

Efficient Dense And Sparse Matrix Multiplication

On GP-SIMD
Amir Morad

Dept. of Electrical Engineering,

Technion, Haifa 32000, Israel

amirm@tx.technion.ac.il

Leonid Yavits

Dept. of Electrical Engineering,

Technion, Haifa 32000, Israel

yavits@tx.technion.ac.il

Ran Ginosar

Dept. of Electrical Engineering,

Technion, Haifa 32000, Israel

ran@ee.technion.ac.il

Abstract—We present efficient Dense and Sparse Matrix

Multiplication on GP-SIMD, a hybrid general purpose SIMD

computer architecture that eliminates synchronization by in-

memory computing, combining data storage and massively

parallel processing. Cycle-accurate simulation of on a large set of

matrices shows enhanced power efficiency relative to conventional

architectures.

Keywords— Sparse Linear Algebra, GP-SIMD, Associative

Processor, Memory Intensive Computing, In-Memory Computing.

I. INTRODUCTION

Large scale machine learning tasks require extensive dense and

sparse matrix multiplications. We explore the efficiency of dense

matrix multiplication (DMM) and sparse matrix multiplication

(SpMM) on the GP-SIMD architecture. The GP-SIMD is a hybrid

general purpose SIMD computer architecture that combines data

storage and massively parallel processing in order to eliminate the

need to synchronize data between the general purpose processor

and its accelerators [23]. Figure 1 shows the architecture of the GP-

SIMD, comprising a sequential CPU, a shared memory array,

instruction and data caches, a SIMD coprocessor, and a SIMD

sequencer. The SIMD coprocessor contains a large number of fine-

grain processing units, each comprising a single bit ALU, single bit

function generator and a 4-bit register file. The GP-SIMD

processor is thus a large memory with massively parallel

processing capability. No data synchronization between the

sequential and parallel segments is required since both the general

purpose sequential processor and the SIMD co-processor access

the very same memory array. Thus, no time and power penalties

are incurred for synchronization.

Figure 1. GP-SIMD architecture Figure 2. Memory array

containing three operands

The GP-SIMD architecture has been discussed in [2]. The GP-

SIMD delivers a number of advantages over conventional SIMD

architectures:

 Data processing and data storage are unified. There is no need

for data transfer between sequential memory and SIMD PUs;

 GP-SIMD allows concurrent operation of the sequential

processor and SIMD co-processors on the shared memory,

allowing the sequential processor to offload a task to the

SIMD while continuing to process some other sequential

functions.

 The number of GP-SIMD fine grain processing units matches

the number of memory rows, striving to match the entire

dataset.

 The GP-SIMD architecture enables the sequential processor

to associatively address the memory array [2]. It may thus

allow reduction of software complexity for certain sequential

algorithms.

 GP-SIMD power dissipation is distributed uniformly over the

entire processing array rather than being concentrated around

a smaller number of large, power hungry processing cores.

Thus, there are fewer hotspots leading to further reduction of

temperature dependent leakage power [18].

In this paper, we present GP-SIMD algorithms for dense and sparse

matrix multiplication (DMM, SpMM).

The rest of this paper is organized as follows. Section II

discusses related work. Section III presents GP-SIMD architecture.

Section IV presents GP-SIMD algorithms for dense and sparse

matrix multiplication. Section V details the evaluation

methodology and presents cycle-accuarte simulation results.

Section VI concludes this paper.

II. RELATED WORK

Vector machines and SIMD architectures are a class of parallel

computers with multiple processing units performing the same

operation on multiple data points simultaneously [1][26][3]. Such

machines exploit data level parallelism, and are thus well suited for

machine learning over Big Data [7]. The concept of mixing

memory and logic has been around since the 1960s [16]. Similar to

DAP, STARAN, CM-2, GAPP, and Associative Processor

(AP) [21] computer architectures (comprehensive reference is

provided in [2]), GP-SIMD belongs to a Processing-In-Memory

(PiM) class of architectures that use a large number of Processing

Units (PUs) positioned in proximity to memory arrays to

mailto:amirm@tx.technion.ac.il
mailto:yavits@tx.technion.ac.il
mailto:ran@ee.technion.ac.il

implement a massively parallel SIMD computer. To differentiate

between GP-SIMD and other works, and since keywords like PiM

and SIMD are often used with different meanings in mind, [2]

studies the GP-SIMD, cites an exhaustive list of studies, and

presents a taxonomy categorizing previous works in the

processing-in-memory (PiM) and SIMD fields.

Previous studies on SpMM target sparse matrix by dense vector

multiplication (SpMV) or sparse matrix by dense matrix

multiplication (SpMM). For simplicity, in this section we apply the

term SpMM to both SpMM and SpMV. A comprehensive review

of sparse matrix multiplication techniques is provided by R.

Vuduc [35]. Considering hardware aspects rather than software

implementation [22], previous work can be divided into three

categories (TABLE 1).

TABLE 1: SPMM RELATED WORK SUMMARY

Category Existing Work

General Purpose Computers Off-the-shelf [4][9][37][41]

Advanced multicore [38]

Manycore supercomputer [6]

GPU [11][14][25][28][29][36]

Dedicated Hardware

Solutions

FPGA [17][24]

Manycore Processor [27]

Distributed Array Processor [13]

Systolic Processor [32]

Coherent Processor [5]

TCAM / PIM [12]

Heterogeneous platform[30][31]

3D LiM [33]

The key contribution of the present work is the efficient

implementation of dense and sparse matrix multiplication on a GP-

SIMD processor, verified by extensive cycle-accurate GP-SIMD

simulation using a large collection of sparse matrices [39].

