
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGER CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 1

Relative Timing
Kenneth S. Stevens, Senior Member, IEEE, Ran Ginosar, Member, IEEE, Shai Rotem, Member, IEEE

Abstract—
Relative Timing (RT) is introduced as a method for asynchronous design.

Timing requirements of a circuit are made explicit using relative timing.
Timing can be directly added, removed, and optimized using this style. RT
synthesis and verification is demonstrated on three example circuits, facili-
tating transformations from speed-independent circuits to burst-mode and
pulse-mode circuits. Relative timing enables improved performance, area,
power, and functional testability of up to a factor of 3� in all three cases.
This method is the foundation of optimized timed circuit designs used in an
industrial test chip, and may be formalized and automated.

Keywords— Asynchronous-design, Performance-tradeoffs, Dynamic-
logic-circuit High-performance, Low-power-design

I. INTRODUCTION

T
HE design of RAPPID, the asynchronous instruction length
decoder, took more than two years to complete [1]. The

primary goal was to investigate whether asynchronous design
could improve performance in high-end microprocessors. This
naturally led to the effort, reported in this paper, to study and
develop circuits, CAD, and methodology most suitable for ag-
gressive timed asynchronous circuit design.

Initial designs and methods were based on the CAD available
at that time. The circuits were specified and synthesized using
speed-independent (SI) or burst-mode (BM/XBM) methodolo-
gies [2][3][4], as well as metric timed circuit design [5]. We
quickly discovered that many of the circuits that achieved our
performance goals contained some form of timing assumptions -
either the fundamental mode assumption of burst-mode or gate-
level metric timing. The performance was improved by studying
the natural delays of the circuits to employ timing that simplified
the designs by reducing series transistors and logic levels.

Unfortunately, all the asynchronous methodologies at that
time had what we considered an impediment to conceptualiz-
ing, optimizing, validating, and interfacing timed circuits. The
timing assumptions were all implicit. We felt that in many cases
the key performance was achieved through careful management
and design of the timing of the circuits as much as the behav-
ior. We therefore studied ways to make the timing of circuits
explicit. This effort resulted in the relative timing (RT) style
reported here.

Relative timing proved to be a very effective method of substi-
tuting aggressive pulse-mode, self-resetting circuits for the orig-
inal full-handshake speed-independent designs in RAPPID. This
novel method also allowed us to design and verify speculative
asynchronous state machines. However, This effort required a
new way of thinking about asynchronous designs and required a
new set of tools.

In the absence of RT CAD tools, the manual flow is quite in-
efficient for the design of large systems. Now we face the ques-
tion of how our manual method can be formalized into an effec-

K. S. Stevens and S. Rotem are with Strategic CAD Labs, Intel Corporation,
Hillsboro, OR.

R. Ginosar is with the VLSI Systems Research Center, Technion, Haifa, Israel

tive CAD methodology and tools. We propose that new formal
methodologies and tools be developed to support this method.
This paper presents our methodology and lessons in order to
motivate further CAD development. We start with simple, con-
trived examples that demonstrate basic principles, and move to
a key RAPPID circuit which has been improved substantially
with relative timing.

II. MOTIVATION AND DESCRIPTION

The design of timing in digital circuits is an extremely diffi-
cult challenge. The conventional clocked digital design method-
ology solves this problem by decomposing the circuit into cycle-
free combinational logic (CL) stages and interstage clocked
latches; the clock cycle is simply tuned to accommodate the
worst-case propagation delay in the CL stages. The behavior of
the combinational logic can be specified and synthesized with-
out considering timing. Delay Insensitive (DI) asynchronous
circuits are analogous to clocked CL design in the sense that
both types are independent of time – the behavior will be cor-
rect for arbitrary gate and wire delay.

High-performance circuits, both clocked and asynchronous,
benefit from more aggressive timing methodologies. Clocked
circuits can be considerably enhanced using local self-
timing [6][7][8]. Timed asynchronous circuits can also have
significantly enhanced performance.

Asynchronous design consists of handshake protocols that en-
sure validity of data [9][10]. Asynchronous design methodolo-
gies, apart from DI, make timing assumptions in the protocols,
function logic, or data transmission [11]. If the assumptions are
invalid in the physical implementation, the circuits can glitch
and fail to operate correctly. SI circuits assume indistinguish-
able skew on wire forks, burst-mode assumes fundamental-
mode (the circuit will stabilize internally before new inputs ar-
rive), and bundled-data assumes that all data is stable before
the handshake signal arrives. Ensuring that the timing assump-
tions hold in timed design, such as burst-mode, can be challeng-
ing [12].

The design style we investigated explicitly specifies the effect
of delays in a circuit in terms of assertions on relative ordering
of events (e.g. a goes high before b goes low). Our applica-
tion of relative timing is based on the unbounded delay model
commonly used by many asynchronous synthesis and verifica-
tion tools. The circuits are then designed to meet the relative
orderings, and validated that the constraints are part of the natu-
ral delays in the system.

A number of benefits emerged from making RT constraints
explicit in our designs. Timing relationships are no longer hid-
den by a design style or tool. RT can unify the asynchronous
methodologies as well as support for ad hoc manual designs.
The bundled and burst-mode assumptions, for example, can usu-
ally be made explicit with a small number of RT constraints as



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGER CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 2

shown in Section IV-B.4. The explicit nature of the constraints
can simplify interfacing, synthesis, and performance verifica-
tion. RT is not restricted to any particular specification style and
supports arbitrary designs. Since timing can directly effect the
quality and robustness of the circuits, each assumption can be
individually evaluated, and their application can be aggressive
or conservative.

Many timing CAD tools and methodologies exist; asyn-
chronous design itself is a timing methodology. Ordering sig-
nals temporally is not novel. This ordering can be achieved
through graph transformations that reduce concurrency simi-
lar to the theory developed by Vanbekbergen [13]. Timed
Petri nets, timed finite state machines, and other bounded-
delay formalisms have been used to reason about timed cir-
cuits by [14][15][16][17] [18][19][20]. Component databooks
include waveforms showing relative signal orderings, and order-
ings have been applied to micropipeline latches and controllers
[21][22][23]. These methodologies can achieve extremely effi-
cient circuits; indeed the tag unit in RAPPID, used as the pri-
mary example in this text, was first specified, synthesized, and
validated using the metric tool ATACS [24].

However, we do feel that the RT methodology used in RAP-
PID applies timing top-down in a novel way that is intuitive
and flexible, creating compact, testable, high-performance, low-
power circuits in a style that can be automated by CAD. Further,
this methodology supports both automatic and user-specified
timing transformations. Initial RT solutions based on this work
applied to synthesis [20] and verification [25] show remarkable
results and potential for an automated RT design flow.

III. RAPPID RELATIVE TIMING DESIGN

Relative timing had significant impact on the RAPPID re-
sults. The timed asynchronous circuits, when compared to sim-
ilar clocked logic in a commercial synchronous implementa-
tion, showed 3� improvement in throughput, a 2� improve-
ment in latency, and half the energy per operation, at a 20% area
penalty [1]. Although harder to quantify, we feel that relative
timing was also key in achieving the 95% stuck-at testability in
RAPPID with our functional BIST method through removing
redundancies that naturally result through fixed signal orderings
induced by timing.

