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ABSTRACT 
Network on Chip (NoC) may be the primary interconnect 
mechanism for future Systems-on-Chip (SoC). Real-life SoCs 
typically include modules such as DRAM controller or 
floating point unit, which are bandwidth limited and in high 
demand by other units. Such modules are termed hot-modules. 
In this paper we demonstrate that the mere existence of one or 
more hot-modules on wormhole-based NoCs dramatically 
reduces network efficiency and causes an unfair allocation of 
system resources. We demonstrate that a single hot-module 
destroys the performance of the entire SoC, even if network 
resources are over-provisioned. In order to resolve the hot-
module effect, we introduce a novel low-cost credit based 
distributed access regulation technique that fairly allocates 
access rights to the hot-module. Unlike other methods, this 
technique directly addresses the root cause of network buffer 
congestion phenomena. Using simulation, we show the 
effectiveness of the suggested mechanism in various NoC 
scenarios. 

Categories and Subject Descriptors 
System-Level Design and Co-Design: Network-on-Chip 
(NoC) 

General Terms 
Algorithms, Performance, Design 

Keywords 
Network on-Chip, wormhole, hotspot, resource 
management, SoC 

1. INTRODUCTION 
Wormhole switching  [1] is commonly employed in NoC 
(e.g.  [2],  [3],  [4],  [5]), due to its small buffer requirements 
and low latencies at light load. Each packet is divided into 
small fixed size parts called flits, which are transmitted to 
the next hop without waiting for the entire packet to be 
received. This causes transmitted packets to be segmented 
and “spread” along the path between the source and 
destination in a pipeline fashion. The main drawback of 
wormhole switching is its sensitivity to packet blocking 
that may quickly consume buffers along the entire path. 
Therefore, the common design point of high performance 
wormhole networks to allocate enough link capacities for 
low utilization operation and to employ multiple virtual 

channels  [6]. Another mean to support the mix of signals 
with different timing criticality is to include mechanisms to 
support Quality-of-Service requirements. For example, In 
QNoC  [3]. packet priorities are supported by assigning 
priorities to virtual channels and defining service levels for 
messages according to their relative urgency (e.g. 
interrupts, real time cache line fills, cache prefetch and 
large data blocks). The network is equipped with enough 
resources (capacities, buffers) to deliver adequate 
throughput at the required latency for each service level. 
The above design methodology  [7] works properly as long 
as all system modules consume messages within their 
specified capacity. However, at certain times the 
aggregated traffic demand might exceed a destination 
module’s bandwidth capacity. Similarly, such a module 
may operate from time to time at a slower than average 
speed (e.g. a variable speed coder, encoder or storage 
device) and becomes congested coincidently or not with an 
incidental usage peak. We term such a bandwidth-limited 
high-demanded SoC module a hot-module (HM). In such 
situations, the hot-module is unable to consume incoming 
packets fast enough. Hot-modules are common in real-life 
SoCs, e.g external DRAM ( [8]- [10]) or internal 
components (caches, CAMs, specialized arithmetic units, 
special purpose processors, SRAMs  [9]) which are 
bandwidth limited and in high demand by other units. The 
identities of the hot-modules are usually known in advance 
as the critical resources affecting the system's performance. 
Moreover, it is likely that such modules remain HMs even 
in SoCs with multiple use-cases (e.g., external memory 
bottleneck in  [10]). 
Congested modules exist in systems with any 
communication scheme (including bus-based 
communication), but wormhole-based systems are much 
more sensitive to hot-modules, as the entire network may 
be affected: The hop-by-hop backpressure, associated with 
wormhole routing, causes buffers at the router adjacent to 
the hot-module to be filled up and become stalled, blocking 
new arrivals to this router. This creates a domino effect, by 
which the delivery of packets to ports of more distant 
routers is slowed down, forming a saturation tree  [11] with 
the hot-module as its root (Figure 1). Moreover, the domino 
effect stretches beyond the traffic that is destined to that 
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destination (the saturation tree) as other packets that are 
destined to other destinations find no free buffers at certain 
routers on their route (extending the saturation tree to a 
larger saturated acyclic graph). The overall NoC system 
suffers increased delays in packet delivery as well as unfair 
network utilization (modules near the HM get a larger 
portion of its resources). This threat is particularly 
troublesome in wormhole based architectures due to packet 
“stretching” across multiple hops causing the hot-module 
effects to extend network-wide instantly. It is very 
important to note that this phenomenon is independent of 
links and router bandwidth. Such a network freeze may 
build up even in a system with infinite capacity links 
because of a single heavily loaded module. Consequently, 
even largely over-provisioned NoCs suffer from poor 
performance if potential hot-modules are left unhandled. 
We propose a novel one-to-many credit-based access 
regulation mechanism for solving the NoC buffer overflow 
problems in wormhole-based systems with predefined 
HMs. An HM allocation controller is introduced to 
arbitrate short, high priority credit requests. The controller 
allows the system architect to regulate hot-module access 
according to the quality of service requirements of the 
specific system application. The allocation algorithm 
employed by the controller is system-specific, since the 
HM is independent of the network. Credit requests and 
grants are transmitted as small high-priority signaling 
packets (grants and requests may be also piggybacked on 
other messages). In order to eliminate a potential round-trip 
latency in selected modules, auto-refresh or pre-allocation 
is used. The access regulation mechanism is implemented 
in modules’ interfaces and in an appropriate location (e.g., 
as part of the HM network interface), while NoC routers 
remain unchanged. The mechanism prevents the 
accumulation of packets destined at a hot-module within 
the network buffers. Consequently, other traffic remains 
unaffected even when the HM load increases significantly. 
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Figure 1: External DRAM as a SOC's hot-module, which 

