Tightly Coupled Multiprocessing:

Architectural and Technological Challenges

Abstract

Due to a number of fundamental hindrances,
parallel computing has not yet become a prac-
tical general purpose technology comparable
to current serial computing technology. Over-
coming these hindrances is a major challenge
that information society faces in the 21st cen-
tury.

We advocate and explore a solution that de-
parts from the strong reliance on the locality
of data with respect to the individual proces-
sor. Under our approach, the multiprocessor
is analogous, in fact, to a uniprocessor: The
collection of processors acts as a single “su-
per processor”, working under fine or medium
granularity vis-a-vis a symmetric shared mem-
ory. An architectural/physical model of such
a system is outlined, and a simple estimate
for the clock frequency is given. The main
novel part of the proposed “super proces-
sor” is a high flow-rate synchronizer/scheduler,
which coordinates the parallel work. The
macro and micro architecture of the synchro-
nizer /scheduler are described. The proposed
solution points to secondary challenges, of a
more technological nature.

Keywords and Phrases: High performance
computing, symmetric multiprocessing, tight
coupling, synchronizer/scheduler.

1. The Challenge

1.1. Problem Definition

Massively parallel MIMD systems have three

fundamental problems:

1. The memory latency (or communication

latency) problem.
2. The software engineering problem.

3. The problem of coordinating the parallel

work.

The primary cause of the memory latency
problem in multiprocessors (or the communi-
cation latency problem in multicomputers) is
that the establishing of a path and the trans-
ferance of a datum between remote compo-
nents are slow, relatively to the propagation
time of signals within a processor. The sec-
ondary reason is the competition over inter-
connection resources. The memory latency
problem also spawns the cache coherence prob-
lems, when caching is pursued as a solution.
Next, the software engineering problem is the
difficulty of producing effective parallel code,
in comparison to the relative ease of producing
serial code. Finally, the problem of coordinat-
ing the parallel work is the problem of synchro-
nizing between the instruction streams in a
flexible and efficient way, without undue delay
in issuing ready to exectute work, and of main-
taining efficient scheduling and keeping load

babancing. These three problems may hinder



the fulfillment of promises stated in terms of

peak rate.

Tight coupling, in the original sense of the
very usage of shared memory, has emerged as
an answer to the software engineering prob-
lem: The merit of the programming model
based on shared memory, relatively to the mes-
sage passing model, is in being more simi-
lar to a uniprocessor’s programming model.
The concept of tight coupling can also be at-
tributed a connotation of working under fine
(or at least medium) granularity: When the
granularity is finer, the accessing of data tends
to be less localized, and the volume of activ-
ity needed for coordinating the parallel work
increases; the processors work in tighter co-
operation with each other and behave as a
single large body, a “super processor”, vis-
a-vis the shared memory. This must be ex-
pressed both in the hardware and in the pro-
gramming model. The motivation for work-
ing under finer granularity lies in the need
to extract more parallelism out of an algo-
rithm. Yet so far, fine granularity has become
a commercial reality only under very small
scale parallelism—instruction level parallelism

in superscalar uniprocessors.

The original problem that we would like to
address is the following one: Find an inte-
grated remedy for the three fundamental prob-
lems listed at the beginning of this paragraph,
under a setting of tight coupling (in its latter

sense). Section 2, which occupies the larger

part of this paper, outlines a non-conventional

solution approach for this problem. Yet this
solution may point on a secondary problem, of
a more technological nature, associated with
the density of packaging of circuitry at the
scale of a large system, which might emerge
as a major technological challenge in the 21st

century.

1.2. The Significance of the Problem

We would like to cite the words of David J.
Kuck, who has discussed the state of the high
performance computing field in his 1996 book
[4]. They are still valid today. From Kuck’s
words it follows that the problem posed at the
the end of previous paragraph pertains to a
major open challenge on the agenda of society.
According to Kuck, turning parallel comput-
ing into a practical general purpose technology
is a critical necessity that has not yet materi-

alized:

The advent of commercially avail-
able parallel computer systems in the
1980s must be regarded as a ma-
jor milestone in the history of com-
puting. However, despite the great
strides made in parallel processing in
the past 20 years, the technology still
has a long way to go before practical

parallelism emerges (p. 38).

