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Abstract 
Networks on a Chip (NoC) commonly employ an 

irregular mesh topology because of variations in module 
sizes and shapes. Consequently, low cost routing 
techniques such as XY routing are inadequate, raising the 
need for low cost alternatives. In this paper we first 
define a hardware resource based cost model for 
comparing different routing mechanisms. Next, we 
propose three hardware efficient routing methods for 
irregular mesh topology NoCs. Our methods combine a 
fixed routing function (such as XY or “don’t turn”) and 
reduced size routing tables based on the known 
distributed and source routing techniques. For each 
method, we develop path selection algorithms that 
minimize the overall cost. Finally, we demonstrate by 
simulations a significant cost saving compared to 
standard solutions and examine the scaling of cost 
savings with the growing NoC size.  

1. INTRODUCTION 
Modern VLSI systems on Chip (SoCs) comprise many 

system modules. According to technology projections 
[1,2] the number of modules will grow to several 
hundreds in the near future. NoCs were shown to be 
effective for solving the global interconnect problem 
among modules [3-10]. NoC power and area saving along 
with QoS considerations have led to the common use of 
mesh topology along with static, destination based 
shortest path (SP) routing, using minimal amount of 
router logic [4-7]. In a regular mesh it is easy to 
accomplish shortest path routing, by employing a simple 
variation of a deadlock free dimension order routing [11] 
such as X-Y [4-7]. XY is also a “table-less” routing 
discipline whereby each packet is routed first in an “X” 
direction and then along the perpendicular dimension.  

Practical NoC topologies become irregular meshes 
( Figure 1) because of modules shape and size variability 
in VLSI layouts and the need to physically separate 
between the modules internals and the NoC 
infrastructure. Nevertheless, to the best of our knowledge 
no previous studies addressed the problem of efficient 
static routing in irregular mesh NoCs.  

 
Figure 1.  SOC  modules interconnected by irregular mesh NoC 

Our definition of an irregular mesh topology is that it is 
identical to the full mesh including the addresses used to 
identify the various modules, except that that some 
routers and links are missing (Figure 1). Packet routing in 
such NoCs resembles routing in a labyrinth, since some 

links are missing and may lead to a dead-end. Therefore, 
a simple X-Y scheme cannot be employed and different 
routing techniques need to be applied. In other networks, 
routing in irregular topologies is typically accomplished 
using routing tables (RT). The RTs can be located in 
routers (distributed routing) or in sources (source 
routing). RT size and the corresponding power and area 
costs grow with the network size. Moreover, the time 
required to access each table, which affects NoC 
performance, depends on its size and thus on the network 
size. 

We introduce a simple metric for the estimation of 
VLSI cost (area and power) of NoC routing based on the 
total size of the routing tables. Then, we develop novel, 
hardware-efficient routing techniques that reduce the 
VLSI cost of routing in irregular–mesh topology NoCs. 
The techniques are based on a combination of a fixed 
routing function (such as “route XY” or “don’t turn”) and 
reduced routing tables for both distributed and source 
routing approaches. The entries in the reduced routing 
tables are created only for destinations whose routing 
decisions differ from the output of the routing function. 
This way, we significantly reduce the area and power 
costs of full routing tables in most cases. Our routing 
algorithms perform routing path extraction for all source-
destination pairs, together with minimization of the VLSI 
cost of the packet routing logic. We do not treat the 
deadlock problem, since there are standard ways to solve 
it after all static routes are selected [11]. Random 
simulations of different topologies and communication 
scenarios are used for comparing and estimating the VLSI 
cost savings obtained by different algorithms. We also 
check the scaling of the VLSI cost savings in NoCs with 
growing numbers of modules and compare the scalability 
of distributed and source routing techniques in NoC with 
growing number of destinations. 

2. TRADITIONAL STATIC ROUTING 
TECHNIQUES 

Traditional static routing techniques can be classified 
according to where routing information is held and where 
routing decisions are made.  

In distributed routing (DR) each packet carries the 
destination address, e.g. the X-Y coordinates of the 
destination router or a module number. The routing 
decision can be implemented in each router either by 
looking up the destination address in a routing table 
(memory) or by executing a routing function in hardware. 
Using this method, each network router contains a 
predefined routing table or routing function logic whose 
input is the destination address of the packet and its 
output is the routing decision. When the packet arrives at 
the input port of the router, its output port is looked up in 
the table or calculated by the routing logic according to 
the destination address carried by the packet. The routing 
information regarding each destination is captured in the 
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tables (or logic) of each router along the path.  
In source routing (SR) the pre-computed routing tables 

are stored in the network interface of the system modules. 
When a source node transmits a packet, it looks up the 
source routing information according to the destination 
address at the SR table and includes it in the header of the 
packet. Each packet carries in its header the routing 
command for each hop along its path. When the packet 
arrives at a network router, its routing output port is 
extracted from its header routing field. The routing field 
is then shifted in order to expose the relevant routing 
command for the next router on its path.  
2.1. VLSI Implementation and Cost 

As shown above, both distributed and source routing 
techniques make extensive use of routing tables. DR 
tables are located at each router, indexed by packet 
destination address and containing output port values. SR 
tables are located in each source, indexed by packet 
destination address and containing sequences of routing 
commands, one for each hop along the routing path.  