III. THE GP-SIMD PROCESSOR

In this Section we describe GP-SIMD, focusing on relevant

aspects of the architecture, arithmetic, logic and associative

processing capabilities. Further details are given in [2].

A. Top Level Architecture

The GP-SIMD is a hybrid general purpose and SIMD computer

architecture that resolves the issue of synchronization by in-

memory computing, through combining data storage and

massively parallel processing. References to on-chip memory

‘row’ (r) and ‘column’ (c) are physical. Each row may contain

many words of software programmable width (w) (if w is constant

for all words, the number of words is thus r· c/w). The number of

rows typically matches the dataset elements, N.

 Sequential processor accesses either one word at a time, or

multiple words. Typically, such a transaction accesses one

physical row at a time.

 The SIMD reads/writes a bit-slice (having r bits)

comprising the same bit-number from all words in some

partition of the memory. Physically, it may access multiple

bits in a physical row and all rows per access, namely

accesses multiple columns of the physical array.

Figure 1 details the architecture of a GP-SIMD processor. The

sequential processor schedules and operates the SIMD processor

via the sequencer. In a sense, the sequential processor is the Master

controlling a slave SIMD co-processor. The SIMD coprocessor

contains a number of fine-grain processing units (PUs), as depicted

in Figure 3, each containing a single bit Full Adder (FA), single bit

Function Generator (FG) and a 4-bit register file, RA, RB, RC and

RD. A single PU is allocated per row of the shared memory array,

and physically resides close to that row. The PUs are

interconnected using an interconnection network. The set of all r

registers of the same name constitute a register slice. Note that the

length of the memory row (e.g., 256 bits) may be longer than the

word length of the sequential processor (e.g., 32 bits), so that each

memory row may contain several words.

Figure 3. GP-SIMD Processing unit

When the SIMD reads data from the shared memory, the

contents of a bit slice of the memory are transferred into the register

slice (RAs, RBs or RCs). Upon writing to the shared memory, the

contents of one of the register slices are transferred into the GP-

SIMD memory array. A conditional register (RD) is utilized to

enable special/masked microinstructions as depicted in TABLE 2.

The RD_INST is a part of the SIMD co-processor instruction

bus driven by the sequencer, and each RD_INST value specifies an

operation (depicted as a bus going from the sequencer to the SIMD

co-processor in Figure 3). While the first four operations are self-

explanatory, the last two operations allow the sequential processor

to perform associative commands on the memory array, as detailed

in section C below.

TABLE 2: CONDITIONAL/MASKED PU MICROINSTRUCTIONS

RD_INST RD

Value

Operation

00 0 Memory access (read/write) by the sequential

processor or the SIMD co-processor.

00 1 Conditional read command, according to a RD:

(RD>0 ? RB=0 : RB=Memory output)

01 0 SIMD co-processor memory-write of RA

01 1 Conditional write command, according to RD:

(RD>0 ? Memory input=RB : Memory input=RA).

10 0 Conditional (masked) read / write: Disable row for

memory access by sequential processor. Used during

associative access

10 1 Conditional (masked) read / write: Enable row for

memory access by sequential processor. Used during

associative access

B. Arithmetic / Logic Operations

GP-SIMD can implement a wide range of arithmetic and logic

processing tasks. Consider a workload using two datasets, A and B,

each containing N elements, where each element is m bits wide.

These vectors are mapped into the GP-SIMD memory array such

that two 𝑚 bit adjacent column-groups hold vectors A and B.

Assume that we need to add the two vectors and place the results

into m+1 bit column-group S, as illustrated in Figure 2 (where

m=4). The addition is performed in 𝑚 single-bit addition steps:

𝑐[∗] | 𝑠[∗]𝑖 = 𝑎[∗]𝑖 + 𝑏[∗]𝑖 + 𝑐[∗]
∀ 𝑖 = 0, … , 𝑚 − 1

(1)

where 𝑖 is the bit index and ‘∗’ is the vector index (corresponding

to a PU and memory row). Since addition is carried out

simultaneously for all vector elements, fixed point 𝑚 bit addition

consumes 3𝑚 ∈ 𝑂(𝑚) cycles, independent of the size of the

vectors N.

Using the same logic, subtracting or performing logic AND,

OR, XOR via the function generator on the two operand sets entails

𝑂(𝑚) cycles as well. Compare immediate operation between set A

and a fixed word sourced from the sequential processor requires

only 𝑂(𝑚) cycles since the second operand is sourced from the

sequencer, not from the memory array.

Fixed point multiplication and division in GP-SIMD are also

implemented bit-serially but word-parallel, consisting of a series

of add-shift and subtract-shift vector operations. Shift is

implemented by appropriate column addressing and therefore

requires no extra cycles. Thus, fixed point 𝑚 × 𝑚 𝑏𝑖𝑡 vector

multiplication requires 3𝑚 ∗ 𝑚 ∈ 𝑂(𝑚2) cycles, regardless of the

vector size, N. Floating-point arithmetic for GP-SIMD is

somewhat more complex to implement. Different exponents

require shifting mantissas by different lengths, resulting in a

sequence of bit-serial vector operations. IEEE single precision

floating-point vector multiplication takes close to 2500 cycles,

regardless of the length of the dataset, N.

