
Metastability and
Synchronizers: A Tutorial
Ran Ginosar

Technion��Israel Institute of Technology

�METASTABILITY EVENTS ARE common in digital

circuits, and synchronizers are a necessity to pro-

tect us from their fatal effects. Originally, synchron-

izers were required when reading an asynchronous

input (that is, an input not synchronized with

the clock so that it might change exactly when

sampled). Now, with multiple clock domains

on the same chip, synchronizers are required

when on-chip data crosses the clock domain

boundaries.

Any flip-flop can easily be made metastable. Tog-

gle its data input simultaneously with the sampling

edge of the clock, and you get metastability. One

common way to demonstrate metastability is to sup-

ply two clocks that differ very slightly in frequency to

the data and clock inputs. During every cycle, the rel-

ative time of the two signals changes a bit, and even-

tually they switch sufficiently close to each other,

leading to metastability. This coincidence happens

repeatedly, enabling demonstration of metastability

with normal instruments.

Understanding metastability and the correct

design of synchronizers to prevent it is sometimes

an art. Stories of malfunction and bad synchron-

izers are legion. Synchronizers cannot always

be synthesized, they are hard to verify, and often

what has been good in the past may be bad in

the future. Papers, patents, and application notes

giving wrong instructions are too

numerous, as well as library elements

and IP cores from reputable sources

that might be ‘‘unsafe at any speed.’’

This article offers a glimpse into

the theory and practice of metastabil-

ity and synchronizers; the sidebar

‘‘Literature Resources on Metastabil-

ity’’ provides a short list of resources

where you can learn more about this

subject.

Into and out of metastability
What is metastability? Consider the crosscut

through a vicious miniature-golf trap in Figure 1. Hit

the ball too lightly, and it remains where ball 1 is.

Hit it too hard, and it reaches position 2. Can you

Editors’ note:

Metastability can arise whenever a signal is sampled close to a transition, lead-

ing to indecision as to its correct value. Synchronizer circuits, which guard

against metastability, are becoming ubiquitous with the proliferation of timing

domains on a chip. Despite the critical importance of reliable synchronization,

this topic remains inadequately understood. This tutorial provides a glimpse

into the theory and practice of this fascinating subject.

��Montek Singh (UNC Chapel Hill) and

Luciano Lavagno (Politecnico di Torino)

Late Friday afternoon, just before the engineers locked

the lab to leave J, the new interplanetary spacecraft, churning

cycles all weekend, the sirens went off and the warning lights

started flashing red. J had been undergoing fully active system

tests for a year, without a single glitch. But now, J’s project

managers realized, all they had were a smoking power supply,

a dead spacecraft, and no chance of meeting the scheduled

launch.

All the lab engineers and all J’s designers could not put J

back together again. They tried every test in the book but

couldn’t figure out what had happened. Finally, they phoned

K, an engineering colleague on the other side of the continent.

It took him a bit of time, but eventually K uncovered the elusive

culprit: metastability failure in a supposedly good synchronizer.

The failure led the logic into an inconsistent state, which turned

on too many units simultaneously. That event overloaded the

power supply, which eventually blew up. Luckily, it happened

in prelaunch tests and not a zillion miles away from Earth.

September/October 2011 Copublished by the IEEE CS and the IEEE CASS 0740-7475/11/$26.00 �c 2011 IEEE 23

mdt2011050023.3d 8/9/011 15:34 Page 23

make it stop and stay at the middle position? It is

metastable, because even if your ball has landed

and stopped there, the slightest disturbance (such

as the wind) will make it fall to either side. And we

cannot really tell to which side it will eventually fall.

In flip-flops, metastability means indecision as to

whether the output should be 0 or 1. Let’s consider

a simplified circuit analysis model. The typical

flip-flops comprise master and slave latches and

decoupling inverters. In metastability, the voltage lev-

els of nodes A and B of the master latch are roughly

midway between logic 1 (VDD) and 0 (GND). Exact

voltage levels depend on transistor sizing (by design,

as well as due to arbitrary process variations) and

are not necessarily the same for the two nodes. How-

ever, for the sake of simplicity, assume that they are

(VA ¼ VB ¼ VDD/2).

Entering metastability

How does the master latch enter metastability?

Consider the flip-flop in Figure 2a. Assume that the

clock is low, node A is at 1, and input D changes

from 0 to 1. As a result, node A is falling and node B

is rising. When the clock rises, it disconnects the

input from node A and closes the A�B loop. If

A and B happen to be around their metastable levels,

it would take them a long time to diverge toward legal

digital values, as Figure 3 shows. In fact, one popular

definition says that if the output of a flip-flop changes

later than the nominal clock-to-Q propagation delay

Asynchronous Design

Metastable

StableStable

1 2

Figure 1. Mechanical metastability: the ball in

the center position is ‘‘metastable’’ because the

slightest disturbance will make it fall to either

side.

Slave latch

Q

CLK2

D

CLK2

Master latch

CLK
(a)

(b)

CLK1

CLK1

CLK1 CLK1

CLK1

CLK1 CLK2 CLK2

A B

CLK2

CLK2

Slave latch Q

CLK2

CLK2

CLK1
CLK2

CLK1

Master latchD

Figure 2. Flip-flops, with four (a) and two (b) gate delays from D to Q.

24 IEEE Design & Test of Computers

mdt2011050023.3d 8/9/011 15:34 Page 24

(tpCQ), then the flip-flop must have been metastable.

We can simulate the effect by playing with the relative

timing of clock and data until we obtain the desired

result, as Figure 3 demonstrates. Incidentally, other

badly timed inputs to the flip-flop (asynchronous

reset, clear, and even too short a pulse of the clock

due to bad clock gating) could also result in

metastability.

When the coincidence of clock and data is un-

known, we use probability to assess how likely the

latch is to enter metastability (we focus on the master

latch for now and discuss the entire flip-flop later).