Simple RTs are implemented as tables having as many 
entries as there are nodes in the network. However, this is 
inefficient, since an all-to-all communication pattern is 
very unlikely and the actual set of destinations used at 
each source is a small fraction of the number of modules.  

 
Figure 2. Reduced ROM Implementation of a Static Routing Table 

More efficient implementations are the reduced sized 
ROM ( Figure 2), or simple Boolean logic implementing 
an equivalent routing function. Both schemes only 
implement the necessary table entries for each node. The 
reduced ROM implementation is equivalent to a two-level 
implementation of a routing function by a Programmable 
Logic Array (PLA).  

The total size (in bits) of such a RT for both DR and 
SR schemes can be estimated by the total size of the 
entries and the look-up logic. The total size of the entries 
of table i can be estimated by the sum of the sizes of each 
entry (li,j). The size of the look-up logic can be estimated 
by the address size, which is ( )2log N , where N is the 

total number of modules in the network, multiplied by the 
number of entries in the table (ni). Thus, the total area 
cost can be estimated by summing the costs of all RTs in 
the network:  
 ( )2

{NoC tables} {entriesof table i}
log Narea i i j

i j
Cost n l

∈ ∈

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑  (1) 

The dynamic power dissipated in these tables can be also 

estimated by the size of the tables, since the total 
capacitance is proportional to the number of entries and 
the size of the entry. The same is true regarding static 
leakage power, since it is proportional to the number of 
leaking devices. Total power of RTs in the network can 
thus be estimated by the following formula:  

 power areaCost KCost=  (2) 
where K is a constant. 

Several previous works addressed memory complexity 
of routing mechanisms. Interval routing [12] was 
proposed as a way to reduce RT size in large networks by 
grouping the set of destination addresses that use the 
same output port into intervals of consecutive addresses. 
Gomez et al.[13] extended interval routing for regular 
meshes and tori network topologies. Interval routing may 
be used in combination with our scheme. A source 
routing scheme named “street-sign routing” minimizes 
source-routing information [14]. It resembles driving 
directions: Only the router name of the next turn and the 
direction of the turn are included in the packet header. 

3. HARDWARE-EFFICIENT ROUTING METHODS 
In this section we present several hardware-efficient 

routing techniques for irregular topology NoCs. Our DR 
methods are based on the following observations. 
Traditional DR techniques are designed to support all 
possible source-destination pairs, general topologies and 
path diversity. These features, which are not required in 
common SoC architectures, incur excessive VLSI costs. 
On the other hand, function-based routing (i.e. XY) 
constrains network topology and path diversity, but 
results in considerable savings in VLSI costs. 

We propose a combination of a low cost fixed routing 
function and reduced size DR routing tables. Entries are 
created in the routing table only for destinations whose 
routing decisions differ from the output of the routing 
function. That way, table cost is significantly reduced in 
most cases. To that end, we propose two routing 
techniques, Turns Table (TT) and XY-Deviation Table 
(XYDT). The third method uses an approach similar to 
SR. In general SR, the message header carries a routing 
tag for every node along the traversed path. This requires 
large storage at the sources. Our Source Routing for 
Deviation Points (SRDP) combines a fixed function (like 
"don’t turn", or "XY") with a reduced list of tags that are 
used only at specific deviation points (DP). 
3.1. Turns-Table (TT) Routing  

In TT routing, an entry in the routing table (turn-table) 
exists if there is a turn in at least one path passing through 
this router towards the destination ( Figure 3). 

 
Figure 3. Routing paths toward destination D: (a) no path to D makes 

a turn (b) an entry in Turns-Table is required because some paths to 
D must make a turn in this router 
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When a packet arrives at the router, its destination is 
looked up in the table. If an entry exists, the routing is 
performed accordingly; otherwise, the packet proceeds 
without a turn. This eliminates many entries and reduces 
the area and power compared to a full routing table. 
 
TT problem definition: 

Among all SPs between all sources and destination D, 
choose a covering set of paths that minimize the total 
number of entries in the network turns-tables.  