Most of the RT circuits in RAPPID were designed by hand.
The RT transformations modified many behavioral aspects of
the specifications, concurrency in particular. However, the es-
sential functionality of the controllers – synchronization and or-
dering – remained. This effort, while time consuming, helped
us better understand timing, timed technology mapping, and
what types of transformations appeared most beneficial. Vari-
ous forms of handshaking were investigated, including protocols
without direct acknowledgment. These pulse-based protocols
can at times significantly improve the simplicity and latency of
asynchronous circuits.

Most of our implementations were mapped onto standard
static and domino library cells. Domino circuits are a restricted
class of generalized C-Elements [26] where only a single term
exists in the reset function. The combination of state-holding,
low transition latency and the low activity factor of the domino
gates made them the best circuit alternative we investigated.

The following sections describe the method we developed for
designing and optimizing relative-timed circuits. What started
out as a number of circuit experiments evolved into a manual
flow. Automated tool support for these flows was painfully lack-
ing, so we began mentoring development of RT CAD. Early en-
gagement with the Petrify team led to automate synthesis using
relative timing [20]. Verification using RT constraints was added
to the verification tool Analyze [27] in-house. This tool was
used to optimize the constraints in a slow, error-prone manual
loop. Theory automating the verification and RT constraint op-
timization is under development [25]. We encourage researchers
to further formalize and develop new CAD for automating RT
design.

Signal Description Example
input signal underline input
output signal output
inverted (asserted low) over-bar z
rising transition up arrow a�
falling transition down arrow b�
timing arc dashed arc ���
behavioral arc solid arc ��

TABLE I

NOTATION CONVENTIONS

IV. EXAMPLES

A. Notation and terminology

Table I shows some notations used in this paper. For
CCS [28], ‘.’ is the sequential operator, ‘�’ is the nondeter-
ministic choice operator, ‘j’ is parallel composition, and ‘nfag’
is the restriction operator applied to signal a which disallows
independent a and a transitions. Restricting signal a only per-
mits the internal � synchronization of the “handshake” between
a and a.

All simulations have been made using synchronous standard
library cells in a 0.18� process. The output of each circuit drives
a ��������� gate load. The circuits are simulated using SPICE
and the values are normalized against one of the circuits in terms
of area and energy. A more complete modeling of some of these
circuits and parameters can be found in [29].

The circuit examples in this paper contain static and domino
gates normally employing a single pMOS device. Asyn-
chronous tools such as 3D [4][30], ATACS [5] and Petrify [2]
can typically synthesize set-reset flops and the appropriate func-
tions (Fig. 1(a)). We can often apply technology mapping into
single-variable reset (equivalently set) functions, and implement
them using standard footed domino gates as in Fig. 1(b). When
the reset variable is not used in the set function, an unfooted
domino gate is used instead (Fig. 1(c)).

B. C-Element

We use a simple C-Element example to demonstrate the con-
cepts and methods of applying Relative Timing to synthesis and
verification. A simple two-input generalized C-Element and its



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGER CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 3

(a)

fr

fs

r

s

q

(b)

�
�

a

b

c

x

z

rr
a

b c

x r d
r r

��
HH a z

��AA
a

AA��ar
w

(c)

�
�

a

b

c

x

zuf

rr
a

b c

x d
r r

��
HH a z

��AA
a

AA��ar
w

Fig. 1. (a) Set-Reset flop and functions. (b) Footed domino gate (symbol and
circuit) implementing a Set-Reset flop with fr � x, fs � x � a � �b � c�. (c)
Unfooted domino gate implementing fr � x, fs � a � �b � c�.

CMOS implementation are shown in Fig. 2(a). The formal def-
inition in CCS is C � �a j b	�z�C, which reads “C is defined
as single transitions showing on inputs a, b in parallel (at any
order), followed by a transition on the output z, then followed
recursively by C again” [28]. An equivalent STG representation
of the specification is shown in Fig. 3(a) [31][32].

B.1 Relative Timing Synthesis

RT synthesis optimizes a circuit by adding timing arcs to a
behavioral specification. Both timing and causality affect the
behavior of a RT circuit. Behavioral arcs must be synthesized
into gates, and timing relations enforce a specific ordering be-
tween concurrent events, resulting in concurrency reduction in
the specification.

Relative timing assumptions come in two forms: local and
global. Local timing constraints can automatically be generated
by moving behavioral arcs based on various assumptions such
as lazy transition systems [20]. Global assumptions are dictated
by the response of the environment. These assumptions can be
applied manually, as in Section V-C, or automatically, as in the
burst-mode assumption that a circuit will stabilize before a new
input burst arrives [4][30][33].

RT synthesis supports the creation and strengthening of tim-
ing assumptions by moving the relative positions of the heads
and tails of arcs in a specification. If timing arcs are restricted
to relative translations of behavioral arcs, aggressive timing op-
timizations can be performed on a circuit while ensuring a con-
sistent, compatible result. The new specification can now be
synthesized, and timing assumptions and requirements can be
back-annotated. In this section we show some simple, intuitive
transformations on C-elements. In Section V we show aggres-

(a): GC

�
�b

a
C z

a cr
b cr

r r
��HH a z

��AA
a

AA��ar
w

(b): GC-RT

a
���
HHH z

b

cb r
a

r r
��HH a z

��AA
a

AA��ar
w

(c)

a c
���
HHH c z
c
b cb r

a

r r r z

��AA
a

AA��aw

Fig. 2. Generalized C-Elements: (a) GC, (b) GC-RT for a� � b� (c) for a� �
b�

sive application of relative timing in a large circuit.

B.2 Synthesis Examples

Assume that the environment always produces transitions on
a before transitions on b. This relative timing assumption is
expressed as a follows:

RTA1: a � b

The C-Element can be reduced to a buffer C � b�z�C using this
assumption. Fig. 3(b) shows the STG when the assumption is
limited to the falling edges:

RTA2: a� � b�

The dashed arc represents the timing assumption RTA2. Note
that the timing arc supersedes the behavioral arc from a� to z�.
Relative timing effectively moves the tail of this arc from one
event (z�) to a predecessor of the event (b�), as indicated by the
double arrow in Fig. 3(b). The new timing arc makes the behav-
ioral arc redundant, as shown in Fig. 3(c). In the corresponding
circuit, the reset function contains only b�, and the C-Element
can be implemented as the Fig. 2(b) footed domino gate GC-RT:
C � �a� j b�	�z��a��b��z��C� Given a similar assumption on
the positive edges,

RTA3: a� � b�

the circuit can be mapped to the domino gate in Fig. 2(c) by
inverting the inputs and employing the non-buffered z output.

Static C-element implementations can be synthesized with
Petrify. The STG of Fig. 3(a) produces the circuit SIC shown
in Fig. 4(a). Timing assumptions RTA2 and RTA3 lead to the



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGER CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 4

z�
�
�
�
��

A
A
A
AUa�

A
A
A
AU

b�

�
�
�
�� z�

�
�
�
��

A
A
A
AUa�

� �

� �
�

b�

� �

� �
�

w w

(a)

z�
�
�
�
��

A
A
A
AUa�

A
A
A
AU

b�

�
�
�
�� z�

�
�
�
��

A
A
A
AUa�

� �

� �
�

b�

� �

� �
�

w w

(b)

�RTA2

z�

�

�

a�

�

R

����
b�

� z�
�
�
�
��

A
A
A
AUa�

� �

� �
�

b�

� �

� �
�

w w

(c)

Fig. 3. Relative timing transformations on the petri-net of a C-element: (a)
initial spec (b) relative timing arc RTA2 a� � b� effectively “translates” arc
�a�� z�� to �a�� b�� (c) new spec, �’ed arc is redundant.

simpler static circuits of Fig. 4(b) and 4(c) respectively. Note
that these two circuits are actually subcircuits of the speed-
independent one. 3D synthesizes the circuit of Fig. 4(d).