C. Associative Operations

GP-SIMD, besides being a massively parallel SIMD

accelerator, can implement classical CAM operations such as

associative search, sorting and ordering. The CAM allows

comparing all data words to a key, tagging the matching words, and

possibly reading some or all tagged words one by one. Consider a

large vector, where each element is m bits wide, illustrated by

column A in Figure 2. The Sequential processor wishes to find all

elements in vector A matching a certain Key of m bits, and reset the

matched values of A (that is, A[i|A[i]==Key]=0). The sequential

CPU issues a compare immediate of Key on column A, storing the

single bit-slice compare results output in register RD. At this point,

register RD has logic one in all rows where A matches the Key and

zero elsewhere. Next, a masked write is performed by the

sequential processor only to flagged rows of the memory array. To

that end, the output of RD enables writing of each memory row

(RD_INST bus is set to ‘10’), and the sequential processor writes

‘0’ to the A column of the memory array. Only the matching rows

are enabled for writing, and the A values of only these rows are

reset. Elsewhere, in non-matching rows, the A values are left

unaffected.

Content-addressable access is achieved as follows. Assume that

the memory array contains a vector of unique indices (A), adjacent

to a vector of data (B). Comparing vector A with a key, followed

by setting the RD_INST Bus to ‘10’ while issuing read to the

memory array, allows the sequential processor to fetch a single

value of vector B, corresponding to the row in which vector A

matched the Key (that is, Output=B[i|A[i]==Key]). When multiple

rows match the key, the values must be read one by one. Further, a

portion of GP-SIMD memory grid may be programed to mimic bit-

serial TCAM [2].

D. Interconnection Network

Since GP-SIMD processing operation is mainly bitwise, the

interconnection can be a relatively simple circuit-switched

network. An example of an efficient network is a logarithmic ±k

nearest neighbor, forming N-bit shift register. Assuming each PU

has a single bit direct access to its ±𝑌 neighbors, where 𝑌 ∈
{1,2,4, … , 𝑙𝑜𝑔2𝑁} , transferring in parallel an entire vector of N

rows (a slice of the shared array) by H rows up/down entails a

maximum of 𝑂(𝑚 + 𝑚log2 (𝐻)) cycles, independent of the vector

size, N. Note that if 𝐻 ⊂ 𝑌 , the transfer time entails O(2𝑚) ∈
O(𝑚) cycles.

E. Reduction Tree

A common reduction operation sums up a large array of values.

Consider a vector A of N fixed point m-bit elements, as illustrated

in Figure 2. Further, consider a hardware reduction tree

implemented using a pipelined binary adder tree. The first level of

the tree sums two single bits from two adjacent PUs. Following

log2 𝑁 levels, the scalar sum of the entire array becomes available.

The fixed precision summation of vector A entails reading a single

column slice of vector A, LSB first, and summing this column via

the reduction tree. The addition is carried out simultaneously for

all vector elements, column-slice at a time until all m columns have

been processed. In a similar manner, the reduction tree having

floating-point adders, sums up a large array of floating-point

values. Further, rather than waiting for the reduction tree operation

to complete, the tree can be operated in pipeline fashion. In such a

case it takes O(m) cycles to store a set of m-bit values into the tree,

and from that point the GP-SIMD can start working on the next set.

F. GP-SIMD Performance Summary

Consider a data set having two m-bit N-element vectors A and

B. TABLE 3 summarizes the arithmetic/logic performance of the

GP-SIMD processor, as analyzed in the previous sections.

TABLE 3: ARITHMETIC/LOGIC PERFORMANCE

Command Performance (cycles)
Read/Write(address) 𝑂(1)

Cmp(A, Immediate) 𝑂(𝑚)

Conditional Write (address) 𝑂(1)

FP Add/Sub/Mult(A, B) 2500

HW Reduction tree 𝑂(m)

Write and read delays in GP-SIMD are identical to those of a

conventional SRAM. Since both SRAM write and read delays in

contemporary technologies are well under 300ps [19], the GP-

SIMD can be operated at or above 3GHz. The matrix

multiplication algorithms presented in this paper utilize the

sequential processor. The sequential processor is a baseline

microprocessor, similar to that of [12], with a simple 4 stage

pipeline and a typical instruction set including arithmetic/logic,

memory access and control instructions. A single-precision

floating-point addition and multiplication in the CPU is assumed

to be performed in a single pipeline stage.

As described in [2], 8 million PU array (256 bits per memory

row) would occupy close to 200mm2 in 22nm technology.

IV. MATRIX MULTIPLICATION ON GP-SIMD

In this section we describe the implementation of dense and

sparse matrix multiplication algorithms on GP-SIMD. We assume

two input matrices, the N×M multiplier matrix A and M×L

multiplicand matrix B, are stored in the GP-SIMD memory in the

Coordinate List (COO) format, where nonzero elements are stored

along with their row and column indices. The output 𝐶 = 𝐴 × 𝐵 is

of dimension N×L. Figure 4 illustrates the COO storage format of

two 2×2 dense matrices; the PUs of the GP-SIMD are shown to the

left. Note that the GP-SIMD storage may have large number of

memory columns (typically, 256). These memory columns may be

grouped together into fields, each representing a variable, flag, etc.

Note also that, for efficient implementation, the multiplicand

matrix B is stored in a transposed form. Further, each column of

the multiplicand matrix B is stored in a number of memory rows

round up to the nearest power of two (2 memory rows in the

figure).

