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Disclosure and Ack
• I am co-inventor / co-founder of Plurality

• Based on 30 years of (on/off) research
• Presentation ideas stolen freely from others

• Suddenly there are many experts at and around the 
Technion ☺
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Many-cores
• CMP / Multi-core is “more of the same”

• Several high-end complex powerful processors
• Each processor manages itself
• Each processor can execute the OS
• Good for many unrelated tasks (e.g. Windows)
• Reasonable on 2–8 processors, then it breaks

• Many-cores
• 100 – 1,000 – 10,000
• Useful for heavy compute-bound tasks
• So far (50 years) many disasters

• But there is light at the end of the tunnel ☺
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Agenda
• Review 4 cases
• Analyze
• How NOT to make a many-core
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Many many-core contenders
• Ambric
• Aspex Semiconductor 
• ATI   GPGPU
• BrightScale
• ClearSpeed Technologies 
• Coherent Logix, Inc. 
• CPU Technology, Inc. 
• Element CXI 
• Elixent/Panasonic
• IBM Cell
• IMEC
• Intel Larrabee
• Intellasys
• IP Flex

• MathStar
• Motorola Labs 
• NEC
• Nvidia GPGPU
• PACT XPP
• Picochip
• Plurality
• Rapport Inc. 
• Recore
• Silicon Hive 
• Stream Processors Inc. 
• Tabula 
• Tilera

(many are dead / dying / will die / should die)
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PACT XPP
• German company, since 1999

• Martin Vorbach, 
an ex-user of Transputers

42x
Transputers
mesh
1980s
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PACT XPP (96 elements)
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PACT XPP die photo
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PACT: Static mapping, circuit-switch reconfigured NoC
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PACT ALU-PAE
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PACT
• Static task mapping /

• And a debug tool for that
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PACT analysis
• Fine granularity computing ☺
• Heterogeneous processors /
• Static mapping
Æ complex programming /

• Circuit-switched NoCÆ static reconfigurations
Æ complex programming /

• Limited parallelism
• Doesn’t scale easily
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• UK company
• Inspired by Transputers (1980s), David May

42x
Transputers
mesh
1980s
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322x
16-bit LIW RISC
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: Static Task Mapping /

Compile
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• MIMD, fine granularity, homogeneous cores ☺
• Static mapping
Æ complex programming /

• Circuit-switched NoC Æ static reconfigurations
Æ complex programming /

• Doesn’t scale easily
• Can we create / debug / understand static mapping 

on 10K?

analysis
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• USA company
• Based on RAW research @ MIT (A. Agarwal)

• Heavy DARPA funding, university IP
• Classic homogeneous MIMD on mesh NoC

• “Upgraded” Transputers with “powerful” uniprocessor features
• Caches /
• Complex communications /

• “tiles era”
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Tiles
• Powerful processor
• High freq: ~1 GHz 

• High power (0.5W) /

• 5-mesh NoC
• P-M  /  P-P  /  P-IO

• 2.5 levels cache //
• L1+ L2
• Can fetch from L2 of others 

• Variable access time
• 1  – 7  – 70 cycles 
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Caches Kill Performance
• Cache is great for a single processor

• Exploits locality (in time and space)
• Locality only happens locally on many-cores

• Other (shared) data are buried elsewhere
• Caches help speed up parallel (local) phases

• Amdahl [1967]: the challenge is NOT the parallel 
phases
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Array
• 36-64 processors

• MIMD / SIMD /

• Total 5+ MB memory
• In distributed caches

• High power
• ~27W //

Die photo
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allows statics
• Pre-programmed streams

span multi-processors
• Static mapping
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co-mapping: code, memory, routing /
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static mapping debugger /
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analysis
• Achieves good performance
• Bad on power
• Hard to scale
• Hard to program
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• Israel
• Technion research (since 

1980s)

PLURALITY
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Architecture: Part I

