
From Processing-in-Memory to Processing-in-Storage

Roman Kaplan1, Leonid Yavits1, Ran Ginosar1

c© The Authors 2017. This paper is published with open access at SuperFri.org

Near-data in-memory processing research has been gaining momentum in recent years. Typical
processing-in-memory architecture places a single or several processing elements next to a volatile
memory, enabling processing without transferring data to the host CPU. The increased bandwidth
to and from volatile memory leads to performance gain. However processing-in-memory does not
alleviate von Neumann bottleneck for big data problems, where datasets are too large to fit in
main memory.

We present a novel processing-in-storage system based on Resistive Content Addressable
Memory (ReCAM). It functions simultaneously as a mass storage and as a massively parallel
associative processor. ReCAM processing-in-storage resolves the bandwidth wall by keeping com-
putation inside the storage arrays, without transferring it up the memory hierarchy.

We show that ReCAM based processing-in-storage architecture may outperform existing
processing-in-memory and accelerator based designs. ReCAM processing-in-storage implementa-
tion of Smith-Waterman DNA sequence alignment reaches a speedup of almost five over a GPU
cluster. An implementation of in-storage inline data deduplication is presented and shown to
achieve orders of magnitude higher throughput than traditional CPU and DRAM based systems.

Keywords: Content Addressable Memory, Associative Processing, In-Storage Processing, Mem-
ristors.

Introduction
Until the breakdown of Dennard scaling designers focused on improving performance of a

single core by increasing instruction level parallelism. In recent years, as Dennard scaling slowed
down but Moore’s law endured, the focus has shifted to improving parallelism by increasing the
number of cores in multicore processors [16]. However, memory bandwidth does not improve at
the same rate, making von Neumann bottleneck one of the main performance limiting factors.

Data is typically fetched to CPU’s main memory from a non-volatile storage such as hard
disks or Flash SSDs. Consequently, storage bandwidth and access time pose a major constraint to
performance improvement. The problem worsens in datacenter cloud environment, where datasets
are distributed among multiple nodes across the datacenter. In such case, data transfer adds
latency and reduces bandwidth even further, lowering the performance upper bound.

This challenge has motivated renewed interest in Near-Data Processing (NDP) [7]. The main
premise of NDP is shifting computing closer to data. NDP seeks to minimize data movement
by computing at the most appropriate location in the memory hierarchy, which can be cache,
main memory or persistent storage. With NDP, less data needs to be transferred through levels
of hierarchy, thus alleviating the limited bandwidth problem. Placing computing resources at the
cache level or in main memory (also known as Processing-in-Memory or PiM) does not address
the emerging big data problems, where datasets are too large to fit in main memory.

Resistive CAM (ReCAM), a storage device based on emerging resistive materials in the bitcell
with a novel non-von Neumann Processing-in-Storage (PRinS) compute paradigm, is proposed in
order to mitigate the storage bandwidth bottleneck of big data processing. Section 1 provides
background on the basic concepts of ReCAM and PRinS and covers related work. Section 2
presents the ReCAM architecture, explains how processing is performed within ReCAM and
1Israel Institute of Technology, Haifa, Israel

DOI: 10.14529/jsfi170307

2017, Vol. 4, No. 3 99



establishes its scalability. PRinS implementations of two algorithms are presented in Sections 3
and 4 and compared to other approaches: Smith-Waterman DNA sequence alignment and in-
storage data deduplication.

1. Background and Related Work
Three basic concepts underline the proposed ReCAM: content addressable memories, asso-

ciative processing and resistive materials. The following two subsections introduce each concept.
The third subsection covers related work on NDP and highlights their limitations at addressing
the storage bandwidth challenge of big data processing.

1.1. Content Addressable Memory and Associative Processing

Content addressable memory (CAM), also called associative memory, allows the comparison
of all data words to a key in parallel, tagging the matching words, and possibly reading some or
all of the tagged words, one by one. Standard memory read and write operations of a single word
at a time can also take place. In addition to storing information, a CAM array can be modified
to function as an associative processor [18] [47]. In associative processing, the parallel compare
and parallel write operations supported by CAM are used to implement an “if condition, then
value” expression. Thus, complex Boolean expressions are evaluated in parallel on all data words
(CAM rows) by sequential execution of truth table if-then lines. Each (multi-bit) argument of a
truth table line is matched with the contents of the appropriate field in the entire CAM array:
the matching rows are tagged, and the corresponding result values from the truth table line are
written into the designated fields of all tagged rows. For an m-bit argument x, any Boolean function
f(x) has 2m possible values, therefore, the associative computing operation should incur O(2m)
cycles, regardless of the dataset size. More efficiently, arithmetic operations can be performed on
ReCAM in a word-parallel, bit-serial manner, reducing compute time from O(2m) to O(m). The
massive parallelism of each operation compensates in performance for the relatively large number
of (parallel execution) cycles of each arithmetic operation. More complex computations (more
than Boolean functions) are decomposed into series of Boolean expressions [18] [47].

1.2. Resistive Memories

Resistive memories store information by modulating the resistance of nanoscale storage ele-
ments (memristors). Memristors are two-terminal devices, where the resistance of the device is
changed by the electrical current or voltage. The resistance of the memristor is bounded by a
minimum resistance Ron (low resistive state, logic “1”) and a Roff maximum resistance (high
resistive state, logic “0”).

Resistive memories are non-volatile, free of leakage power, and emerge as long-term potential
alternatives to charge-based memories, including NAND flash. The metal-oxide resistive random
access memory (ReRAM), employing one resistive device and possibly also one transistor (1R1T)
per bit-cell, is considered a potential technology to replace next-generation nonvolatile memories.
Its main features are high reliability and fast access speed. A test-chip of 32GB device with
two ReRAM-based memory layers and a CMOS logic layer underneath has been developed [32],
demonstrating design techniques to achieve a high density functional chip.

