0 SCEX ← 0

We note that the SCE flag is still used to avoid the need for the CE message to carry the ID. Note
also that when a leader is chosen (step 4.b.1) it sets itsSCEflag to 1; because the leader is unique
there is only one node withSCE =1, a fact we shall subsequently use for token control.

3.2 Loopback Extension

When neither of the loops is connected, a loopback must be placed in every node adjacent to an
inoperational link so that partial connectivity is achieved. The basic algorithm provides only syn-
chronization with respect to loop status, and is not concerned with loopbacks. In fact, with the
basic algorithm alone nodes may not know whether or not they need to install a loopback. The
extension presented in this subsection deals with this.

The main problem is for a node to become aware of the status of its outgoing links. To do this two
new messages are introduced:

FO indicates a Failure on the Other loop, i.e., not on the loop on which this message is
received.

RO indicates a Recovery on the Other loop, i.e., not on the loop on which this message is
received.

These two messages are not forwarded by their recipients. They are sent by a node sensing a failure
or recovery of a link to its preceding neighbor for who this is an outgoing link. Because the status
of the other link is not known by the sender of these messages, it does not know whether or not they
arrived. Here the link status bit carried by the FT message is used; when a node sends an FT mes-
sage it designates with this bit the status of its incoming link on the other loop (l=1 means opera-
tional). The algorithm would now look as follows:

1. X-link failed
1.a. Send FT onX
1.b.SX ← 0
1.c.SCTX ← 0 SCEX ← 0
1.d. Send FO on
1.e. If = 0 loop back form toX.

2. X-link recovered
2.a. Send CT onX
2.b.SCTX ← 1 SCEX ← 0
2.c. Send RO on
2.d. If =0 Conduct local connectivity test; remove loopbacks if successful

 3. Receive FT(l) onX
3.a. Send FT onX
3.b.SX ← 0
3.c.SCTX ← 0 SCEX ← 0
3.d. If = 0

3.d.1. If l=0 loop back form toX.
3.d.2. If -link inoperational loop back formX to .

4. Receive CT(ID) onX
4.a. IfSCTX = 0

4.a.1. Send CT(ID) onX
4.b. If SCTX = 1

X
S

X
X

X
S

X

S
X

X
X X

4.b.1 If ID = MyID
4.b.1.a. Send CE onX
4.b.1.b.SCTX ← 0 SCEX ← 1

4.b.2 If ID >MyID
4.b.2.a. Send CT(ID) onX
4.b.2.b.SCTX ← 0 SCEX ← 0

5. Receive CE onX
5.a. ifSCEX = 0 send CE onX
5.b.SX ← 1
5.c.SCTX ← 0 SCEX ← 0
5.d. Undo any loopbacks.

6. Receive FO onX
6.a. ← 0 ← 0
6.b. If SX = 0 loop back form toX.

7. Receive RO onX
7.a Undo loopback

We note that in (the newly added) steps 6 and 7 the status bits of the loops is not changed, and
therefore the synchronization results of propositions 1 and 2 still hold. What needs to be proven is
that loopbacks are placed and dismantled in the right places at the right time.

Proposition 3:Within a finite time after a topological change loopback is performed iff necessary.

Proof. We recall that loopback need be performed at every node with either an incoming or outgo-
ing link is broken, if and only if both loops are inoperational. Correct looping back is therefore
equivalent to knowing the status of the adjacent links, and since the status of incoming links can be
directly sensed, the status of outgoing links is our main concern.

Before starting the proof, we make notice of the following auxiliary lemma: “No superfluous loop-
backs are installed”. This lemma is trivially correct since loopbacks are installed in steps 1e, 3d,
and 6b, in each of which it is assured that both loops are inoperational and in each case the state of
the relevant adjacent links is explicitly known. (In a similar way it can be shown that any loopback
removal is necessary).

We prove the rest by contradiction.

Part 1: A loopback that should not exist does.

Assume the nodea is looping back, diverting traffic away from nodeb. By the above lemma,a
rightfully installed the loopback, i.e., both loops were broken and at least one of the links between
a andb was broken. Two possible reasons could cause the loopback to be unnecessary:

Case 1: One of the loops became connected. By virtue of proposition 2 all nodes know it and dis-
mantle loopbacks (step 5b).