causes a saturation tree in the NoC (highlighted links) 

The rest of this paper is organized as follows: In Section 2, 
the negative effects of HMs in wormhole-based NoCs are 
discussed. Related work is surveyed in Section 3. In 

Section 4, a specific credit allocation technique is proposed 
to allow fair sharing of the hot resource and to mitigate 
effects on non-HM traffic (traffic not destined at the HM), 
and Section 5 presents simulation of the suggested 
mechanism. 

2. HOT-MODULE EFFECTS  
The NoC buffer congestion due to HMs has several 
negative effects on system performance. The hot-module 
access latency is increased, as packets destined at it 
contend for the limited HM bandwidth. Unfortunately, 
additional significant fairness problem arises. Typically, 
different source modules are at different NoC distances 
from the HM (as illustrated in Figure 2a). Since a packet has 
to win a local output port arbitration in each router along its 
path, the HM bandwidth is not fairly shared. Namely, the 
sharing of the HM capacity is dictated by multiple local 
decisions made by the network components, and not by 
system requirements.  
More specifically, modules close to the HM enjoy a much 
larger share of the HM bandwidth than distant ones. This is 
caused by the fact that NoC routers employ a locally fair, 
round-robin arbitration between packets (or flits) of similar 
priority waiting at different input ports and contending for 
the same output port. Therefore, when its inputs are 
saturated, each router that is part of the HM saturation tree 
equally divides the bandwidth available at its upstream port 
among its input ports. Consequently, HM throughput at a 
source drops exponentially as a function of the number of 
hops between the source and the HM. When the HM 
demand is close to its capacity, location and distance 
diversity also lead to significant differences in access 
latency. Packets sent by distant sources are more likely to 
be blocked by other HM-traffic (i.e., traffic destined at a 
HM) in comparison to packets that travel only short 
distances. Therefore, modules that are located relatively far 
from the hot-module experience extremely long access 
times when HM load mounts. These issues (HM saturation 
throughput and HM access latency) will be referred to as 
the source fairness problem. 
Furthermore, performance degradation due to HM load is 
not restricted to the HM-traffic itself. In typical NoCs, HM 
and non HM-traffic compete for the same network buffer 
space and router ports. Therefore, HMs that slowly 
consume incoming data hinder the delivery of non-HM 
packets (Figure 2b), as slowly moving HM packets wait 
inside the network occupying expensive buffers. As a 
result, packets destined to lightly loaded modules are also 
being stalled by the network, suffering delays and fairness 
problems similar to HM packets (Section  5). 
The above discussion applies to any network in the 
presence of congested end-points. However, left 
unhandled, hot-modules' effects in a wormhole network are 
more severe than in a store-and-forward network, as 
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packets are blocked across multiple routers and buffering 
space is limited. 
As stated above, these delay and fairness effects are 
symptoms of HMs presence and not of an inadequately 
provisioned NoC. In fact, a wormhole NoC would suffer 
from the presence of a HM, even with links and routers of 
infinite capacity. 