From Processing-in-Memory to Processing-in-Storage

100 Supercomputing Frontiers and Innovations



1.3. Related Work

While processing-in-storage research is relatively young, the wider concept of near-data pro-
cessing, focusing mainly on processing in memory (PIM) has been thoroughly researched. The
concept of mixing memory and logic has been around since 1960s. The DAPP, STARAN, CM-2,
and GAPP computer architectures [39] used large number of processing units positioned in prox-
imity to memory arrays to implement a massively parallel SIMD computer. Gokhale et al. [21]
designed TeraSys, a computer architecture comprising a conventional host processor where at least
part of its memory was replaced by a PIM array, integrating memory and ALUs in close proxim-
ity. Hall et al. [24] developed DIVA, the Data-Intensive Architecture, combining PIM memories
with external host processors and performing selected computations in processing elements near
memory and reducing the volume of data transferred across the long and slow processor-memory
interface. Kogge et al. [30] developed HTMT, a parallel multilevel memory architecture, where
each RAM level is a PIM memory (memory blocks interconnected with ALUs). Suh et al. [43]
introduced a SLIIC QL computer featuring a processor integrated on the same die as DRAM.
Lipovski et al. [31] developed a dynamic associative access memory architecture that combined
DRAM and a single-bit processing element capable of associative and conventional arithmetic
processing, placed in the sense amplifier area of a DRAM. Yavits et al. [48] suggested replacing
the last level cache and the vector co-processor of a conventional high-performance CPU by an
associative processor, which is a PIM accelerator, combining data storage and massively parallel
SIMD processing capabilities. Nitin et al. [35] introduced RowCore, a near-memory processing ar-
chitecture for Big Data Machine Learning. Gao et al. [19] proposed Heterogeneous Reconfigurable
Logic, a reconfigurable array for near-data processing systems.

1.3.1. 3D Processing-in-Memory Architectures

While embedding processing with conventional 2D DRAM chips is less practical, recent ad-
vancement in 3D memory and logic stacking technology may remove this obstacle. Citing severe
bandwidth limitations in conventional computer architecture as datasets continue to grow, Ahn
et al. [1] introduced Tesseract, a 3D Processing-in-Memory accelerator for large-scale graph pro-
cessing. In another work, Ahn et al. [2] developed a hybrid-memory-cube based framework that
automatically decides whether to execute PIM operations in memory or processors depending
on the locality of data. Nair, Sura et al. [44] [34] introduced the Active Memory Cube, a het-
erogeneous computing system including general-purpose host processors and specially designed
in-memory processors that would be integrated in a logic layer within 3D DRAM memory. In
another work, Gao et al. [20] developed hardware and software of a 3D stack memory and near-
data processing architecture for in-memory analytics frameworks, including MapReduce, graph
processing, and deep neural networks. Azarkhish et al. [5] developed Smart Memory Cube and
designed a high bandwidth interconnect to serve the bandwidth demand of PIM architecture.
Zhang et al. [49] explored PIM implemented via 3D die stacking. Akin et al. [3] addressed the is-
sue of data reorganization in 3D stacked near-data processing architecture, introducing HAMLeT,
a mechanism for host interference, bandwidth allocation, and in-memory coherence. Farmahini-
Farahani et al. [17] proposed NDA, a near-DRAM acceleration architecture that processes data
using accelerators 3D-stacked on DRAM devices.

R. Kaplan, L. Yavits, R. Ginosar

2017, Vol. 4, No. 3 101



1.3.2. Processing-in-Memory with Resistive Materials

Recently, emerging memory technologies such as resistive memory have become a focus of
PIM research. Paul et al. [38] developed MBARC, a resistive crossbar in-memory LUT-based
processing architecture. Chi et al. [10] introduced PRIME, a PIM accelerator of neural network
applications in RRAM-based main memory. Yavits el al. [47] introduced a resistive CAM-based
massively parallel accelerator. Shafiee et al. [40] developed an in-situ processing architecture, where
memristor crossbar arrays are used to perform dot-product operations in an analog manner.

1.3.3. Near-Data Processing-in-Storage

Flash-based SSD allowed for increased in-storage bandwidth, enabling data port from each
chip thus achieving higher data throughput. Typical processing-in-storage architecture places a
single or several processing cores inside the storage and allows data processing without transferring
it to the host processor. The concept of near-data processing-in-storage is illustrated in Fig. 1a.

Figure 1. Comparison of (a) near-data processing-in-storage (b) and in-data processing-in-
storage based on ReCAM

Boboila et al. [8] proposed Active Flash, a processing in solid-state storage that expedites
data analysis by migrating the data to the flash device. The authors explored energy and perfor-
mance trade-offs of their processing-in-storage architecture. Bae et al. [6] introduced the notion
of Intelligent SSDs, exploring the design considerations and examining their potential benefits in
data mining applications. Continuing the work on Intelligent SSD, Jo et al. [25] studied optimal
ways of combining CPU, GPU and SSD for efficient processing of data-intensive algorithms. Cho
et al. [11] cited the lack of parallel processing abilities in earlier in-SSD processing architectures
and proposed integrating a GPU, providing API sets based on the MapReduce framework. Kang
et al. [27] introduced the Smart SSD model, which combines in-SSD processing with a powerful
host system, and constructed a Smart SSD prototype. De et al. [14] introduced the FPGA-based
Minerva, which executed application-specific operations in the NVM controller. Jun et al. [26]
introduced and constructed BlueDBM, combining a flash based storage with in-store processing
capability and a low latency high-throughput inter-controller network, and explored its perfor-
mance benefits. Cho et al. [12] explored some of the questions which are also addressed in this
paper. The authors made a case for Intelligent SSD by discussing the bandwidth trends and
quantifying the potential benefits of processing-in-storage across a range of applications.

