
 

 

SPARSE MATRIX MULTIPLICATION ON AN 

ASSOCIATIVE PROCESSOR 
L. Yavits, A. Morad, R. Ginosar 

Abstract—Sparse matrix multiplication is an important component of linear algebra computations. Implementing sparse matrix 

multiplication on an associative processor (AP) enables high level of parallelism, where a row of one matrix is multiplied in 

parallel with the entire second matrix, and where the AP execution time of vector dot product does not depend on the vector 

size. Four sparse matrix multiplication algorithms are explored in this paper, combining AP and CPU processing to various 

levels. They are evaluated by simulation on a large set of sparse matrices. The computational complexity of sparse matrix 

multiplication on AP is shown to be an O(M) where M is the number of nonzero elements. The AP is found to be especially 

efficient in binary sparse matrix multiplication. AP outperforms conventional solutions in power efficiency.  

Index Terms— Sparse Linear Algebra, SIMD, Associative Processor, Memory Intensive Computing, In-Memory Computing.   

——————————      —————————— 

1 INTRODUCTION 

parse matrix multiplication is a frequent bottleneck in 
large scale linear algebra applications, especially in 
data mining and machine learning  [28]. The efficiency 

of sparse matrix multiplication becomes even more rele-
vant with the emergence of big data, giving rise to very 
large vector and matrix sizes.    

Associative Processor (AP) is a massively parallel 
SIMD array processor  [15] [22] [43]. The AP comprises a 
modified Content Addressable Memory (CAM) and facili-
tates processing in addition to storage. The execution time 
of a typical vector operation in an AP does not depend on 
the vector size, thus allowing efficient parallel processing 
of very large vectors. AP’s efficiency grows with the data 
set sizes and data-level parallelism. A detailed description 
of the AP architecture, functionality and associative com-
puting can be found in  [23].   

Associative processing has been known and extensive-
ly studied since the 1960s. Commercial associative pro-
cessing never quite took off, because only limited 
amounts of memory could be placed on a single die  [21]. 
Equally important, standalone bit- and word-parallel 
conventional SIMD processors outperformed APs due to 
the data sets and tasks of limited size. However, the pro-
gress in computer industry and semiconductor technolo-
gy in recent years opens the door for reconsidering the 
APs:  
 The rise of big data pushes the computational re-

quirements to levels never seen before. The amounts 
of data to be processed simultaneously require a new 
parallel computing paradigm. Unlike conventional 
SIMD processors, the performance and efficiency of 
an AP improves with the data set size. 

 Power consumption, which used to be a secondary 

factor in the past, has become a principal constraint 
on scalability and performance of the parallel archi-
tectures. The AP is shown to achieve a better power 
efficiency  [23].  

 Off-chip memory bandwidth is another factor limit-
ing the performance and scalability of parallel archi-
tectures. Associative processing mitigates this limita-
tion by intertwining computing with data storage.   

 In high performance dies, thermal density is becom-
ing the limit on total computation capabilities; associ-
ative processing leads to uniform power and thermal 
distribution over the chip area, avoiding hot spots 
and enabling the three dimensional (3D) integration. 

In this work, we present four different algorithms of 
sparse matrix-matrix multiplication on the AP. The first 
algorithm, designated “AP”, is a fully associative imple-
mentation, making use only of the intrinsic AP resources. 
We show that the computational complexity of a fully 
associative implementation is 𝑂(𝑀), where 𝑀 is the num-
ber of nonzero elements. In the second algorithm, called 
“AP+ACC”, the singleton products are computed by the 
AP and an external CPU is used to accumulate them. The 
third algorithm, “AP+MULT”, uses a CPU to multiply 
matrix elements; the products are accumulated by the AP. 
The fourth algorithm, “AP+MULT+ACC”, uses the AP 
for matching the matrix elements, and a CPU for both 
multiplication and accumulation.  We find that the fully 
associative implementation is especially efficient for very 
large matrices with high number of nonzero elements per 
row. Fully associative implementation is also preferred 
for multiplication of binary sparse matrices (that is, ma-
trices where the nonzero elements are ±1). In contrast, the 
other three (hybrid) algorithms are more efficient for ma-
trices with a lower number of nonzero elements per row, 
and their efficiency improves slower or remains constant 
with the number of nonzero elements.  