In general, applying relative timing for synthesis means that
new (timing) arcs are inserted, rendering other arcs redundant.
This could also be considered as moving either the head, tail,
or both ends of behavioral arcs to predecessors. This effectively
reduces concurrency in the specification, allowing a simpler im-
plementation by removing transistors and gates.

B.3 Relative timing verification

This section introduces the method developed to verify a
large, relative-timed asynchronous circuit called RAPPID [1].
An implementation I conforms to a specification S (I �c S)
when an implementation is an acceptable construction of the
specification [34][16][27]. In this section, implementations can
be assumed to be parallel compositions of the untimed behav-
ioral specifications of the gates. Relative timing predicates can
be added to implementations and specifications to reduce their
concurrency by pruning states in a state graph (SG) that are un-
reachable due to timing. Thus, a specification S conforms to an
implementation I with RT predicate R when I � R �c S.

Early in this effort the Analyze verifier was enhanced to sup-
port RT predicates on both implementations and specifications.
Circuits can then be verified using SI and DI unbounded delays

(d): SC

��
��
��a q

b q
ab

bz

az

zq
q

(a): SIC

����
a q
b zq

q (b): SIC-RT

��a

b
zq

(c)

��
b
a zq

Fig. 4. Static C-Elements: (a) Speed-Independent (b) with RT assumption a�
� b� (c) with RT assumption a� � b� (d) Burst-mode C-Element with hazards

with RT constraints.
RT verification has two aspects. First, RT constraints reduce

concurrency in the implementation by disallowing transitions to
failure states. Second, the set of RT constraints are optimized
and merged through a set of transformations.

The following algorithm was applied to generate RT con-
straints and verify RAPPID and the circuit examples in this pa-
per. Step 1 generates RT constraints that remove a single failure
state as will be shown in the following example. This capabil-
ity was added to our verifier. Step 2 optimizes the constraint by
reducing additional concurrency beyond the single failure state.
Step 3 adds the new optimized RT constraint to the set, remov-
ing any constraints covered by the new constraint. Steps 2 and 3
were done manually.

1. Verify conformance using current RT predicates.
� If failure free, report RT constraints.
� If failure cannot be fixed through timing, quit.
� If failure exists, create RT constraint(s) that remove

this failure.
2. Optimize new constraint(s):

� Remove concurrency by increasing coverage of the
SG by the RT constraint.
� Iterate optimization, terminating when:
– Further concurrency reduction would remove states

required by the specification.
– Slack in constraint is no longer positive.
– An arc edge touches a primary input or output.

3. Add optimized constraint to RT constraint set, remove
covered constraints, and iterate.

The following section illustrates the procedure used in RAP-
PID to determine how and when to increase coverage of a RT
constraint.

B.4 Verification Example

Consider the static C-Element (SC) in Fig. 4(d). This cir-
cuit is implicitly hazard-free under burst-mode or fundamental
mode assumptions. However, it is not hazard-free in a speed-
independent environment. If the environment responds quickly,
b� may immediately follow z� before node az rises, resulting
in a hazard.

Fig. 5 shows a state graph of the SC C-Element circuit. The
“bottom” symbols in the left and right corner of the diamonds
label error states. Transitions ab�

�
and bz�

�
lead to the error



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGER CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 5

�
�
�

�
�
�

�
�
�

�
�
��

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��

�
�

�
�
�

�
�
�

�
�
��

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

s

�
�
�

�
�
�

�
�
�

�
�
�

� �

	 


a� b�

ab�

z�

bz��

bz��

bz��

bz��

bz��

az��

az��

az��

az��

az��

b��a��

bz��

bz��

ab��

ab��

ab��

ab��

az��

az��

z�

a��

a��

a�
�

a��

b��

b��

b�
�

b��

�

�

�

	

Fig. 5. Relative Timed burst-mode SC State Graph

state on the right.
Using the method described in Section IV-B.3, we first try to

eliminate the right error. Verification will identify any arcs that
lead to error states. The following two constraints eliminate the
right error state:

RTC4: az�� � ab��
RTC5: az�

�
� bz�

�

If one signal must precede another and both exit from a single
state, then the later arc will never be taken. (e.g. ab�� in RTC4).
RTC4 and RTC5 therefore disallow entrance to the right error
state.

One representation of the timed precedence of RTC4 is the
dashed arc between az�� and ab�� in the SG of Fig. 5. We
now try to strengthen this constraint to cover more of the graph.
While there may be many methods to optimize the instance-
based constraints, our hand methodology used two main iter-
ations.

First, instance information is removed from the constraints
when possible. The generalized constraint az� � ab�� is
equivalent to RTC4 as it adds no new timing arcs to the SG. Gen-
eralizing the right side as well results in the constraint az� �
ab� effectively adding a second timing arc az�

�
� ab�

�
to

the SG. This constraint now removes two states from the graph:
the error state and the state of RTC5. Hence RTC5 is covered by
the optimized RTC4 constraint.

Second, the generalized RT constraint can be strengthened
based on slack calculations1. The constraint is strengthened by
moving the left and/or right transition to earlier transitions in the
SG. Hence the right side of the constraint can be strengthened to
transition b� and bz�. A simple unit delay model can be used
to calculate slack, where local gates are assigned a single delay,
and input transitions are assigned a value k where k 	 �. The
following example illustrates the strengthening of az� � ab�
starting from the common signal z�.

z�az� � z�fbz�b�gab� k
z�az� � z�b� k � �
z�az� � z�bz� �

This indicates that if k � � the best strengthening is RTC6,
otherwise the weaker az� � ab� should be used. Applying
the same method to the left error state generates RTC7.

RTC6: az� � b�

RTC7: bz� � a�

The RT implementation now conforms to the specification.
Precisely, SC � RTC6 � RTC7 �c C � �a j b	�z�C. All signals
in these constraints are either primary inputs or directly enabled
by the primary output, simplifying hierarchical validation.

In general, RT verification allows one to manipulate the ini-
tial constraints to arrive at a minimal set of constraints that are
easiest to verify in a hierarchical system. Constraints that have
over aggressively reduced the slack can be weakened back to the
original failure state. If any initial constraint contains unachiev-
able timing, then the circuit is an invalid implementation of the
specification.

RTC6 and RTC7 implement a “weak” form of the
fundamental-mode requirement of burst-mode. Because An-
alyze uses bisimulation semantics, hazardous behavior inside
a circuit that does not propagate to the outputs is permissible
due to the observational equivalence property [28][27]. (This is
not the case when using verifiers based on weaker formalisms.)
RTC6 and RTC7 prune arcs a�

�����
and b�

�����
but transitions

a�� and b�� of Fig. 5 remain. Given RTC6 and RTC7, if a��
occurs, az� will either glitch or not fire. This does not create
an observable failure because signals bz and ab are asserted
holding z high, and the output will not lower until b� and bz�
occur. Hence the additional “strong” burst-mode RT constraints
az� � a� and bz� � b� are unnecessary.