Figure 4. GP-SIMD COO storage format

In this example, the value field (Val) is allocated 32 bit-slices

(memory columns 0:31) to accommodate a single precision

floating-point number. The Row and Col fields are allocated 1 bit-

slice each (memory columns 32:33).

A. Dense Matrix Multiplication

Dense matrix multiplication is explained by means of the

example of Figure 4. Element 𝐴1,1 is to be multiplied by all

elements of the first row of matrix B, to form two singleton

products. In the same manner, 𝐴1,2 is to be multiplied by all

elements of the second row of the multiplicand matrix B, to form

two singleton products, and so on. We thus have three main

procedures:

 Broadcast: match the row-elements of B with the appropriate

column-elements of A (namely, match 𝐴∗,𝑖 with 𝐵𝑖,∗).

 Multiply: multiply pairs of matched elements

 Reduce: add the singleton products together

The broadcast procedure is performed as a sequence of associative

operations on the sequential processor, while Multiply and Reduce

are performed as parallel operations on the SIMD processor, as

follows. In GP-SIMD, the sequential processor can associatively

match rows of memory array with a Key of k bits (in O(k) cycles,

cf. Sect. C). Once executed, all rows matching the Key are tagged

(RD of the tagged rows contain ‘1’). The sequential processor can

then execute associative read/write from/to the tagged rows (in

O(1) cycles), achieving Broadcast.

Figure 5. Broadcast, 2x2 Figure 6. Broadcast, 2xL

Figure 5 and Figure 6 illustrate two general cases of broadcast,

while Figure 7 and Figure 8 demonstrate Broadcast and Multiply

on the example of Figure 4. Starting from the first row of A, the

sequential processor fetches 𝐴1,1 and 𝐴1,2, broadcasting them one

by one to the appropriate rows of B (into temporary field 𝑇1), as

follows:

1. Element 𝐴1,1 is read by the sequential processor (O(1) cycles),

2. The Row index fields of B are compared with the column

index of 𝐴1,1 (‘1’) and matching memory rows are tagged

(O(1) cycles),

3. 𝐴1,1 is written into field 𝑇1 of the tagged rows (O(1) cycles).

Thus, broadcasting a single element of A into matching pairs of B

takes three cycles. In the general case, for N×M multiplier matrix,

Broadcast entails 𝑂(𝑁 𝑙𝑜𝑔𝑀) cycles. Once all elements of the first

row of matrix A are broadcast into the appropriate places (as

depicted in Figure 7), a single floating-point multiplication is

performed, and M×N singleton products are stored (as illustrated

in Figure 8).

Figure 7. Broadcast Figure 8. Multiply

Since the multiplicand matrix B is transposed, the sum of the

singletons residing in rows 5 and 6 yields 𝐶1,1, the first element of

the output matrix, and the sum of singletons residing in rows 7, 8

yields 𝐶1,2. The Reduction process is effectively implemented by

the hardware reduction tree. For single precision floating-point

vector summation, the hardware reduction tree takes about 32

cycles (bit-serially feeding the 32 bits of the numbers into the tree,

which subsequently reduces these number off-line in a pipeline

fashion) and following the transfer of these singletons into the tree,

processing of the next matrix row (Broadcast and Multiply) is

initiated. The outputs of reduction tree are fed directly to the

sequential processor, that stores the computed elements of C into

the designated memory addresses.

Although we detailed a single precision floating-point

Broadcast, Multiply, and Reduce procedures, any operand

wordlength may be considered. Further, although the example

shows matrices A and B stored in separate PUs and memory rows,

typically they would be stored side by side to enable handling

larger matrices.

The hardware reduction tree of floating-point operands entails

considerable area penalty. For effective implementation, note that

Reduce follows a very long Multiply procedure of 2500 cycles.

Pipelined Multiply-Reduce is thus preferable, in which a single

floating-point accumulator can serially add up to 2500 singleton

products, before piping its results to the next level of the tree. With

that, the area and power of the reduction tree is kept at bay.

The Broadcast, Multiply, and Reduce procedures are now

repeated for the next row of the multiplier matrix A, until all rows

have been processed. The pseudo code of the algorithm is depicted

in Figure 9. It includes two nested loops. The external loop goes

over the rows of matrix A. The internal loop performs Broadcast

of all row elements of A.

Dimensions:

 A: Multiplier, N×M single precision floating-point matrix

 B: Multiplicand, M×L single precision floating-point matrix

Data structure:

 COO: each element accompanied by its row and col indices

Memory column fields:

 A and B: 32b single precision

 ROW_INDEX: COO row index, max(log(N),log(L)) bits

 COL_INDEX: COO column index, log(M) bits

 T: 32b single precision temporary. Used to store singletons

GP-SIMD-DMM(A, B)

 Clear column-field T ~32 cycles

 For all A rows i=1:N

 Broadcast: For all A columns j=1:M

 Read A[i,j] by sequential CPU ~1 cycle

 Tag all rows in B that have ROW_INDEX == j O(log(M))

 Conditional write A[i,j] to T in tagged rows ~1 cycle

 Multiply: Multiply B by T, store the results into T

 Reduce: Reduction tree on column-field T

 Store outputs in designated space

end

Figure 9. GP-SIMD DMM pseudo code

The complexity of the algorithm is as follows:

𝑁[𝑀(1 + log
2

𝑀 + 1) + 𝐶𝑀𝑢𝑙𝑡 + 𝐶𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛] (2)

where 𝐶𝑀𝑢𝑙𝑡 = 2500 cycles and 𝐶𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 32 cycles.