The simplest model for asynchronous input assumes

that data is likely to change at any time with uniform

distribution. We can define a short window TW

around the clock’s sampling edge (sort of ‘‘setup-

and-hold time’’) such that if data changes during

that window, the latch could become metastable

(namely, the flip-flop output might change later than

tpCQ). If it is known that data has indeed changed

sometime during a certain clock cycle��and since

the occurrence of that change is uniformly distrib-

uted over clock cycle TC��the probability of entering

metastability, which is the probability of D’s having

changed within the TW window, is TW/TC ¼ TWFC

(FC is the clock frequency).

But D may not change every cycle; if it changes at

a rate FD, then the rate of entering metastability

becomes Rate ¼ FDFCTW. For instance, if FC ¼
1 GHz, FD ¼ 100 MHz, and TW ¼ 20 ps, then Rate ¼
2,000,000 times/sec. Indeed, the poor latch enters

metastability often, twice per microsecond or once

every 500 clock cycles. (Note that we traded proba-

bility for rate��we need that in the following

discussion.)

Exiting metastability

Now that we know how often a latch has entered

metastability, how fast does the latch exit from it?

In metastability, the two inverters operate at their

linear-transfer-function region and can be modeled,

using small-signal analysis, as negative amplifiers

(see Figure 4). Each inverter drives, through its output

resistance R, a capacitive load C comprising the other

inverter’s input capacitance as well as any other exter-

nal load connected to the node. Typically, the master

latch becomes metastable and resolves before the

second phase of the clock cycle. In rare cases,

when the master latch resolves precisely half a

cycle after the onset of metastability, the slave latch

Outputs

ClockIn
p

ut
s

V
ol

ta
g

e

Time(a)

(b)

(c)

Figure 3. Empirical circuit simulations of entering

metastability in the master latch of Figure 2a.

Charts show multiple inputs D, internal clock

(CLK2) and multiple corresponding outputs Q

(voltage vs. time). The input edge is moved in

steps of 100 ps, 1 ps, and 0.1 fs in the top,

middle, and bottom charts respectively.

–A R

–AR

VA VB

C

C

Figure 4. Analog model of a metastable latch; the

inverters are modeled as negative amplifiers.

25September/October 2011

mdt2011050023.3d 8/9/011 15:34 Page 25

could enter metastability as a result (its input is

changing exactly when its clock disconnects its

input, and so on, thereby repeating the aforemen-

tioned master-latch scenario).

The simple model results in two first-order differen-

tial equations that can be combined into one, as

follows:

�AVB � VA

R
¼ C

dVA

dt
;
�AVA � VB

R
¼ C

dVB

dt

�VB � VA þ ðVA � VBÞ
R

¼ C
dðVA � VBÞ

dt

define VA � VB � V and
RC

A� 1
� t

then V ¼ t
dV

dt
and the solution is V ¼ Ket=t

Because A/R & gm, we often estimate t ¼ C/gm;

higher capacitive load on the master nodes and

lower inverter gain impede the resolution of meta-

stability. The master latch is exponentially sensitive

to capacitance, and different latch circuits often differ

mainly on the capacitive load they have to drive. In

the past t was shown to scale nicely with technology,

but new evidence has recently emerged indicating

that in future technologies t may deteriorate rather

than improve.

The voltage difference V thus demonstrates an

‘‘explosion’’ of sorts (like any other physical measure

that grows exponentially fast��e.g., as in a chemical

explosion). This behavior is best demonstrated by cir-

cuit simulation of a latch starting from a minute volt-

age difference V0 ¼ 1 mV (see Figure 5). The voltage

curves of the two nodes do not appear to change very

fast at all (let alone explode).

However, observing the logarithm of the voltage

difference V in Figure 6 reveals a totally different pic-

ture. The straight line from the initial voltage V0 up to

about V1¼ 0.1 Vor log(V1)¼ �1 (V1 is approximately

the transistor threshold voltage, VTH) traverses five

orders of magnitude at an exponential growth rate,

indicating that the ‘‘explosion’’ actually happens at

the microscopic level. As the voltage difference

approaches the transistor threshold voltage, the latch

changes its mode of operation from two intercon-

nected small-signal linear amplifiers (as in Figure 4)

to a typical, slower digital circuit. We say that meta-

stability has resolved as soon as the growth rate of V

is no longer exponential (the log curve in Figure 6

flattens off).

The log chart facilitates a simple estimate of t.
Take the ratio of two arbitrary voltage values

Vx (tx), Vy(ty) along the straight line and solve

for t:

Vx ¼ Ketx=t; Vy ¼ Kety=t

Vx

Vy

¼ eðtx�tyÞ=t) t ¼ tx � ty

ln Vx

Vy

� �

Actually, several factors affect t. First, in some circuits

it may change during resolution, and the line of

Figure 6 is not exactly straight. Process variations

might result in t several times larger than predicted

by simulations. Low supply voltage, especially when

the metastability voltage is close to the threshold volt-

age (and gm decreases substantially), as well as very

Asynchronous Design

V
ol

ta
g

e

Time (ns)

(a)

(b)

0

1.0

0.5

0.0
2 4 6 8 10 12 14 16

V0

Figure 5. Simulation of exiting metastability:

circuit (a) and voltage charts of the two latch

nodes vs. time (b). The switch starts closed

(applying V0 � 1 mV) and then opens up (at t �

1 ns) to allow the latch to resolve.

Lo
g

 (
vo

lta
g

e
d

iff
er

en
ce

)

Time (ns)

–7
–6
–5
–4
–3
–2
–1
0 0 2 4 6 8 10 12 14 16

y

x

Figure 6. Log of the voltage difference of the two nodes of a

resolving latch in Figure 5.

26 IEEE Design & Test of Computers

mdt2011050023.3d 8/9/011 15:34 Page 26

high or extremely low temperatures, could increase t
by several orders of magnitude. These issues make

the research of synchronization an interesting chal-

lenge with practical implications.