SCT
X

SCE
X

X

Case 2: Both loops remain disconnected, both links betweena andb are operational, however,a
assumes that the link (a,b) is inoperational and is therefore looping back. One of the links between
a andb must have recovered; we trace events after the recovery of the link that was last to recover.
If it were (b,a)thenawould successfully complete a connectivity test and subsequently remove the
loopback (step 2d). If it were(a,b)thenb would senda an RO message (step 2c) which would have
causeda to remove the loopback (step 7).

Part 2: A loopback that should exist does not.

For such a circumstance to prevail there must exist a pair of adjacent nodesa andb in the following
configuration:

1. One or both of the links betweena andb are broken.

2. a assumes that both links are operational.

3. Both loops are broken (if this were not the case then loopback is unnecessary).

Suppose the link(b,a) is broken. When it broke, the other loop could either have been operational
or broken. In the former case, the other loop broke some time later requiring a transition ofSX to 0
ata, which can be performed only at steps 1 and 3, but in both a loopback would have been
installed. In the latter case, i.e., the other loop was broken, the failure of(b,a)would causea to exe-
cute step 1 and install a loopback.

Thus(b,a) is operational, and therefore(a,b) is not. We observe the events after the failure of the
link (a,b). b sends an FO message toa (step 1d) which is not received bya, since, if it were
receiveda would have looped back (step 6b). We thus conclude that(b,a) had been inoperational
when(a,b) failed. Thus, some time later(b,a) recovered at which timea conducts a local connec-
tivity test (step 2d) and realizes that(a,b) is inoperational, yielding a contradiction.

It should be noted that step 2d is the only place where local connectivity test is performed. How-
ever, this is not disruptive to the regular operation of the subloops since a loopback exists there so
that no packet flow is interrupted.

3.3 Token Control

The algorithm presented so far guarantees that following topological changes the network config-
ures itself into the minimum number of subloops, thereby providing maximum possible connectiv-
ity. However, proper operation also requires that each loop or subloop has exactly one token,
meaning that upon reconfiguration tokens may have to be generated or destroyed. In this subsec-
tion we present a token control algorithm whose objective is to organize the network so that in
every connected loop or subloop a single token is present. As before, token control need be exerted
only after topological changes. Our general approach is to destroy all existing tokens in any loop
or subloop that undergoes reconfiguration, and then generate a single token in every such loop or
subloop. We distinguish two separate cases depending on whether or not a subloop configuration
exists after a topological change.

The case in which one of the loops becomes connected after a topological change is straightfor-
ward to handle. Connectivity is established by the CE message. Since there is only one such mes-
sage the originator of that message generates a new token while all others destroy theirs (if they
have one). To implement this, step 5 of the above algorithm is modified as follows:

5. Receive CE onX
5.a. ifSCEX = 0 send CE onX

5.a.1. Destroy token
5.a.2. Send CE onX

5.b. If SCEX = 1 Generate Token
5.c.SX ← 1
5.d.SCTX ← 0 SCEX ← 0
5.e. Undo any loopbacks.

To treat the other case let us restrict ourselves, for explanation purposes, to link severance and
describe an algorithm for token control in this case. Focusing on one of the subloops we note that
two nodes can be singled out--the two in the loopback mode. One of them will be selected to gen-
erate the token. The nodes that do not loopback do not actively participate in the execution except
for message forwarding (in the following description only the activities of the looping back nodes
are addressed).

The algorithm has two phases: a cleanup phase and a selection phase. The cleanup phase assures
that any left over control messages and tokens from previous executions are eliminated. The selec-
tion phase assures that exactly one node generates a token. Two messages are used, similarly to
those used for testing the entire loop connectivity:

LT is a Loop Test message performing the cleanup. This message carries the ID of the origina-
tor and a “bounce bit” (see below).

LE is a Loop Establish message indicating that a loop is established and a token generator is
selected. This message carries the ID of its originator.