Note that for large N, M, the complexity of GP-SIMD DMM

approaches 𝑂(𝑁𝑀 log2 𝑀) and 𝑂(𝑁2 log2 𝑁) for square

matrices. For example, the estimated complexity of multiplying

a 10,000×10,000 matrix A exceeds 1B cycles.

The GP-SIMD DMM algorithm may also be used for

multiplying dense matrix by dense vector, but it takes the same

number of cycles regardless of the number of columns (L) of B (as

illustrated in Figure 6). Thus, the efficiency of the GP-SIMD DMM

algorithm grows with the number of columns of the multiplicand

matrix B (efficiency is defined as the number of actually performed

arithmetic operations divided by the number of PUs times total

cycle count, namely the maximum number of operations possible

during the execution time).

B. Sparse Matrix Multiplication

In this section we describe the implementation of multiplication

of sparse matrix A by dense matrix B. The algorithm is similar to

dense matrix multiplication (Sect. A) but instead of processing all

N×M elements of A, we only process the nonzero elements:

 Broadcast is executed only for nonzero elements of A,

 Multiply and Reduce are performed only for nonzero rows of

A.

The pseudo code of the GP-SIMD SpMM algorithm is depicted in

Figure 10.

Dimensions:

 A: Multiplier, N×M single precision floating-point sparse matrix

 B: Multiplicand, M×L single precision floating-point dense matrix

Data structure:

 COO: each element accompanied by its row and col indices

Memory column fields:

 A and B: 32b single precision

 ROW_INDEX: COO row index, max(log(N),log(L)) bits

 COL_INDEX: COO column index, log(M) bits

 T: 32b single precision temporary. Used to store singletons

GP-SIMD-SpMM(A, B)

 Clear column-field T ~32 cycles

 Last_row=1;

 While (not end of matrix A)

 Broadcast: Read the next value of A ~1 cycle

 Store the element’s row index into current_row_index

 If(Last_row<current_row_index)

 Multiply: Multiply B by T, store the results into T

 Reduce: Reduction tree on column-field T

 Store outputs in designated space

 For i=1: current_row_index- Last_row-1 //skip empty rows

 Store zero outputs in designated space

 Last_row=current_row_index;

 Clear column-field T ~32 cycles

 Broadcast: Tag all rows in B that have ROW_INDEX == j O(log(M))

 Broadcast: Conditional write A[i,j] to tagged column T ~1 cycle

end

Figure 10. GP-SIMD SpMM pseudo code

The complexity of GP-SIMD SpMM is approximately

𝑁𝑁𝑁𝑍[𝑀𝑁𝑁𝑍(1 + log
2

𝑀 + 1) + 𝐶𝑀𝑢𝑙𝑡 + 𝐶𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛] (3)

where 𝑁𝑁𝑁𝑍 is the number of nonzero rows of matrix A and

𝑀𝑁𝑁𝑍 is the average number of nonzero elements per row

(equal to number of nonzero elements of the multiplier matrix

A, denoted by 𝐴𝑁𝑁𝑍, divided by 𝑁𝑁𝑁𝑍). Thus, for large 𝑁𝑁𝑁𝑍,

𝑀𝑁𝑁𝑍 , the complexity of the algorithm approaches

𝑂(𝐴𝑁𝑁𝑍 log2 𝑀) . For example, given sparse 10,000×10,000

matrix A with only 1,000 nonzero elements (10-5 density) and

large 𝑀𝑁𝑁𝑍 , the complexity of GP-SIMD SpMM is about

16,000 cycles, 10-5 times shorter than GP-SIMD DMM.

Similar to the GP-SIMD DMM algorithm, GP-SIMD SpMM

efficiency grows with the number of columns in the

multiplicand matrix B.

Note that GP-SIMD SpMM is similar to GP-SIMD DMM,

except for several cycles spent by the sequential processor

handling matrix indices. It is thus preferable to employ the GP-

SIMD SpMM algorithm even for dense matrices (with a minor

modification for skipping zero elements). Hence, in the

following section, only the results of GP-SIMD SpMM cycle

accurate simulations are presented.

V. CYCLE ACCURATE SIMULATIONS

The GP-SIMD simulator [2] is used to quantify performance

and power of the GP-SIMD SpMM. The experimental setup,

matrix statistics and simulation results are described in this section.

A. Experimental Setup

To simulate sparse matrix multiplication, we use 1,000 floating-

point square matrices with the number of nonzero elements

spanning from one hundred thousand to eight million, randomly

selected from the collection of sparse matrices from the University

of Florida [39]. Figure 11 presents the selected test-set.

Figure 11. University of Florida Sparse Matrix Collection, (a) Matrix

dimension vs. average number of nonzero elements per row, (b) Histogram of

the average number of nonzero elements per row

We simulate the dense and sparse matrix multiplication using

the GP-SIMD simulator [2]. Each pair of matrix elements and the

resulting singleton product are processed by a single GP-SIMD

processing unit. Simulations are performed on Intel® XEON™

C5549 processor with 32GB RAM, and simulation times for the

100K—8M nonzero element matrices range between few minutes

and few tens of hours. The simulator is cycle based, keeping record

of the state of each register of each PU and of the memory row

assigned to it. Each command (for example, floating-point

multiply) is broken down to a series of fine-grain single bit PU

operations. In a similar manner to SimpleScalar [8], the simulator

also keeps track of the registers, buses and memory cells that

switch during execution. With the switching activity and area

power models of each baseline operation detailed in [2], the

simulator tracks the total energy consumed during workload

execution.