Clearly, if metastability starts with V ¼ V0 and

ends when V ¼ V1, then the time to exit metastabil-

ity is tm:

V1 ¼ V0etm=t) tm ¼ t ln
V1

V0

� �

Thus, the time to exit metastability depends loga-

rithmically on the starting voltage V0 (and not on

the fixed exit voltage V1), as Figure 7 clearly

demonstrates.

Had we started with V0 ¼ V1, then the time in

metastability would be zero (the leftmost curve in

Figure 7). On the other hand, if V0 ¼ 0, we would

have waited forever, but this possibility is unlikely. In

fact, the claim that ‘‘in metastability, the two nodes

of the latch get stuck in the middle and would even-

tually get out of there by some random process,’’

which some researchers and designers often make,

should be taken lightly. Two factors affect the actual

initial voltage: when exactly the clock’s sampling

edge blocked the input and closed the latch (specifi-

cally, what the actual value of V was at that moment),

and how noise might have changed that value. Ob-

serve that thermal noise is anywhere from 1 mV to

1 mV, much higher than V in the extreme cases on

the right-hand side of Figure 7. Since we don’t know

V0 deterministically, we don’t know how long the

latch will stay metastable��but we can provide a sta-

tistical estimate. Probabilistic analysis shows that if a

latch is metastable at time zero, the probability it will

remain metastable at time t > 0 is e--t/t, which dimin-

ishes exponentially fast. In other words, even if a latch

became metastable, it would resolve pretty fast.

Synchronization reliability

All the foregoing leads us to computing reliability.

If a latch receives asynchronous inputs, we can’t guar-

antee that it will never become metastable��in fact,

we already know that it will definitely become meta-

stable at the high rate of FDFCTW (2 million times/s in

the preceding example). Instead, we can compute

the reliability that it will fail as a result of entering

metastability. The synchronizer’s whole purpose is to

minimize that failure probability. Now we can finally

Lo
g

 (
vo

lta
g

e
d

iff
er

en
ce

)

Ti
m

e
(n

s)

V
ol

ta
g

e

0

1.0

0.8

0.6

0.4

0.2

0.0

0

–2

–4

–6

–8

–10

–12

2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

Figure 7. Simulations of metastability resolution with the starting voltage difference varying from

100 mV (left) to 10 pV (right); the lower the starting voltage, the longer resolution takes. The top

chart shows voltage of the two latch nodes (the chart for V0 � 1 mV is the same as in Figure 5);

the bottom chart shows the log of their difference (the line starting at 26 is the same as in Figure 6).

27September/October 2011

mdt2011050023.3d 8/9/011 15:34 Page 27

define and estimate synchronization failures: we want

the metastability to resolve within a synchronization

period S so that we can safely sample the output of

the latch (or flip-flop). Failure means that a flip-flop

became metastable after the clock’s sampling edge,

and that it is still metastable S time later. The two

events are independent, so we can multiply their

probabilities:

p(failure) ¼ p(enter MS) � p(time to exit > S)

¼ TWFC � e--S/t

Now we can take advantage of the expression for

the rate of entering metastability computed previ-

ously to derive the rate of expected failures:

Rate(failures) ¼ TWFCFD � e--S/t

The inverse of the failure rate is the mean time be-

tween failures (MTBF):

MTBF ¼ e S=t

TWFCFD

Let’s design synchronizers with MTBF that is many

orders of magnitude longer than the expected life-

time of a given product. For instance, consider an

ASIC designed for a 28-nm high-performance CMOS

process. We estimate t ¼ 10 ps, TW ¼ 20 ps (experi-

mentally, we know that both parameters are close to

the typical gate delay of the process technology),

and FC ¼ 1 GHz. Let’s assume that data changes

every 10 clock cycles at the input of our flip-flop,

and we allocate one clock cycle for resolution:

S ¼ TC. Plug all these into the formula and we obtain

4 � 1029 years. (This figure should be quite safe��the

universe is believed to be only 1010 years old.)

What happens at the flip-flop during metastability,

and what can we see at its output? It’s been said

that we can see a wobbling signal that hovers around

half VDD, or that it can oscillate. Well, this is not exactly

the case. If node A in Figure 2 is around VDD/2, the

chance that we can still see the same value at Q,

three inverters later (or even one inverter, if the

slave latch is metastable) is practically zero. Instead,

the output will most likely be either 0 or 1, and as

VA resolves, the output may (or may not) toggle at

some later time. If indeed that toggle happens later

than the nominal tpCQ, then we know that the flip-

flop was metastable. And this is exactly what we

want to mask with the synchronizer.

Two-flip-flop synchronizer
Figure 8 shows a simple two-flip-flop synchroniza-

tion circuit (we don’t call it a synchronizer yet��that

comes later). The first flip-flop (FF1) could become

metastable. The second flip-flop (FF2) samples Q1 a

cycle later; hence S ¼ TC. Actually, any logic and wire

delays along the path from FF1 to FF2 are subtracted

from the resolution time: S ¼ TC � tpCQ(FF1) �
tSETUP(FF2) � tPD(wire), and so on. A failure

means that Q2 is unstable (it might change later

than tpCQ), and we know how to compute MTBF

for that event. But what really happens inside the cir-

cuit? Consider Figure 9, in which D1 switches dan-

gerously close to the rising clock. Any one of six

outcomes could result:

(a) Q1 could switch at the beginning of clock cycle 1

and Q2 will copy that on clock cycle 2.

(b) Q1 could completely miss D1. It will surely rise

on cycle 2, and Q2 will rise one cycle later.

Asynchronous Design

FF1
D1 Q1

Clock

FF2
D2 Q2

Asynchronous
input

Figure 8. Two-flip-flop synchronization circuit.

clock

D1

Q1

Q2

1 2 3 1 2 3 1 2 3 1 2 3

(a,f) (b,d) (c) (e)

Figure 9. Alternative two-flip-flop synchronization waveforms.

