

SPARSE MATRIX MULTIPLICATION ON AN

ASSOCIATIVE PROCESSOR
L. Yavits, A. Morad, R. Ginosar

Abstract—Sparse matrix multiplication is an important component of linear algebra computations. Implementing sparse matrix

multiplication on an associative processor (AP) enables high level of parallelism, where a row of one matrix is multiplied in

parallel with the entire second matrix, and where the AP execution time of vector dot product does not depend on the vector

size. Four sparse matrix multiplication algorithms are explored in this paper, combining AP and CPU processing to various

levels. They are evaluated by simulation on a large set of sparse matrices. The computational complexity of sparse matrix

multiplication on AP is shown to be an O(M) where M is the number of nonzero elements. The AP is found to be especially

efficient in binary sparse matrix multiplication. AP outperforms conventional solutions in power efficiency.

Index Terms— Sparse Linear Algebra, SIMD, Associative Processor, Memory Intensive Computing, In-Memory Computing.

—————————— ——————————

1 INTRODUCTION

parse matrix multiplication is a frequent bottleneck in
large scale linear algebra applications, especially in
data mining and machine learning [28]. The efficiency

of sparse matrix multiplication becomes even more rele-
vant with the emergence of big data, giving rise to very
large vector and matrix sizes.

Associative Processor (AP) is a massively parallel
SIMD array processor [15] [22] [43]. The AP comprises a
modified Content Addressable Memory (CAM) and facili-
tates processing in addition to storage. The execution time
of a typical vector operation in an AP does not depend on
the vector size, thus allowing efficient parallel processing
of very large vectors. AP’s efficiency grows with the data
set sizes and data-level parallelism. A detailed description
of the AP architecture, functionality and associative com-
puting can be found in [23].

Associative processing has been known and extensive-
ly studied since the 1960s. Commercial associative pro-
cessing never quite took off, because only limited
amounts of memory could be placed on a single die [21].
Equally important, standalone bit- and word-parallel
conventional SIMD processors outperformed APs due to
the data sets and tasks of limited size. However, the pro-
gress in computer industry and semiconductor technolo-
gy in recent years opens the door for reconsidering the
APs:
 The rise of big data pushes the computational re-

quirements to levels never seen before. The amounts
of data to be processed simultaneously require a new
parallel computing paradigm. Unlike conventional
SIMD processors, the performance and efficiency of
an AP improves with the data set size.

 Power consumption, which used to be a secondary

factor in the past, has become a principal constraint
on scalability and performance of the parallel archi-
tectures. The AP is shown to achieve a better power
efficiency [23].

 Off-chip memory bandwidth is another factor limit-
ing the performance and scalability of parallel archi-
tectures. Associative processing mitigates this limita-
tion by intertwining computing with data storage.

 In high performance dies, thermal density is becom-
ing the limit on total computation capabilities; associ-
ative processing leads to uniform power and thermal
distribution over the chip area, avoiding hot spots
and enabling the three dimensional (3D) integration.

In this work, we present four different algorithms of
sparse matrix-matrix multiplication on the AP. The first
algorithm, designated “AP”, is a fully associative imple-
mentation, making use only of the intrinsic AP resources.
We show that the computational complexity of a fully
associative implementation is 𝑂(𝑀), where 𝑀 is the num-
ber of nonzero elements. In the second algorithm, called
“AP+ACC”, the singleton products are computed by the
AP and an external CPU is used to accumulate them. The
third algorithm, “AP+MULT”, uses a CPU to multiply
matrix elements; the products are accumulated by the AP.
The fourth algorithm, “AP+MULT+ACC”, uses the AP
for matching the matrix elements, and a CPU for both
multiplication and accumulation. We find that the fully
associative implementation is especially efficient for very
large matrices with high number of nonzero elements per
row. Fully associative implementation is also preferred
for multiplication of binary sparse matrices (that is, ma-
trices where the nonzero elements are ±1). In contrast, the
other three (hybrid) algorithms are more efficient for ma-
trices with a lower number of nonzero elements per row,
and their efficiency improves slower or remains constant
with the number of nonzero elements.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 presents associative
algorithms for sparse matrix multiplication. Section 4 de-

————————————————

 Leonid Yavits (*), E-mail: yavits@tx.technion.ac.il.
 Amir Morad (*), E-mail: amirm@tx.technion.ac.il.
 Ran Ginosar (*), E-mail: ran@ee.technion.ac.il.
 (*) Authors are with the Department of Electrical Engineering, Technion-

Israel Institute of Technology, Haifa 32000, Israel.

S

mailto:yavits@tx.technion.ac.il
mailto:amirm@tx.technion.ac.il
mailto:ran@ee.technion.ac.il

tails the evaluation methodology and presents the simula-
tion results. Section 5 offers conclusions.

2 RELATED WORK

While this paper studies a sparse matrix-matrix multi-
plication, a majority of previous studies have targeted
sparse matrix-vector multiplication (SpMV). For simplici-
ty, in this section we apply the term “sparse matrix mul-
tiplication” (SpMM) to both problems.