To explain the approach consider figure 3 which shows part of the entire system (the dashed lined
indicate the existence of intermediate nodes). The link marked 1 had been broken when the link
marked 2 broke. This necessitates to exert token control in the subloop that forms between nodes
A and F. While this is going on the links marked 3 and 4 break. Token control is now required in
three subloops: A-B, C-D, and E-F. Some message from the previous execution (of subloop A-F)
are, however, still underway. Moreover, it is possible that such messages never arrive at their
intended destination and need be cleaned up (we refer to those asorphanmessages). Note also that
the algorithm must handle the concurrent failure of links 3 and 4.

To assure the cleanup the LT message must go around the subloop until it returns to its originator.
To stop orphan LT messages from an infinite loop a “bounce bit” is carried in the message. An LT
message is originally sent with the bounce bit set to 0. When it arrives at a looping back node it is
forwarded (on the other loop) with the bounce bit set to 1. An LT message with a bounce bit set to
1 is removed by a loopback node and forwarded by all others. When an LT message returns to its

originator the subloop contains no more orphans. In fact, if the originator did not receive any other
LT message since it sent its own, it can safely generate a token.

However, two LT message could have been received as a result of concurrent link severance, neces-
sitating to arbitrate between the two originating nodes that are potential token generator. The LE
message is then transmitted, carrying an ID; The node with the highest ID is selected to generate
the token.

For every orphan message there is a node expecting it to return. In order to stop this node from
waiting forever every node remembers, in a MEMORY cell the ID carried by the most recent LT
message it encounters. If an LE message is received carrying the same ID as that stored in the
MEMORY, it is an indication that another node succeeded in the cleanup operation, and hence our
node will not receive the message it is waiting for and might as well give up.

We use two bits per node--SLT and SLE--to designate the fact that this node has sent an LT and an
LE message respectively. The state diagram below describes the transitions in the execution of this
algorithm by looping back nodes (the others only forward messages). In this diagram the transi-
tions are marked “event/action” where the events are the receipt of the following messages: (1)
LT(ID=MyID,1) (2) LT(ID ≠ MyID,0), (3)LT(ID ≠ MyID,1), (4)LE(ID).

Several observation regarding this diagram are in order:

A

B

C

D

E

F

1

2

3

4

Figure 3: Token-Control Example

14

• The algorithm must be “externally started.” This is done so that both failure and recovery can
be accommodated. The nodes sensing the link failure or recovery cause the algorithm to be
started, thereby assuring the execution in every newly generated subloop.

• Messages of type 3 are always tossed, since theses are the orphans.

• It is assumed the MEMORY cell can be empty, and recognized as such by the node.

3.3.1 Proof of Correctness

To prove the correctness of the algorithm we transform it from the state diagram above to the event/
response notation. This results in the following specification:

8. Receive LT (ID,B) on X
8.a. Destroy token
8.b. If loopback

8.b.1. IfID=MyID and B=1
8.b.1.a.SLE ← 0
8.b.1.b. IfSLT = 1

8.b.1.b.1. If MEMORY=0 Generate token

Figure 4: Token-Control State Diagram

SLT=1 SLE=0
MEMORY!=0

SLT=0 SLE=1
SLT=1 SLE=0
MEMORY=0

SLT=0 SLE=0

1/Token START/LT(MyID,0)
MEMORY<-0

3,4/

2/LT(ID,1)
MEMORY<-ID3,4,ID!=MEMORY

2/LT(ID,1)
MEMORY<-ID

1/LE(MyID)1,3/

2/LT(ID,1)

4&ID>MyID/

4&ID<=MyID/Token

4/Token
2/LT(ID,1) 1,3/

$&ID=MEM/Token

15

8.b.1.b.2. If MEMOR ≠0
8.b.1.b.2.a. Send LE(ID) on
8.b.1.b.2.b.SLE ← 1

8.b.1.b.3SLT ← 0
8.b.2. IfID ≠MyID and B=0

8.b.2.a. Send LT(ID, 1) on
8.b.2.b. IfSLT = 1 MEMORY ← ID
8.b.2.c.SLE ← 0

8.c If not loopback
8.c.1 If ID ≠MyID Send LT(ID,B) on X.