From Processing-in-Memory to Processing-in-Storage

102 Supercomputing Frontiers and Innovations



2. Processing-in-Storage with ReCAM
The approach of this work is to design a device for storing big datasets and processing them

efficiently. The key properties of this design are scalability and massively parallel processing, pos-
sible due to the non-von Neumann architecture. Parallelism is achieved by in-situ processing of the
data, in contrast with NDP approaches. In this work, Resistive CAM (ReCAM), a non-volatile and
scalable storage device with resistive bitcells and a novel Processing-in-Storage (PRinS) paradigm
is presented. The concept is demonstrated in Fig. 1b.

2.1. ReCAM Crossbar Array

While ReRAM may employ one transistor and one memristor (1T1R) cells, ReCAM uses
2T2R cells, following [4]. Fig. 2 shows the resistive CAM crossbar. A bitcell, shown in Fig. 2a,
consists of two transistors and two resistive elements (2T2R). The KEY register contains a data
word to be written or compared against. The MASK register defines the active columns for write
and read operations, enabling bit selectivity. The TAG register (Fig. 2b) marks the rows that are
matched by the compare operation and may be affected by a parallel write. The TAG register
enables chaining multiple ReCAM ICs. In a conventional CAM, compare operation is typically
followed by a read of the matched data word. When in-storage processing involves arithmetic
operations, a compare is usually followed by a parallel write into the unmasked bits of all tagged
rows, and additional capabilities, such as read and reduction operations, are included [47].

Table 1. Operations included in ReCAM

Integer Instruction (32bit) Cycles
B ← A+B 256
C ← A+B 512

Shift down by one row 96
Row-wise Max (A,B) 64

Max Scalar (A) 64

Any computational expression can be efficiently implemented in ReCAM storage using line-
by-line execution of the truth table of the expression [7]. Arithmetic operations are typically
performed bit-serially. Table 1 lists several operations supported by ReCAM and the number of
cycles required by each operation. Shifting down a consecutive block of rows by one row position
requires three cycles per bit. First, compare-to-’1’ copies the source bit-column of all rows into
the TAG. Second, shift moves the TAG vector down by setting the shift-select line (Fig. 2b).
Third, write-’1’ copies the shifted TAG to the same bit-column. Shifting 32-bit numbers thus
requires 96 cycles. Addition (in-place or not) is performed in a bit-serial manner using a truth
table approach [7] (32 bits times 8 truth-table rows times 2 for compare and write amount to 512
cycles). Row-wise maximum compares in parallel two 32-bit numbers in each row. Max Scalar
tags all rows that contain the maximal value in the selected element. Additional operations, such
as parallel and reduction arithmetic, may be required for other algorithms.

R. Kaplan, L. Yavits, R. Ginosar

2017, Vol. 4, No. 3 103



Figure 2. Single ReCAM crossbar integrated circuit. (a) 2T2R ReCAM bitcell. (b) TAG logic

2.2. System Architecture

Conceptually, the ReCAM comprises hundreds of millions of rows, each serving as a compu-
tational unit. Due to power die restrictions, the entire array may be divided into multiple smaller
ICs, as in Fig. 3a. A row is fully contained within an IC. All ICs are daisy-chained for Shift and
Max Scalar operations. The ReCAM storage system uses a microcontroller (Fig. 3b) similar to [23].
It issues instructions, sets the KEY and MASK registers, handles control sequences and executes
read requests. In addition, the microcontroller may also perform some baseline processing, such as
normalization of the reduction tree results. ReCAM-based storage is scalable due to its inherent
parallelism. It allows for scalability by adding more ICs and increasing storage capacity at no
performance cost since compute capability is linearly scalable in the number of ICs. Therefore,
processing in-storage of large data sets does not require ReCAM for external communication, in
contrast to datacenter-scale storage.

Figure 3. Complete ReCAM-based Storage system, composed of (a) separate multiple daisy-
chained ICs and (b) Microcontroller. Connected to the multiple ICs with a reduction tree network

From Processing-in-Memory to Processing-in-Storage

104 Supercomputing Frontiers and Innovations



3. PRinS Application: Smith-Waterman DNA Sequence
Alignment

Searching for similarities in pairs of protein and DNA sequences (also called Pairwise Align-
ment) has become a routine procedure in Molecular Biology and it is a crucial operation in many
bioinformatic tools. The Smith-Waterman algorithm (S-W) [42] provides an optimal solution for
the pairwise sequence alignment problem, but requires a number of operations proportional to the
product of the two sequences. S-W identifies the optimal alignment of two sequences by comput-
ing a two-dimensional scoring matrix. Matchings base-pairs score positively, while mismatching
results in a negative score. The optimal alignment score of two sequences is the highest score in
the matrix. The S-W has two steps: scoring (to find the maximal alignment score) and trace-back
to construct the alignment. The first step is the most computationally demanding and is the focus
of this work.

Figure 4. Mapping the dynamic programming matrix on ReCAM. (a) A snapshot of the dynamic
programming matrix, shows the direction of progress for the parallel algorithm. (b) and (c) show
an example of organization of data in the ReCAM crossbar array at the beginning (b) and end
(c) of an iteration. AD[2] contents in (b) are being replaced with the new result (c). Bottom rows
in a crossbar IC are daisy-chained to the next IC in a shift instruction. The cell marked with X
contains the global maxmium score

Fig. 4a shows a snapshot of the scoring matrix during the algorithm execution. In a parallel
implementation, the matrix is filled along the main diagonal, and the entire anti-diagonal scores
are calculated in parallel. Fig. 4b shows the ReCAM memory map of two consecutive ICs at the
beginning of an iteration. A and B contain the sequences, where each base-pair takes 2-bit and
resides in a separate row. E and F are partial score results of the affine gap model [22]. AD[0],
AD[1] and AD[2] contain scoring matrix anti-diagonals. Scores are represented by 32-bit integers.
Shift operations in the PRinS implementation move data between rows inside an IC and between
daisy-chained ICs. Fig. 4c shows the ReCAM memory map at the end of an iteration and the
mapping between ReCAM and the scoring matrix. A complete description of the S-W PRinS
implementation appears in [28].