A substantial body of literature explores sparse matrix
multiplication optimization techniques. A comprehensive
review of these techniques is provided by R. Vuduc [36].
We take a slightly different look, focusing on hardware
platforms rather than on software implementation. The
literature can be divided into three categories, as summa-
rized in TABLE 1.

TABLE 1

RELATED WORK SUMMARY

Category Existing Work

General Purpose Computers Off-the-shelf [1] [7] [39] [44]

Advanced multicore [40]

Manycore supercomputer [5]

GPU [9] [17] [26] [28] [29] [38]

Dedicated Hardware

Solutions

FPGA [20] [25]

Manycore Processor [27]

Distributed Array Processor [16]

Systolic Processor [32]

Coherent Processor [4]

TCAM / PIM [11]

Heterogeneous platform [30] [31]

3D LiM [33]

The first category targets the optimization of sparse

matrix multiplication on general purpose computer archi-
tectures. S. Toledo [39] enhanced sparse matrix multipli-
cation on a superscalar RISC processor by improving in-
struction-level parallelism and reducing cache miss rate.
A. Pinar et al. [1] proposed further optimization of data
structures using reordering algorithms, to improve cache
performance. E. Im et al. [7] developed the SPARSITY
toolkit for the automatic optimization of sparse matrix
multiplication. Y. Saad et al. [44] proposed PSPARSLIB, a
collection of sparse matrix multiplication subroutines for
multiprocessors. S. Williams et al. [40] examined and op-
timized sparse matrix multiplication across a broad spec-
trum of multicore architectures. Finally, Bowler et al. [5]
optimized sparse matrix multiplication for a 512-core su-
percomputer.

Another direction is the implementation and optimiza-
tion of sparse matrix multiplication using GPU. While
this effort still relies on a conventional computational
platform and focuses mainly on algorithm optimization,
it enables significant speedup over sequential CPU or
even multicore solutions [29]. Many of the GPU-based
studies rely on G. Blelloch’s [9] research into mapping of
sparse data structures onto SIMD hardware. S. Sengupta
et al. [38] developed segmented scan primitive for effi-

cient sparse matrix multiplication on GPU. J. Bolz et
al. [17] implemented a sparse matrix solver on GPU. M.
Baskaran et al. [26] enhanced GPU sparse matrix multipli-
cation by creating an optimized storage format. Bell et
al. [28] [29] develop methods to exploit common forms of
matrix structure while offering alternatives to accommo-
date irregularity.

The third direction encompasses special purpose
hardware solutions for sparse matrix multiplication. L.
Zhuo [25] proposed an FPGA based design, which re-
portedly demonstrated a significant speedup over then-
current general-purpose solutions (such as Itanium 2),
especially for matrices with very irregular sparsity struc-
tures. Another FPGA based sparse matrix multiplication
solution was introduced by J. Sun et al. [20]. Some special-
ty solutions relying on VLSI implementation have been
suggested as well. M. Misra et al. [27] developed a parallel
architecture comprising 𝑀 processing elements (where 𝑀
is the number of nonzero elements in a matrix), and im-
plemented an efficient routing technique to resolve the
communication bottleneck. J. Andersen et al. [16] suggest-
ed implementing sparse matrix multiplication on the Dis-
tributed Array Processor (DAP), a massively parallel
SIMD architecture. O. Beaumont et al. [30] [31] imple-
mented matrix multiplication on a heterogeneous net-
work.

A number of hardware solutions using content-
addressable memory have also been proposed. O.
Wing [32] suggested a systolic array architecture, com-
prising a number of processing elements connected in a
ring. Each processing element has its own content-
addressable memory, storing the nonzero elements of the
sparse matrix. Matrix elements are extracted from the
memory by content addressing. Sparse matrix-vector
multiplication takes 𝑂(𝑀) cycles (where 𝑀 is the number
of nonzero elements in matrix). That work relies on an
earlier study by R. Kieckhager et al. [35], who were prob-
ably the first to use a content-addressable memory in the
context of sparse matrix multiplication. Q. Guo et al. [11]
implemented a fixed point matrix multiplication on a
TCAM based Processing-In-Memory (PIM) architecture.
They use TCAM to match key-value pairs but rely on a
microcontroller for multiplication. Recently, Q. Zhu et
al. [33] suggested a 3-D Logic-In-Memory (LiM) architec-
ture where DRAM dies are intertwined with logic dies in
a 3D stack. Their architecture uses a logic-enhanced CAM
to take advantage of its parallel matching capabilities.

Associative processors have also been considered in
the context of matrix processing. C. Stormon [4] intro-
duced the Coherent Processor, a massively parallel asso-
ciative computer. Sparse matrix computations are men-
tioned among the Coherent Processor’s applications alt-
hough no details of the sparse matrix multiplication are
provided. Stromon suggested using the Coordinate
(COO) format of storing nonzero elements of sparse ma-
trices along with their row and column indices, in con-
trast other sparse formats such as Compressed Sparse
Row (CSR) or ELLPACK (ELL) [18], which are more effi-
cient for sequential processors or GPUs.