9. Receive LE(ID) on X
9.a. If loopback

9.a.1. IfSLT = 0
9.a.1.a IfSLE =0or ID ≤ MyID Generate Token
9.a.2.a.SLE ← 0

9.a.2. IfSLT = 1
9.a.2.a. If ID=MEMORY

9.a.2.a.1.SLT ← 0
9.a.2.a.2. Generate Token

9.b If not loopback
9.b.1. If ID ≠MyID Send LE(ID) on X

10. START issued
10.a. If loopback

10.a.1 Send LT(ID, 1)
10.a.2SLT ← 0
10.a.3SLE ← 0
10.a.4 MEMORY← 0

To prove the correctness, we first show that, when the algorithm is invoked, tokens will be gener-
ated in every subloop and then show that, actually, exactly one is generated. We assume the algo-
rithm is initiated by issuing a START at a looping-back node.

Proposition 4: Within a finite time after a START is given either a new token is generated or
another START is given by a node that is aware of the original START.

Proof: Assume a START is given by node A and no other START (fulfilling the condition of the
proposition) is given. Thus the LT(ID=A,0) sent as a result of the START will not become an
orphan for otherwise a new START must have been given. Eventually an LT(ID=A,1) message is
generated which, by to the same argument, will not become orphan and will return to node A.
There are three possibilities at this point:

1. SLT =1 and MEM=0: a token is generated.

2. SLT =1 and MEM ≠0: anLE message is sent.

3. SLT =0.

Case 1 complies with the proposition so it is left to prove the other two cases.

X

X

16

Case 2. We trace the LE message when it arrives at another looping back node, say B (which must
exist or a new START will be issued). If a token is not generated by node B (steps 9a1a or 9a2a2)
then

1. SLE =1 meaning that B itself sent an LE message that will arrive at node A where step 9a1a
will be executed.

2. SLT =1meaning that node B sent LT(ID=B,0) after it has responded to node A’s LT message,
and is therefore considered a new START. (This will not lead to a deadlock since node A will
not generate another LT message.)

Case 3. The arriving LT message is discarded, and the following is the sequence of events. When
node A first sent the LT message it also set itsSLTto 1, meaning that it was reset in the meantime,
an event that can only happen (without generating a token) at step 8b1b3, i.e., after having received
its own LT message. Repeatedly applying this arguments leads to a situation where node A
received its own LT message when itsSLT is set to 1, and one of the previous cases applies.

Proposition 5: At most one token can be generated as a result of a START.

Proof: Since only the two looping back nodes can generate tokens, at most two tokens can be gen-
erated. This can be done either in step 8b1b1 or in step 9a. Suppose both have generated the token
by executing 8b1b1; thus, both have received their own LT message back meaning that each has
seen the other’s message, meaning that in eachMEMORY ≠ 0 and a token will not be generated.

Suppose node A generated the token by executing step 8b1b1 while B generated it by executing
step 9a. Node B received an LE message from node A which must haveMEMORY≠ 0. But to gen-
erate a token in step 8b1 the node must haveMEMORY=0, meaning that node A must have sent
the LE message after generating a token, but doing so setsSLTto 0 (step 8b1b3) excluding the exe-
cution of step 8b1b1.

Suppose, finally, that both generated the token by executing step 9a. Both have received the other’s
LE message, so each had sent that message and must have itsSLEset to 1 meaning that itsSLTis
0 (step 8b1b3) so that step 9a2 is excluded and step 9a1a is executed because the ID relation is sat-
isfied, but clearly this can be satisfied by only one of the two nodes.

Proposition 6: During reconfiguration all old tokens are destroyed.

Proof: The algorithm is invoked by a START and terminated by a generation of a token (either in
step 8 or step 9). Step 9 is always preceded by some node executing step 8 (since 8b1b2a is the only
step in which an LE message is generated). Thus the generation of a token implies that at least one
node executes 8b1. However, for a node to have received its own LT message with the bounce bit
set to 1, all other nodes in the subloop must have received an LT message and by virtue of step 8a
have destroyed all old tokens.

As a result of these last three propositions it is guaranteed that when a loopback configuration
remains exactly one token exists in every subloop.