The rest of this paper is organized as follows. Section  2 
discusses the related work. Section  3 presents associative 
algorithms for sparse matrix multiplication. Section  4 de-
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tails the evaluation methodology and presents the simula-
tion results. Section  5 offers conclusions. 

2 RELATED WORK 

While this paper studies a sparse matrix-matrix multi-
plication, a majority of previous studies have targeted 
sparse matrix-vector multiplication (SpMV). For simplici-
ty, in this section we apply the term “sparse matrix mul-
tiplication” (SpMM) to both problems.   

A substantial body of literature explores sparse matrix 
multiplication optimization techniques. A comprehensive 
review of these techniques is provided by R. Vuduc  [36]. 
We take a slightly different look, focusing on hardware 
platforms rather than on software implementation. The 
literature can be divided into three categories, as summa-
rized in TABLE 1. 

 
TABLE 1 

RELATED WORK SUMMARY 

Category Existing Work 

General Purpose Computers  Off-the-shelf  [1] [7] [39] [44] 

Advanced multicore  [40] 

Manycore supercomputer  [5] 

 

GPU  [9] [17] [26] [28] [29] [38]  

 

Dedicated Hardware  

Solutions 

FPGA  [20] [25] 

Manycore Processor  [27] 

Distributed Array Processor  [16] 

Systolic Processor  [32] 

Coherent Processor  [4] 

TCAM / PIM  [11] 

Heterogeneous platform [30] [31] 

3D LiM  [33] 

 
The first category targets the optimization of sparse 

matrix multiplication on general purpose computer archi-
tectures. S. Toledo  [39] enhanced sparse matrix multipli-
cation on a superscalar RISC processor by improving in-
struction-level parallelism and reducing cache miss rate. 
A. Pinar et al.  [1] proposed further optimization of data 
structures using reordering algorithms, to improve cache 
performance. E. Im et al.  [7] developed the SPARSITY 
toolkit for the automatic optimization of sparse matrix 
multiplication. Y. Saad et al.  [44] proposed PSPARSLIB, a 
collection of sparse matrix multiplication subroutines for 
multiprocessors. S. Williams et al.  [40] examined and op-
timized sparse matrix multiplication across a broad spec-
trum of multicore architectures. Finally, Bowler et al.  [5] 
optimized sparse matrix multiplication for a 512-core su-
percomputer.  

Another direction is the implementation and optimiza-
tion of sparse matrix multiplication using GPU.  While 
this effort still relies on a conventional computational 
platform and focuses mainly on algorithm optimization, 
it enables significant speedup over sequential CPU or 
even multicore solutions  [29]. Many of the GPU-based 
studies rely on G. Blelloch’s  [9] research into mapping of 
sparse data structures onto SIMD hardware. S. Sengupta 
et al.  [38] developed segmented scan primitive for effi-

cient sparse matrix multiplication on GPU.  J. Bolz et 
al.  [17] implemented a sparse matrix solver on GPU. M. 
Baskaran et al.  [26] enhanced GPU sparse matrix multipli-
cation by creating an optimized storage format. Bell et 
al.  [28] [29] develop methods to exploit common forms of 
matrix structure while offering alternatives to accommo-
date irregularity.  

The third direction encompasses special purpose 
hardware solutions for sparse matrix multiplication. L. 
Zhuo  [25] proposed an FPGA based design, which re-
portedly demonstrated a significant speedup over then-
current general-purpose solutions (such as Itanium 2), 
especially for matrices with very irregular sparsity struc-
tures. Another FPGA based sparse matrix multiplication 
solution was introduced by J. Sun et al.  [20]. Some special-
ty solutions relying on VLSI implementation have been 
suggested as well. M. Misra et al.  [27] developed a parallel 
architecture comprising 𝑀 processing elements (where 𝑀 
is the number of nonzero elements in a matrix), and im-
plemented an efficient routing technique to resolve the 
communication bottleneck. J. Andersen et al.  [16] suggest-
ed implementing sparse matrix multiplication on the Dis-
tributed Array Processor (DAP), a massively parallel 
SIMD architecture. O. Beaumont et al.  [30] [31] imple-
mented matrix multiplication on a heterogeneous net-
work.   