... This sequential speed squeeze
may have far-reaching effects in the
next century. ...A parallel process-
ing imperative arises from this se-

quential speed squeeze. .. (p. 41).



1.3. Comments on the State of the
Art

We would like to comment about three char-

acteristics of the state of the art:

a. The lack of orientation of current super-

computers towards fine granularity. In-
formation about current supercomputers
can be found at the “topb500” web site
[6]. Current supercomputers are not ori-
ented towards fine granularity in two re-
spects. Firstly, the access to a remote
component is slow, relatively to propaga-
tion times within a processor (although
the degree of slowness varies widely) Sec-
ondly, the coordination of the parallel
work is carried out by the processors
themselves in software, by operating syn-
chronization or communication primitives
alongside other instructions. This may
entail too much overhead when working
under fine granularity. In addition, “hot
spots” and bottlenecks may be incurred,
especially when dynamic load balancing
is practiced. Hence, these computers do
not embody tight coupling in the sense of
Paragraph 1.1. Moreover, there is a ten-
dency of convergence between the shared
memory model and the message pass-

ing model—see, for example, Culler and

Singh (1999) [2], or Protié et.al. (1998)
[5].

b. The remaining of dataflow architecture out-

side of mainstream. The dataflow concept

embodies tight coupling in the sense of
Paragraph 1.1, to a certain extent,by be-
ing oriented towards fine granularity, and
by the fact that the collection of proces-
sors is viewed by the programmer as a sin-
gle body that the programmer need not
enter its details. However, dataflow ar-

chitectures have been criticized, as far as

their efficiency is concerned.

c. The flourishing of cheap PC clusters. A
cluster of PC’s or of workstations con-
nected through a few off-the-shelf commu-
nication switches forms a cheap substitute
for a supercomputer. And since current
supercomputers are not oriented to tight
coupling (in the sense of Paragraph 1.1)
anyway, why not content with a substi-

tute that differs only quantitatively?

2. Our Proposed Solution

This section presents a multiprocessor archi-
tecture aimed at addressing the challenge de-
scribed in the previous section. This is just
yet another solution joining the many solu-
tions already proposed, but we maintain that
it is legitimate to suggest ideas as long as the

challenge remains open.

2.1. The Overall Architecture

We choose to start the description of our so-
lution from the architectural/physical model
depicted in Figure 1. The system comprises

three elements: The “super processor”, a



Figure 1: An architectural/physical model of the overall system. The 16 x 16 baseline inter-
connection network in the figure illustrates the possibility of bounding the overall length of
the wiring between any two points by the circumference of the outer circle, at least in the

one-dimensional case.

global symmetric shared memory, and an in-
terconnection network. The caching of data
is done at the memory side of the network,
whereas the caching of instructions is done at
the processor side. (Caching of data at the side
of the processor is possible as well, with the co-
herency being preserved as a by-product of the
programming conventions, but the orientation
towards tight coupling just leads to caching
of data at the memory side). Input/output

pathes are omitted from this description.

Memory
references are emitted from Ny cessors different
points on the spherical surface of the “super
processor”; they are generated by the same

number of individual processors. These ref-

erences reach Nprcessors * Mingerleaving different
points on the memory sphere via the intercon-
nection network; the parameter Mingerleaving 18
aimed at controlling the probability of collision
in the interconnection network, and is not re-
lated to memory interleaving in the classical
sense. From the description of the “super pro-
cessor”later in Paragraph 2.2 it will follow that
the traffic between it and the memory does not
contain references to synchronization data or
to any other type of “hot spots”. We propose
to build the system as a fully synchronous one:
A synchronous digital system has the advan-
tage of behaving as a combinational system,
piecewise with respect to time. This enables