17

3.3.2 Fitting It Together

The token control algorithm presented in the previous subsection must be integrated with the glo-
bal reconfiguration algorithm. Our strategy is as follows: whenever a topological change takes
place that may effect the subloop configuration, the subloop token control algorithm is invoked. In
addition, to cover the possibility that a subloop configuration is no longer needed, the global loop
token control algorithm is concurrently invoked whenever link recovery takes place. The integra-
tion therefore requires that:

1. A subloop token control algorithm be invoked whenever a change in subloop configuration
takes place

2. The loop configuration algorithm override the subloop reconfiguration algorithm

Changes in the subloop topology are necessarily tied to loopback changes. Consequently, in com-
pliance with the first requirement, nodes that modify their loopback are natural candidates to
invoke the subloop token control algorithm. We now show exactly how this is performed.

We distinguish, as before, two cases--loopback introduction (as a result of link failure) and loop-
back removal (as a result of link recovery). To deal with the first case we require that every node
introducing a loopback (steps 1e, 3d, or 6b) issue a START, i.e., send an LT message with its own
ID and set itsSLT variable to 1.

The case of loopback removal is more intricate since the subloop token control algorithm must be
STARTed only by a node that is looping back. Unfortunately, the node sensing the recovery no
longer loops back and can therefore not participate. To deal with this situation we make use of the
fact that upon link recovery a CT message is sent (step 2a). If a subloop configuration remains, this
CT message eventually arrives at a looping back node and instigates a START at it. If a subloop
configuration does not remain, the CT message returns to the originator without causing a START
to be generated anywhere. This modification is achieved by adding the following step:

4.c. if loopback
4.c.1. Send LT on
4.c.2. ← 1

To ensure fulfillment of requirement 2, aCE message must reset theSLT andSLE flags for both
loops (to be done in step 5d). Once this is done orphanLT andLE messages that may be floating
in the network must be destroyed; this is achieved by ensuring that steps 8c1 and 9b1 are executed
only if neither status bit (SA or SB) are set to 1.

The above scheme while correct has a slight inefficiency. The CT message generated upon recov-
ery may pass through subloops that do not require reconfiguration, unnecessarily invoking there
the token control algorithm. To avoid this, an extra bit could be added to the CT message, ensuring
that a CT message invokes only a single token control algorithm.

Finally a word about token destruction. The token generating algorithm generates a new token and
requires that previous tokens, if any, be destroyed. To achieve this, the following rule is adopted. A

X
SLT

X

18

node owning the token and receiving either a CE or LT message destroys the token. To ensure that
these messages do not “miss” the token (for example when the token and messages progress in
opposite directions) we further require that nodes receiving a token when eitherSCE =1or SLT =1
destroy the token. Since both CE and LT messages return to their originator, token destruction is
guaranteed.

References

[1] J.H. Saltzer and K.T. Pogran. A Star Shaped Ring Network with High Maintainability. In
Proc. of the Local Area Network Symposium, pp. 179–189, 1979.

[2] C.S. Raghvendra, M. Gerla, and A Avizienis. Reliable Loop Topologies for Large Local
Computer Networks.IEEE Trans. on Computers, C–34(1):46–55, 1985.

[3] M.T. Liu, D.P. Tsay, C.P. Chou, and C.M. Li. Design of the Distributed Double Loop Com-
puter Network (DDLCN).Journal of Digital Systems, 5(1–2):3–37, 1981.

[4] Y.J. Tang and S.G. Zaky. A Survey of Ring Networks: Topology and Protocols. InProceed-
ing of IEEE Infocom 85, pp. 318–325, Washington, D.C., 1985.

[5] J.R. Pierce. Network for Block Switching Data. InBell System Techincal Journal, 51(6):
1133-1145, 1972

[6] A. Itai and M. Rodeh. Symmetry Breaking in Distributed Networks. InProc. of the 22nd
Annual Symposium on the Foundations of Computer Science, pp. 150–158. IEEE, Nashville,
Tennessee, 1981.

	A RECONFIGURATION ALGORITHM FOR A DOUBLE-LOOP TOKEN-RING LOCAL AREA NETWORK
	ABSTRACT
	1.0 INTRODUCTION
	2.0 MODEL
	3.0 RECONFIGURATION ALGORITHMS
	3.1 The Basic Algorithm
	3.2 Loopback Extension
	3.3 Token Control
	3.3.1 Proof of Correctness
	3.3.2 Fitting It Together

	References