A number of hardware solutions using content-
addressable memory have also been proposed. O. 
Wing  [32] suggested a systolic array architecture, com-
prising a number of processing elements connected in a 
ring. Each processing element has its own content-
addressable memory, storing the nonzero elements of the 
sparse matrix. Matrix elements are extracted from the 
memory by content addressing. Sparse matrix-vector 
multiplication takes 𝑂(𝑀) cycles (where 𝑀 is the number 
of nonzero elements in matrix). That work relies on an 
earlier study by R. Kieckhager et al.  [35], who were prob-
ably the first to use a content-addressable memory in the 
context of sparse matrix multiplication. Q. Guo et al.  [11] 
implemented a fixed point matrix multiplication on a 
TCAM based Processing-In-Memory (PIM) architecture. 
They use TCAM to match key-value pairs but rely on a 
microcontroller for multiplication. Recently, Q. Zhu et 
al.  [33] suggested a 3-D Logic-In-Memory (LiM) architec-
ture where DRAM dies are intertwined with logic dies in 
a 3D stack. Their architecture uses a logic-enhanced CAM 
to take advantage of its parallel matching capabilities.  

Associative processors have also been considered in 
the context of matrix processing. C. Stormon  [4] intro-
duced the Coherent Processor, a massively parallel asso-
ciative computer. Sparse matrix computations are men-
tioned among the Coherent Processor’s applications alt-
hough no details of the sparse matrix multiplication are 
provided. Stromon suggested using the Coordinate 
(COO) format of storing nonzero elements of sparse ma-
trices along with their row and column indices, in con-
trast other sparse formats such as Compressed Sparse 
Row (CSR) or ELLPACK (ELL)  [18], which are more effi-
cient for sequential processors or GPUs. 

The key contribution of the present work is the effi-



 

 

cient implementation of sparse matrix multiplication on a 
memory intensive associative processor (AP), verified by 
extensive AP simulation using a large collection of sparse 
matrices  [41].  

3 SPARSE MATRIX MULTIPLICATION ON AP 

In this section we detail the sparse matrix multiplica-
tion algorithm and its four implementations on the AP. 

Fig. 1 illustrates the multiplication of sparse matrix A 
by sparse matrix B. In this example, row 𝑗 of matrix A has 
three nonzero elements in columns {𝑖 , 𝑖 , 𝑖 }. Rows 
{𝑖 , 𝑖 , 𝑖 } of matrix B have nonzero elements in columns 
{𝑘 , 𝑘 , 𝑘 }, {𝑘 , 𝑘 } and {𝑘 , 𝑘 , 𝑘 }, respectively.   

 
A B

1i 2i 3i

j

1i

2i

3i

1k 2k 3k 4k 5k

Nonzero element of Matrix A Nonzero element of Matrix B  
Fig. 1. Sparse Matrix Multiplication - Illustration  

 
Fig. 2 shows the associative processing array and re-

duction tree  [23] mapping. We assume that both input 
matrices are stored in the AP in the COO format, where 
nonzero elements are entered consecutively, with the row 
and column indexes stored alongside the matrix element.  

An AP implementation does not require the matrix el-
ements to be stored in any particular order. Hence the 
Matrix Market (MM)  [34] sparse format is supported as 
well. 