 
Figure 4. Routing paths towards D: For a path from S1 it is better to 

prefer a path with more turns via X than over a path via Y  

We develop a routing algorithm that finds shortest 
routing paths (preferred from power considerations [4]) 
while taking into consideration the “don’t turn” routing 
function in the routers in order to minimize the overall 
number of routing table entries in the network. Since an 
entry is created only if there is a turn at a router along 
some path to the destination, the most intuitive solution 
would be to find shortest routing paths that make the least 
number of turns on their way from source to destination. 
Additional minimization of the number of TT entries can 
be achieved by exploiting the already existing routing 
entries in other routing paths to the same destination. 
 Figure 4 shows example where a routing path which 
makes more turns results in a smaller number of turns-
table entries in the network. There are two traffic sources 
S0 and S1 and destination D. There is only one possibility 
for a minimum turns SP from S0 to S1 resulting in a path 
that passes through node X ( Figure 4 a) and creates turns-
table entries (dashed circles) in three intermediate routers 
on its way to D. On the other hand, there are two possible 
SPs from S1 to D ( Figure 4 b). One passes through Y, 
makes two turns and creates two additional routing 
entries on its way. Another possible routing path, which is 
preferable, passes via X. It is also SP and makes more 
turns than its alternative. However, it creates no 
additional routing entries in the network, since it utilizes 
the already existing entries that were created by the 
previously established path from S0 to D.  

 
TT Routing Algorithm 

The algorithm uses the idea of aggregating routing 
paths from different sources whenever possible. Using 
this heuristic, the algorithm utilizes the already created 
paths (and entries) and does not add additional entries 
over parallel extra routing. First, we define a Turns-graph 
(TG), an auxiliary graph to be used by the TT algorithm. 

 
Figure 5. TG example: (a) Original network; (b) Resulting TG 

Definition of Turns-Graph(TG): 
The vertices of the TG are the ports of the original 

network nodes and its edges are the original network 
links in four possible directions (+x, -x, +y, -y) and all 
possible interconnections (turns) among the ports of each 
network node ( Figure 5). The weight of the edge that is 
an original network link is a large number K (larger than 
the maximum number of turns in any SP in the original 
network). The weights of the interconnection edges 
among the ports inside each router are set as follows: if 
the edge in TG consists a turn via the router, it is set to ‘1’ 
(dashed lines), otherwise, it is set to ‘0’ (dotted line). 

The TT routing algorithm is formally described in 
 Figure 6. The algorithm is performed for each destination 
node. It uses a greedy approach, iteratively selecting a 
source node (for paving a path from it to a destination) 
that adds the minimal number of turns-table entries 
(heuristic) to the network along its shortest path to the 
destination or to an already created (paved) path. The 
algorithm starts by constructing a TG and initializing 
node attributes. For each node v, the following attributes 
are maintained: a pointer to the predecessor node, the 
distance of that node from the destination in TG, a 
Boolean variable which retains information about 
whether the node has already created (paved) a path to 
destination D. All network nodes except D are initialized 
as not-reached (lines 2-3). Then the algorithm repeatedly 
paves routing paths from all sources to the destination 
(lines 4-12). The process of paving the path starts from 
relaxing the distances of all non-paved nodes in the 
graph. The process of relaxing (line 5) improves the 
distance of each non-paved node to the destination and 
updates the predecessor information in each node, until 
no distance in the network can be improved. At that point, 
the distance of each non-paved node consists of the 
distance in hops to the destination multiplied by N, plus 
the number of turn-entries that should be inserted into the 
network tables for this path. Then the non-paved source 
with the shortest distance among all non-paved sources is 
selected, and the path is paved from that source to the 
destination. The process of paving the path includes 
marking the nodes on the path as paved (line 9) and 
resetting its distance from the destination to only the 
distance in hops multiplied by N (line 10). The distances 
of the paved nodes do not include the number of turns to 
the destination, since any future path (and related 
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distances) that will pass through these nodes will not 
create any additional routing entries to destination D. The 
algorithm terminates when all sources have a paved path 
to D. 

 
Figure 6. TT Routing Algorithm- for one destination D 

Theorem 3.1: 
In each iteration, the TT algorithm selects a non-paved 

source S and paves a shortest path from it to D (or to an 
already paved path to D) which makes the minimal 
number of turns among all other shortest paths from all 
other non-paved sources to D (or to an already paved 
path to D)1. 