R. Kaplan, L. Yavits, R. Ginosar

2017, Vol. 4, No. 3 105



3.1. Simulation and Comparison to State-of-the-art

A cycle-accurate simulator of the ReCAM storage was constructed. Assumed operational
frequency is 1GHz. An in-house power simulator was used to evaluate the power consumption
of ReCAM. The latency and energy figures used by both the timing and power simulations are
obtained using SPICE simulation and are detailed in [47].

Table 2. Simulated ReCAM parameters

ReCAM Parameter Value
Active storage size 8GB

Frequency 1Ghz
Power per integrated circuit 200W
Number of integrated circuit 32

We simulate the ReCAM with the cycle-accurate simulator. Assumed ReCAM parameters
are listed in Table 2. The CUPS metric (Cell Updates per Second) is used to measure S-W
performance. Results are compared to other works in Table 3. The in-storage implementation is
compared to other implementations in different platforms: a 384-GPU cluster [37], the 128-FPGA
RIVYERA platform [45] and a four Xeon Phi implementation [33]. On ReCAM with a total of
8GB in 32 separate ICs, each 256MB and 8M rows, 53 TCUPS are demonstrated, computing a
total of 57×1012 scores. 4.7× faster than the best implementation. The table also shows computed
GCUPS/Watt ratios; ReCAM is close to twice better than the FPGA solution and 80× better
than the GPU system.

Table 3. Summary of state-of-the-art performance for S-W
scoring step in previous works and in ReCAM

Accelerator Xeon Phi FPGA GPU ReCAM
Performance (TCUPS) 0.23 6.0 11.1 53

Number of ICs 4 128 384 32
Power (kWatt) 0.8 1.3 100 6.6
GCUPS/Watt 0.3 4.7 0.1 8.0

Reference [33] [45] [37]

4. PRinS Application: In-Storage Data Deduplication
Deduplication is a data compression technique for eliminating redundant copies of repeated

data, designed to improve storage utilization. Files are split into multiple data blocks. Only unique
blocks are meant to be stored. With every new write, a data block is compared against all blocks
in the storage. If a match occurs, a pointer to the previously stored block is saved in lieu of the
data block. Given that the same data block may occur multiple times (match frequency is also
dependent on the block size), storage efficiency can be greatly improved [50].

Deduplication operates on the physical layer of the storage, managing a set of data structures
to expose a consecutive logical layer of storage. Each data block has two addresses, physical (PA)

From Processing-in-Memory to Processing-in-Storage

106 Supercomputing Frontiers and Innovations



and logical (LBA). Only the LBAs are exposed to the outside world, while physical addresses are
used internally by the deduplication mechanism.

4.1. Related Work: Conventional Deduplication

In a typical inline storage deduplication system (comprising disk / SSD storage, CPU and
DRAM for holding indices and tables), the basic deduplication data unit is termed a chunk. Upon
writing a new data chunk to storage, comparing the chunk contents (typically 4-8 KByte) to the
entire storage is infeasible. Instead, a much shorter representation, called a fingerprint or hash
(e.g., 20-byte SHA-1 hash) is calculated for each chunk, and the fingerprint is looked up in a chunk
index. If no entry is found, the chunk is stored, and a new entry is added to the chunk index. In
addition to the fingerprint, the index entry also holds at least the chunk’s PA and the number
of references to it (Fig. 5). If the fingerprint of the new chunk is found, its number of references
is incremented. An additional address translation table holds both the LBA and the PA of each
chunk.

Figure 5. Conventional deduplication scheme after writing the following sequence of (data block,
LBA): (A, x), (A, y), (B, y+1), (C, y+2). The storage, chunk index and address translation table
reside in the physical layer

Conventional implementations of deduplication require a dedicated computer within the stor-
age appliance. For example, a disk-based deduplication system [50] with usable capacity of 6TB
employs 15 SATA drives (connected in RAID6), 500GB each, and two dual-core CPUs with 8GB
of DRAM. It reaches 90% CPU utilization at peak I/O performance. All chunk metadata is stored
on disk, while the DRAM serves as a cache for chunk metadata, to reduce non-I/O storage access.
An expansion of that system [15] includes a flash-based SSD serving as fast storage for the entire
chunk metadata. The configuration is similar to [50], although smaller, with a RAID4 storage
comprising five hard drives, 500GB each, a dual-core CPU and 4GB of DRAM. As in the previous
work, DRAM serves as a small cache for chunk metadata. Xtremio’s X-brick [46] is an example of
an all-flash high-end large-scale contemporary storage appliance. Each of its units contains either
13 or 25 SSDs with an effective capacity of 3.2 or 7.2 TB, respectively. The appliance supports
up to 8 units and uses a quad-core processor with 256GB of DRAM.

At the other end of the spectrum, [9] shows an example of an in-SSD deduplication with the
purpose of enhancing the device endurance. The authors suggest using the device controller and

R. Kaplan, L. Yavits, R. Ginosar

2017, Vol. 4, No. 3 107



memory buffer to calculate the chunk fingerprint. Deduplication is implemented with an additional
indirection in the flash translation layer and uses the buffer as a small cache (similar to the DRAM
in [15] and [50]).

4.2. In-Storage ReCAM-Based Deduplication

The proposed ReCAM based inline deduplication requires neither external CPU, nor DRAM.
The deduplication is accomplished entirely within the ReCAM, using its in-storage processing
capabilities. ReCAM based deduplication is illustrated in Fig. 6. Each data block in ReCAM
storage is divided into S = (block size)/(ReCAM width) row-segments of ReCAM width size.
For example, for 256-bit wide ReCAM and 4KB blocks, the number of segments is S = 128. Data
blocks are stored in ReCAM in segment by segment fashion, in S consecutive ReCAM rows. The
first segment of each data block is marked by “1” in the block start bit column. The values of
block start in all other ReCAM rows of the data block are zero.