28 IEEE Design & Test of Computers

mdt2011050023.3d 8/9/011 15:34 Page 28

(c) FF1 could become metasta-

ble, but its output stays low. It

later resolves so that Q1 rises

(the bold rising edge). This

will happen before the end

of the cycle (except, maybe,

once every MTBF years).

Then Q2 rises in cycle 2.

(d) FF1 could become metasta-

ble, its output stays low, and

when it resolves, the output

still stays low. This appears

the same as case (b). Q1 is

forced to rise in cycle 2,

and Q2 rises in cycle 3.

(e) FF1 goes metastable, and its output goes high.

Later, it resolves to low (we see a glitch on

Q1). By the end of cycle 1, Q1 is low. It rises in

cycle 2, and Q2 rises in cycle 3.

(f) FF1 goes metastable, its output goes high, and it

later resolves to high. Q1 appears the same as

case (a). Q2 rises in cycle 2.

The bottom line is that Q2 is never metastable (ex-

cept, maybe, once every MTBF years). Q2 goes high

either one or two cycles later than the input. The syn-

chronization circuit exchanges the ‘‘analog’’ uncer-

tainty of metastability (continuous voltage levels

changing over continuous time) for a simpler ‘‘digital’’

uncertainty (discrete voltage levels switching only at

uncertain discrete time points) of whether the output

switches one or two cycles later. Other than this uncer-

tainty, the output signal is a solid, legal digital signal.

What does happen when it really fails? Well, once

every MTBF years, FF1 becomes metastable and

resolves exactly one clock cycle later. Q1 might

then switch exactly when FF2 samples it, possibly

making FF2 metastable. Is this as unrealistic as it

sounds? No. Run your clocks sufficiently fast, and

watch for meltdown! Or continue reading to find

out how to fight the odds.

A word of caution: the two flip-flops should be

placed near each other, or else the wire delay between

them would detract from the resolution time S. Missing

this seemingly minor detail has made quite a few syn-

chronizers fail unexpectedly.

This, however, is only half the story. To assure cor-

rect operation, we assume in Figure 9 that D1 stays

high for at least two cycles (in cases b, d, e) so that

FF1 is guaranteed to sample 1 at its input on the rising

clock of cycle 2. How would the sender know how

long D1 must be kept high? We have no idea how

fast the sender clock is ticking, so we can’t simply

count cycles. To solve that, the receiver must send

back an acknowledgment signal. Figure 10a shows a

complete synchronizer. The sender sends req (also

known as request, strobe, ready, or valid), req is

synchronized by the top synchronization circuits, the

receiver sends ack (or acknowledgment, or stall),

ack is synchronized by the sender, and only then is

the sender allowed to change req again. This round-

trip handshake is the key to correct synchronization.

Now we can add data that needs to cross over, as

in Figure 10b. The sender places data on the bus

going to the right, and raises req. Once the receiver

gets wind of req (synchronized to its clock), it stores

the data and sends back ack. It could also send back

data on the bus going to the left. When the sender

receives ack, it can store the received data and also

start a new cycle.

Note that the synchronizer doesn’t synchronize the

data��rather, it synchronizes the control signals.

Attempts to synchronize the data bit by bit usually

lead to catastrophic results; even if all data lines tog-

gle simultaneously, some bits might pass through after

one cycle, while others might take two cycles be-

cause of metastability. Beware: that’s a complete

loss of data. Another forbidden practice is to synchro-

nize the same asynchronous input by two different

parallel synchronizers; one might resolve to 1 while

the other resolves to 0, leading to an inconsistent

state. In fact, that was the problem that grounded

the J spacecraft . . .

The two-flip-flop synchronizer comes in many fla-

vors. As Figure 11a shows, when using slow clocks,

Sender Receiver

req

ack

Sender
clock

(a) (b)

Receiver
clock

Sender Receiver

req

ack

Sender
clock

Receiver
clock

Figure 10. Complete two-way control synchronizer (a); complete two-way data

synchronizer (b).

29September/October 2011

mdt2011050023.3d 8/9/011 15:34 Page 29

resolution of less than half a cycle could suffice in the

receiver side. In other cases, two flip-flops might not

be enough. The clock may be fast (e.g., on processors

that execute faster than 1 GHz), the supply voltage

may go very low (especially in near-threshold

designs), and the temperature may rise above

100 �C or drop far below freezing (for example, in a

phone that will be used outdoors on a Scandinavian

winter night or in a chip on the outside of an aircraft).

For instance, if S ¼ TC, FC ¼ 1 GHz, FD ¼ 1 kHz (now

we’re being conservative), and due to low voltage and

high temperature t ¼ 100 ps and TW ¼ 200 ps, the

MTBF is about one minute. Three flip-flops (the sender

side in Figure 11b) would increase the MTBF a bit, to

about one month. But if we use four flip-flops, S¼ 3 TC

and the MTBF jumps to 1,000 years. Caution and care-

ful design is the name of the game here.

Unique flip-flops designed especially for synchro-

nization are more robust to variations in process, volt-

age, and temperature. Some use current sources to

enhance the inverter gain; others sample multiple

times and actively detect when synchronization is

successful. The avid designer with the freedom to

use nonstandard circuits can take advantage of such

inventions, but typical ASIC and FPGA designers are

usually constrained to using only standard flip-flops

and will have to follow the usual, well-beaten path.

Another cause for concern is the total number of

synchronizers in the design, be it a single chip or a

system comprising multiple ASICs. MTBF decreases

roughly linearly with the number of synchronizers.

Thus, if your system uses 1,000 synchronizers, you

should be sure to design each

one for MBTF at least three

orders of magnitude higher than

your reliability target for the

entire system.