Fig. 3 presents the pseudo code of the fully associative 
sparse matrix multiplication (algorithm “AP”). It includes 
two internal loops nested within an external one. The ex-
ternal loop goes over the nonzero rows of matrix A. The 
first internal loop goes over the nonzero elements in each 
nonzero row of matrix A and takes three steps. At step 1, 
a nonzero element of row 𝑗 and its column index 𝑖 are 
read from the associative memory (associative processing 
array). At step 2, its column index 𝑖 is compared against 
the row index field of the entire matrix B. This step is 
done in parallel for all nonzero elements of matrix B, us-
ing the AP compare command. All matching nonzero 
elements of matrix B (𝑘 , 𝑘  and 𝑘  for row 𝑖  etc. in Fig. 1 
and Fig. 2) are tagged. At step 3, the nonzero element of 
matrix A is written simultaneously into all tagged rows, 
alongside the tagged elements of matrix B (segments 𝑖 , 𝑖  
and 𝑖  of Fig. 2). 

The first internal loop is repeated while there are non-
zero elements in row 𝑗 of matrix A. Upon completion, all 
nonzero pairs of matrices A and B required to calculate 
the row 𝑗 of the product matrix C are aligned (stored in 
the same associative processing unit) in the associative 
processing array. 

Next step 4 is the associative multiplication of A,B 

pairs, performed in parallel for all pairs. For instance, the 
index of the first product in Fig. 2 is 𝑗, 𝑖 , 𝑘 . 
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Fig. 2. AP Memory and Reduction Map 

 
  Init {  

Matrix A → A space; 

Matrix B → B space; 

  } 

  
  Main  { 

While (!end of A)  {   //serially over all nz rows of A 

While (!end of row 𝑗)  { //serially, over all nz elements in 𝑗𝑡ℎ  row of A 

1. Read_next  𝑖,𝐴𝑗 ,𝑖   

2. Tag all 𝐵𝑖 ,𝑘     //in parallel, single step, for all 𝑘 
3. Write 𝐴𝑗 ,𝑖      //in parallel, single step, into all tagged rows 

} 
4. 𝑃𝑗 ,𝑖,𝑘 = ASSOCIATIVE_MULT(𝐴𝑗 ,𝑖 ,𝐵𝑖 ,𝑘 )  //forall aligned pairs  

While (∃𝑘 not used)   {   //serially over all values 𝑘  

5. Read_next  𝑘,𝑃𝑗 ,𝑖 ,𝑘    //find next not used 𝑘 value 

6. Tag all 𝑃𝑗 ,𝑖 ,𝑘     //parallel forall 𝑃𝑗 ,∗,𝑘  with same 𝑘, single step 

7. Mark “used” //parallel forall tagged rows, single step  
8. 𝐶𝑗 ,𝑘 = ASSOCIATIVE_REDUCE_SUM(𝑃𝑗 ,𝑖 ,𝑘)  

  } 
 } 

 
Fig. 3. AP algorithm for fully associative sparse matrix multiplication  

 
The second loop sums up the products (the singletons). 

It contains steps 5 through 8. At step 5, a singleton prod-
uct is read from the associative processing array (begin-
ning with the first one). At step 6, its B column index 𝑘 
(unless it is marked “used”) is compared against the B 
column index of all singleton products, and all singletons 
with B column index 𝑘 are tagged. At step 7, the tagged 
rows are marked “used” by a write command. Those 
tagged rows hold the singleton products that need to be 
accumulated to form element 𝐶 , . Step 8 is the reduction. 
The reduction tree is pipelined hence the loop may end 
without waiting for the reduction tree to complete. The 
loop is repeated while there are unprocessed (that is, not 
marked “used”) B column indices.  

In certain sparse matrices, most rows and columns 
contain very few nonzero elements. In such cases, parallel 
reduction (step 8 in Fig. 3) may be less efficient because a 



 

 

very few singleton products are accumulated in each iter-
ation. Consequently, the reduction may better be carried 
out word-serially, by an external CPU. That algorithm, 
“AP+ACC,” is shown in Fig. 4. Steps 1 through 6 are 
identical to those of “AP”. The 8th step is a nested loop 
that goes over all the singleton products tagged at step 6. 
Each 𝑃 , ,  singleton is read and accumulated by an exter-
nal CPU. We assume a pipelined operation so that steps 
8a and 8b in Fig. 4 are performed in parallel; once the 
pipeline is filled, each pass of the loop takes a single cycle. 