The key contribution of the present work is the effi-

cient implementation of sparse matrix multiplication on a
memory intensive associative processor (AP), verified by
extensive AP simulation using a large collection of sparse
matrices [41].

3 SPARSE MATRIX MULTIPLICATION ON AP

In this section we detail the sparse matrix multiplica-
tion algorithm and its four implementations on the AP.

Fig. 1 illustrates the multiplication of sparse matrix A
by sparse matrix B. In this example, row 𝑗 of matrix A has
three nonzero elements in columns {𝑖 , 𝑖 , 𝑖 }. Rows
{𝑖 , 𝑖 , 𝑖 } of matrix B have nonzero elements in columns
{𝑘 , 𝑘 , 𝑘 }, {𝑘 , 𝑘 } and {𝑘 , 𝑘 , 𝑘 }, respectively.

A B

1i 2i 3i

j

1i

2i

3i

1k 2k 3k 4k 5k

Nonzero element of Matrix A Nonzero element of Matrix B
Fig. 1. Sparse Matrix Multiplication - Illustration

Fig. 2 shows the associative processing array and re-

duction tree [23] mapping. We assume that both input
matrices are stored in the AP in the COO format, where
nonzero elements are entered consecutively, with the row
and column indexes stored alongside the matrix element.

An AP implementation does not require the matrix el-
ements to be stored in any particular order. Hence the
Matrix Market (MM) [34] sparse format is supported as
well.

Fig. 3 presents the pseudo code of the fully associative
sparse matrix multiplication (algorithm “AP”). It includes
two internal loops nested within an external one. The ex-
ternal loop goes over the nonzero rows of matrix A. The
first internal loop goes over the nonzero elements in each
nonzero row of matrix A and takes three steps. At step 1,
a nonzero element of row 𝑗 and its column index 𝑖 are
read from the associative memory (associative processing
array). At step 2, its column index 𝑖 is compared against
the row index field of the entire matrix B. This step is
done in parallel for all nonzero elements of matrix B, us-
ing the AP compare command. All matching nonzero
elements of matrix B (𝑘 , 𝑘 and 𝑘 for row 𝑖 etc. in Fig. 1
and Fig. 2) are tagged. At step 3, the nonzero element of
matrix A is written simultaneously into all tagged rows,
alongside the tagged elements of matrix B (segments 𝑖 , 𝑖
and 𝑖 of Fig. 2).

The first internal loop is repeated while there are non-
zero elements in row 𝑗 of matrix A. Upon completion, all
nonzero pairs of matrices A and B required to calculate
the row 𝑗 of the product matrix C are aligned (stored in
the same associative processing unit) in the associative
processing array.

Next step 4 is the associative multiplication of A,B

pairs, performed in parallel for all pairs. For instance, the
index of the first product in Fig. 2 is 𝑗, 𝑖 , 𝑘 .

1i

2i

3i

1k

2k

3k

4k

5k

j A

A

A

1i

1i

1i

2i

2i

3i

3i

3i

j

j

j Segment

A Space

B Space

Segment

Segment

Segment

1i

2i

3i
1k

5k
2k

B

B

B

B

B

B

B

B

1i j A

1i j A

1i j A

2i

2i

j A
j A

3i

3i

3i

j A
j A

j A

Input Matrix Field Temporary Storage

Reduction Tree

Associative Processing Array

,
1

j kC

,
2

j kC

,
3

j kC

,
4

j kC

,
5

j kC

Matrix C

j Segment

1 1
ji kP

Col
Key

Row
Key

Value

Th
e

“u
se

d
”

b
it

2 2
ji kP

1 3
ji kP

1 5
ji kP

2 4
ji kP

3 1
ji kP

3 2
ji kP

3 5
ji kP

Fig. 2. AP Memory and Reduction Map

 Init {

Matrix A → A space;

Matrix B → B space;

 }

 Main {

While (!end of A) { //serially over all nz rows of A

While (!end of row 𝑗) { //serially, over all nz elements in 𝑗𝑡ℎ row of A

1. Read_next 𝑖,𝐴𝑗 ,𝑖

2. Tag all 𝐵𝑖 ,𝑘 //in parallel, single step, for all 𝑘
3. Write 𝐴𝑗 ,𝑖 //in parallel, single step, into all tagged rows

}
4. 𝑃𝑗 ,𝑖,𝑘 = ASSOCIATIVE_MULT(𝐴𝑗 ,𝑖 ,𝐵𝑖 ,𝑘) //forall aligned pairs

While (∃𝑘 not used) { //serially over all values 𝑘

5. Read_next 𝑘,𝑃𝑗 ,𝑖 ,𝑘 //find next not used 𝑘 value

6. Tag all 𝑃𝑗 ,𝑖 ,𝑘 //parallel forall 𝑃𝑗 ,∗,𝑘 with same 𝑘, single step

7. Mark “used” //parallel forall tagged rows, single step
8. 𝐶𝑗 ,𝑘 = ASSOCIATIVE_REDUCE_SUM(𝑃𝑗 ,𝑖 ,𝑘)

 }
 }

Fig. 3. AP algorithm for fully associative sparse matrix multiplication

The second loop sums up the products (the singletons).