Similar concepts of synchro-

nization are used for signals

other than data that cross

clock domains. Input signals

might arrive at an unknown tim-

ing. The trailing edge of the

reset signal and of any asyn-

chronous inputs to flip-flops

are typically synchronized to

each clock domain in a chip.

Clock-gating signals are synchron-

ized to eliminate clock glitches

when the clocks are gated or

when a domain switches from one clock to another.

Scan test chains are synchronized when crossing

clock domains. These applications are usually

well understood and are well supported by special

EDA tools for physical design.

The key issues, as usual, are latency and through-

put. It may take two cycles of the receiver clock to re-

ceive req, two more cycles of the sender clock to

receive ack, and possibly one more on each side to

digest its input and change state. If req and ack

must be lowered before new data can be transferred,

consider another penalty of 3 þ 3 cycles. (No wonder,

then, that we used FD much lower than FC in the pre-

vious examples.) This slow pace is fine for many

cases, but occasionally we want to work faster. Luck-

ily, there are suitable solutions.

Two-clock FIFO synchronizer
The most common fast synchronizer uses a two-

clock FIFO buffer as shown in Figure 12. Its advantages

are hard to beat: you don’t have to design it (it’s typi-

cally available as a predesigned library element or IP

core), and it’s (usually) fast. The writer places data on

the input bus and asserts wen (write enable); if full is

not asserted, the data was accepted and stored. The

reader asserts ren (read enable), and if empty is not

asserted then data was produced at the output. The

RAM is organized as a cyclic buffer. Each data word

is written into the cell pointed to by the write pointer

and is read out when the read pointer reaches that

word. On write and on read, the write pointer and

the read pointer are respectively incremented.

Asynchronous Design

Sender Receiver

req

ack

Sender
clock

(a) (b)

Receiver
clock

Sender Receiver

req

ack

Sender
clock

Receiver
clock

Figure 11. Variations on the theme of multi-flip-flop synchronization: half-cycle

resolution for a very slow clock—the receiver in (a)—or three flip-flops enabling

two cycles of resolution for the fast clocks and extreme conditions—the sender

in (b). Because the sender and receiver could operate at widely different frequen-

cies, different solutions might be appropriate.

30 IEEE Design & Test of Computers

mdt2011050023.3d 8/9/011 15:34 Page 30

When the read pointer points

to the same word as the write

pointer, the FIFO buffer is empty.

To determine that, the two

pointers must be compared. How-

ever, they belong to two different

clock domains��thus, the write

pointer has to be synchronized

with rclk (read clock) when com-

pared (on the right in Figure 12).

That’s where the synchronization

is; it’s applied to the pointers,

rather than to the data. That’s

also where latency is incurred.

When a new data word is written

into an empty FIFO buffer, it

might take one or two additional rclk cycles before

the new write pointer passes through the synchron-

izer and deasserts empty. But when the two pointers

are far from each other, no synchronization latency

is incurred; data latency is still there. When the

RAM holds k words, a newly inserted word will stay

there for at least k rclk cycles before it is read out. In-

cidentally, the pointers are usually maintained in Gray

code so that only a single bit at a time changes in the

synchronizer.

The FIFO solution usually works. It is nontrivial to

design, but it’s often available in libraries and else-

where. The key question for the user of a library

FIFO buffer is how large the RAM should be (how

deep should the buffer be). The common approach

says ‘‘when in doubt, double it.’’ You might think that

the life of the FPGA designer is less complex here-

simply use trial and error. However, an FPGA has oc-

casionally failed in mission because of a too-short

FIFO buffer. Care is needed here.

The two-clock FIFO synchronizer, as well as a

mixed-timed FIFO synchronizer interfacing a clock

domain to an asynchronous (clockless) circuit, are

used in a network on chip (NoC) that offers connec-

tivity among many modules on a chip and also

assumes full responsibility for synchronization. This

is a refreshing idea: let someone else��the NoC ven-

dor or designer��integrate your chip and take care of

all clock domain crossings.

There are other fast synchronizers, which require a

higher design effort than simply using the common

FIFO synchronizer. The faster they are, the more com-

plex the circuit. Most cases can be solved effectively

with a good FIFO synchronizer. Two special cases are

discussed next: one involves mesochronous clock

domains; the other, synchronizing over long distance.

Mesochronous, multisynchronous,
periodic, and rational synchronizers

Two mesochronous clock domains tick to the

same frequency, but their relative phase is unknown

in advance. They are typically driven by the same

clock, but no attempt is made to balance the two

clock trees relative to each other (such balancing

might incur a heavy penalty in area and power).

Once started, their relative phase remains stable.

Figure 13 shows a common example: input X is

Write pointer
Sync Comp-

arator

empty

data

Read pointer
Sync

Comp-
arator

full

Dual-ported RAM

Reader’s clock domainWriter’s clock domain

wclk
wen

rclk
ren

Figure 12. Two-clock FIFO synchronizer. It contains two separate clock domains

and synchronizes pointers rather than data.

D Q

E

D Q

E

D Q

E

Ring
counter

xclk

rclk
Ring

counter

X

XS

X0

X1

X2

xp 3 rp 3

xp0

xp1

xp2

Figure 13. Mesochronous synchronizer. Read and

write clocks share the same frequency but differ

on phase. The reader ring counter selects the old-

est available data word.

31September/October 2011

mdt2011050023.3d 8/9/011 15:34 Page 31

sampled by each of the three registers in turn, and the

oldest available sample is channeled to the output.

The key question is how to set up the two counters,

depending on the relative phase. The previously dis-

cussed two-clock FIFO synchronizer (with at least

four stages) can also do the job. It should incur a

one- or two-cycle synchronization latency at start-up,

but thereafter the data latency is the same as in

Figure 13. As an added advantage, the two-clock

FIFO synchronizer enables back pressure; when the

receiver stops pulling data out, the sender is signaled

full and can stall the data flow.