 
 

Figure 2: Hot-module effects in a 4×4 YX routed NoC 
(a) Source Unfairness: on its way to the hot-module (IP1), packets 
generated by module 12 have to win 6 arbitrations, while module 5 

packets have to win only 2.  
(b) HM-traffic obstructing non-HM traffic: flow 4 1 slows-down (or 
blocks) flow 12 3 (which shares a link), and in turn may affect flow 

16 6, which is destined at an idle module. 

3. RELATED WORK 
The negative effects of hot-modules were partially 
explored in off-chip interconnection networks (e.g.  [11]-
 [17]). In this literature there is no clear distinction between 
the issue of HM and the congestion of a network port. 
Typically, suggested solutions attempt to prevent regular 
traffic from being affected by the traffic of a saturation 
tree, either by not allowing one to form or by allocating hot 
traffic exclusive network resources. Unfortunately, such 
solutions do not bring a fair allocation of the hot resource. 
In addition, these solutions address multi-computer 
networks, in which the design considerations are 
significantly different from those of NoCs. For example, 
some works modify the network routers in order to throttle 
packet injection at high loads (e.g.,  [13],  [14]), discard 
packets (e.g.,  [15]), deflect packets away from loaded 
locations (e.g.  [16],  [17]), use separate buffers for traffic 
destined at a hot-module (e.g.  [12]), or simply use a large 
number of virtual channels. However, when directly 
applied to NoCs, such modifications considerably increase 
NoC router gate count, resulting in excessive area and 
power consumption and reduced speed. For example, NoCs 
typically employ static shortest path routing based on a 
simple routing function, because of on-chip cost and 
performance considerations. Note, that most of the 
previous techniques can either slightly postpone the effect 
of HM as they only increase the number of buffers used by 
non-HM traffic (by adding buffers or routing non-HM 

traffic away) or even increase the effect by throttling non-
HM packets. 
Recently, two papers have studied related but different 
congestion problems in NoCs. Ref.  [18] addresses the 
classic flow control problem, regulating the communication 
between a source-destination pair.  The authors combine 
software and hardware mechanisms to adjust the length of 
a period ("send window") in which the source is allowed to 
inject packets towards a destination. Consequently, no 
sense of fair sharing of the hot-module is provided. In 
addition, this scheme only responds after a saturation tree 
begins to form. In  [19], an input regulation scheme is 
described where each router predicts the availability of 
buffers in its input ports, according to data collected from 
its neighbors. When a source observes that its adjacent 
router is expected to run out of buffers, it delays generation 
of new packets. However, this technique does not prevent 
hot-traffic from monopolizing multiple virtual channels and 
thus might prevent injection of other packets towards idling 
destinations. Moreover, as other classic end-to-end flow 
and admission control  [20], this method does not address 
the hot-module allocation fairness problem, since routers 
and sources only have local knowledge regarding the hot-
module demand.  
The proposed HM access regulation mechanism is 
considerably different from traditional end-to-end flow 
control mechanisms. Flow control is conducted on a per 
source-destination pair basis (e.g. TCP, static window in 
 [21], send window in  [18]), and prevents overflow in the 
destination buffers pre-allocated for this source (e.g.  [22], 
 [23]). Flow control does not directly address the hogging of 
network resources and does not address the problem of fair 
allocation of scarce resources. In addition, all existing 
schemes require at least one destination buffer per potential 
source, which is inappropriate in on-chip NoCs.. 

4. HM ACCESS REGULATION 
In order to reduce the dramatic effects hot-modules have on 
a wormhole-based NoC (Section  5), a credit-based access 
regulation mechanism is suggested: each source owns a 
quota that limits the number of flits it can send towards a 
HM. When a source quota is exhausted, it can resume 
transmission only after being granted an additional credit. 
Consequently, packets that cannot be consumed by the HM 
do not wait inside the network, a saturation tree can not 
form and traffic not destined at the HM remains unaffected 
during congested periods. 
Two types of control messages regulate the access to a 
HM: if a source has insufficient credit to start delivery of a 
data packet to a HM, it sends a credit request packet to a 
HM allocation controller, describing the requested 
transaction. When appropriate, the controller sends back 
more credit using a credit reply packet. Due to their 
significance and short length, credit request and reply 
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messages are given a high priority level and therefore 
cannot be held back in the NoC by data packets. In this 
work, we assume that the NoC is equipped with a 
prioritized virtual channel mechanism, such as the one 
described in  [3], guaranteeing fast access of control 
messages regardless of data traffic loads. 
As control packets are a few flits long and a single control 
packet credits a sizable chunk of data, control traffic is a 
small percentage of the HM-traffic. Therefore, the buffers 
of the prioritized virtual channel are kept at low utilization, 
resulting in minimal network queuing time. In order to 
overcome credit request and reply latency in light load 
periods, source quota can be slowly self refreshed. 