It contains steps 5 through 8. At step 5, a singleton prod-
uct is read from the associative processing array (begin-
ning with the first one). At step 6, its B column index 𝑘
(unless it is marked “used”) is compared against the B
column index of all singleton products, and all singletons
with B column index 𝑘 are tagged. At step 7, the tagged
rows are marked “used” by a write command. Those
tagged rows hold the singleton products that need to be
accumulated to form element 𝐶 , . Step 8 is the reduction.
The reduction tree is pipelined hence the loop may end
without waiting for the reduction tree to complete. The
loop is repeated while there are unprocessed (that is, not
marked “used”) B column indices.

In certain sparse matrices, most rows and columns
contain very few nonzero elements. In such cases, parallel
reduction (step 8 in Fig. 3) may be less efficient because a

very few singleton products are accumulated in each iter-
ation. Consequently, the reduction may better be carried
out word-serially, by an external CPU. That algorithm,
“AP+ACC,” is shown in Fig. 4. Steps 1 through 6 are
identical to those of “AP”. The 8th step is a nested loop
that goes over all the singleton products tagged at step 6.
Each 𝑃 , , singleton is read and accumulated by an exter-
nal CPU. We assume a pipelined operation so that steps
8a and 8b in Fig. 4 are performed in parallel; once the
pipeline is filled, each pass of the loop takes a single cycle.

Same code as in Fig. 3, except:

8. Forall tagged rows // serially
a. Read 𝑃𝑗 ,𝑖 ,𝑘

b. 𝐶𝑗 ,𝑘=CPU_ACC (𝐶𝑗 ,𝑘 ,𝑃𝑗 ,𝑖 ,𝑘)

Fig. 4. “AP+ACC” algorithm, using serial accumulation

Similarly, a parallel associative multiplication (step 4

in Fig. 3) may be inefficient when the average number of
nonzero elements per matrix row is small. In such case,
the multiplication of matrix elements may be best per-
formed word-serially by an external CPU. Fig. 5 presents
the pseudo code of this “AP+MULT” algorithm. Steps 1, 2
and 5 through 8 are identical to those of “AP”. The 3rd
step is a nested loop that goes over all the elements of
matrix B with the row index matching the column index 𝑖
of the nonzero element 𝐴 , . Each 𝐵 , element is multi-
plied by 𝐴 , at the external CPU and is written back to the
corresponding row of the associative processing array.
We assume a pipelined operation so that steps 3b and 3c
in Fig. 5 are performed in parallel; once the pipeline is
filled, each pass of the loop takes 2 cycles.

 Same as Fig. 3, except:

3. Forall 𝐵𝑖 ,𝑘 // serially

a. Read_next 𝐵𝑖 ,𝑘 ; // single step
b. 𝑃𝑖 ,𝑘=CPU_MULT (𝐴𝑗 ,𝑖 ,𝐵𝑖 ,𝑘)

c. Write 𝑃𝑖 ,𝑘 alongside 𝐵𝑖 ,𝑘 ; // single step

 line 4 is deleted

Fig. 5. “AP+MULT” algorithm using serial multiplication

Both algorithms “AP+MULT” and “AP+ACC” are

combined into “AP+MULT+ACC” in Fig. 6. This algo-
rithm is efficient for smaller matrices with a lower aver-
age number of nonzero elements per row (for example,
diagonal matrices).

4 SIMULATIONS OF SPMM ON AP

The AP simulator [23] is used to quantify the efficiency
of the four algorithms of Section 3. The experimental set-
up, matrix statistics and simulation results are described
in this section.

4.1 Experimental Setup

To simulate sparse matrix multiplication, we use 900

square matrices with the number of nonzero elements
spanning from ten thousand to eight million, randomly
selected from the collection of sparse matrices from the
University of Florida [41].

 Init {

Matrix A → A space;

Matrix B → B space;

 }

 Main {

While (!end of A) { //serially over all nz rows of A

While (!end of row 𝑗) { //serially, over all nz elements in 𝑗𝑡ℎ row of A

1. Read_next 𝑖,𝐴𝑗 ,𝑖

2. Tag all 𝐵𝑖 ,𝑘 //in parallel, single step, for all 𝑘

3. Forall 𝐵𝑖 ,𝑘 // serially

a. Read_next 𝐵𝑖 ,𝑘 ; // single step
b. 𝑃𝑖 ,𝑘=CPU_MULT (𝐴𝑗 ,𝑖 ,𝐵𝑖 ,𝑘)

c. Write 𝑃𝑖 ,𝑘 alongside 𝐵𝑖 ,𝑘 ; // single step

}
4. 𝑃𝑗 ,𝑖,𝑘 = ASSOCIATIVE_MULT(𝐴𝑗 ,𝑖 ,𝐵𝑖 ,𝑘) //forall aligned pairs

While (∃𝑘 not used) { //serially over all values 𝑘

5. Read_next 𝑘,𝑃𝑗 ,𝑖 ,𝑘 //find next not used 𝑘 value

6. Tag all 𝑃𝑗 ,𝑖 ,𝑘 //parallel forall 𝑃𝑗 ,∗,𝑘 with same 𝑘, single step

7. Mark “used” //parallel forall tagged rows, single step
8. Forall tagged rows // serially

a. Read 𝑃𝑗 ,𝑖 ,𝑘

b. 𝐶𝑗 ,𝑘=CPU_ACC (𝐶𝑗 ,𝑘 ,𝑃𝑗 ,𝑖 ,𝑘)