 

Same code as in Fig. 3, except: 
 

8. Forall tagged rows // serially 
a. Read 𝑃𝑗 ,𝑖 ,𝑘  

b. 𝐶𝑗 ,𝑘=CPU_ACC (𝐶𝑗 ,𝑘 ,𝑃𝑗 ,𝑖 ,𝑘) 

  
Fig. 4. “AP+ACC” algorithm, using serial accumulation 

 
Similarly, a parallel associative multiplication (step 4 

in Fig. 3) may be inefficient when the average number of 
nonzero elements per matrix row is small. In such case, 
the multiplication of matrix elements may be best per-
formed word-serially by an external CPU. Fig. 5 presents 
the pseudo code of this “AP+MULT” algorithm. Steps 1, 2 
and 5 through 8 are identical to those of “AP”. The 3rd 
step is a nested loop that goes over all the elements of 
matrix B with the row index matching the column index 𝑖 
of the nonzero element 𝐴 , . Each 𝐵 ,  element is multi-
plied by 𝐴 ,  at the external CPU and is written back to the 
corresponding row of the associative processing array. 
We assume a pipelined operation so that steps 3b and 3c 
in Fig. 5 are performed in parallel; once the pipeline is 
filled, each pass of the loop takes 2 cycles.  

 

 

  Same as Fig. 3, except: 

    
 

3. Forall 𝐵𝑖 ,𝑘   // serially 

a. Read_next 𝐵𝑖 ,𝑘 ; // single step 
b. 𝑃𝑖 ,𝑘=CPU_MULT (𝐴𝑗 ,𝑖 ,𝐵𝑖 ,𝑘) 

c. Write 𝑃𝑖 ,𝑘  alongside 𝐵𝑖 ,𝑘 ;  // single step 

 
  line 4 is deleted 

 
Fig. 5. “AP+MULT” algorithm using serial multiplication 

 
Both algorithms “AP+MULT” and “AP+ACC” are 

combined into “AP+MULT+ACC” in Fig. 6. This algo-
rithm is efficient for smaller matrices with a lower aver-
age number of nonzero elements per row (for example, 
diagonal matrices). 

4 SIMULATIONS OF SPMM ON AP 

The AP simulator  [23] is used to quantify the efficiency 
of the four algorithms of Section 3. The experimental set-
up, matrix statistics and simulation results are described 
in this section.  

4.1 Experimental Setup 

To simulate sparse matrix multiplication, we use 900 

square matrices with the number of nonzero elements 
spanning from ten thousand to eight million, randomly 
selected from the collection of sparse matrices from the 
University of Florida  [41]. 

 
  Init {  

Matrix A → A space; 

Matrix B → B space; 

  } 

  
  Main  { 

While (!end of A)  {   //serially over all nz rows of A 

While (!end of row 𝑗)  { //serially, over all nz elements in 𝑗𝑡ℎ  row of A 

1. Read_next  𝑖,𝐴𝑗 ,𝑖   

2. Tag all 𝐵𝑖 ,𝑘     //in parallel, single step, for all 𝑘 

3. Forall 𝐵𝑖 ,𝑘   // serially 

a. Read_next 𝐵𝑖 ,𝑘 ; // single step 
b. 𝑃𝑖 ,𝑘=CPU_MULT (𝐴𝑗 ,𝑖 ,𝐵𝑖 ,𝑘) 

c. Write 𝑃𝑖 ,𝑘  alongside 𝐵𝑖 ,𝑘 ;  // single step 

} 
4. 𝑃𝑗 ,𝑖,𝑘 = ASSOCIATIVE_MULT(𝐴𝑗 ,𝑖 ,𝐵𝑖 ,𝑘 )  //forall aligned pairs  

While (∃𝑘 not used)   {   //serially over all values 𝑘  

5. Read_next  𝑘,𝑃𝑗 ,𝑖 ,𝑘    //find next not used 𝑘 value 

6. Tag all 𝑃𝑗 ,𝑖 ,𝑘     //parallel forall 𝑃𝑗 ,∗,𝑘  with same 𝑘, single step 

7. Mark “used” //parallel forall tagged rows, single step 
8. Forall tagged rows // serially 

a. Read 𝑃𝑗 ,𝑖 ,𝑘  

b. 𝐶𝑗 ,𝑘=CPU_ACC (𝐶𝑗 ,𝑘 ,𝑃𝑗 ,𝑖 ,𝑘) 