B.5 C-Element summary

Table II summarizes the five alternative designs from
Fig. 2 and 4. The circuits are all sized near the optimal
power/performance point. All designs were simulated to drive
the same load. If a circuit is hazard-free in an SI environment
then no timing is required for correct operation. The speed-
independent circuit (SIC) is slower than all others. Applying
the RTA2 assumption to this design leads to a circuit (SIC-RT)

�Slack is the difference between the latest arrival of the first signal and the
earliest arrival of the second.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGER CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 6

HF in Fall Rise Switching Area Exhaustive RTA2 Env.
Circuit SI Env. Delay Delay Energy # Transistors Testability Testability
SIC Yes 1.00 0.98 1.00 16 100% 90%
SIC-RT No 0.59 0.52 0.74 8 n/a 100%
SC No 0.56 0.51 2.03 18 100% 92%
GC Yes 0.77 0.55 0.86 10 100% 100%
GC-RT No 0.52 0.52 0.72 9 n/a 100%

TABLE II

COMPARISON OF C-ELEMENT IMPLEMENTATIONS. FALL, RISE, AND ENERGY COLUMNS USE WORST SIC PERFORMANCE AS BASE, WITH ALL OTHER

NUMBERS A MULTIPLE OF THAT DELAY OR ENERGY. ENERGY IS AVERAGE FOR A COMPLETE CYCLE (RISE AND FALL). TEST COLUMNS SHOW COSMOS

STUCK-AT FAULT COVERAGE ON ALL FANOUTS, WITH REDUCED PATTERNS IN RTA2 COLUMN DUE TO ENVIRONMENT RESTRICTIONS.

lo lo lo

li li li

ri ri ri

ro ro ro


 

� �� �


 
lo

li

ri

ro

Fig. 6. FIFO block diagram containing three cells

that is half the size and enhances performance by almost a factor
of two. The static SC requires the largest circuit and is fast, but
doubles the power. The reduced domino C-Element (GC-RT)
improves fall times over the GC circuit by 50% (due to simpli-
fication of the pull-up stack) and rise times by 5%.

Static circuits tend to expend more energy than domino cir-
cuits. This is largely due to the extra switching activity in the
static designs as can be observed by the SC circuit which ex-
pends twice the power of the SIC circuit because all four gates
toggle for every output transition. When activity factors are sim-
ilar, the domino circuits have a slight edge. The GC-RT circuit
uses only 3% less energy than the static SIC-RT circuit because
the reduced device sizes in the domino gates are offset by the
short circuit current when the gates switch. Testability was mea-
sured in COSMOS using a functional test methodology, where
only valid timed signal orderings allowed by the environment
can be supplied to the circuit. The table shows that the static
and SI circuits are fully testable for complete patterns, but not
when timing constraints reduce signal interleavings (in column
RTA2). The RT optimized versions of these circuits are fully
testable.

V. TIMING EVOLUTION IN A RING

In this section we trace the development of a simple FIFO
controller, similar to a micropipeline [35]. These controllers
can be connected in series as shown in Fig. 6. This circuit is
a simplified abstraction of a part of the RAPPID design [1], and
closely follows the actual steps used to derive the final circuit.
We begin with a speed-independent design, and review a succes-
sion of progressively simpler circuits, enabled through careful
application of relative timing assumptions.

A. Speed-independent FIFO cell

A simple FIFO cell can be specified in CCS as follows.

LEFT � li��c�lo��li��lo��LEFT
RIGHT � c�ro��ri��ro��ri��RIGHT
FIFO � �LEFT j RIGHT	nfcg

(1)

lo�

li�

lo�

li�

� �

� �
�

w

�

�

�

PPPPPPPPq

���������

w

ro�

ri�

ro�

ri�

� �

� �
�

�
w

�

�

Fig. 7. FIFO specification Petri-net

��
�� b��HH b ��

�� b��HH b ��
b ��HH b

��
��bHH

��b HH
��b

HH
��b

li

lo

ro

ri

y1 y2q


q
q

q

qq
q

q

q

�q
q

qq

Fig. 8. Speed-independent FIFO cell (SI)

The specification in Equation 1 consists of two handshake pro-
cesses, LEFT and RIGHT. The c event synchronizes the two
processes so that ri must go low and li must rise before
both processes may proceed. This process-based specification
is equivalent to the Petri-net of Fig. 7.

The SI circuit in Fig. 8 was synthesized using Petrify [2] and
is a hazard-free implementation of Equation 1.

B. Burst-mode FIFO cell

The SI FIFO pays a considerable delay penalty to achieve
speed independence. The trace li�, y1�, lo�, y2�, ro� shows
that li� produces lo� after two complex gate and inverter de-
lays, and ro� after four. Perhaps the performance can be im-
proved if the circuit can ensure that concurrent outputs are gen-
erated faster than they can be acknowledged by the environment.
This assumption can be formulated as follows:

RTA8: lo� � ri�
RTA9: ro� � li�



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGER CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 7

lo�

li�

lo�

li�

� �

� �
�

w

�

�

�

PPPPPPPPq

���������

w

ro�

ri�

ro�

ri�

� �

� �
�

�
w

�

�

RTA9


RTA8

j

Fig. 9. FIFO specification petri-net with RT assumptions RTA8 and RTA9 rep-
resented as dashed arcs

li s
ri ��

HH b s

�
�b

�
�b

��
HH b s lo

��
HH b s ro


�b C

xs

Fig. 10. Relative timed burst-mode FIFO (RT-BM)

A new specification is generated by adding these two relative
timing assumptions to Equation 1:

FIFO � RTA8 � RTA9 (2)

where FIFO is the specification from Equation 1. This is equiv-
alent to the Petri-net of Fig. 9 where the dashed arrows represent
relative timing constraints.

Note that the two constraints RTA8 and RTA9 are in a form
where outputs precede inputs and these outputs are concurrently
enabled from the same pair of inputs. This is a burst-mode con-
straint where the input burst is fli� ri�g and the output burst
is flo� ro�g. This burst-mode timing assumes that the vari-
ance in the generation of the concurrent outputs is always less
than the response time of the environment2.

The RT-BM circuit of Fig. 10 is derived in [20] using the new
RT synthesis capabilities of Petrify, and implements Equation 2.
(The C-Element here is synthesized as an OR gate in [20].) RT
verification by Analyze extracts the timing in the physical circuit
and creates additional orderings that must hold for the circuit to
operate correctly:

RTC10: x� � lo�
RTC11: x� � ro�

These constraints, as well as the state variable x, are shown
graphically in Fig. 11. The burst-mode implementation achieves
a 2.6� average speedup over the SI circuit. Constraints RTC10–
RTC11 apply only to the physical implementation and must be
validated given actual circuit delays.

�Also applying burst-mode constraints on input set fli� ri�g results in a
C-Element – the micropipelines implementation.

lo�

li�

lo�

li�

� �

� �
�

u

�

�

�

� �

� �
�PPPPPPPPq

���������
u

ro�

ri�

ro�

ri�

� �

� �
�

�
u

�

�

� �

� �
�

RTA9



RTA8

j

x��
�

���

Q
Q
QQs

u u

x�

Q
Q
QQs

�
�

���

j
RTC10 RTC11

Fig. 11. Petri-net for circuit of Fig. 10 and constraints RTC10–RTC11.