As detailed in earlier sections, GP-SIMD performance depends

on the data wordlength rather than on data set size. If matrix

elements are presented in a floating-point format, the wordlength

is 32 bit (IEEE754 single precision). Data set size in SpMM

typically equals the number of nonzero elements in the sparse

matrix.

B. SpMM Cycle Accurate Simulations

In this section we compare our cycle accurate simulations

results with those of nVidea K20 [10], Intel XEON PHI [10] and

Associative Processor (AP) [22]. Although the efficiency of the

presented GP-SIMD SpMM algorithm grows with the number of

columns L of matrix B, for fair comparison we will limit our

analysis to multiplicand (B) matrices having 16 columns, as used

in [10]. Further, we assume a GP-SIMD having 8 million PUs

having an area of approximately 200mm2 in standard 22nm

technology [2]. We consider test-case sparse multiplier matrices A

having 1M columns or less and up to 8M nonzero elements, and

dense multiplicand matrices B with 16 columns. Figure 12 presents

the sparse by dense matrix multiplication execution times

employing the GP-SIMD SpMM algorithm of Section IV for these

matrices.

Figure 12. Execution cycles vs. number of nonzero elements

Note the spread in execution times (per each number of nonzero

elements) caused by the sensitivity of the GP-SIMD SpMM

algorithm to the average number of nonzero elements per row. For

two matrices with a similar number of nonzero elements, the

difference of two orders of magnitude in the average number of

nonzero elements per row results in a similar difference in the

execution time. This sensitivity of performance to the average

number of nonzero elements per row is shared, although possibly

to a lesser extent, by conventional SpMV and SpMM

implementations (on GPU or multicore) [15][40]. Since the

average of nonzero elements per row in our test-set is somewhat

0 50 100 150 200 250 300 350 400
 64

5.1e+02

4.1e+03

3.3e+04

2.6e+05

Average number of nonzero elements per row

M
a

tr
ix

 d
im

e
n

s
io

n
,
N

(a) Avg. number of nonzero elements per row vs. matrix dim.

0 50 100 150 200 250 300 350 400
 1

 4.8

 23

1.1e+02

5.1e+02

Average number of nonzero elements per row

N
u

m
b

e
r

o
f

M
a

tr
ic

e
s

(b) Histogram of nonzero elements per row

 1e+04 3.2e+04 1e+05 3.2e+05 1e+06 3.2e+06
3.2e+05

3.2e+06

3.2e+07

3.2e+08

3.2e+09

Number of nonzero elements

E
x

e
c

u
ti

o
n

 c
y

c
le

s

Exec. cycles vs. nonzero elements

GP-SIMD, execution cycles

GP-SIMD, trend

capped (see Figure 11(b)), as the number of nonzero elements

grows, so does the average number of rows and columns of

matrices. Execution time of Broadcast depends on the number of

columns of matrix A (cf. Sect. IV).

Figure. 13. Performance (GFLOPs) vs. average number of nonzero elements

per row

The performance the GP-SIMD SpMM algorithm as a function

of the average number of nonzero elements per row is presented in

Figure. 13. The figure demonstrates a close to logarithmic

dependency of the GP-SIMD SpMM algorithm performance on the

average number of nonzero elements per row. Hence, if the average

number of nonzero elements per row is small (which is consistently

the case in the University of Florida collection matrices), the

effectiveness of the GP-SIMD SpMM algorithm is limited. GP-

SIMD SpMM algorithm is least efficient for diagonal matrices,

where there is only about one multiplication per nonzero row. On

the other end of the efficiency scale is dense matrix multiplication,

where the Multiply procedure is applied to 𝑀 ∙ 𝐿 elements of the

multiplicand matrix B in parallel, per each matrix row.

Figure 14. Performance (GFLOPs) vs. number of nonzero elements

The performance the GP-SIMD SpMM, AP, and two

commercial processors (Intel XEON-PHI and K20 [10]) as

functions of the number of nonzero elements is presented in Figure

14, and the simulated power consumption of the GP-SIMD SpMM,

and AP (as well as reported power of NVidia K20 [34]) is presented

in Figure 15(a).

Figure 15. (a) Power consumption (Watt) vs. average number of nonzero

elements per row. (b) Power efficiency (GFLOPs/W) vs. average number of
nonzero elements per row

The GP-SIMD SpMM power efficiency is in the range of 0.1 to

100 GFLOPS/W (see Figure 15(b)). The power efficiency declines

with the number of nonzero elements (requiring higher power

consumption). The SpMM/SpMV power efficiency of advanced

contemporary GPUs such as NVidia’s K20 and GTX660 is in the

0.1-0.5 GFLOPS/W range [34]. A wide variety of multicore

processors such as quad-core AMD Opteron 2214, quad-core Intel

Xeon E5345, eight-core Sun UltraSparc T2+ T5140 and eight-SPE

IBM QS20 Cell reportedly reach the SpMM power efficiency of

up to 0.03 GFLOPS/W [38]. Several FPGA SpMV and SpMM

implementation were proposed (for example [24] [20]), however

these studies focused on optimization of performance or energy-

delay, and power dissipation figures were not reported. The GP-

SIMD and AP power efficiency advantage stem from in-memory

computing (there are no data transfers between processing units

and memory hierarchies) and from low-power design made

possible by the very small size of each processing unit.