  } 
 } 

 
Fig. 6. “AP+MULT+ACC” algorithm using serial multiplication and accu-
mulation 

 
In our simulation, we assume that the entire workload 

fits in the internal memory of the AP. This assumption is 
reasonable for the matrices of these sizes. The assumption 
of the data being resident in a device memory is quite 
custom in SpVM and SpMM performance 
sis  [19] [29]. Larger matrices would have to be partitioned 
for external multiplication on AP.  

We simulate the sparse matrix multiplication using the 
AP simulator  [23]. As shown in Fig. 2, each pair of matrix 
elements and the resulting singleton product are pro-
cessed by a single AP processing unit. Simulations are 
performed on Intel® Core™ i7-3820 CPU with 32GB 
RAM, and simulation times for the 10K—8M nonzero 
element matrices range between few tens of seconds and 
few tens of hours.  

4.2 Matrix Statistics 

AP performance depends on the data wordlength ra-
ther than on data set size  [23].  
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Fig. 7. (a) Wordlength histogram, (b) Histogram of the average number of 

nonzero elements per row, relatively to the matrix dimension 

 



 

 

Fig. 7(a) presents the matrix element wordlength his-
togram. The wordlength is implied by analysis of the ma-
trix elements (which are originally available from the 
University of Florida collection in MATLAB format). The 
first peak represents the binary matrices (two bits stand 
for a value bit and a sign). The second peak encapsulates 
matrices with floating point data elements (24 bits 
IEEE754 single precision mantissa). In this work, all mul-
tiplications are carried out as either binary (Boolean) or 
floating point operations. 

There are several applications that use sparse binary 
matrices. According to  [41], these applications may in-
clude recommender systems, undirected graph sequenc-
ing, certain optimization problems, duplicate structural 
problems, random un-weighted graph processing and 
computational fluid dynamics problems. To emphasize 
the efficiency of the “AP” algorithm, we employ parallel 
Boolean multiplication in the binary matrices: it takes 
only eight cycles, regardless of the number of nonzero 
elements in a row.  

As we show in Section  4.3 below, the performance of 
the fully associative “AP” algorithm is strongly affected 
by the average number of nonzero elements per row. The 
distribution of the average number of nonzero elements 
per row relative to the matrix dimension is shown in Fig. 
7(b). 

In “AP” and “AP+ACC” algorithms, we calculate the 
singleton products by associatively multiplying the ma-
trix elements. Consider a matrix containing a limited 
number of unique elements, known in advance. In such 
case, the products of all unique elements can be pre-
calculated, and a “vocabulary” containing all pairs of the 
unique elements and their products can be created. In-
stead of multiplication, the AP would then match the 
pairs of the unique elements and substitute the pre-
calculated product in the result field. For 𝑛 unique ele-
ments in a matrix, such vocabulary-based multiplication 
would take 2𝑛  cycles. Hence, if 2𝑛  is shorter than the 
associative multiplication time (in cycles), the “AP” and 
“AP+ACC” algorithms can be sped up by replacing asso-
ciative multiplication by vocabulary-based one.  

Fig. 8 shows the distribution of the 2𝑛  figure. The first 
peak corresponds to binary matrices and should therefore 
be excluded from the analysis. All values to the left of the 
8,800 (the floating point associative multiplication cycle 
count) mark on the horizontal axis belong to the group for 
which vocabulary multiplication is preferred. For the rest 
of the 2𝑛  values, the number of the unique elements 𝑛 is 
too large for the vocabulary multiplication to be time-
efficient. The percentage of matrices with the number of 
unique elements in the left field (excluding binary matri-
ces) is around 15%.  

We do not implement the vocabulary multiplication in 
our simulations, but find it worth noticing as an addition-
al potential benefit of associative processing as compared 
to a conventional (CPU or GPU) multiplication. 