Figure 6. ReCAM based deduplication scheme, following the same sequence of writes as Fig. 5

Otherwise, the new block is unique. In that case it is written into the ReCAM along with its
(arbitrarily assigned, unique) PA. As described above, the block is written segment by segment
into S consecutive rows, and the first segment is marked “1” in the start block bit column.

4.2.1. ReCAM-Based Deduplication Algorithm

Fig. 7 shows the pseudo code for the ReCAM implementation of the three main deduplication
functions: write, read and delete.

During write, a new data block is compared (in parallel) against all data blocks stored in
the ReCAM. This is achieved by a sequence of one single compare followed by S − 1 continuous
compare operations. During the single compare, the start block bit column is masked-on, to enable
comparison of only the first segment of each data block in the storage. During the following S− 1
continuous compare, the result (TAG) of every consecutive compare is ANDed with the result of
the previous compare. Thus, in each compare, only the rows matched in the previous compare
are active, and the number of active rows drops progressively, significantly reducing the compare
energy. In both cases (unique and duplicate), the LBA of the data block is placed together with
its PA in an associative address translation table, which can be stored in a separate module of the

From Processing-in-Memory to Processing-in-Storage

108 Supercomputing Frontiers and Innovations



ReCAM storage. The translation table mapping can be optimized to eliminate storing multiple
copies of the same PA (of duplicated blocks). Overall, write takes O(S) cycles.

Read is done in two steps. First, the LBA of the data block is searched in the associative
address translation table. The corresponding PA is retrieved from the table. Second, the PA is
searched in the ReCAM storage (by compare), followed by read of the data block from the matched
ReCAM rows. It is accomplished by a series of S read operations, starting with the row marked
by “1” in the start block bit column. Overall, read operation takes O(S) cycles.

Deletion of a data block is performed in three steps. In the first step, the LBA is searched in
the address translation table; its PA is retrieved (to be used at the second step), and the entry at
the address translation table is deleted. In the second step, the PA (retrieved at the first step) is
searched again in the address translation table; if matched, it means that the deleted block has
no duplicates. In this case, it is deleted from the ReCAM storage, in O(S) cycles.

A complete description of the in-storage deduplication appears in [29].

4.3. In-Storage Deduplication Evaluations

We simulate the ReCAM based deduplication using the cycle-accurate CAM simulator intro-
duced in [47], employing ReCAM performance and power figures obtained by SPICE simulations.
During ReCAM execution we record and count all operations (compare, write and delete). The
simulated ReCAM size is 256GB, running at 1GHz. External data throughput is assumed non-
limiting (contemporary interconnect such as multi-lane PCIe is capable of supporting in excess of
2.2M IOPS).

We compare our ReCAM deduplication implementation with opendedup [41], which supports
inline deduplication and runs on top of the local filesystem. It allows for either variable or fixed-
size blocks and does not limit the amount of stored data. In our analysis, block sizes of 1KB,
2KB, 4KB and 8KB were used. In addition, we used opendedup on a server with four octa-core
Intel Xeon E5-4650 CPUs with 64GB of RAM and 800GB Intel SSD DC P3700 drive.

To evaluate the performance and energy consumption of opendedup,the file system benchmark
IOzone was used [36]. IOzone allows writing data chunks with fixed number of duplicate parts,
to control the degree of deduplication. All runs include writing of 50GB of data, with varying
percentage of duplicate blocks. Each test was repeated with inline deduplication on and off, to
isolate the CPU and DRAM energy consumptions during deduplication. Intel performance counter
monitor [13] was used for measurements.

As demonstrated by [50], real-world workloads have high variability in the percentage of
duplicate data. Our goal is to exhaustively examine ReCAM performance and energy consumption.
Therefore we use a suite of artificial workloads with a varying degree of duplication ratio. It allows
us to control both the workload and the mainline system parameters. Both opendedup and ReCAM
deduplicate all duplicate blocks.

The simulated write throughput as a function of percentage of deduplicated blocks is presented
in Fig. 8. The measured throughput of opendedup is also presented in Fig. 8 for comparison. The
ReCAM throughput increases with the percentage of duplicate blocks, as the number of writes
drops. For 8KB data blocks, ReCAM storage reaches 2.2M IOPS for 30% duplicate blocks. For
comparison, high-end all-flash X-brick storage appliance reaches 150K IOPS in 30% write, 70%
read operation [46], similar to the simulated performance of opendedup.

The simulated energy consumption of ReCAM-based deduplication as a function of percentage
of deduplicated blocks is presented in Fig. 9. The measured energy consumption of opendedup

R. Kaplan, L. Yavits, R. Ginosar

2017, Vol. 4, No. 3 109



1: function Dedup Write(logical address, data block)
2: Compare (data block) . in parallel for all data block stored in ReCAM
3: if NNZ TAG then . no match for data block
4: Compare(empty bit)
5: First tag()
6: Write (address, data, empty bit) . empty bit← 0
7: else . data block is duplicated
8: Read(logical address) . reads the address from matching data block in ReCAM
9: Save (new block address) . Save pointer to an existing block in an associative

address conversion table. Could be stored in a Se
10: end if
11: end function

1: function Dedup Read(logical address)
2: Compare (logical address) . find address in address conversion table
3: if NNZ TAG == 0 then . if found, block is deduplicated. Need to fetch its physical

address.
4: Read (physical address) . read physical address field from address conversion

table
5: Compare (pysical address) . find physical address in ReCAM
6: else . block is unique, address is its physical address
7: Compare (logical address)
8: end if
9: Read (data block) . read a data block

10: end function

1: function Dedup Delete(logical address)
2: Compare (logical address) . find address in address conversion table
3: if NNZ TAG == 0 then . match for address.
4: Remove (logical address) . if deduplicated, remove pointer from associative

address conversion table
5: else . data block is unique
6: Delete (logical address) . delete data block from ReCAM storage
7: end if
8: end function

Figure 7. Associative Write, Read and Delete in ReCAM-based data deduplication

(including the SSD energy consumption) is also presented in Fig. 9 for comparison. The energy
consumption of ReCAM-based deduplication is in the same range (slightly higher for smaller
blocks, lower for larger blocks).