It turns out that mesochronous clock domains are

not always mesochronous. The paths taken by a

global clock to the various domains may suffer

delay changes during operation, typically due to tem-

perature and voltage changes. These drifts are typi-

cally slow, spanning many clock cycles. This could

lead to domains operating at the same frequency

but at slowly changing relative phases. Such a rela-

tionship is termed multisynchronous, to distinguish

this case from mesochronous operation. Synchronizers

for multisynchronous domains need to continuously

watch out for phase drifts and adapt to them. Figure 14

shows a conflict detector, which

identifies when the sender and re-

ceiver clocks, xclk and rclk, are

dangerously within one d of

each other (see the waveform on

the right-hand side of Figure 14).

A useful value of d is at least a

few gate delays, providing a safe

margin.

The synchronizer (see

Figure 15) delays the clock of

the first receiver register by tKO

(keep-out delay) if and only if

xclk is within d of rclk, as demonstrated by the wave-

form. This adjustment is made insensitive to any

metastability in the conflict detector because the

phase drift is known to be slow. Typically, the delay

is changed only if the conflict detector has detected

a change for a certain number of consecutive cycles,

to filter out back-and-forth changes when xclk hovers

around rclk �d. As before, the designer should also

consider whether a simpler two-clock FIFO syn-

chronizer could achieve the same purpose. Inciden-

tally, in addition to on-chip clock domain crossings,

multisynchronous domains exist in phase-adaptive

SDRAM access circuits and in clock and data recov-

ery circuits in high-speed serial link serializer/

deserializer (SerDes) systems.

A similar keep-out mechanism could be applied

when synchronizing periodic clock domains. Periodic

clocks are unrelated to each other��they are neither

mesochronous nor are their frequencies an integral

multiple of each other. Hence, we can expect that

every few cycles the two clocks might get danger-

ously close to each other. But the conflict detector

of Figure 14 is too slow to detect this on time (it

could take k þ 2 cycles to resolve and produce the

Asynchronous Design

xdata

1 0

rclk

Unsafe

tKO
Conflict
detector

rclk

δδ

tKO

Figure 15. Synchronizer for multisynchronous domains.

xclk

rclk

QD

QD D Q

rclk

Late

Early

δ

δ
δ δ

rc
lk

D Q

un
sa

fe

FSM: output 1(0)
only after k

consecutive 1(0) inputs

Figure 14. Conflict detector for multisynchronous synchronization.

32 IEEE Design & Test of Computers

mdt2011050023.3d 8/9/011 15:34 Page 32

unsafe signal). Luckily, since the clock frequencies

are stable, we can predict such conflicts in advance.

A number of predictive synchronizers have been pro-

posed, but they tend to be complex, especially in

light of the fact that the two-clock FIFO synchronizer

might be suitable.

Another similar situation is that of rational clocks,

wherein the two frequencies are related by a ratio

known at design time (e.g., 1:3 or 5:6). In that case,

determining danger cycles is simpler than for peri-

odic clocks with unknown frequencies, and a simple

logic circuit could be used to control the clock delay

selector of Figure 15.

Different situations call for specific synchronizers

that might excel given certain design parameters,

but the conservative designer might well opt for the

simpler, safer, commonly available two-clock FIFO

synchronizer described earlier.

Long-distance synchronization
What is a long distance, and what does it have to

do with synchronizers? When we need to bridge the

frequency gap between two clock domains placed

so far apart that the signals take close to a clock

cycle or even longer to travel between them, we

face a new risk. The designer can’t rely on counting

cycles when waiting for the signal to arrive��
process, voltage, and temperature variations as

well as design variations (such as actual floor plan

or placement and routing) might result in an

unknown number of cycles for traversing the inter-

connecting wires.

The simplest (and slowest) approach is to stretch

the simple synchronizers of Figure 10 over the dis-

tance. It’s slow because, when using return-to-zero sig-

naling on req, four flight times over the distance are

required before the next data word can be sent. We

should guarantee��for example, by means of timing

constraints��that when req has been synchronized

(and the receiver is ready to sample its data input),

the data word has already arrived. Such a procedure

is not trivial when req and the data wires are routed

through completely different areas of the chip. This

safety margin requirement usually results in even

slower operation.

Using fast asynchronous channels somewhat miti-

gates the performance issue. Data bits are sent

under the control of proper handshake protocols,

and they’re synchronized when reaching their de-

stination. The downside is the need for special

IP cores, because asynchronous design is rarely prac-

ticed and isn’t supported by common EDA tools.

Although the physical distance bounds the latency,

throughput over long channels can be increased if we

turn them into pipelines. But multistage pipelines re-

quire clocks at each stage, and it’s not clear which

clocks should be used in a multiclock-domain chip.

When the data sent from Clock1 to Clock10 is routed

near the areas of Clock2, Clock3, . . ., Clock9��all

unrelated to either Clock1 or Clock10��which clocks

do we use along the road? Some designs have solved

it simply by clocking the pipes at the fastest frequency

available on chip, but that solution is power hungry.

The ultimate solution might lie in employing a

NoC. The network infrastructure is intended to facili-

tate multiple transfers among multiple modules, over

varying distances, to support varying clock frequen-

cies. Asynchronous and synchronizing NoCs have

been devised to address these issues and especially

to provide complete synchronization while interfac-

ing each source and destination module.

Verification
Since the design of proper synchronization is such

an elusive goal, verification is essential. But, for the

same reason, verification is difficult and unfortunately

doesn’t always guarantee a correct solution.