 }
 }

Fig. 6. “AP+MULT+ACC” algorithm using serial multiplication and accu-
mulation

In our simulation, we assume that the entire workload

fits in the internal memory of the AP. This assumption is
reasonable for the matrices of these sizes. The assumption
of the data being resident in a device memory is quite
custom in SpVM and SpMM performance
sis [19] [29]. Larger matrices would have to be partitioned
for external multiplication on AP.

We simulate the sparse matrix multiplication using the
AP simulator [23]. As shown in Fig. 2, each pair of matrix
elements and the resulting singleton product are pro-
cessed by a single AP processing unit. Simulations are
performed on Intel® Core™ i7-3820 CPU with 32GB
RAM, and simulation times for the 10K—8M nonzero
element matrices range between few tens of seconds and
few tens of hours.

4.2 Matrix Statistics

AP performance depends on the data wordlength ra-
ther than on data set size [23].

Floating Point Matrices

Binary Matrices

(b)(a)
Fig. 7. (a) Wordlength histogram, (b) Histogram of the average number of

nonzero elements per row, relatively to the matrix dimension

Fig. 7(a) presents the matrix element wordlength his-
togram. The wordlength is implied by analysis of the ma-
trix elements (which are originally available from the
University of Florida collection in MATLAB format). The
first peak represents the binary matrices (two bits stand
for a value bit and a sign). The second peak encapsulates
matrices with floating point data elements (24 bits
IEEE754 single precision mantissa). In this work, all mul-
tiplications are carried out as either binary (Boolean) or
floating point operations.

There are several applications that use sparse binary
matrices. According to [41], these applications may in-
clude recommender systems, undirected graph sequenc-
ing, certain optimization problems, duplicate structural
problems, random un-weighted graph processing and
computational fluid dynamics problems. To emphasize
the efficiency of the “AP” algorithm, we employ parallel
Boolean multiplication in the binary matrices: it takes
only eight cycles, regardless of the number of nonzero
elements in a row.

As we show in Section 4.3 below, the performance of
the fully associative “AP” algorithm is strongly affected
by the average number of nonzero elements per row. The
distribution of the average number of nonzero elements
per row relative to the matrix dimension is shown in Fig.
7(b).

In “AP” and “AP+ACC” algorithms, we calculate the
singleton products by associatively multiplying the ma-
trix elements. Consider a matrix containing a limited
number of unique elements, known in advance. In such
case, the products of all unique elements can be pre-
calculated, and a “vocabulary” containing all pairs of the
unique elements and their products can be created. In-
stead of multiplication, the AP would then match the
pairs of the unique elements and substitute the pre-
calculated product in the result field. For 𝑛 unique ele-
ments in a matrix, such vocabulary-based multiplication
would take 2𝑛 cycles. Hence, if 2𝑛 is shorter than the
associative multiplication time (in cycles), the “AP” and
“AP+ACC” algorithms can be sped up by replacing asso-
ciative multiplication by vocabulary-based one.

Fig. 8 shows the distribution of the 2𝑛 figure. The first
peak corresponds to binary matrices and should therefore
be excluded from the analysis. All values to the left of the
8,800 (the floating point associative multiplication cycle
count) mark on the horizontal axis belong to the group for
which vocabulary multiplication is preferred. For the rest
of the 2𝑛 values, the number of the unique elements 𝑛 is
too large for the vocabulary multiplication to be time-
efficient. The percentage of matrices with the number of
unique elements in the left field (excluding binary matri-
ces) is around 15%.

We do not implement the vocabulary multiplication in
our simulations, but find it worth noticing as an addition-
al potential benefit of associative processing as compared
to a conventional (CPU or GPU) multiplication.

For statistical analysis, we examined approximately
1700 square matrices of different sparsity structures, di-
mensions and nonzero element counts to receive a statis-
tically significant outcome.

Vocabulary
Multiplication

Associative
Multiplication

Fig. 8. 2𝑛 histogram, showing number of matrices having 𝑛 unique ele-
ments

4.3 Simulation Results

Fig. 9 presents the SpMM execution time of the four
algorithms of Section 3 for the matrices with floating
point elements (a) and with binary elements (b).