C. Right before left

Assume that we connect the circuit of Specification (2) into a
ring with a single token. The token will always arrive at an idle
cell due to circuit delays if the ring is sufficiently large. Hence
the handshake in process RIGHT will always complete before a
new handshake in process LEFT. The SI or RT-BM circuits can
safely be used in a large ring. However, the global timing of
RTA12 can improve the circuit in terms of power, performance,
area and testability.

RTA12: ri� � li�

This assumption can be graphically represented as shown in
Fig. 12. The arcs from ri� to ro� and lo� are now redundant
and have been removed from the figure.

The dashed arcs are not causal arcs; ri must go low before
li can rise and ri cannot delay li. This represents a ma-
jor change in the operation of the circuit; the LEFT process is
no longer synchronized directly with the RIGHT process except
through system timing. The design must guarantee that the to-
ken appears on the dashed arc before li�.

The circuit in Fig. 13 can be synthesized with 3D and Petrify
from Specification (2) adding assumption RTA12. The rising
edge of signal li must be delayed sufficiently through lo and
the buffer to ensure that the domino AND gate is not disabled

lo�

li�

lo�

li�

� �

� �
�
u
�

�

�

PPPPPPq

ro�

ri�

ro�

ri�

� �

� �
�

�

�

RTA9

RTA8

j

RTA12


u

Fig. 12. Net representing addition of RT assumptions ri� � li�

�
�

HH
H
���

��
�

HHH

li

lo

ro

ris
s

d
d

Fig. 13. Aggressive relative timed FIFO (RT-Agr)



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGER CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 8

li
lo

ro

ri��HH
��

��
HH
qq
b b ��HH

��

��
HH
qq
b b ��HH

��

��
HH
qq
b b

Fig. 14. Aggressive relative timed FIFOs

li

li

ro

ro

�� HH
��

��
HH

qaq �� HH
��

��
HH

qaq �� HH
��

��
HH

qaq

Fig. 15. Shuffled aggressive relative timed FIFO cells

before it is fully set. This results in a number of RT constraints
on races in the circuit that can be derived as was done for RTC4–
RTC7 in the SC circuit. This circuit shows 15% and 3� im-
provement in average case performance over the RT-BM and SI
circuits respectively, and energy is also improved by factors of
26% and 1.9�.

D. Pulse-mode FIFO cell

RTA12 now constrains the specification sufficiently to derive
a pulse-mode circuit. Through transitivity, ro� must precede
li�. We can use this weaker constraint to discard ri, the back-
ward handshake signal, altogether. We show how this can be
accomplished through transformations on the circuit of Fig. 13.

Three elements of the ring are shown in Fig. 14. Observe
that the lo signal is nothing more than a delayed version of the
li signal. Shuffling the lo devices and bubbles results in the
circuit of Fig. 15, that has only forward-moving signals with-
out any inter-cellular feedback. The shuffling that removes ac-
knowledgment is directly based on RTA12 that dissociates the
LEFT process from the RIGHT. This shuffling turns output lo
and input ri into local signals.

Note that signal li in Fig. 15 is just li inverted. A transition
li� creates a short period when both li and li are high, which
will set the output of the domino AND gate. The duration of
both inputs to the domino AND gate being high depends on the
delay in the li path. This signal pair can be combined into a
single wire li if the signal on this wire operates as a pulse. The
final circuit derivation can be seen in Fig. 16.

��
�

HHH
HH

H
���

li ro

y

s
d

Fig. 16. Relative timed pulse-mode FIFO (Pulse)

The following specification removes the direct handshake sig-
nals lo and ri of Specification (1) and adds RTA12:

LEFTP � li��c�li��LEFTP
RIGHTP � c�ro��ro��RIGHTP
PULSE � �LEFTP j RIGHTP	nfcg

� ro� � li�

(3)

Designing reliable pulse-mode circuits is very difficult [36].
We can observe some of the constraints of pulse circuits by
understanding how we have derived the pulse-mode circuit in

ack (ro)

req (li) �
 �

2p

4p

�
�R1 �

��2 �
�R
3
�
��
4

Fig. 17. Four cycle and pulse handshake protocol constraints

this example. Fig. 17 shows a four-phase request-acknowledge
handshake. Constraints 1 through 4 are causal with speed-
independent signaling. By removing the ack signal (lo and ri
in Fig. 14), we are left with only the request signal that requires
constraints 2p and 4p. These constraints contain both minimum
and maximum metric bounds. However, the actual requirements
for the size of these bounds can be represented with relative tim-
ing arcs between the inputs and outputs of a pulse-mode circuit
(li and ro in Fig. 16). Interestingly, these arcs correspond to a
protocol very similar to the standard request acknowledge hand-
shaking.

The pulse on li of Fig. 16 causes the output pulse ro, as
required by Equation 3. If we map req to li and ack to ro
in Fig. 17, we see that arc 1 is causal. However, this circuit
can fail if the pulse is so short that the ro (ack) pulse does not
occur. We can therefore impose an RT constraint that requires
ro� (ack�) before li� (req�). This makes arc 2 in Fig. 17
an RT constraint, and slightly restricts the specification. (It may
be possible to not restrict the specification if an internal signal
toggles which ensures the domino gate has changed state.) The
circuit will also fail if the li (req) pulse is too long. If ro�
(ack�) and y� have occurred before li� (req�) then an ad-
ditional pulse on ro might be generated. Therefore, arc 3 in
Fig. 17 is a necessary RT constraint for the circuit to work. Fi-
nally, arc 4 is assumed to hold from RTA12 which drove this ex-
ample. We therefore have a system of causal and relative timing
relations that must hold in the pulse-mode circuit which directly
mimic a four-phase handshake.

E. Ring summary

Some consequences of evolving a simple FIFO-like controller
from a speed-independent to a pulse-mode circuit are summa-
rized in Table III. The different circuits are characterized in
terms of performance, power, area, and testability. The worst
case latency of the SI circuit is from three to five times longer
than the circuits that use timing. The SI circuit is not fully
testable, and the testability degrades as the circuit is placed in
an environment where concurrency is restricted. The more ag-
gressive timing assumptions tend to increase the performance
of the circuits, reduce the area and power, and increase func-
tional testability. Note that the bulk of the improvement in per-
formance has been achieved with the simple burst-mode trans-
formation; simple timing assumptions can often have signifi-
cant impact on the quality of the circuit. The additional savings
awarded by going to pulse mode are much less pronounced, ex-
cept that the variation is eliminated. Indeed, the ‘aggressive’
RT controller may already be considered a pulse mode circuit.
Power is improved for each transformation, as the pulse circuit
shows a 40% reduction over RT-Agr. We feel that functional
testability is increased using relative timing because many of



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGER CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 9

HF in Worst Average Switching Area SI Env. RTA14 Env. Pulse-Mode
Circuit SI Env. Delay Delay Energy # Trans. Testability Testability Testability
SI Yes 1.00 0.67 1.00 42 88% 79% n/a
RT-BM No 0.34 0.26 0.81 32 80% 77% n/a
RT-Agr No 0.34 0.22 0.53 18 n/a 100% n/a
Pulse No 0.22 0.22 0.32 15 n/a n/a 100%

TABLE III

COMPARISON OF FIFO IMPLEMENTATIONS. ALL DELAYS ARE IN TERMS OF SI CIRCUIT WORST-CASE DELAY, ENERGY IN TERMS OF SI CIRCUIT. ENERGY

ACCOUNTS FOR A COMPLETE FOUR-PHASE CYCLE. SYNCHRONOUS TESTING IN COSMOS REQUIRED EXTRA TEST GATE FOR PULSE CIRCUIT.