A noticeable limitation of the GP-SIMD SpMM algorithm is the

sequential processing of matrix rows (the outer loop of Figure 10).

A parallelization of matrix row processing may significantly

improve the performance of the GP-SIMD SpMM algorithm. For

example, diagonal matrices can easily be processed in a row-

parallel manner when there is only one nonzero singleton product

per each matrix row.

0 50 100 150 200 250 300 350 400
 0.01

 0.056

 0.32

 1.8

 10

Average number of nonzero elements per row

P
e

rf
o

rm
a

n
c

e
 (

G
F

L
O

P
s

)

Perf. vs. average nonzero per row

GP-SIMD, GFLOPs

 1e+04 3.2e+04 1e+05 3.2e+05 1e+06 3.2e+06
0.0001

0.0056

 0.32

 18

 1e+03

Number of nonzero elements

P
e

rf
o

rm
a

n
c

e
 (

G
F

L
O

P
s

)

Perf. vs. nonzero elements

GP-SIMD, GFLOPs

GP-SIMD, trend

AP

Intel XEON PHI

nVidia K20

 1e+04 3.2e+04 1e+05 3.2e+05 1e+06 3.2e+06
0.0001

 0.01

 1

 1e+02

 1e+04

Number of nonzero elements

P
o

w
e

r
c

o
n

s
u

m
p

ti
o

n
 (

W
a

tt
) (a) Power consumption vs. nonzero elements

GP-SIMD, Watt

GP-SIMD, trend

AP

nVidia K20

 1e+04 3.2e+04 1e+05 3.2e+05 1e+06 3.2e+06
 0.01

 0.18

 3.2

 56

 1e+03

Number of nonzero elementsP
o

w
e

r
e

ff
ic

ie
n

c
y

 (
G

F
L

O
P

s
/W

)

(b) Power efficiency

GP-SIMD, GFLOPs/W

GP-SIMD, trend

VI. CONCLUSIONS

We investigate an efficient implementation of dense and sparse

matrix multiplication for the GP-SIMD, and simulate sparse matrix

multiplication using a large variety of sparse matrices. Dense N×M

matrix multiplication algorithm has a computational complexity of

𝑂(𝑁𝑀 log2 𝑀) and the efficiency grows with the number of

columns of the multiplicand matrix. Further, sparse matrix

multiplication has a computational complexity of 𝑂(𝐴𝑁𝑁𝑍 log2 𝑀)

(where 𝐴𝑁𝑁𝑍 is the number of nonzero elements of the multiplier

matrix), and the efficiency grows with the number of multiplier

matrix’s average nonzero elements per row, and with the number

of multiplicand matrix’s columns.

Lastly, we show that GP-SIMD sparse matrix multiplication is

more power-efficient than conventional GPU or multicore based

solutions.

ACKNOWLEDGMENT

This research was partially funded by the Intel Collaborative

Research Institute for Computational Intelligence and by Hasso-

Plattner-Institut.

REFERENCES

[1] “The Intel® Xeon Phi™ Coprocessor”. Available at:

http://www.intel.com/content/www/us/en/high-performance-computing/high-

performance-xeon-phi-coprocessor-brief.html
[2] A. Morad, L. Yavits, R. Ginosar, “GP-SIMD Processing-in-Memory”, 2014,

http://webee.technion.ac.il/~ran/papers/GP-SIMDProcessing-in-Memory-

2014.pdf.
[3] ARM® NEON™ general-purpose SIMD engine,

http://www.arm.com/products/processors/technologies/neon.php

[4] A. Pinar, M. Heath. "Improving performance of sparse matrix-vector
multiplication." In Proceedings of the 1999 ACM/IEEE conference on

Supercomputing (CDROM), p. 30. ACM, 1999.

[5] C. Stormon, "The Coherent Processor: an associative processor architecture and
applications." In IEEE Compcon, Digest of Papers, pp. 270-275., 1991.

[6] D. Bowler, T. Miyazaki, M. Gillan. "Parallel sparse matrix multiplication for linear

scaling electronic structure calculations." Computer physics communications 137,
no. 2 (2001): 255-273.

[7] D. Steinkraus D., L. Buck, P. Simard, “Using GPUs for machine learning

algorithms,” IEEE ICDAR 2005.
[8] D. Burger, T. Austin. "The SimpleScalar tool set, version 2.0", ACM SIGARCH

Computer Architecture News 25.3 (1997): 13-25.

[9] E. Im, K. Yelick. Optimizing the performance of sparse matrix-vector
multiplication. University of California, Berkeley, 2000.

[10] E. Saule, et al. "Performance Evaluation of Sparse Matrix Multiplication Kernels on

Intel Xeon Phi." arXiv preprint arXiv:1302.1078 (2013).
[11] G. Blelloch, “Vector Models for Data-Parallel Computing”, MIT Press, 1990.

[12] G. Qing, X. Guo, R. Patel, E. Ipek, E. Friedman. "AP-DIMM: Associative

Computing with STT-MRAM," ISCA 2013.
[13] J. Andersen, G. Mitra, D. Parkinson. "The scheduling of sparse matrix-vector

multiplication on a massively parallel DAP computer." Parallel Computing 18, no.

6 (1992): 675-697.
[14] J. Bolz, I. Farmer, E. Grinspun, and Peter Schröoder. "Sparse matrix solvers on the

GPU: conjugate gradients and multigrid." In ACM Transactions on Graphics, vol.