Circuit simulations, such as that shown in Figure 3,

are useful for analyzing a single synchronizer but inef-

fective in proving that many synchronizations in a

large SoC would all work correctly. An interesting

simulation-based verification method has been devel-

oped at the logic level. Recall from the two-flip-flop

synchronizer discussion that a good synchronizer

should contain all level and timing uncertainties,

replacing them with the simpler logic uncertainty of

when a signal crosses over��it could happen in

one cycle or in the next one. Assuming that we

have selected a good synchronizer, we can facilitate

logic verification by replacing the synchronizer with

a special synchronous delay block that inserts a

delay of either k or k þ 1 cycles at random. Although

this approach leads to a design space of at least 2n

cases if there are n synchronization circuits, it is still

widely used and is effective in detecting many logic

errors (but not all of them��it wouldn’t have helped

the J spacecraft designers, for instance).

There are several EDA verification software tools,

commonly called clock-domain-crossing (CDC)

checkers, which identify and check all signals that

33September/October 2011

mdt2011050023.3d 8/9/011 15:34 Page 33

cross from one domain to another. Using a variety of

structural design rules, they are helpful in assuring

that no such crossing remains unchecked. Some as-

sess overall SoC reliability in terms of MTBF. At least

one tool also suggests solutions for problematic cross-

ings in terms of synchronizer IP cores.

THIS SHORT TUTORIAL has been an attempt to present

both the beauty and the criticality of the subject of

metastability and synchronizers. For more than

65 years, many researchers and practitioners have

shared the excitement of trying to crack this tough

nut. The elusive physical phenomena, the mysterious

mathematical treatment, and the challenging engi-

neering solutions have all contributed to making

this an attractive, intriguing field. The folklore, the

myths, the rumors, and the horror stories have

added a fun aspect to a problem that has been

blamed for the demise of several products and the

large financial losses that resulted. Fortunately, with

a clear understanding of the risks, respect for the dan-

gers, and a strict engineering discipline, we can avoid

the pitfalls and create safe, reliable, and profitable

digital systems and products. �

Acknowledgments
Chuck Seitz wrote the seminal chapter 7 of the

VLSI ‘‘bible’’ (Introduction to VLSI Systems) and

got me started on this. The late Charlie Molnar

Asynchronous Design

Literature Resources on Metastability

Synchronizers have been used as early as Eckert and

Mauchly’s ENIAC in the 1940s, but the first mathematical

analysis of metastability and synchronizers was pub-

lished in 1952,1 and the first experimental reports of

metastability appeared in 1973.2 Other early works

included those by Kinniment and Woods,3 Veendrick,4

Stucki and Cox,5 and Seitz.6 An early tutorial was pub-

lished by Kleeman and Cantoni in 1987.7 Two books��by

Meng8 and by Kinniment9��and two chapters in a book

by Dally and Poulton10 were published on these topics.

Several researchers have analyzed synchronizers,11-13

and others have reported on metastability measure-

ments.14-16 Beer et al. also observed that metastability

parameters such as t may deteriorate with future scaling,

renewing concerns about proper synchronizer design.

Several researchers have described various methods

for synchronizer simulation.11,12,17,18 Cummings detailed

practical methods of creating two-clock FIFO synchron-

izers,19 and Chelcea and Nowick proposed mixed

synchronous/asynchronous FIFO synchronizers��for

example, for NoCs.20 Dobkin et al.,21 as well as Dobkin

and Ginosar,22 described fast synchronizers. Zhou

et al.23 and Kayam et al.24 presented synchronizers that

are robust to extreme conditions, improving on an earlier

patent idea.25 Ginosar and Kol discussed an early version

of multisynchronous synchronization.26 Ginosar described

synchronizer errors and misperceptions.27 Frank et al.28

and Dobkin et al.29 presented examples of formal syn-

chronizer verification. Finally, Beigné et al. discussed

employing a NoC to solve all synchronization issues.30

References
1. S. Lubkin, ‘‘Asynchronous Signals in Digital Computers,’’ Math-

ematical Tables and Other Aids to Computation (ACM section),

vol. 6, no. 40, 1952, pp. 238-241.

2. T.J. Chaney and C.E. Molnar, ‘‘Anomalous Behavior of Syn-

chronizer and Arbiter Circuits,’’ IEEE Trans. Computers, vol.

C-22, no. 4, 1973, pp. 421-422.

3. D.J. Kinniment and J.V. Woods, ‘‘Synchronization and Arbitra-

tion Circuits in Digital Systems,’’ Proc. IEE, vol. 123, no. 10,

1976, pp. 961-966.

4. H.J.M. Veendrick, ‘‘The Behavior of Flip-Flops Used as Syn-

chronizers and Prediction of Their Failure Rate,’’ IEEE J.

Solid-State Circuits, vol. 15, no. 2, 1980, pp. 169-176.

5. M. Stucki and J. Cox, ‘‘Synchronization Strategies,’’ Proc. 1st

Caltech Conf. VLSI, Caltech, 1979, pp. 375-393.

6. C. Seitz, ‘‘System Timing,’’ Introduction to VLSI Systems,

chapter 7, C. Mean and L. Conway, eds., Addison-Wesley,

1979.

7. L. Kleeman and A. Cantoni, ‘‘Metastable Behavior in Dig-

ital Systems,’’ IEEE Design & Test, vol. 4, no. 6, 1987,

pp. 4-19.

8. T. H.-Y. Meng, Synchronization Design for Digital Systems,

Kluwer Academic Publishers, 1991.

9. D.J. Kinniment, Synchronization and Arbitration in Digital Sys-

tems, Wiley, 2008.

10. W.J. Dally and J.W. Poulton, Digital System Engineering, Cam-

bridge Univ. Press, 1998.

11. C. Dike and E. Burton, ‘‘Miller and Noise Effects in a Synchro-

nizing Flip-Flop,’’ IEEE J. Solid-State Circuits, vol. 34, no. 6,

1999, pp. 849-855.

34 IEEE Design & Test of Computers

mdt2011050023.3d 8/9/011 15:34 Page 34

pointed at the science of metastability, and Peter

Alfke stressed the engineering of it. The comments

of Charles Dike, Cliff Cummings, Shalom Bres-

ticker, Shlomi Beer, Reuven Dobkin, and Richard

Katz helped to significantly improve this writing.