4.1 Control Messages 
Using a credit request message, a source describes the data 
packet(s) it wishes to send to the hot-module and asks for 
credit to do so. In addition to the Destination ID field of a 
regular packet, a request packet contains two mandatory 
fields: Source ID and Length. The former states the 
requesting module identity and the latter describes the size 
(in flits) of the data packet to be delivered. The system 
designer may choose to include additional information 
which would enable the HM allocation controller to decide 
upon the best service order. This information can be 
embedded in optional fields of the request packet. An 
example of such a field is a priority value, which indicates 
the "urgency" of the data packet, relative to requests that 
are sent by other sources of the same kind. A deadline field 
that indicates the requested completion time can help the 
allocation controller sort the requests in the best servicing 
order, postponing less urgent requests to be serviced last. If 
requests can be ignored unless they are served by a certain 
time (e.g.  speculative cache fetches), an expiration field 
may be used. 

 
Figure 3a illustrates an example of a credit request packet in 
which each field fits a flit (more fields per flit are of-course 
possible). Figure 3b illustrates a credit reply packet. The 
destination ID field is used to route the packet back to the 
requester. The source ID enables the requester to identify 
the controller sending the reply and is necessary in a 
system with multiple hot-modules. The Credit field states 
the number of credits granted in the reply packets. 
Generally, this number is equal to the length field in the 
matching request packet. However, an allocation controller 
may reply with a larger number in order to credit modules 

ahead of time during light load periods. The allocation 
controller may also reply with less credit than requested. In 
this case, a source may choose to send part of the data 
packet, thus freeing up local buffer space. 
4.2 Implementation 
The source control logic is embedded in the network 
interfaces that connect cores to the NoC infrastructure: 
sources capable of communicating with potential HMs are 
equipped with logic that stores current quota, generates 
quota requests and handles incoming quota replies. In order 
to keep track of the available credit, the source interface 
includes a credit status table (CST), with an entry for each 
potential HM. If all potential HMs are known during 
design time, the entries can be pre-coded in hardware. 
Otherwise, these numbers can be programmed as part of 
the configuration process. 
The CST is updated by the interface control logic upon 
receiving credit reply packets and upon injecting a packet: 
source module interfaces are modified so that data packets 
are no longer injected towards potential HMs as soon as 
link-level protocol allows it. Instead, the source control 
logic looks up the CST using the destination ID. If an entry 
with a matching module ID does not exist, the destination 
is not a potential hot-module and the data packet can be 
injected into the network immediately. Otherwise, the 
current credit status is retrieved and compared with the size 
of the data packet. If sufficient quota exists, the packet is 
injected into the network and its size is subtracted from the 
corresponding CST entry, reflecting the consumed credit. 
Otherwise, a request packet is generated, applying for the 
missing credit.  
The access to potential HMs is regulated using an 
allocation controller that receives credit request messages, 
decides upon service order and sends credit reply packets. 
This scheduling logic can be implemented as part of the 
hot-module's network interface, as an independent module, 
or as a separate central unit serving multiple hot-modules. 
In this work, we assume that the scheduler is embedded 
within potential hot-module interfaces. 
The implementation of the allocation controller unit (Figure 
4) includes a pending requests table (PRT), with an entry 
for each source module. The entry fields are selected 
during design time, according to the fields of request 
packets and the specific system needs. For example, a 
simple system may only need the source ID and length 
fields, while other designs may also describe request type, 
priority, deadline and expiration values. When receiving a 
credit request packet, the scheduler control logic decodes 
the request and logs it in its PRT (Figure 5). In addition the 
allocation controller may be provided with the status of the 
HM, its current speed and its current queued tasks. The 
local arbiter examines the PRT as well as the HM status 
and chooses a module, subject to QoS, fairness definitions 
and the HM status and encodes a credit reply packet 

D
est. ID

 
Src. ID

 
Length 
Priority 

Expiration 
D

eadline 
…

(a) (b) 

D
est. ID

Src. ID
 

C
redit 

Figure 3: Credit request (a) and reply (b) messages.
The request message may include optional fields that describe 

the matching data packet.  
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carrying a calculated amount of credit and sends it to a 
selected source. 
The scheduling algorithm, which is crucial to the success of 
the suggested technique, allows the system architect to 
adequately share the hot resource among requesting 
modules during high load periods according to the system's 
needs. In order to keep the cost of the HM allocation 
controller hardware minimal, in this work we assume a 
simple, round robin local arbiter is implemented and 
demonstrate its effectiveness. The design of more complex 
controllers and schedulers is left for future work.  
It should be noted that the access regulation mechanism is 
optional and transparent to the HM and source modules. In 
particular, the system architect may allow some modules to 
access potential HMs without requesting credit at all, if 
their traffic should not be delayed by the controller under 
no circumstances. 