For statistical analysis, we examined approximately 
1700 square matrices of different sparsity structures, di-
mensions and nonzero element counts to receive a statis-
tically significant outcome. 

Vocabulary 
Multiplication

Associative 
Multiplication

 
Fig. 8. 2𝑛  histogram, showing number of matrices having 𝑛 unique ele-
ments  

 

4.3 Simulation Results 

Fig. 9 presents the SpMM execution time of the four 
algorithms of Section  3 for the matrices with floating 
point elements (a) and with binary elements (b).   

The reason for the spread in execution time (per each 
number of nonzero elements) in each individual algo-
rithm is the sensitivity of the associative implementation 
to the number of nonzero rows and average number of 
nonzero elements per row. For two matrices with a simi-
lar number of nonzero elements, two orders of magnitude 
difference in the average number of nonzero elements per 
row cause a similar difference in the execution time. For 
example, the “Williams/webbase-1M” matrix has 
3,105,536 nonzero elements and an average of 3.1 nonzero 
elements per row. The “ND/nd3k” matrix however has 
3,279,690 nonzero elements but an average of 364.4 non-
zero elements per row. The multiplication of each of those 
two matrices by itself using the “AP” algorithm takes 8.7 
and 0.17 billion cycles respectively, a difference of almost 
two orders of magnitude.    

This sensitivity of performance to the average number 
of nonzero elements per row is shared, although possibly 
to a lesser extent, by conventional SpMV and SpMM im-
plementations (on CPU and GPU)  [19] [42].  

The difference in execution times of the “AP” algo-
rithm with respect to binary vs. floating point matrices is 
a result of the difference in Boolean vs. associative multi-
plication times.  

For smaller matrices (having less than one million 
nonzero elements), the “AP+MULT+ACC” algorithm 
provides the best performance in most cases, with the 
exception of binary matrices. For binary matrices, the pic-
ture is mixed. Even for the smallest matrices, the “AP” 
sometimes outperforms the hybrid algorithms, due to 
time-efficient Boolean multiplication.  

As the number of nonzero elements approaches one 
million, the performance of the “AP” algorithm gradually 
improves. For matrices of several millions of nonzero el-
ements, “AP” tends to outperform the hybrid algorithms.  

MATLAB’s nonlinear least square solver lsqcurvefit 
has been used to estimate the computational complexity 
of the associative SpMM algorithms. The result of the 
Least Square Error (LSE) interpolation is shown in Fig. 
9(a) and (b), implying that the computational complexity 



 

 

of associative SpMM is 𝑂(𝑀), where 𝑀 is the number of 
nonzero elements.  

 

 
Fig. 9. Execution time vs. number of nonzero elements: (a) Floating point 
matrices; (b) Binary matrices 

 
The performance of the “AP” algorithm for floating 

point and binary matrices as functions of the number of 
nonzero elements, as well as the LSE-interpolated per-
formance of the hybrid algorithms are presented in Fig. 
10 and Fig. 11.  

For comparison, Fig. 10 and Fig. 11 also show the per-
formance of Nehalem and NVidia GTX285 based solu-
tions  [19], the performance of NVidia GTX280 over struc-
tured and unstructured matrix SpMV  [29], as well as the 
performance of an FPGA based solution  [25]. The operat-
ing frequency of the AP is assumed to be 3GHz. 

The spread in “AP” performance is a function of the 
average number of nonzero elements per matrix row. The 
divergence between binary and floating point perfor-
mance is a result of Boolean vs. associative multiplication 
time difference. 

The difference in performance of the “AP” sparse algo-
rithm relative to the CPU and GPU based solutions is a 
result of a relative inefficiency of associative arithmetic 
when applied in parallel to small sets of numbers. An 
associative multiplication in the “AP” algorithm is per-
formed once per matrix row. 