The reason for the spread in execution time (per each
number of nonzero elements) in each individual algo-
rithm is the sensitivity of the associative implementation
to the number of nonzero rows and average number of
nonzero elements per row. For two matrices with a simi-
lar number of nonzero elements, two orders of magnitude
difference in the average number of nonzero elements per
row cause a similar difference in the execution time. For
example, the “Williams/webbase-1M” matrix has
3,105,536 nonzero elements and an average of 3.1 nonzero
elements per row. The “ND/nd3k” matrix however has
3,279,690 nonzero elements but an average of 364.4 non-
zero elements per row. The multiplication of each of those
two matrices by itself using the “AP” algorithm takes 8.7
and 0.17 billion cycles respectively, a difference of almost
two orders of magnitude.

This sensitivity of performance to the average number
of nonzero elements per row is shared, although possibly
to a lesser extent, by conventional SpMV and SpMM im-
plementations (on CPU and GPU) [19] [42].

The difference in execution times of the “AP” algo-
rithm with respect to binary vs. floating point matrices is
a result of the difference in Boolean vs. associative multi-
plication times.

For smaller matrices (having less than one million
nonzero elements), the “AP+MULT+ACC” algorithm
provides the best performance in most cases, with the
exception of binary matrices. For binary matrices, the pic-
ture is mixed. Even for the smallest matrices, the “AP”
sometimes outperforms the hybrid algorithms, due to
time-efficient Boolean multiplication.

As the number of nonzero elements approaches one
million, the performance of the “AP” algorithm gradually
improves. For matrices of several millions of nonzero el-
ements, “AP” tends to outperform the hybrid algorithms.

MATLAB’s nonlinear least square solver lsqcurvefit
has been used to estimate the computational complexity
of the associative SpMM algorithms. The result of the
Least Square Error (LSE) interpolation is shown in Fig.
9(a) and (b), implying that the computational complexity

of associative SpMM is 𝑂(𝑀), where 𝑀 is the number of
nonzero elements.

Fig. 9. Execution time vs. number of nonzero elements: (a) Floating point
matrices; (b) Binary matrices

The performance of the “AP” algorithm for floating

point and binary matrices as functions of the number of
nonzero elements, as well as the LSE-interpolated per-
formance of the hybrid algorithms are presented in Fig.
10 and Fig. 11.

For comparison, Fig. 10 and Fig. 11 also show the per-
formance of Nehalem and NVidia GTX285 based solu-
tions [19], the performance of NVidia GTX280 over struc-
tured and unstructured matrix SpMV [29], as well as the
performance of an FPGA based solution [25]. The operat-
ing frequency of the AP is assumed to be 3GHz.

The spread in “AP” performance is a function of the
average number of nonzero elements per matrix row. The
divergence between binary and floating point perfor-
mance is a result of Boolean vs. associative multiplication
time difference.

The difference in performance of the “AP” sparse algo-
rithm relative to the CPU and GPU based solutions is a
result of a relative inefficiency of associative arithmetic
when applied in parallel to small sets of numbers. An
associative multiplication in the “AP” algorithm is per-
formed once per matrix row.

Fig. 10. Floating point matrix performance vs. number of nonzero elements

Fig. 11. Binary matrix performance vs. number of nonzero elements

If the average number of nonzero elements per row is

small (which is consistently the case in University of Flor-
ida collection matrices), the effectiveness of the “AP” al-
gorithm is limited. “AP” is least efficient for diagonal ma-
trices, where there is only one multiplication per nonzero
row. On the other end of the efficiency scale is dense ma-
trix multiplication, where an associative multiplication is

applied to 𝑁 matrix elements in parallel (𝑁 is the matrix
dimension) per each matrix row. For comparison, a
2000×2000 dense matrix multiplication (DMM) perfor-
mance is also shown in Fig. 10.

As the number of nonzero elements per row grows, the
efficiency of associative arithmetic increases. This is illus-
trated by the curving upwards of the LSE-interpolated AP
performance charts in Fig. 10 and Fig. 11. As expected, the
performance of the hybrid algorithms grow much slower
or remains constant.

The sparsity structure of a matrix seems to have little
effect on the associative implementation. This stands in
contrast with the GPU implementations which seem to
perform better when multiplying structured matrices [29].

Fig. 12 presents the power efficiency (performance to
power ratio) of the “AP” algorithm for floating point (a)
and binary (b) matrices, as functions of the number of
nonzero elements. For comparison, Fig. 12(a) and (b) also
show the power efficiency of NVidia GTX285 [19] and
NVidia GTX280 [29] based SpMV, where we use the
“graphic part only” power figures as published in
GTX280 and GTX285 data sheets [13] [14]. The power of
FPGA based solution [25] was not reported. The average
SpMM power consumption of the AP is sub 2W since
only a very small fraction of the AP processing units is
active at a time. This AP power efficiency advantage
stems from in-memory computing (there are no data
transfers between processing units and memory hierar-
chies) and from low-power design made possible by the
very small size of each processing unit. The power effi-
ciency of the DMM by “AP” is shown in Fig. 12(a) as well.