PA
a

r sr
sa

PBa
r
sr sa

C4

PA
a

r

sr sa

PB a
r

sa
sr

irdy �
irdyack


bufreq

bufack �

�



�
	

	
�



�

go0

go1

go2

go3

�
�C

�
�C

tia7

qqq
tia1

ti7 rqqqti1 r ti

tiar

�
�
�
�

toa7
qqq toa1toa

to1

qqq
to7

to r

l1 l7q q q

Fig. 18. SI Tag Unit. Assumes tagin (ti) handshakes are mutex.

the redundant coverings are removed when the circuits are opti-
mized for time.

VI. TAG UNIT EXAMPLE

The FIFO ring is a simplified example used for illustra-
tion. Typically, such an application would have synchroniza-
tions coming from multiple paths. The Tag Unit example from
RAPPID [1] shows how relative timing can be employed to gen-
erate extremely high-performancepulse-mode implementations.

Decoding of variable length instructions is inherently a serial
process, since the length of any instruction directly depends on
the lengths of all previous instructions since the last branch. The
performance of decoding variable length instructions directly
depends on how fast this serial process operates [1]. A criti-
cal component in RAPPID is the Tag Unit. The tagging control
signals interconnect the Tag Units to form a 4�16 torus, syn-
chronizing the serial ordering of instructions by passing a tag
along the toroidal rings.

Fig. 18 shows a single speed-independent Tag Unit. An input
tag arrives on at most one of the inputs ti1 – ti7. The tag is
synchronized with irdy and steered to one of to1 – to7 de-
pending on instruction length l1 – l7. A bufreq, irdyack,
and the corresponding tia are also issued concurrently. The
four-input C4 allows four processes to complete their four-cycle
handshake concurrently and begin a new transfer when all in-
terfaces are synchronized. The three behaviors in the boxes are
specified as follows:

PA � r��sr��sa���sr��sa� j a��r�	�a��PA
PB � sr��sa���sr��sa� j r��a�	�r��a��PB
C4 � �go0 j go1 j go2 j go3	�sa�C4

The two passive PA processes synchronize the four-phase
handshake after r requests are received, while the two PB pro-
cesses are active and synchronize before handshaking. There-
fore, when the ti and irdy requests arrive and the bufreq
and to cycles have completed, the ti and irdy signals will be
acknowledged and the to and bufreq cycles will start. This
is accomplished in the specification by renaming the signals and
composing the processes as follows:

IRDY � PA
irdy�r� irdyack�a� go0�sr�
TAGIN � PA
ti�r� tia�a� go1�sr�
TAGOUT � PB
to�r� toa�a� go3�sr�
BUFREQ � PB
bufreq�r� bufack�a� go2�sr�
TAGUNIT � �IRDY j TAGIN j TAGOUT j BUFREQ

j C4	nfgo0� go1� go2� go3� sag

(4)
The SI implementation of these processes using ATACS is

shown in Fig. 19. Processes PA and PB result in very efficient
implementations. However, the large OR gates, C-Elements,
and the necessity of passing through three state machines from
the input to output of the tag path create significant latency in
this implementation.

(a)
��
HH b��
HH

��AA
a

sa b
r bq

sr

aq
(b)
��
HH b��
HH

��AA
a

sa b
a q
b sr

rq
(c)

��bC

��bC ��bC

go0
go1

go2
go3

sa

Fig. 19. Speed-independent Tag Unit circuits: (a) PA (b) PB (c) C4



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGER CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 10

�
�

�
�

�
��

� qqq
ti7

qqqti1

bufreq

irdyack
s
tl
AA��a

irdy

bufack ��
HH aba l1

q q q
l7

to1

to7
taglocals s

rdy

ss

Fig. 20. Simplified RAPPID Tag Unit

The circuit used in RAPPID is shown in Fig. 20. This effi-
cient circuit is very similar to the pulse FIFO (Fig. 16) derived
in Section V. The extra gates are used to steer the tag paths (ti
to to) based on the instruction length, and to synchronize with
the instruction issue buffers. The backward handshake signals
in the tag path have been removed, and the forward-going sig-
nals are pulses. The request and acknowledge protocols on the
irdy and bufreq paths are combinations of four-phase and
pulse-mode signaling – irdyack and bufreq being pulses.

2p RTA13: fbufreq��irdyack�g � to�
2p RTA14: fto��irdyack�g � bufreq�
2p RTA15: fto��bufreq�g � irdyack�
3 RTA16: ti� � to�
3 RTA17: ti� � bufreq�
3 RTA18: ti� � irdyack�
4 RTA19: fbufreq�bufack��irdyack�irdy�g

� ti�
4 RTA20: fto�bufreq�bufack��ba�g � irdy�

RTA21: irdyack� � irdy�
RTA22: bufreq� � bufack�

TAGS � b1�ti��c1��ti� j c2�to��to�	�TAGS
BUF � c1�c2�bufreq

��bufreq j bufack�bufack	�BUF
IRDY � irdy��b2�c2�irdyack

��irdyack� j irdy	�IRDY
� nott�irdy�nott�IRDY	

MUTEX � �b1�b2� nott�nott	�MUTEX
TAG � �TAGS j BUF j IRDY j MUTEX	

nfc1�c2�b1�b2�nottg
� RTA13� RTA22

(5)
The specification for the RAPPID tag circuitry is shown in

Equation 5. The processes are behavioral pulse-based speci-
fications without timing. For example, the lowering edge of
the pulse signal ti� and the output pulse to in process TAGS
are concurrent. The timing assumptions necessary to create a
failure-free circuit can be classified by type according to Fig. 17.
Type 4 assumptions on the ti and to signals are encoded into
the specification since the TAGIN and TAGOUT processes have
been combined. The synchronizationsc1 and c2 encode causal
transitions of type 1. RTA13–RTA15 encode type 2p transi-
tions – minimum pulse-widths constraints on to, bufreq, and
irdyack. Assumptions RTA16–RTA18 are type 3, ensuring
that the input pulse lowers before the output pulse. RTA19 and
RTA20 are type 4 assumptions which require the logic to sta-
bilize before the next tagin arrives. Assumptions RTA21 and

RTA22 simply constrain the ordering of the pulsed handshake
signals. (Such constraints could have easily been placed in the
specification, but have been included as RT assumptions because
they are guaranteed by timing rather than by a causal relation.)

Equation 6 shows the complete set of RT constraints placed
on the circuit and system for the simplified RAPPID implemen-
tation to be valid. These constraints were generated and verified
through Analyze [27]. RTC23 and RTC24 are the type 2 con-
straints, RTC25–RTC27 are type 3 (the same as RTA16–RTA18
in the specification), RTC28–RTC31 the type 4 constraints, and
type 4p RTC32–RTC33 constraints. Note that a single delay
path constraint may include several RT constraints as we have
used them here.