 
Fig. 10. Floating point matrix performance vs. number of nonzero elements 

 

 
Fig. 11. Binary matrix performance vs. number of nonzero elements 

 
If the average number of nonzero elements per row is 

small (which is consistently the case in University of Flor-
ida collection matrices), the effectiveness of the “AP” al-
gorithm is limited. “AP” is least efficient for diagonal ma-
trices, where there is only one multiplication per nonzero 
row. On the other end of the efficiency scale is dense ma-
trix multiplication, where an associative multiplication is 



 

 

applied to 𝑁  matrix elements in parallel (𝑁 is the matrix 
dimension) per each matrix row. For comparison, a 
2000×2000 dense matrix multiplication (DMM) perfor-
mance is also shown in Fig. 10.  

As the number of nonzero elements per row grows, the 
efficiency of associative arithmetic increases. This is illus-
trated by the curving upwards of the LSE-interpolated AP 
performance charts in Fig. 10 and Fig. 11. As expected, the 
performance of the hybrid algorithms grow much slower 
or remains constant.  

The sparsity structure of a matrix seems to have little 
effect on the associative implementation. This stands in 
contrast with the GPU implementations which seem to 
perform better when multiplying structured matrices  [29]. 

Fig. 12 presents the power efficiency (performance to 
power ratio) of the “AP” algorithm for floating point (a) 
and binary (b) matrices, as functions of the number of 
nonzero elements. For comparison, Fig. 12(a) and (b) also 
show the power efficiency of NVidia GTX285  [19] and 
NVidia GTX280  [29] based SpMV, where we use the 
“graphic part only” power figures as published in 
GTX280 and GTX285 data sheets  [13] [14]. The power of 
FPGA based solution  [25] was not reported. The average 
SpMM power consumption of the AP is sub 2W since 
only a very small fraction of the AP processing units is 
active at a time. This AP power efficiency advantage 
stems from in-memory computing (there are no data 
transfers between processing units and memory hierar-
chies) and from low-power design made possible by the 
very small size of each processing unit. The power effi-
ciency of the DMM by “AP” is shown in Fig. 12(a) as well. 

A noticeable limitation of the “AP” algorithm is the se-
quential processing of the matrix rows (the outer loop of 
Fig. 3). A parallelization of matrix row processing may 
significantly improve the performance of the “AP” algo-
rithm. For example, diagonal matrices can easily be pro-
cessed in a row-parallel manner, since there is only one 
nonzero singleton product per each matrix row. An opti-
mization of the “AP” algorithm is the subject of our fu-
ture work. 

5 CONCLUSIONS 

Sparse matrix multiplication is of great importance for 
many linear algebra applications, especially machine 
learning. The efficient implementation of sparse matrix 
multiplication becomes even more critical when applied 
to big data problems. 

An Associate Processor (AP) is essentially a large 
memory with massively-parallel processing capabilities. 
It offers dual use: either a CPU accesses the data in that 
memory, or the data is being processed associatively 
within the same memory. This paper investigates the 
merit of implementing sparse matrix multiplication on 
the AP.  

We propose and compare four algorithms for the AP, 
from a fully associative computation to a hybrid of AP 
and CPU. To quantify the efficiency of the proposed algo-
rithms, we simulate them using a large variety of sparse 
matrices. 

 
Fig. 12. Power efficiency vs. number of nonzero elements: (a) Floating 
point matrices; (b) Binary matrices 

 
We find that the fully associative “AP” algorithm has a 

computational complexity of 𝑂(𝑀) (where 𝑀 is the num-
ber of nonzero elements), and its efficiency grows with 
the number of nonzero elements and especially with the 
number of nonzero elements per row.  The “AP” algo-
rithm multiplies in parallel a row vector of one matrix by 
the entire second matrix. As a result, the efficiency and 
performance of the “AP” algorithm grows with the data 
set size.  

We show that associative implementation can offer 
performance benefits when multiplying sparse matrices 
with a limited number of predefined unique elements. 
Lastly, we show that AP SpMM implementation is more 
power-efficient than conventional GPU based solutions. 
This is even more evident in the case of binary matrices, 
thanks to the bit-oriented nature of associative pro-
cessing. 

Associative implementation of SpMM may benefit 
from further optimization, such as parallelization of ma-
trix row processing.   
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