A noticeable limitation of the “AP” algorithm is the se-
quential processing of the matrix rows (the outer loop of
Fig. 3). A parallelization of matrix row processing may
significantly improve the performance of the “AP” algo-
rithm. For example, diagonal matrices can easily be pro-
cessed in a row-parallel manner, since there is only one
nonzero singleton product per each matrix row. An opti-
mization of the “AP” algorithm is the subject of our fu-
ture work.

5 CONCLUSIONS

Sparse matrix multiplication is of great importance for
many linear algebra applications, especially machine
learning. The efficient implementation of sparse matrix
multiplication becomes even more critical when applied
to big data problems.

An Associate Processor (AP) is essentially a large
memory with massively-parallel processing capabilities.
It offers dual use: either a CPU accesses the data in that
memory, or the data is being processed associatively
within the same memory. This paper investigates the
merit of implementing sparse matrix multiplication on
the AP.

We propose and compare four algorithms for the AP,
from a fully associative computation to a hybrid of AP
and CPU. To quantify the efficiency of the proposed algo-
rithms, we simulate them using a large variety of sparse
matrices.

Fig. 12. Power efficiency vs. number of nonzero elements: (a) Floating
point matrices; (b) Binary matrices

We find that the fully associative “AP” algorithm has a

computational complexity of 𝑂(𝑀) (where 𝑀 is the num-
ber of nonzero elements), and its efficiency grows with
the number of nonzero elements and especially with the
number of nonzero elements per row. The “AP” algo-
rithm multiplies in parallel a row vector of one matrix by
the entire second matrix. As a result, the efficiency and
performance of the “AP” algorithm grows with the data
set size.

We show that associative implementation can offer
performance benefits when multiplying sparse matrices
with a limited number of predefined unique elements.
Lastly, we show that AP SpMM implementation is more
power-efficient than conventional GPU based solutions.
This is even more evident in the case of binary matrices,
thanks to the bit-oriented nature of associative pro-
cessing.

Associative implementation of SpMM may benefit
from further optimization, such as parallelization of ma-
trix row processing.

ACKNOWLEDGMENT

This research was partially funded by the Intel Collabora-
tive Research Institute for Computational Intelligence and
by Hasso-Plattner-Institut.

REFERENCES

[1] A. Pinar, M. Heath. "Improving performance of sparse matrix-vector
multiplication." In Proceedings of the 1999 ACM/IEEE conference on
Supercomputing (CDROM), p. 30. ACM, 1999.

[2] C. Auth et al. "A 22nm high performance and low-power CMOS tech-
nology featuring fully-depleted tri-gate transistors, self-aligned contacts
and high density MIM capacitors." VLSI Technology (VLSIT), 2012
Symposium on. IEEE, 2012.

[3] C. Foster, “Content Addressable Parallel Processors”, Van Nostrand
Reinhold Company, NY, 1976

[4] C. Stormon, "The Coherent Processor: an associative processor architec-
ture and applications." In IEEE Compcon, Digest of Papers, pp. 270-
275., 1991.

[5] D. Bowler, T. Miyazaki, M. Gillan. "Parallel sparse matrix multiplication
for linear scaling electronic structure calculations." Computer physics
communications 137, no. 2 (2001): 255-273.

[6] D. Hentrich et al., "Performance evaluation of SRAM cells in 22nm
predictive CMOS technology," IEEE International Conference on Elec-
tro/Information Technology, 2009.

[7] E. Im, K. Yelick. Optimizing the performance of sparse matrix-vector
multiplication. University of California, Berkeley, 2000.

[8] F. Pollack, “New microarchitecture challenges in the coming genera-
tions of CMOS process technologies (keynote address)”, MICRO 32,
1999

[9] G. Blelloch, “Vector Models for Data-Parallel Computing”, MIT Press,
1990.

[10] G. Goumas, et al. "Performance evaluation of the sparse matrix-vector
multiplication on modern architectures", The Journal of Supercompu-
ting 50.1 (2009): 36-77.

[11] G. Qing, X. Guo, R. Patel, E. Ipek, E. Friedman. "AP-DIMM: Associative
Computing with STT-MRAM," ISCA 2013.

[12] H. Li et al. “An AND-type match line scheme for high-performance
energy-efficient content addressable memories,” IEEE Journal of Solid-
State Circuits , vol. 41, no. 5, pp. 1108 – 1119, May 2006.

[13] http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-
280/specifications

[14] http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-
285/specifications

[15] I. Scherson et al., “Bit-Parallel Arithmetic in a Massively-Parallel Asso-
ciative Processor”, IEEE Transactions on Computers, Vol. 41, No. 10,
October 1992

[16] J. Andersen, G. Mitra, D. Parkinson. "The scheduling of sparse matrix-
vector multiplication on a massively parallel DAP computer." Parallel
Computing 18, no. 6 (1992): 675-697.

[17] J. Bolz, I. Farmer, E. Grinspun, and Peter Schröoder. "Sparse matrix
solvers on the GPU: conjugate gradients and multigrid." In ACM
Transactions on Graphics, vol. 22, no. 3, pp. 917-924. ACM, 2003.

[18] J. Davis, E. Chung. “SpMV: A memory-bound application on the GPU
stuck between a rock and a hard place” Microsoft Technical Report,
2012.