to construct a simple and fast interconnec-



tion network, based on circuit switching that
is set on every memory cycle, and not contain-
ing any buffers. This interconnection network
will be multistage and logarithmic, like the of
the baseline or indirect binary n-cube (see e.g.
Varma and Raghavendra (1994) [7, Chapter
4]), but duplicated Miniericaving times. The
time needed to switch the network should not
in itself constitute a sharp constraint on the
clock frequency, but to this time there is added
the propagation delays of the lines. We now
would like to outline a timing estimation. Let
Threessor be the clock cycle length of the pro-
cessors. To attain a balanced architecture, it is
reasonable to fix a memory cycle of 2T }cessor-
Under a simple organization of the memory

system, without pipelining, we will thus have

2Tprcessor = Lswitching +Tcache_access +Tpropagation )

where the three terms are the times needed to
switch the interconnection network, to access
the data cache, and to let the signal propagate
back and forth on the network lines. The as-
sumption that the interconnection network is

logarithmic means that

Tswitching = logy Nprcessors * Tsingle_switcha

where Tingle_switeh 18 the switching time of a
single switch. We assume that the total length
of lines through which a processor is connected
to any point on the memory sphere is 7R,
where R is the memory sphere’s radius (at
least in the one-dimensional case it is easy

to fulfill this assumption—consider Figure 1

again and imagine two mirrored baseline net-

works). Hence we can write

2mR

Tpropagation = c

(1)

where ¢ is the speed of propagation through
the transmission lines or optical lines of the
interconnection network. This value is close
to the speed of light. Let us observe now that

one may write

3
R= (5

where Neomponents is overall number of com-

1/3
N, components /
D )

ponents, of various kinds, participating in the
macro-architectural level, and D is their mean
density in the cased system; the components
counted in Nprcessors are the memory modules,
interconnection network switches, individual
processors, and further components partici-
pating in the “super processor” who will be
introduced in Paragraph 2.2 and their number

is about Nprcessors- All in all,

Ncomponents = 2Nprcessors + Nprcessors

' Mnterleaving ' (1 + 10g2 Nprcessors)

where the first term is the number of com-
ponents in the “super processor” and the sec-
ond is the number of memory and interconnec-
tion network components. The above relations
give an estimate for Tprcessor, 1-€. for the speed
of operation of the processors, as a function
of the architectural parameters Nprcessors and
Mingerleaving, and of the technological param-
eters Tsingle_switcha Teache_access, and D. (Note

that introducing the mean density D does not



imply that the components are evenly scat-
tered in space). For example, if Tyingle_switch
is 0.4 nanoseconds, Tiache_access 1S 3 Nanosec-
onds, and the mean density D is one compo-
nent per 10 cubic centimeters, then we will be
able to operate Nprcessors = 1024 processors
with Minterleaving = 8 at a clock cycle length
of Threessor =~ 10 nanoseconds. The radius R
would be around 60 centimeters.

We do not claim a scalable architecture,
since the quantity ¢ appearing in Eq. (1) can-
not be scaled up. However, an improvement of
the technological parameters, and especially of
the crucial parameter D, would allow an up-

grade of the system.

2.2. The “Super Processor”

The “super processor” comprises
1. individual processors,

2. an apparatus for coordinating the parallel

work, called synchronizer/scheduler,

3. Global registers for non-synchronization
“hot data”, with special networks to ac-

cess them.

The special networks for accessing the global
registers serving for non-synchronization “hot
data” are spread out in parallel to a dis-
tribution network that forms a part of the
synchronizer/scheduler. Since the synchro-
nizer /scheduler is far more complex than the

registers for non-synchronization “hot data”,

with their associated special networks, we con-

centrate in this paper only on the synchro-

nizer /scheduler.

The distribution network connects be-
tween a central synchronization/scheduling
unit (CSU) and the individual processors, as
shown in Figure 2. Together, the duty of
the distribution network and of the CSU is
to allocate computational tasks to the pro-
cessors, while observing the dependency con-
straints of the parallel program (this is the
meaning of synchronization), and while main-
taining load balancing and an efficient prior-
ity regime. One of the most important pa-
rameters of the synchronizer/scheduler is its
flow-rate, namely the amount of traffic that
can be transferred through cross-section A in
the figure. Since the distribution network has
a tree topology (with the CSU at its root),
it is essential that the traffic via cross sec-
tions of ever greater distance from the center
will be ever greater. For example, the traffic
through cross-section A should be greater than
through cross-section B, and the latter should
be greater than through cross-section C. Such
an amplification effect is attained due to the
fact that the traffic in the direction from the
CSU to the processors carries chunks of com-
putational work that undergo decomposition
as they proceed. These chunks are called allo-
cation packs. The decomposition of allocation
packs is being performed at each distribution
unit (a node of the distribution network) using