From Processing-in-Memory to Processing-in-Storage

110 Supercomputing Frontiers and Innovations



Figure 8. Write performance for different block sizes vs. percentage of deduplicated blocks, for
data blocks of 1KB, 2KB, 4KB and 8KB (OPNDDP = Opendedup)

Figure 9. Deduplication energy for different block sizes vs. percentage of deduplicated blocks, for
data blocks of 1KB, 2KB, 4KB and 8KB while writing 50GByte of data

Conclusions
Processing-in-memory does not address the bandwidth bottleneck problem when solving big

data workloads. We propose a novel in-data processing-in-storage architecture based on Resis-
tive Content Addressable Memory (ReCAM). It enables mass storage with in-data associative
processing capabilities. ReCAM storage contains billions of data rows, each row serving as an as-
sociative processing unit. ReCAM requires no in-storage processing cores external to the storage
arrays. There is no data transfer outside the storage arrays. Therefore, the internal bandwidth of
the resistive memory based storage can be utilized to its fullest extent, considerably improving
computation throughput of processing-in-storage system.

The ReCAM architecture, capable of general purpose associative processing, has been applied
to challenging big data problems, such as the Smith-Waterman bioinformatics algorithm and
inline data deduplication. The paper also compares ReCAM to other implementations and shows
a significant improvement in performance and energy efficiency.

R. Kaplan, L. Yavits, R. Ginosar

2017, Vol. 4, No. 3 111



This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.

References
1. Ahn, J., Hong, S., Yoo, S., Mutlu, O., Choi, K.: A scalable processing-in-memory accelerator

for parallel graph processing. In: 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA). pp. 105–117 (June 2015), DOI: 10.1145/2749469.2750386

2. Ahn, J., Yoo, S., Mutlu, O., Choi, K.: Pim-enabled instructions: A low-overhead,
locality-aware processing-in-memory architecture. In: 2015 ACM/IEEE 42nd Annual In-
ternational Symposium on Computer Architecture (ISCA). pp. 336–348 (June 2015),
DOI: 10.1145/2749469.2750385

3. Akin, B., Franchetti, F., Hoe, J.C.: Hamlet architecture for parallel data reorganization in
memory. IEEE Micro 36(1), 14–23 (Jan 2016), DOI: 10.1109/MM.2015.129

4. Akinaga, H., Shima, H.: Resistive random access memory (reram) based on metal oxides.
Proceedings of the IEEE 98(12), 2237–2251 (Dec 2010), DOI: 10.1109/JPROC.2010.2070830

5. Azarkhish, E., Pfister, C., Rossi, D., Loi, I., Benini, L.: Logic-base interconnect design for
near memory computing in the smart memory cube. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 25(1), 210–223 (2017)

6. Bae, D.H., Kim, J.H., Kim, S.W., Oh, H., Park, C.: Intelligent ssd: A turbo for big
data mining. In: Proceedings of the 22Nd ACM International Conference on Information
& Knowledge Management. pp. 1573–1576. CIKM ’13, ACM, New York, NY, USA (2013),
DOI: 10.1145/2505515.2507847

7. Balasubramonian, R., Chang, J., Manning, T., Moreno, J.H., Murphy, R., Nair, R., Swanson,
S.: Near-data processing: Insights from a micro-46 workshop. IEEE Micro 34(4), 36–42 (2014)

8. Boboila, S., Kim, Y., Vazhkudai, S.S., Desnoyers, P., Shipman, G.M.: Active flash: Out-of-
core data analytics on flash storage. In: 012 IEEE 28th Symposium on Mass Storage Systems
and Technologies (MSST). pp. 1–12 (April 2012), DOI: 10.1109/MSST.2012.6232366

9. Chen, F., Luo, T., Zhang, X.: Caftl: A content-aware flash translation layer enhancing the
lifespan of flash memory based solid state drives. In: Proceedings of the 9th USENIX Con-
ference on File and Stroage Technologies. pp. 6–6. FAST’11, USENIX Association, Berkeley,
CA, USA (2011), http://dl.acm.org/citation.cfm?id=1960475.1960481

10. Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., Xie, Y.: Prime: A novel
processing-in-memory architecture for neural network computation in reram-based main mem-
ory. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). pp. 27–39 (June 2016), DOI: 10.1109/ISCA.2016.13

11. Cho, B.Y., Jeong, W.S., Oh, D., Ro, W.W.: Xsd: Accelerating mapreduce by harnessing the
gpu inside an ssd. In: Proceedings of the 1st Workshop on Near-Data Processing (2013)

From Processing-in-Memory to Processing-in-Storage

112 Supercomputing Frontiers and Innovations



12. Cho, S., Park, C., Oh, H., Kim, S., Yi, Y., Ganger, G.R.: Active disk meets flash: A case for
intelligent ssds. In: Proceedings of the 27th International ACM Conference on International
Conference on Supercomputing. pp. 91–102. ICS ’13, ACM, New York, NY, USA (2013),
DOI: 10.1145/2464996.2465003

13. Corporation, I.: Intel performance counter moniter. www.intel.com/software/pcm (2017),
accessed: 2017-07-15

14. De, A., Gokhale, M., Gupta, R., Swanson, S.: Minerva: Accelerating data analysis in next-
generation ssds. In: 21st IEEE Annual International Symposium on Field-Programmable
Custom Computing Machines, FCCM 2013, Seattle, WA, USA, April 28-30, 2013. pp. 9–
16. IEEE Computer Society (2013), http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=6545868