22, no. 3, pp. 917-924. ACM, 2003.
[15] J. Kurzak, D. Bader, J. Dongarra, “Scientific Computing with Multicore and

Accelerators”, CRC Press, Inc., 2010.

[16] J. Potter, W. Meilander. "Array processor supercomputers", Proceedings of the IEEE
77, no. 12 (1989): 1896-1914.

[17] J. Sun, G. Peterson, O. Storaasli. "Sparse matrix-vector multiplication design on

FPGAs." In Field-Programmable Custom Computing Machines, 15th Annual
IEEE Symposium on FCCM, pp. 349-352, 2007.

[18] K. Banerjee et al., “A self-consistent junction temperature estimation methodology

for nanometer scale ICs with implications for performance and thermal
management,” IEEE IEDM, 2003, pp. 887-890.

[19] K. Eshraghian, et al. "Memristor MOS content addressable memory (MCAM):

Hybrid architecture for future high performance search engines”, IEEE Transactions
on VLSI Systems, 19.8 (2011): 1407-1417.

[20] L. Colin Yu, et al. "Design space exploration for sparse matrix‐matrix multiplication
on FPGAs." International Journal of Circuit Theory and Applications 41.2 (2013):

205-219.
[21] L. Yavits, A. Morad, R. Ginosar, “Computer Architecture with Associative

Processor Replacing Last Level Cache and SIMD Accelerator”, IEEE Transactions

on Computers, 2014.
[22] L. Yavits, A. Morad, R. Ginosar, “Sparse Matrix Multiplication on Associative

Processor”, http://webee.technion.ac.il/people/ran/papers/YavitsSpMMonAP.pdf

[23] L. Yavits, A. Morad, R. Ginosar, “The effect of communication and synchronization
on Amdahl’s law in multicore systems”, Parallel Computing Journal, 2013.

[24] L. Zhuo, V. Prasanna. "Sparse matrix-vector multiplication on FPGAs."

In Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, pp. 63-74. ACM, 2005.

[25] M. Baskaran, R. Bordawekar. "Optimizing sparse matrix-vector multiplication on

GPUs using compile-time and run-time strategies." IBM Research Report,
RC24704 (W0812-047) (2008).

[26] M. Gschwind et. al., “Synergistic processing in Cell’s multicore architecture”, IEEE

Micro 26 (2), 2006, pp. 10–24.
[27] M. Misra, D. Nassimi, V. Prasanna. "Efficient VLSI implementation of iterative

solutions to sparse linear systems." Parallel Computing 19, no. 5 (1993): 525-544.

[28] N. Bell, M. Garland. "Implementing sparse matrix-vector multiplication on
throughput-oriented processors." In Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis, p. 18. ACM, 2009.

[29] N. Bell, M. Garland. “Efficient sparse matrix-vector multiplication on CUDA”, Vol.
20. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, 2008.

[30] O. Beaumont, et al. "A proposal for a heterogeneous cluster ScaLAPACK (dense

linear solvers)”, IEEE Transactions on Computers, 50.10 (2001): 1052-1070.
[31] O. Beaumont, et al. "Matrix multiplication on heterogeneous platforms", IEEE

Transactions on Parallel and Distributed Systems, 12.10 (2001): 1033-1051.

[32] O. Wing, "A content-addressable systolic array for sparse matrix
computation." Journal of Parallel and Distributed Computing 2, no. 2 (1985): 170-

181.

[33] Q. Zhu, et al. "Accelerating Sparse Matrix-Matrix Multiplication with 3D-Stacked
Logic-in-Memory Hardware”, IEEE HPEC 2013

[34] R. Dorrance et al., "A scalable sparse matrix-vector multiplication kernel for energy-

efficient sparse-BLAS on FPGAs", 2014 ACM/SIGDA international symposium
on Field-programmable gate arrays.

[35] R. Vuduc, "Automatic performance tuning of sparse matrix kernels." PhD diss.,

University of California, 2003.
[36] S. Sengupta, M. Harris, Y. Zhang, J Owens. "Scan primitives for GPU computing."

In Graphics Hardware, vol. 2007, pp. 97-106. 2007.

[37] S. Toledo, "Improving the memory-system performance of sparse-matrix vector
multiplication." IBM Journal of research and development 41, no. 6 (1997): 711-

725.
[38] S. Williams et al., "Optimization of sparse matrix–vector multiplication on emerging

multicore platforms." Parallel Computing 35, no. 3 (2009): 178-194.

[39] T. Davis, Y. Hu, "The University of Florida sparse matrix collection," ACM
Transactions on Mathematical Software (TOMS), 38, no. 1 (2011): 1.

[40] X. Liu, M. Smelyanskiy, "Efficient sparse matrix-vector multiplication on x86-

based many-core processors”, International conference on supercomputing, ACM,
2013.

[41] Y. Saad, A. Malevsky. “PSPARSLIB: A portable library of distributed memory

sparse iterative solvers”, Tech. Rep. UMSI 95/180, University of Minnesota, 1995.

http://www.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html
http://www.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html
http://webee.technion.ac.il/~ran/papers/GP-SIMDProcessing-in-Memory-2014.pdf
http://webee.technion.ac.il/~ran/papers/GP-SIMDProcessing-in-Memory-2014.pdf
http://www.arm.com/products/processors/technologies/neon.php
http://webee.technion.ac.il/people/ran/papers/YavitsSpMMonAP.pdf