the processor availability state at each sub-tree

governed by that distribution unit. Dynamic
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Figure 2: The “super processor”. The black circles represent the individual processors, while
all the rest is the synchronizer/scheduler. The arrows marked with “A”, “B”, and “C” point

to different cross-sections.

load balancing is thus accomplished. In the
opposite direction, namely from the processors
to the CSU, termination packs are transferred
in the network, and are subjected to unifica-
tion. There exists a similarity between the dis-
tribution network and the combining network
of the NYU Ultracomputer [3], except that
here the unification is not casual but rather
dictated by the allocation packs which have
passed. Processor availability state updates
are also transferred. in the direction from the
processors to the CSU, and are also subjected

to unification, but in a different way.

In order to describe the structure, mode
of operation, and properties of the synchro-
nizer/scheduler in more detail, it is neces-

sary to begin with the system’s programming

model, on which the very possibility of de-
composing and unifying packs of computa-
tional work relies. This is the subject of the
next paragraph (2.3). Thereafter, in Para-
graph 2.4, we briefly describe a possible ar-

chitecture for the most important unit within

the synchronizer/scheduler—the CSU.

2.3. The Programming Model

The program loaded in main memory is es-
sentially a uniprocessor program. It does not
contain synchronization primitives. (It may
contain references to special registers, how-
ever). At the same time, there exists a sim-
ilarity between this program and a dataflow

program: A dependency graph called task map

that gives a description of a parsing of the pro-
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gram into computational granules, the tasks,
and of their interdependencies, forms a part of
the representation of the program and is kept
by the synchronizer/scheduler. The synchro-
nizer /scheduler uses the task map for schedul-
ing of tasks for execution while maintaining
the synchronization mandated from the de-
pendencies. An allocation of a task to a pro-
cessor is done by transferring the starting ad-
dress of the task (along with an additional
identifier called an “instantiation id” that will
be explained later), but the instructions of the
task themselves are fetched from memory. A
HALT instruction must be implanted at the
end of a task. The processor reports on its
being in a halted state through a dedicated

line, and transmits a termination condition

bit on another line. The processor may write
a value in this bit during run time as if it
were a register. When the terminated task
is a conditioning task, its termination condi-
tion serves for managing the global condition-
ing of the program: Such global conditioning
is clearly needed, as the intra-task condition-
ing using the ordinary branching instructions
is not sufficient. Conditioning tasks have a
special graphical symbol, that serves when one
wants to describe the task map graphically. It
is one of several symbols serving for graphical
description of task maps, depicted in Figure 3;
the figure also depicts a task map. The most
important feature of the programming model

is duplicable task. Such a task is in fact a col-

lection, whose typical average size in an appli-



cation may be quite large, of tasks arranged
in a “parallel do” pattern. We refer to these
individual tasks as to the instantiations of the
duplicable task. The instantiation quota of
each duplicable task, although physically re-
siding in the synchronizer/scheduler, can be
accessed and modified during run time by any
processor as if it were a memory word. The
instantiations of a duplicable task are imple-
mented by the same instruction in main mem-
ory, with the same start address, but the code
may contain references to the instantiation id
kept in a local register. In this way it is pos-
sible to create an effect of modifying of the
task’s code.

This brings us back from the programming
model to the implementation: The duplicable
tasks are the key for the whole architecture,
as the packs decomposed and unified in the
distribution network belong to successions of
instantiations, derived from the same duplica-
ble task. The task map is kept, in fact, by the
CSU.