2 RTC23: to� � taglocal�
2 RTC24: firdyack��to��tl�g � rdy�
3 RTC25: ti� � to�
3 RTC26: ti� � br�
3 RTC27: ti� � irdyack�
4 RTC28: rdy� � taglocal�
4 RTC29: rdy� � ba�
4 RTC30: ftaglocal��tl�g � ti�
4 RTC31: taglocal� � rdy�
4p RTC32: fba��ba�g � irdy�
4p RTC33: taglocal� � tl�

(6)

While the circuit of Fig. 20 may be easier to verify using the
metric timing of ATACS, we feel that explicitly attaching many,
if not all, of the timing constraints as RT predicates make the
specification and circuit timing requirements more perspicuous.
Each interface has a simple behavioral definition, which is re-
fined by timing assumptions as predicates. Incorporating the as-
sumptions into the specification removes much of the clarity of
the resulting synchronizations and orderings. Representing the
complete behavior constraints or timing constraints as a Petri-
net, as was shown in Section V, can be elucidating for under-
standing small examples, but can be confusing and impractical
for larger, real-world examples such as the Tag Unit in RAP-
PID. This is particularly the case for pulse-based implementa-
tions where the set of timing constraints can be quite large.

Table IV compares the two implementations. The RT circuit
has a 3.1� area, 1.9� power, and 2.5� improvement in latency
and throughput over the speed-independent circuit. Since this
circuitry is in the critical path of the RAPPID length decoder,
the improvements in this example directly resulted in improve-
ments to RAPPID [1]. The area impact on RAPPID from the RT
circuit is arguably much higher than the transistor count compar-
ison since this circuit is wire-limited and can be scaled. If slow
parts are used, higher scaling factors must be employed to meet
the target performance. If the slower SI tag unit had been used
in RAPPID, the area would have ballooned significantly to meet
the performance goals. The area savings in terms of the 50%
reduction in wire count from removing the backward handshake
is also significant. Since RAPPID tagging uses point-to-point
signaling connected in a torus, removing the backward acknowl-
edgment path resulted in a savings of 14 wires per tag unit. This
reduced the network bisection of the tag logic by a total of 224
tag wires.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGER CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 11

Tag Cycle Cycle Area RAPPID
Circuit Latency Time Energy # Trans. Testability
SI 0.53 1.00 1.00 297 n/a
RAPPID 0.21 0.39 0.54 97 98.6%

TABLE IV

COMPARISON OF RAPPID TAG UNIT WITH THE SI VERSION. CYCLE TIME OF SI CIRCUIT IS BASE CASE FOR DELAYS. AREA IS THE NUMBER OF

TRANSISTORS, TESTABILITY REFERS TO THE COMPLETE RAPPID TAG UNIT AND STEERING LOGIC.

VII. CONCLUSION

The development of circuits requires correct operation in two
domains - behavioral and temporal. Our experiments indicate
that the design, synthesis, and verification of circuits can be
significantly enhanced if both temporal and behavioral domains
can be explicitly represented and merged. Relative timing is a
means of combining behavioral and temporal information. The
statespace of the untimed circuit is reduced by removing un-
reachable relative signal orderings that are induced through time
constraints.

Relative timing is a useful way of reasoning about designs.
The waveforms in databooks are presented in such a way as to
highlight the relation between signals and transitions. One can
use relative timing to architect systems, as well as synthesize
controllers and verify the correctness of systems. Synthesis and
verification algorithms can be designed to directly support this
concept where time is represented as a relationship similar to a
behavioral or causal relation.

RT can be applied as aggressively or conservatively as de-
sired. Races due to the environment in burst-mode and in speed-
independent implementations due to inverter delays can be dis-
covered and explicitly listed with the circuit. Indeed, relative
timing is a superset of asynchronous methodologies such as DI,
SI, and burst-mode.

Relative timing does not preclude metric or absolute timing.
Metric timing must eventually be applied in the implementation
against the RT constraints to prove that they hold. Further, many
of the RT constraints require a certain amount of slack, or setup
and hold times, in the precedence relations. The robustness and
reliability of the circuits can depend directly on the amount of
slack on the RT constraints.

The quality of the RAPPID results in terms of throughput,
power, area, testability, and latency was largely due to the tim-
ing employed in the circuits [1]. This benefit is shown through
applying relative timing to the examples in this text, and in the
early tools that have formalized some of these translations.

Acknowledgments

We are grateful for the helpful and constructive comments
from the referees. Henrik Hulgaard and Steve Burns participated
in timing verifications. Jordi Cortadella and Mike Kishinevsky
were the first to introduce automatic RT into the CAD tool Pet-
rify. Peter Beerel and Hoshik Kim have been key contributors to
RT verification and optimization.

REFERENCES

[1] Ken Stevens, Shai Rotem, Ran Ginosar, Peter Beerel, Chris Myers, Ken-
neth Yun, Rakefet Kol, Charles Dike, and Marly Roncken, “An Asyn-

chronous Instruction Length Decoder,” IEEE Journal of Solid State Cir-
cuits, vol. 36, no. 2, pp. 217–228, Feb. 2001.

[2] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano
Lavagno, and Alex Yakovlev, “Petrify: a tool for manipulating concurrent
specifications and synthesis of asynchronous controllers,” IEICE Transac-
tions on Information and Systems, vol. E80-D, no. 3, pp. 315–325, 1997.

[3] Steven M. Nowick, Automatic Synthesis of Burst-Mode Asynchronous
Controllers, Ph.D. thesis, Stanford University, Department of Computer
Science, 1993.

[4] Kenneth Yi Yun, Synthesis of Asynchronous Controllers for Heteroge-
neous Systems, Ph.D. thesis, Stanford University, Aug. 1994.

[5] Chris J. Myers, Computer-Aided Synthesis and Verification of Gate-Level
Timed Circuits, Ph.D. thesis, Dept. of Elec. Eng., Stanford University,
October 1995.

[6] Kevin J. Nowka and Tibi Galambos, “Circuit Design Techniques for a Gi-
gahertz Integer Microprocessor,” in 1998 IEEE International Conference
on Computer Design: VLSI in Computers & Processors (ICCD98). IEEE
Computer Society, October 1998, pp. 11–16.

[7] David Sager, Glen Hinton, Michael Upton, Terry Chappell, Thomas D.
Fletcher, Samie Samaan, and Robert Murray, “A 0.18�m CMOS IA32
Microprocessor with a 4GHz Integer Execution Unit,” in International
Solid State Circuits Conference, Feb. 2001, pp. 324–325, 461.

[8] Stanley Schuster, William Reohr, Peter Cook, David Heidel, Michael Im-
mediato, and Keith Jenkins, “Asynchronous interlocked pipelined CMOS
circuits operating at 3.3–4.5GHz,” in International Solid State Circuits
Conference, 2000, pp. 292–293.

[9] Charles L. Seitz, “System timing,” in Introduction to VLSI Systems,
Carver A. Mead and Lynn A. Conway, Eds., chapter 7. Addison Wesley,
1980.

[10] David E. Muller and W. S. Bartky, “A theory of asynchronous circuits,” in
Proceedings of an International Symposium on the Theory of Switching.
Apr. 1959, pp. 204–243, Harvard University Press.