 
Figure 4: Hot-Module Allocation Controller. 

 

 

5. PERFORMANCE EVALUATION 
In this section, the performance of the suggested HM 
access regulation mechanism is examined by means of 
simulation. Results are compared to a "standard" wormhole 
based NoC with no such mechanism. Two scenarios are 
used: a "Classic" hotspot traffic pattern and a real-life 
MPEG decoder SoC. The presented results exemplify the 
severity of the HM effects (system performance 
degradation and the source fairness problem) and quantify 
the extent to which the allocation scheme solves them. 

The term "end-to-end latency" in this paper refers to the 
time elapsed since the packet is created at the source until 
its last flit is consumed by the destination. Therefore, the 
measured latency accounts for source queuing, network 
blocking, virtual channel multiplexing, link bandwidth 
limitations, and overhead of the access regulation protocol. 
The results are generated using the OPNET based simulator 
 [24], modeling a wormhole network at the flit level. The 
model includes all network layer components, including 
wormhole flow control, virtual channels, routing, finite 
router buffers and link capacities. 
  
5.1 "Classic" hotspot traffic 
Traditionally, congestion alleviation techniques in off-chip 
networks are evaluated using an "all-to-one" traffic pattern. 
Although not typical for SoCs, this synthetic scenario is 
analyzed here in order to clearly demonstrate the effects of 
hot-module congestion and resource arbitration. 
Each set of results has been obtained for fixed non HM-
traffic, which serves as background communication, and 
for varying HM load in a system similar to the one 
illustrated in Figure 2. 

The following evaluation model is used:  
1. The system consists of 16 modules, arranged in a 4×4 

grid with a single HM, placed at the upper-leftmost 
corner. Fixed, symmetric XY routing  [3] is employed. 

2. All network links and modules (except HM) have 
identical capacities (10 Gbit/sec). 

3. The HM has 1Gbit/sec capacity. 
4. Data packets are 200 flits long and are generated by a 

Poisson process; Flits are 16 bits long. 
5. Routers have a 10-flit input queue per port. 
6. All possible non-HM flows exist in the system and 

have identical characteristics. Similarly, all possible 
HM flows exist and have identical characteristics. 

7. A prioritized virtual channel is used to deliver control 
packets, which are two flits long each. 

8. Routers resolve contention for output ports in a 
round-robin manner. 

9. The allocation controller is implemented as part of the 
network interface of the HM and employs round-
robin arbitration among pending requests. 

 
5.1.1 System Performance 
Figure 6a shows mean end-to-end delay in the system, with 
and without the allocation protocol. It is clear that the 
access regulation mechanism considerably reduces the 
average access latency. Figure 6b breaks the results down, 
separating HM-traffic from non HM-traffic. Due to the 
bandwidth consumed by the control packets, the mean 
delay of the HM-traffic is slightly increased when using the 
proposed mechanism. However, there is a dramatic 

 

PRT 

Local 
Arbiter 

Requests 
Decoder

Reply 
Encoder 

Credit 
Requests

Credit 
Replies 

Upon receiving request for K credits from module i 
   If HM idle 
      Send k credits to module i  
   Else 
      Log request in PRT 
 
Upon finishing servicing a packet  
   /*use local arbiter and PRT to choose 
     next module to be served*/   
   i local_arbiter(PRT)  
   /*extract requested credit from PRT 
   k PRT(i) 
Send k credits to module i 
Remove request from PRT 

Figure 5: Operation of a simple HM allocation controller. 
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improvement in the delay of the background traffic, which 
is now almost unaffected by the mounting HM load. 
This is caused by the fact that HM-traffic no longer 
occupies expensive network buffers, and non-HM packets 
can use them effectively to reach their destinations. 
The small increase in HM-traffic delay due to the load of 
control messages can be further circumvented. The 
designer can prevent control messages from consuming the 
limited HM bandwidth by placing the controller in a 
location such that the control path does not conflict with 
the HM data path. 