2.4. The CSU Architecture

The CSU is the most critical component of
the whole architecture. There arouse the ques-
tion of whether at all it can be implemented in
a reasonable VLSI technology while attaining
reasonable performance. The answer has been
provided by developing a prototype CSU ar-

chitecture possessing the following properties

[1]:

e In every clock cycle, the CSU is capa-

ble of issuing allocation packs to four
branches of the distribution network si-
multaneously. Every pack contains up to
4K task instantiations (distributed to up
to 4K processors known to be available
at issue time). The packs are derived
from up to four different tasks (which may
be duplicable, conditioning, or simple).
The generation of the packs is based on
full crossing between the tasks ready to
execute and the network branches ready
to absorb allocation. Likewise, in every
clock cycle the CSU is capable of receiv-

ing up to four termination packs.

When a termination pack leads to the the
result of issung a new allocation pack, by
causing the enabling of a new task, the la-
tency between the reception of the termi-
nation pack and the issue of the new pack
is one to three clock cycles; this holds
provided that there is no contention over

ports.

It is possible to load a map of up to 256
tasks in the CSU, of which up to 128
are duplicable tasks, each equivalent to
220

a “parallel do” structure of up to in-

stantiations.

The CSU can operate at a clock frequency
of f = 1/T, where T is the propagation
delay of a 20-bit carry look ahead adder
(built in the same technology as the other
circuits of the CSU).

e The implementation requires only about a



quarter of a million transistors. The area
of the chip is about 85 square milimeters,
in a very conservative 3-micron CMOS

technology.

The heart of the architecture is the connec-
tion matrix (see Figure 4), in which the task
map is coded through programable connec-
tions between columns and rows. Each column
is mapped to a task. The termination of the
task leads to an exitation of the corresponding
column. This excitation may propagate along
rows and affect enabling cells (see the “e-cells”
in the figure, at the right of the matrix), which
are also mapped to tasks. An e-cell turns on
only when all the conditions necessary for en-
abling the task for execution are satisfied. If
the task is duplicable, the cell turns off at the
next clock cycle but initializes certain fields in
the record belonging to the task within the du-
plicable task record file. This record file is ba-
sically a special, multiported, RAM. The en-
abling cells and records in an on state feed, via
fast multi-output priority encoders, an alloca-
tion pack issue unit. That unit is pipelined,
and is assisted by a unit for monitoring pro-

cessors availability state.

3. Summary

Despite the enormous volume of ongoing re-
search, there are still problems that hinder the
turning of parallel computation into a practi-
cal general purpose technology comparable to
serial computing. Overcoming these problems

have been identified by David J. Kuck, one of

10

the pioneers of the field of high performance
computing, as a major challenge that infor-

mation society faces.

Contrary to the prevailing trend of dis-
tributing the data across the processors and
relying on locality, we propose an architec-
tural/physical multiprocessor model based on
tight coupling, in the sense that the collection
of processors behaves as a single “super pro-
cessor” , working under fine or medium granu-
larity vis-a-vis a symmetric memory. The cor-
responding programming model is similar to
that of a uniprocessor, but also, to a certain

extent, to that of a dataflow machine.

Apart
of the processors themselves, the main hard-
ware apparatus contained in the “super pro-
cessor” is the synchronizer/scheduler, who is
responsible for coordinating the parallel work.
The key for the efficient implementation of this
apparatus and for preventing it from being a
bottleneck is the employment of a decompos-
ing /unifying distribution network, which cre-
ates an effect of flow-rate amplification. This
relies on the presence of “parallel do” patterns
within the dependency web of the program. It
is possible to implement the building blocks
of the synchronizer/scheduler, and the its cen-
tral synchronization/scheduling unit (CSU) in
particular, as “hot” chips: Dedicated, highly
optimized, and based on internal parallelism
and on pipelining. It is possible to build the
CSU around a connectionist structure, slightly

reminiscent of a neural network. The synchro-
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Figure 4: The CSU architecture.

nizer/scheduleras a whole, with its systolic-like
structure, also embodies similar traits despite
containing a central unit.

The proposed architectural solution for the
original problem points to secondary chal-
lenges, of a more technological nature, associ-
ated with the density of packaging circuitry at
the scale of a large system. These may serve as
long term major challenges in their own right,
much like the miniaturization of single chip
circuits has served as a major technological

challenge in the 20th century.
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