“anti-local” addressing by interleaving
MANY banks / ports
negligible conflicts

fine granularity
NO PRIVATE MEMORY

tightly coupled memory
equi-distant (1 cycle each way)
fast combinational NOC

PPPPPPPP

external memory

shared memory

P-to-M resolving NoC

PLURALITY
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PPPPPPPP

external memory

shared memory

P-to-M resolving NoC

low latency parallel scheduling
enables fine granularity

scheduler

P-to-S 
scheduling NoC

“anti-local” addressing by interleaving
MANY banks / ports
negligible conflicts

fine granularity
NO PRIVATE MEMORY

tightly coupled memory
equi-distant (1 cycle each way)
fast combinational NOC

Architecture: Part IIPLURALITY
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Floorplan

S

PLURALITY
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programming model

• Compile into
• task-dependency-graph = ‘task map’
• task codes

• Task maps loaded into scheduler
• Tasks loaded into memory

regular
duplicable    task xxx( dependencies )
join/fork
{

… INSTANCE ….
…..

}

Task template: PPPPPPPP

external memory

shared memory

P-to-M resolving NoC

scheduler

P-to-S 
scheduling NoC

PLURALITY
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Fine Grain Parallelization
• Convert (independent) loop iterations

• for ( i=0; i<10000; i++ ) { a[i] = b[i]*c[i]; }

• into parallel tasks
• duplicable task XX(…) 10000 
{  ii = INSTANCE; 

a[ii] = b[ii]*c[ii];
}

• All tasks, or any subset, can be executed in parallel
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Task map example (2D FFT)
Duplicable task

…
…
…

…
…
…

Conditional task

Join / fork task
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Another task map (linear solver)
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Linear Solver: Simulation snap-shots



43

Architectural Benefits
• Shared, uniform (equi-distant) memory

• no worry which core does what
• no advantage to any core because it already holds the data

• Many-bank memory + fast P-to-M NoC
• low latency
• no bottleneck accessing shared memory 

• Fast scheduling of tasks to free cores (many at once)
• enables fine grain data parallelism
• impossible in other architectures due to:

• task scheduling overhead
• data locality

• Any core can do any task equally well on short notice 
• scales automatically

• Programming model: 
• intuitive to programmers 
• easy for automatic parallelizing compiler 

PLURALITY
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• Target design (no silicon yet)
• 256 cores
• 500 MHz 

• For 2 MB,  slower for 20 MB

• Access time: 2 cycles (+)
• 3 Watts

• Designed to be
• Attractive to programmers (simple)
• Scalable
• Fight Amdahl’s rule

PLURALITY
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Analysis
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The VLSI-aware many-core (crude) analysis

 One core N-core 

Area a  A  (fixed) 

Num. 
processors 1 /N A a=  

Frequency f a=  
Af a
N

= =  

Performance a  N a NA=  

Power p af a a= =  A AP Np A a
N

= = =

Perf/Power  N∝  
 

Common error I: 
Assume that a is fixed

Common error II: 
Maximize frequency

Common error III: 
Assume performance 
is linear in N

Common error IV: 
Assume power 
is linear in N



47

The VLSI-aware many-core (crude) analysis
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Number of Processors

Power Perf Freq Perf/Power

power ∝ 1/√N

perf ∝ √N

freq ∝ 1/√N

Perf / power ∝ N

64 256
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things we shouldn’t do in many-cores
• No processor-sensitive code

• No heterogeneous processors
• No speculation

• No speculative execution
• No speculative storage (aka cache)
• No speculative latency (aka packet-switched or circuit-switched NoC)

• No bottlenecks
• No scheduling bottleneck (aka OS)
• No issue bottlenecks (aka multithreading)
• No memory bottlenecks (aka local storage)

• No programming bottlenecks
• No multithreading / GPGPU / SIMD / static mappings / heterogeneous 

processors / …
• No statics

• No static task mapping
• No static communication patterns
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Conclusions
• Powerful processors are inefficient
• Principles of high-end CPU are damaging

• Speculative anything, cache, locality, hierarchy
• Complexity harms (when exposed)

• Hard to program
• Doesn’t scale

• Hacking (static anything) is hacking
• Hard to program
• Doesn’t scale

• Keep it simple, stupid [Pythagoras, 520 BC]
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