15. Debnath, B., Sengupta, S., Li, J.: Chunkstash: Speeding up inline storage deduplication
using flash memory. In: Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference. pp. 16–16. USENIXATC’10, USENIX Association, Berkeley, CA, USA
(2010), http://dl.acm.org/citation.cfm?id=1855840.1855856

16. Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., Burger, D.: Dark silicon
and the end of multicore scaling. In: Proceedings of the 38th Annual International Sympo-
sium on Computer Architecture. pp. 365–376. ISCA ’11, ACM, New York, NY, USA (2011),
DOI: 10.1145/2000064.2000108

17. Farmahini-Farahani, A., Ahn, J.H., Morrow, K., Kim, N.S.: Nda: Near-dram acceleration
architecture leveraging commodity dram devices and standard memory modules. In: 2015
IEEE 21st International Symposium on High Performance Computer Architecture (HPCA).
pp. 283–295 (Feb 2015), DOI: 10.1109/HPCA.2015.7056040

18. Foster, C.C.: Content Addressable Parallel Processors. John Wiley & Sons, Inc., New York,
NY, USA (1976)

19. Gao, M., Kozyrakis, C.: Hrl: Efficient and flexible reconfigurable logic for near-data process-
ing. In: 2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA). pp. 126–137 (March 2016), DOI: 10.1109/HPCA.2016.7446059

20. Gao, M., Ayers, G., Kozyrakis, C.: Practical near-data processing for in-memory analytics
frameworks. In: Proceedings of the 2015 International Conference on Parallel Architecture
and Compilation (PACT). pp. 113–124. PACT ’15, IEEE Computer Society, Washington, DC,
USA (2015), DOI: 10.1109/PACT.2015.22

21. Gokhale, M., Holmes, B., Iobst, K.: Processing in memory: the terasys massively parallel
pim array. Computer 28(4), 23–31 (Apr 1995), DOI: 10.1109/2.375174

22. Gotoh, O.: An improved algorithm for matching biological sequences. Journal of Molecular
Biology 162(3), 705 – 708 (1982)

23. Guo, Q., Guo, X., Patel, R., Ipek, E., Friedman, E.G.: Ac-dimm: Associative com-
puting with stt-mram. SIGARCH Comput. Archit. News 41(3), 189–200 (Jun 2013),
DOI: 10.1145/2508148.2485939

R. Kaplan, L. Yavits, R. Ginosar

2017, Vol. 4, No. 3 113



24. Hall, M., Kogge, P., Koller, J., Diniz, P., Chame, J., Draper, J., LaCoss, J., Granacki, J.,
Brockman, J., Srivastava, A., Athas, W., Freeh, V., Shin, J., Park, J.: Mapping irregular
applications to diva, a pim-based data-intensive architecture. In: Proceedings of the 1999
ACM/IEEE Conference on Supercomputing. SC ’99, ACM, New York, NY, USA (1999),
DOI: 10.1145/331532.331589

25. Jo, Y.Y., Cho, S., Kim, S.W., Oh, H.: Collaborative processing of data-intensive algo-
rithms with cpu, intelligent ssd, and gpu. In: Proceedings of the 31st Annual ACM Sym-
posium on Applied Computing. pp. 1865–1870. SAC ’16, ACM, New York, NY, USA (2016),
DOI: 10.1145/2851613.2851741

26. Jun, S.W., Liu, M., Lee, S., Hicks, J., Ankcorn, J., King, M., Xu, S., Arvind: Bluedbm:
An appliance for big data analytics. In: Proceedings of the 42Nd Annual International Sym-
posium on Computer Architecture. pp. 1–13. ISCA ’15, ACM, New York, NY, USA (2015),
DOI: 10.1145/2749469.2750412

27. Kang, Y., s. Kee, Y., Miller, E.L., Park, C.: Enabling cost-effective data processing with smart
ssd. In: 2013 IEEE 29th Symposium on Mass Storage Systems and Technologies (MSST). pp.
1–12 (May 2013), DOI: 10.1109/MSST.2013.6558444

28. Kaplan, R., Yavits, L., Ginosar, R., Weiser, U.: A resistive cam processing-in-
storage architecture for dna sequence alignment. IEEE Micro 37(4), 20–28 (2017),
DOI: 10.1109/MM.2017.3211121

29. Kaplan, R., Yavits, L., Morad, A., Ginosar, R.: Deduplication in resistive content ad-
dressable memory based solid state drive. In: 2016 26th International Workshop on Power
and Timing Modeling, Optimization and Simulation (PATMOS). pp. 100–106 (Sept 2016),
DOI: 10.1109/PATMOS.2016.7833432

30. Kogge, P.M., b. Brockman, J., Freeh, V.W.: Pim architectures to support petaflops
level computation in the htmt machine. In: Innovative Architecture for Future Genera-
tion High-Performance Processors and Systems (Cat. No.PR00650). pp. 35–44 (Dec 1999),
DOI: 10.1109/IWIA.1999.898841

31. Lipovski, G.J., Yu, C.: The dynamic associative access memory chip and its applica-
tion to simd processing and full-text database retrieval. In: Records of the 1999 IEEE
International Workshop on Memory Technology, Design and Testing. pp. 24–31 (1999),
DOI: 10.1109/MTDT.1999.782680

32. y. Liu, T., Yan, T.H., Scheuerlein, R., Chen, Y., Lee, J.K., Balakrishnan, G., Yee, G., Zhang,
H., Yap, A., Ouyang, J., Sasaki, T., Al-Shamma, A., Chen, C., Gupta, M., Hilton, G.,
Kathuria, A., Lai, V., Matsumoto, M., Nigam, A., Pai, A., Pakhale, J., Siau, C.H., Wu,
X., Yin, Y., Nagel, N., Tanaka, Y., Higashitani, M., Minvielle, T., Gorla, C., Tsukamoto,
T., Yamaguchi, T., Okajima, M., Okamura, T., Takase, S., Inoue, H., Fasoli, L.: A 130.7-
hboxmm2 2-layer 32-gb reram memory device in 24-nm technology. IEEE Journal of Solid-
State Circuits 49(1), 140–153 (Jan 2014), DOI: 10.1109/JSSC.2013.2280296