 

 
Figure 6: Mean end-to-end delay vs. HM load. 

 

Figure 7 demonstrates the source fairness problem in an 
uncontrolled wormhole network in steady-state. When the 
HM maximal utilization is approached, the delays vary 
largely among sources. While modules close to the HM 
experience only a slight increase in their end-to-end delay 
(e.g. module 5), the delay seen by distant modules (e.g. 
module 16) is considerably larger. This unfairness, caused 
by the different number of arbitration points along the path 

(Section Error! Reference source not found.), increases 
as the number of SoC modules grows. Figure 7 also shows 
the results of activating the HM allocation mechanism in a 
system with the same loads. The fair arbitration scheme 
manages to distribute the limited resource almost equally 
among the system modules (including ones not shown) as 
the system approaches its maximal steady state load. As 
described above, other fairness criteria can be implemented 
using different HM allocation controller policies. 
An additional important performance metric under heavy 
load is the saturation throughput: assuming that all sources 
always have data to send to the hot-module, saturation 
throughput is the bandwidth each source achieves. This 
predicts the system behavior at periods of extreme 
congestion in which the total load exceeds the HM capacity 
and the system operates at saturation point. As NoC routers 
employ a round-robin based arbitration among ports, each 
router effectively divides its upstream saturation bandwidth 
equally among requesting ports. Therefore, in a basic grid 
based network, the further a module is from the HM, the 
less bandwidth it will get. This unfairness also increases 
with the number of SoC modules.  
Figure 8 shows the saturation throughput with and without 
access regulation mechanism. When no control is applied, 
module 5 enjoys 25% of the HM limited bandwidth, while 
module 12 gets less than 1% due to the large number of 
hops on the path to the HM. This is explained by the 
network topology (Figure 2a): router R1 (i.e., the router 
directly connected to IP1) equally divides the HM capacity 
between its east and south ports. Similarly, router R5 
distributes it upstream HM capacity (available at its north 
port) among its local and south ports, meaning that IP5 
enjoys exactly a quarter of the HM bandwidth when all 
sources are saturated. Following similar analysis, it can be 
easily shown that IP12 only gets 1/144 of the HM capacity, 
as its packets contend four times with packets from another 
input port (routers R12, R8, R4, R1) and two times with 
packets from two other input ports (routers R3, R2). 

 

(a) 

(b) 
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Figure 7: Mean end-to-end delays vs. HM load. 
Curves represent mean delay normalized by the zero-load delay. 

 
Figure 8: Saturation throughput. 

Without control, distant modules get a small share of bandwidth. 
 
The HM access regulation distributes the saturation 
bandwidth fairly among all source modules, even when the 
network is extremely loaded. This is attributed to the fact 
that control messages bypass the slowly-moving data 
packets and do not suffer from the source fairness 
problems. 

 

5.2 MPEG-4 decoder 
In this test case, we use an MPEG-4 video decoder of  [9] to 
evaluate the performance of the access regulation. The SoC 
is composed of 12 processing elements placed on a 3x4 
grid. By analyzing the communication demands (Figure 9), 
it is clear that two modules are at high demand by multiple 
sources: The DRAM controller has 7 incoming flows 
(accounting for 25% of the total traffic), and the SRAM2 
module with 4 incoming flows (22% of the total traffic). 
In order to evaluate the system's performance, we use a 
model similar to the one described in Section  5.1, with the 
MPEG-4 video decoder communication demands  [9]. The 
DRAM controller and SRAM2 modules are equipped with 
an allocation controller. Two module mappings are used: In 
the first mapping (Figure 10a), the two hot-modules are 
placed in relative proximity to each other, in a way that 
causes some of the packets destined at those modules to 
contend for the same inter-router links. In the second 
mapping (Figure 10b), the placement is optimized so that no 
such sharing takes place but routing paths are kept short. 
This placement minimizes the effect each HM has on the 
other.  

 
Figure 9: MPEG-4 communication demads. 