The cumulative experience and know-how of

hundreds of engineers, students, and colleagues

taught me the good and the bad of metastability

and convinced me that this is a delightful

subject.

Ran Ginosar is an associate professor of elec-

trical engineering and computer science at the

Technion��Israel Institute of Technology. His research

interests include synchronization, asynchronous VLSI,

and VLSI architecture for parallel computing. He has

a PhD in electrical engineering and computer science

from Princeton University. He is a senior member

of IEEE.

�Direct questions and comments about this article to

Ran Ginosar, VLSI Systems Research Center, Elec-

trical Engineering and Computer Science Depart-

ments, Technion��Israel Institute of Technology,

Haifa 32000, Israel; ran@ee.technion.ac.il.

12. D.J. Kinniment, A. Bystrov, and A. Yakovlev, ‘‘Synchronization

Circuit Performance,’’ IEEE J. Solid-State Circuits, vol. 37,

no. 2, 2002, pp. 202-209.

13. S. Yang and M. Greenstreet, ‘‘Computing Synchronizer Failure

Probabilities,’’ Proc. Design Automation and Test in Europe

Conf. (DATE 07), EDAA, 2007, pp. 1-6.

14. L.-S. Kim, R. Cline, and R.W. Dutton, ‘‘Metastability of CMOS

Latch/Flip-Flop,’’ Proc. IEEE Custom Integrated Circuits Conf.

(CICC 89), IEEE Press, 1989, pp. 26.3/1-26.3/4.

15. Y. Semiat and R. Ginosar, ‘‘Timing Measurements of Syn-

chronization Circuits,’’ Proc. IEEE Int’l Symp. Asynchronous

Circuits and Systems (ASYNC 03), IEEE CS Press, 2003,

pp. 68-77.

16. S. Beer et al., ‘‘The Devolution of Synchronizers,’’ Proc. IEEE

Int’l Symp. Asynchronous Circuits and Systems (ASYNC 10),

IEEE CS Press, 2010, pp. 94-103.

17. J. Jones, S. Yang, and M. Greenstreet, ‘‘Synchronizer Behavior

and Analysis,’’ Proc. IEEE Int’l Symp. Circuits and Systems

(ASYNC 09), IEEE CS Press, 2009, pp. 117-126.

18. S. Yang and M. Greenstreet, ‘‘Simulating Improbable Events,’’

Proc. 44th Design Automation Conf. (DAC 07), ACM Press,

2007, pp. 154-157.

19. C. Cummings, ‘‘Clock Domain Crossing (CDC) Design &

Verification Techniques Using SystemVerilog,’’ Proc. Syn-

opsys User Group Meeting (SNUG), 2008; http://www.

sunburst-design.com/papers/CummingsSNUG2008Boston_

CDC.pdf.
20. T. Chelcea and S.M. Nowick, ‘‘Robust Interfaces for Mixed Tim-

ing Systems,’’ IEEE Trans. Very large Scale Integration (VLSI)

Systems, vol. 12, no. 8, 2004, pp. 857-873.

21. R. Dobkin, R. Ginosar, and C. Sotiriou, ‘‘High Rate Data Syn-

chronization in GALS SoCs,’’ IEEE Trans. Very Large Scale

Integration (VLSI) Systems, vol. 14, no. 10, 2006,

pp. 1063-1074.

22. R. Dobkin and R. Ginosar, ‘‘Two Phase Synchronization with

Sub-Cycle Latency,’’ Integration, the VLSI J., vol. 42, no. 3,

2009, pp. 367-375.

23. J. Zhou et al., ‘‘A Robust Synchronizer,’’ Proc. IEEE Symp.

Emerging VLSI Technologies and Architectures (ISVLSI 06),

IEEE CS Press, 2006, pp. 442-443.

24. M. Kayam, R. Ginosar, and C.E. Dike, ‘‘Symmetric Boost Syn-

chronizer for Robust Low Voltage, Low Temperature Opera-

tion,’’ EE tech. report, Technion, 2007; http://webee.technion.

ac.il/~ran/papers/KayamGinosarDike25Jan2007.pdf.

25. R. Cline, Method and Circuit for Improving Metastable Resolv-

ing Time in Low-Power Multi-State Devices, US patent

5789945, to Philips Electronics North America Corporation, Pa-

tent and Trademark Office, 1998.

26. R. Ginosar and R. Kol, ‘‘Adaptive Synchronization,’’ Proc. Int’l

Conf. Computer Design (ICCD 98), IEEE CS Press, 1998,

pp. 188-189.

27. R. Ginosar, ‘‘Fourteen Ways to Fool Your Synchronizer,’’ Proc.

IEEE Int’l Symp. Asynchronous Circuits and Systems (ASYNC

03), IEEE CS Press, 2003, pp. 89-96.

28. U. Frank, T. Kapschitz, and R. Ginosar, ‘‘A Predictive Syn-

chronizer for Periodic Clock Domains,’’ J. Formal Methods in

System Design, vol. 28, no. 2, 2006, pp. 171-186.

29. R. Dobkin et al., ‘‘Assertion Based Verification of Multiple-Clock

GALS Systems,’’ Proc. IFIP/IEEE Int’l Conf. Very Large Scale In-

tegration (VLSI-SoC 08), 2008, pp. 152-155.

30. E. Beigné et al., ‘‘An Asynchronous NOC Architecture

Providing Low Latency Service and Its Multi-Level Design

Framework,’’ Proc. IEEE Int’l Symp. Asynchronous Circuits

and Systems (ASYNC 05), IEEE CS Press, 2005, pp. 54-63.

35September/October 2011

mdt2011050023.3d 8/9/011 15:34 Page 35

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 36
 36
 36
 36
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