[19] J. Kurzak, D. Bader, J. Dongarra, “Scientific Computing with Multicore
and Accelerators”, CRC Press, Inc., 2010.

[20] J. Sun, G. Peterson, O. Storaasli. "Sparse matrix-vector multiplication
design on FPGAs." In Field-Programmable Custom Computing Ma-
chines, 15th Annual IEEE Symposium on FCCM, pp. 349-352, 2007.

[21] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: a tutorial and survey,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 3, pp. 712 – 727, March 2006

[22] L. Yavits, “Architecture and design of Associative Processor for image
processing and computer vision”, MSc Thesis, Technion – Israel Insti-
tute of technology, 1994, available at
http://webee.technion.ac.il/publication-link/index/id/633

[23] L. Yavits, A. Morad, R. Ginosar, “Computer Architecture with Associa-
tive Processor Replacing Last Level Cache and SIMD Accelerator”,
IEEE Transactions on Computers, 2013

[24] L. Yavits, A. Morad, R. Ginosar, “The effect of communication and
synchronization on Amdahl’s law in multicore systems”, Parallel
Computing Journal, 2013

[25] L. Zhuo, V. Prasanna. "Sparse matrix-vector multiplication on FPGAs."
In Proceedings of the 2005 ACM/SIGDA 13th international symposi-
um on Field-programmable gate arrays, pp. 63-74. ACM, 2005.

[26] M. Baskaran, R. Bordawekar. "Optimizing sparse matrix-vector multi-
plication on GPUs using compile-time and run-time strategies." IBM
Research Report, RC24704 (W0812-047) (2008).

[27] M. Misra, D. Nassimi, V. Prasanna. "Efficient VLSI implementation of
iterative solutions to sparse linear systems." Parallel Computing 19, no.
5 (1993): 525-544.

[28] N. Bell, M. Garland. "Implementing sparse matrix-vector multiplication
on throughput-oriented processors." In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis,
p. 18. ACM, 2009.

[29] N. Bell, M. Garland. “Efficient sparse matrix-vector multiplication on
CUDA”, Vol. 20. NVIDIA Technical Report NVR-2008-004, NVIDIA
Corporation, 2008.

[30] O. Beaumont, et al. "A proposal for a heterogeneous cluster ScaLA-
PACK (dense linear solvers)”, IEEE Transactions on Computers, 50.10
(2001): 1052-1070.

[31] O. Beaumont, et al. "Matrix multiplication on heterogeneous platforms",
IEEE Transactions on Parallel and Distributed Systems, 12.10 (2001):
1033-1051.

[32] O. Wing, "A content-addressable systolic array for sparse matrix com-
putation." Journal of Parallel and Distributed Computing 2, no. 2 (1985):
170-181.

[33] Q. Zhu, et al. "Accelerating Sparse Matrix-Matrix Multiplication with
3D-Stacked Logic-in-Memory Hardware”, IEEE HPEC 2013

[34] R. Boisvert et al., “The Matrix Market: A web resource for test matrix
collections”, Quality of Numerical Software, Assessment and En-
hancement, pp. 125–137 (http://math.nist.gov/MatrixMarket)

[35] R. Kieckhager, C. Pottle, “A processor array for factorization of unstruc-
tured sparse networks”, IEEE Conf. on Circuits and Computers, 1982,
pp. 380-383.

[36] R. Vuduc, "Automatic performance tuning of sparse matrix kernels."
PhD diss., University of California, 2003.

[37] S. Borkar. “Thousand Core Chips: A Technology Perspective,” Proc.
ACM/IEEE 44th Design Automation Conf. (DAC), 2007, pp. 746-749.

[38] S. Sengupta, M. Harris, Y. Zhang, J Owens. "Scan primitives for GPU
computing." In Graphics Hardware, vol. 2007, pp. 97-106. 2007.

[39] S. Toledo, "Improving the memory-system performance of sparse-
matrix vector multiplication." IBM Journal of research and develop-
ment 41, no. 6 (1997): 711-725.

[40] S. Williams et al., "Optimization of sparse matrix–vector multiplication
on emerging multicore platforms." Parallel Computing 35, no. 3 (2009):
178-194.

[41] T. Davis, Y. Hu, "The University of Florida sparse matrix collec-
tion," ACM Transactions on Mathematical Software (TOMS), 38, no. 1
(2011): 1.

[42] X. Liu, M. Smelyanskiy, "Efficient sparse matrix-vector multiplication
on x86-based many-core processors”, International conference on su-
percomputing, ACM, 2013.

[43] Y. Fung, “Associative Processor Architecture - a Survey”, ACM Com-
puting Surveys Journal (CSUR), Volume 9, Issue 1, March 1977, Pages 3
– 27

[44] Y. Saad, A. Malevsky. “PSPARSLIB: A portable library of distributed
memory sparse iterative solvers”, Tech. Rep. UMSI 95/180, University
of Minnesota, 1995.

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-280/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-280/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-285/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-285/specifications