The amounts specify the average traffic [MB/s] 

 
 

Figure 10: MPEG-4 SOC placement. 
Basic (a) vs. optimized (b) placements 

 
5.2.1 System Performance 
As in the previous example, we first examine the system 
performance in steady state while increasing the HMs 
utilization. Figure 11 shows the overall delays in the system 
using the basic placement, with and without the allocation 
control. When the uncontrolled HMs utilization increases, 
traffic destined to other modules suffers delays which are 
200 times larger than their zero load latency. Activating the 
allocation controller mechanism frees expensive network 
buffers, thus allowing the non-HM packets to arrive at their 
destination with considerably smaller delays. Note that the 
small increase in the non HM-traffic delay is imminent as it 
reflects the growing usage of the network resources by HM 
packets. Figure 12 shows similar effects when the optimized 
module placement is used. Without control, non HM-traffic 
suffers of extremely high delays. The latency is reduced by 
an order of magnitude when the allocation controller is 
introduced. 
 
5.2.2 Source Fairness 
Figure 13 shows the saturation throughput in MPEG-4 
system. As explained above (Section Error! Reference 
source not found.), when no control is used, distant 
modules only get a small fraction of the scarce resource. 
For example, the share of SDRAM bandwidth that module 
00 (VU) gets in the optimized system is more than six 
times bigger than the one of module 20 (ADSP) and of 
module 21 (UP SMAP). 

(a) (b)
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Figure 11: Mean end-to-end delay vs. hot-modules load.  

(Basic placement) 
 
Figure 13a reveals an additional peril in uncontrolled 
systems: Although HM demands is maximal, the expensive 
hot-modules are idling 40% of the time. This happens since 
packets destined at the different hot-modules compete for 
the same network resources and block each other from 
making progress in the network. As the hot-modules in the 
optimized system are placed so that no such sharing 
happens, the hot-modules are fully utilized. Unfortunately, 
optimal placement is not always feasible due to layout and 
timing constraints. HM access is successfully regulated 
using the control mechanism, and each source gets a fair 
share of each congested module. The control packets 
consume less than 2% of the HM bandwidth. 
 

 

 
Figure 12: Mean end-to-end delay vs. hot-modules load. 

(Optimized placement) 
The two HM-traffic curves overlap 

 

6. SUMMARY 
The unique characteristics of wormhole routing make it 
particularly suitable for high-performance networks-on-
chip. However, it is also highly vulnerable to loaded hot-
modules. Due to wormhole's backpressure mechanism, the 
NoC buffer depletion effects extend system wide 
instantaneously. 

Two main problems were identified: the source fairness 
problem, and the degradation of the entire system 
performance, as non HM-traffic is also blocked during HM 
congestion. If HMs are left unhandled, system performance 
is determined by network topology and routers' local 
arbitration policy, instead of following system optimization 
goals.  The main thrust of this paper is that system's 
behavior should be controlled explicitly by the architect 
rather than by network side-effects. The network should 
include mechanisms to facilitate such explicit control. In 

(a) 

(b) 

(a) 

(b) 
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order to solve both the fairness and the system performance 
problems, we have presented a low-cost end-to-end access 
regulation mechanism. Short control messages are used to 
arbitrate access to the HM, thus significantly reducing 
packet blocking probability and achieving fairness. The 
protocol, which is transparent to the system functional units 
and NoC, is implemented without modifying the network 
routers, allowing them to be simple, and thus fast, small 
and efficient. The protocol exploits a high-priority service 
level which is readily available in the NoC for fast 
signaling. Therefore, there is no overhead at the network 
layer. Simple logic is added to the network interfaces of 
sources, and potential HMs are instrumented with an 
allocation controller, customized to system needs. We 
suggest HM access regulation as an essential supplement 
for any wormhole-based NoC. 

 
Figure 13: Saturation throughput. 

(a) Basic placement (b) Optimized placement 

7. REFERENCES 
[1] W.J. Dally and C. Seitz, "The Torus Routing Chip", Distributed 

Computing, vol. 1, no. 3, 1986 

[2] K. Goossens, J. Dielissen, and A. Radulescu, "AEthereal Network on 
Chip: Concepts, Architectures, and Implementations", IEEE Design 
and Test of Computers,   September/October, 2005 

[3] E. Bolotin, I. Cidon, R. Ginosar and, A. Kolodny, "QNoC: QoS 
Architecture and Design Process for Network on Chip", Journal of 
Systems Architecture, Volume 50, February 2004 

[4] F. Moraes, N. Calazans, A. Mello, L. Möller, and  L. Ost, “Hermes: 
an Infrastructure for Low Area Overhead Packet-switching Networks 
on Chip”, Integration, the VLSI Journal, Oct. 2004 