33. Liu, Y., Schmidt, B.: Swaphi: Smith-waterman protein database search on xeon phi co-
processors. In: 2014 IEEE 25th International Conference on Application-Specific Systems,
Architectures and Processors. pp. 184–185 (June 2014), DOI: 10.1109/ASAP.2014.6868657

From Processing-in-Memory to Processing-in-Storage

114 Supercomputing Frontiers and Innovations



34. Nair, R., Antao, S.F., Bertolli, C., Bose, P., Brunheroto, J.R., Chen, T., Cher, C.Y., Costa,
C.H.A., Doi, J., Evangelinos, C., Fleischer, B.M., Fox, T.W., Gallo, D.S., Grinberg, L.,
Gunnels, J.A., Jacob, A.C., Jacob, P., Jacobson, H.M., Karkhanis, T., Kim, C., Moreno,
J.H., O’Brien, J.K., Ohmacht, M., Park, Y., Prener, D.A., Rosenburg, B.S., Ryu, K.D., Sal-
lenave, O., Serrano, M.J., Siegl, P.D.M., Sugavanam, K., Sura, Z.: Active memory cube: A
processing-in-memory architecture for exascale systems. IBM Journal of Research and Devel-
opment 59(2/3), 17:1–17:14 (March 2015), DOI: 10.1147/JRD.2015.2409732

35. Nitin, Thottethodi, M., Vijaykumar, T., et al.: Rowcore: A processing-near-memory archi-
tecture for big data machine learning. Purdue ECE Technical Report 473 (2016)

36. Norcott, W.D., Capps, D.: Iozone filesystem benchmark. http://www.iozone.org/ (2003),
accessed: 2017-07-15

37. d. O. Sandes, E.F., Miranda, G., Martorell, X., Ayguade, E., Teodoro, G., Melo, A.C.M.:
Cudalign 4.0: Incremental speculative traceback for exact chromosome-wide alignment in
gpu clusters. IEEE Transactions on Parallel and Distributed Systems 27(10), 2838–2850 (Oct
2016), DOI: 10.1109/TPDS.2016.2515597

38. Paul, S., Bhunia, S.: A scalable memory-based reconfigurable computing framework for
nanoscale crossbar. IEEE Transactions on Nanotechnology 11(3), 451–462 (May 2012),
DOI:10.1109/TNANO.2010.2041556

39. Potter, J.L., Meilander, W.C.: Array processor supercomputers. Proceedings of the IEEE
77(12), 1896–1914 (Dec 1989), DOI: 10.1109/5.48831

40. Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M.,
Williams, R.S., Srikumar, V.: Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. In: 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA). pp. 14–26 (June 2016), DOI: 10.1109/ISCA.2016.12

41. Silverberg, S.: Opendedup sdfs. http://opendedup.org/odd/ (2010), accessed: 2017-07-15

42. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of
molecular biology 147(1), 195–197 (1981), DOI: 10.1016/0022-2836(81)90087-5

43. Suh, J., Li, C., Crago, S.P., Parker, R.: A pim-based multiprocessor system. In: Proceedings
15th International Parallel and Distributed Processing Symposium. IPDPS 2001. pp. 6 pp.–
(Apr 2001), DOI: 10.1109/IPDPS.2001.924932

44. Sura, Z., Jacob, A., Chen, T., Rosenburg, B., Sallenave, O., Bertolli, C., Antao,
S., Brunheroto, J., Park, Y., O’Brien, K., Nair, R.: Data access optimization in a
processing-in-memory system. In: Proceedings of the 12th ACM International Confer-
ence on Computing Frontiers. pp. 6:1–6:8. CF ’15, ACM, New York, NY, USA (2015),
DOI: 10.1145/2742854.2742863

45. Wienbrandt, L.: The FPGA-Based High-Performance Computer RIVYERA for Appli-
cations in Bioinformatics, pp. 383–392. Springer International Publishing, Cham (2014),
DOI: 10.1007/978-3-319-08019-2 40

R. Kaplan, L. Yavits, R. Ginosar

2017, Vol. 4, No. 3 115



46. XtremIO, E.: X-Brick tech spec. https://www.emc.com/collateral/data-sheet/
h12451-xtremio-4-system-specifications-ss.pdf (2015), accessed: 2017-07-06

47. Yavits, L., Kvatinsky, S., Morad, A., Ginosar, R.: Resistive associative processor. IEEE
Computer Architecture Letters 14(2), 148–151 (July 2015), DOI: 10.1109/LCA.2014.2374597

48. Yavits, L., Morad, A., Ginosar, R.: Computer architecture with associative processor replac-
ing last-level cache and simd accelerator. IEEE Transactions on Computers 64(2), 368–381
(Feb 2015), DOI: 10.1109/TC.2013.220

49. Zhang, D., Jayasena, N., Lyashevsky, A., Greathouse, J.L., Xu, L., Ignatowski, M.: Top-
pim: Throughput-oriented programmable processing in memory. In: Proceedings of the 23rd
International Symposium on High-performance Parallel and Distributed Computing. pp. 85–
98. HPDC ’14, ACM, New York, NY, USA (2014), DOI: 10.1145/2600212.2600213

50. Zhu, B., Li, K., Patterson, H.: Avoiding the disk bottleneck in the data domain deduplication
file system. In: Proceedings of the 6th USENIX Conference on File and Storage Technologies.
pp. 18:1–18:14. FAST’08, USENIX Association, Berkeley, CA, USA (2008), http://dl.acm.
org/citation.cfm?id=1364813.1364831

From Processing-in-Memory to Processing-in-Storage

116 Supercomputing Frontiers and Innovations