[11] Scott Hauck, “Asynchronous design methodologies: An overview,” Pro-
ceedings of the IEEE, vol. 83, no. 1, pp. 69–93, Jan. 1995.

[12] Supratik Chakraborty, Polynomial-Time Techniques for Approximate Tim-
ing Analysis of Asynchronous Systems, Ph.D. thesis, Stanford University,
Aug. 1998.

[13] Peter Vanbekbergen, Gert Goossens, Francky Catthoor, and Hugo J. De
Man, “Optimized synthesis of asynchronous control circuits from graph-
theoretic specifications,” IEEE Transactions on Computer-Aided Design,
vol. 11, no. 11, pp. 1426–1438, Nov. 1992.

[14] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng, “POSET timing and its
application to the synthesis and verification of gate-level timed circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits, vol.
18, no. 6, pp. 769–786, June 1999.

[15] Wendy Belluomini and Chris J. Myers, “Timed circuit verification using
TEL structures,” IEEE Transactions on Computer-Aided Design, vol. 20,
no. 1, January 2001.

[16] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoret-
ical Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[17] Henrik Hulgaard, Timing Analysis and Verification of Timed Asynchronous
Circuits, Ph.D. thesis, Department of Computer Science, University of
Washington, 1995.

[18] Radu Negulescu and Ad Peeters, “Verification of speed-dependences in
single-rail handshake circuits,” in Proc. International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems, 1998, pp. 159–
170.

[19] Supratik Chakraborty, Kenneth Y. Yun, and David L. Dill, “Practical tim-
ing analysis of asynchronous systems using time separation of events,” in
Proc. IEEE Custom Integrated Circuits Conference, May 1998.

[20] J. Cortadella, M. Kishinevsky, S. M. Burns, A. Kondratyev, L. Lavagno,
K. S. Stevens, A. Taubin, and A. Yakovlev, “Lazy Transition Systems
and Asynchronous Circuit Synthesis with Relative Timing Assumptions,”



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGER CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 12

IEEE Transactions on Computer-Aided Design, vol. 21, no. 2, pp. 109–
130, Feb 2002.

[21] Paul Day and J. Viv Woods, “Investigation into micropipeline latch design
styles,” IEEE Transactions on VLSI Systems, vol. 3, no. 2, pp. 264–272,
June 1995.

[22] Stephen B. Furber and Paul Day, “Four-phase micropipeline latch control
circuits,” IEEE Transactions on VLSI Systems, vol. 4, no. 2, pp. 247–253,
June 1996.

[23] Sam S. Appleton, Shannon V. Morton, and Michael J. Liebelt, “Two-
phase asynchronous pipeline control,” in Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems. Apr. 1997,
pp. 12–21, IEEE Computer Society Press.

[24] C. Myers, “Timed circuits: A new paradigm for high-speed design,” in
Proc. of Asia and South Pacific Design Automation Conference, Feb. 2001.

[25] Hoshik Kim, Peter A. Beerel, and Kenneth S. Stevens, “Relative timing
based verification of timed circuits and systems,” in Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
Apr. 2002.

[26] Alain J. Martin, “Programming in VLSI: From communicating processes
to delay-insensitive circuits,” in Developments in Concurrency and Com-
munication, C. A. R. Hoare, Ed. 1990, UT Year of Programming Series,
pp. 1–64, Addison-Wesley.

[27] Kenneth S. Stevens, Practical Verification and Synthesis of Low Latency
Asynchronous Systems, Ph.D. thesis, University of Calgary, Calgary, Al-
berta, September 1994.

[28] Robin Milner, Communication and Concurrency, Computer Science.
Prentice Hall International, London, 1989.

[29] Maitham Shams, Jo C. Ebergen, and Mohamed I. Elmasry, “Modeling
and Comparing CMOS Implementations of the C-Element,” IEEE Trans-
actions on VLSI Systems, vol. 6, no. 4, pp. 563–567, December 1998.

[30] Steven M. Nowick and David L. Dill, “Exact two-level minimization of
hazard-free logic with multiple-input changes,” IEEE Transactions on
Computer-Aided Design, vol. 14, no. 8, pp. 986–997, Aug. 1995.

[31] Tam-Anh Chu, Synthesis of Self-Timed VLSI Circuits From Graph-
Theoretic Specifications, Ph.D. thesis, Massachusetts Institute of Tech-
nology, September 1987.

[32] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceed-
ings of the IEEE, pp. 541–580, Apr. 1989.

[33] W. S. Coates, A. L. Davis, and K. S. Stevens, “Automatic Synthesis of
Fast Compact Self-Timed Control Circuits,” in IFIP Working Conference
on Design Methodologies, April 1993, pp. 193–208.

[34] David L. Dill, Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits, ACM Distinguished Dissertations. MIT Press, 1989.

[35] Ivan E. Sutherland, “Micropipelines,” Communications of the ACM, vol.
32, no. 6, pp. 720–738, June 1989, Turing Award Lecture.

[36] Vinod Narayanan, Barbara A. Chappell, and Bruce M. Fleischer, “Static
Timing Analysis For Self Resetting Circuits,” in International Confer-
ence on Computer-Aided Design (ICCAD-96). IEEE Computer Society,
November 1996, pp. 119–126.

Kenneth S. Stevens received a B.A. degree in Biol-
ogy in 1982 and the B.S. and M.S. degrees in Com-
puter Science in 1982 and 1984 from the University of
Utah. He received a Ph.D. in Computer Science from
the University of Calgary, Alberta Canada, in 1994.

From 1984 through 1991 he held research positions
at the Fairchild/Schlumberger Laboratory for AI Re-
search, the Schlumberger Palo Alto Research Labora-
tory, and Hewlett Packard Laboratories, in Palo Alto,
CA. Dr. Stevens became an Assistant Professor at the
Air Force Institute of Technology in Dayton, OH in

1994, and since 1996 he has been an Adjunct Professor. Since 1996 he has been
employed at Intel Corporation’s Strategic CAD Labs in Hillsboro OR.

His primary expertise includes asynchronous circuits, VLSI, architecture,
hardware synthesis and verification, and timing analysis. He holds seven patents
and has been the principal author for three papers which received the best pa-
per award and has served on technical program committees for conferences and
workshops. He is a Senior Member of the IEEE.

Ran Ginosar received his B.Sc. in Electrical En-
gineering and Computer Engineering Summa cum
Laude from the Technion in 1978, and his Ph.D. in
Electrical Engineering and Computer Science from
Princeton University in 1982.

After working with AT&T Bell Laboratories for
one year, he joined the Technion faculty in 1983. He
was a visiting Associate Professor with the Univer-
sity of Utah in 1989-1990 and a visiting faculty with
the Strategic CAD Lab at Intel in 1997-1999. Ran
Ginosar serves as the head of the VLSI Systems Re-

search Center at the Technion.
His research interests include asynchronous systems and electronic imaging.

Shai Rotem was born in Haifa, Israel in 1954. He
holds a B.Sc. degree from the Technion - Israel Insti-
tute of Technology, Haifa, Israel, from 1980.

Shai has been with Intel since 1980, in positions of
VLSI design and architecture of data communication
controllers and microprocessors, and CAD design and
research in formal verification and asynchronous de-
sign. He is currently a Principal Engineer in the Mo-
bile Processor Group’s architecture team, responsible
for platform architecture definition.

Shai is a member of the IEEE Computer society.