[5] D. Bertozzi and L. Benini, "Xpipes: A network-on-chip architecture 
for gigascale systems-on-chip", Circuits and Systems Magazine, 
IEEE Volume 4, Issue 2, 2004 

[6] W. Dally, "Virtual Channels Flow Control", Proc. ISCA, May 1990 

[7] Z. Guz, I. Walter, E. Bolotin, I. Cidon, A. Kolodny, and R. Ginosar, 
"Efficient Link Capacity and QoS Design for Wormhole Network-
on-Chip", Proc. Design, Automation and Test in Europe (DATE), 
2006 

[8] S. Dutta, R. Jensen, and A. Rieckmann, "Viper: A multiprocessor 
SOC for advanced set-top box and digital TV systems", Design & 
Test of Computers, 2001 

[9] D. Bertozzi, A. Jalabert, S. Murali   R. Tamhankar, S. Stergiou, L. 
Benini, and G. De Micheli , "NoC Synthesis Flow for Customized 
Domain Specific Multiprocessor Systems-on-Chip", IEEE 
Transactions on Parallel and Distributed Systems, 2005 

[10] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De 
Micheli, "A Methodology for Mapping Multiple use-cases onto 
Networks on Chips", Proc. Design, Automation and Test in Europe 
(DATE) 2006 

[11] G. F. Pfister and V. A. Norton, "Hot Spot contention and combining 
in multistage interconnection networks", IEEE Trans. Comp., vol. C-
34, no. 10, Oct. 1985 

[12] J. Duato, I. Johnson, J. Flich, F. Naven, P. García, and T. Nachiondo, 
"A New Scalable and Cost-Effective Congestion Management 
Strategy for Lossless Multistage Interconnection Networks", High-
Performance Computer Architecture (HPCA) 2005 Proceedings 

[13] E. Baydal, P. Lopez, and J. Duato, "A Congestion Control 
Mechanism for Wormhole Networks", Ninth Euromicro Workshop 
on Parallel and Distributed Processing (PDP '01) Proceedings 

[14] A. Smai and L. Thorelli, "Global Reactive Congestion Control in 
Multicomputer Networks", In 5th International Conference on High 
Performance Computing, 1998 

[15] W. S. Ho and D. L. Eager, "A Novel Strategy for Controlling Hot-
spot Congestion", Proc. 1989 lnt'l Conf. Parallel Processing 
Proceedings 

[16] T. Lang and L. Kurisaki, "Nonuniform Traffic Spots (NUTS) in 
Multistage Interconnection Networks",   Journal of Parallel and 
Distributed Computing, 1990 

[17] P. Gawghan and S. Yalamanchi, "Adaptive Routing Protocols for 
Hypercube Interconnection Networks", IEEE Transactions on 
Computers, May 1993 

[18] P. Avasare, V. Nollet, J-Y. Mignolet, D. Verkest, and H. Corporaal, 
"Centralized End-to-End Flow Control in a Best-Effort Network-on-
Chip", Proc. 5th ACM international conference on Embedded 
software (EMSOFT), 2005 

[19] U. Y. Ogras and R. Marculescu, "Prediction-based Flow Control for 
Network-on-Chip Traffic", Proc. ACM/IEEE Design Automation 
Conf., San Francisco, July, 2006 

[20] K. H. Yum, E. J. Kim, C. R. Das, M. Yousif, and J. Duato, 
"Integrated Admission and Congestion Control for QoS Support in 
Clusters", IEEE International Conference on Cluster Computing 
(CLUSTER'02),  2002 

[21] V. Shurbanov, D. R. Avresky, P. Mehra, and W. J. Watson, "Flow 
Control in ServerNet Clusters", Euro-Par 2000 

[22] A. Radulescu, J. Dielissen, S. G. Pestana, O. Gangwal, E. Rijpkema, 
P. Wielage, and K. Goossens, "An Efficient On-Chip Network 
Interface Offering Guaranteed Services, Shared-Memory 
Abstraction, and Flexible Network Programming", IEEE 
Transactions on CAD of Integrated Circuits and Systems, January 
2005 

[23] M. Coenen, S. Murali, A. Radulescu, K. Goossens, and G. De 
Micheli, "A buffer-sizing Algorithm for Networks on Chip using 
TDMA and credit-based end-to-end Flow Control", International 
Conference on Hardware/Software Codes and System Synthesis 
(CODES+ISSS), 2006 

[24] OPNET Modeler, www.opnet.c

(a) 

(b) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