Then, for each destination D the routing paths from all 
source nodes towards D in the original network are 
extracted by backtracking using the predecessor 
information in each node. The turns along the paths are 
found and the TT entries for each turn are inserted in the 
network nodes along the routing paths. In addition, there 
is a need to store the direction of the first routing hop for 
each destination in the source nodes. We use a source 
default direction technique for minimizing the amount of 
routing entries in the sources, whereby a default routing 
direction (output port number) is stored in the source 
router for all packets originating from it. A routing entry 
is inserted into the source router table only for 
destinations that the first routing step towards them 
deviates from the default routing direction in the source.  
3.2. XY-Deviation Table (XYDT) Routing  

In the XYDT method, an entry in the routing table 
towards destination D exists only if the next hop from this 
router deviates from the next hop calculated by the X-Y 
routing function. We assume that packets carry the X-Y 
coordinates of the destination. When a packet enters a 
router its next hop is looked up in the table. If it is found 
it is routed according to the table. Else, the hardware 
function calculates the exit port for that packet.  

Clearly, the path that makes the minimum number of 
routing steps that deviate from XY would result in a 
minimal total number of table entries in the network. In 
addition, as already mentioned, we consider only shortest 
routing paths. Therefore the XYDT path extraction 
algorithm solves the following problem.  
 

 
1 All proofs are omitted due to space limitations 

XYDT Problem definition: 
Among all SPs between each S-D pair, select a path 

that makes a minimal possible number of routing steps 
which deviate from XY routing policy. 
XYDT Routing Algorithm: 

The algorithm performs a topological sort of the 
network nodes by their distance from the destination. For 
all nodes at same distance from the destination (h+1) the 
algorithm assigns an XY-correlated SP routing step 
towards a destination if possible, otherwise it assigns any 
other SP routing step. The algorithm is formally described 
in  Figure 7.  

All nodes except the destination are initialized as not-
reached. The destination node is initialized as reached. 
The algorithm starts from D and runs iteratively over the 
increasing number of hops h. In each iteration, the 
algorithm sets the predecessors to the nodes that were 
reached in the previous iteration (in h hops from 
destination) for later routing path extraction. Then 
iteratively, the non-reached nodes that can be reached in 
h+1 hops from destination are marked as reached in h+1 
hops and their predecessors would be set in the next 
iteration. The function set_xy_Predecessor (line 6) is 
applied to a newly reached node, setting its XY-correlated 
predecessor on SP to destination if it exists; otherwise it 
sets any other existing SP predecessor. The algorithm 
terminates when all nodes are reached. 

 
Figure 7. XYDT routing algorithm – for one destination D 

Theorem 3.2: 
Among all SPs between each S-D pair, the XYDT 

algorithm selects a path which makes a minimal possible 
number of routing steps that deviate from XY routing 
policy. 

The algorithm in  Figure 7 is performed for each 
destination. Then, for each destination D the routing paths 
from all source nodes to D in the original network are 
extracted by backtracking using the predecessor 
information in each node. The XY deviations along the 
paths are found and the XYDT entries for each deviation 
are inserted in the network nodes along the routing paths. 
The algorithm does not insert entries in case of deviation 
when the following two conditions coexist: (i) the XY-
correlated output port is missing and (ii) the routing path 
continues according to the YX regime. Consider the 
examples in  Figure 8. Applying XYDT in network (a) 

1) : ( ) ,  ( )v V Dist v P v nil∀ ∈ = ∞ = ;  ( ) 0Dist D =  

2) 1{ },  {}, 0;h hR D R h+= = =  

3) while (!( : ( )v V Dist v∀ ∈ < ∞ )) 

4)  foreach node  h hv R∈ : 

5)   set_xy_Predecessor( hv ) 

6)   foreach v’ in 1 hop from hv : 

7)    if ( ')Dist v = ∞ : 1 { '}hR v+ ← , ( ') 1Dist v h= +  
8)    end if    
9)   end foreach 
10) end foreach 
11) 1 1,  {}, 1h h hR R R h h+ += = = +  
12)end while 

1) construct a Turns-Graph TG 
2) : ( ) ,  ( ) , ( )v V Dist v Paved v False P v nil∀ ∈ = ∞ = =  

3)  ( ) ;  Dist( ) 0Paved D True D= =  

4) while (!( : ( )s Sources Paved s true∀ ∈ = )) 
5)  Relax_not_paved(D,TG) 
6)  Pick Smin ( min',s s Sources∀ ∈ ):/*Heuristic*/  

  ( ) ( ) ( ) ( )min min' 'Dist s Dist s Paved s Paved s false< ∩ = =  

7)  Pave_Path(Smin,D) 
8)  foreach node v’ on Path: 
9)   Paved(v’) = True; 
10)  Distance(v’) = hop_num*N; 
11) end foreach 
12)end while 
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results in zero routing entries because proceeding 
upwards from node Z is the only choice that also matches 
the Y-X regime (doesn’t require an entry). On the other 
hand, applying XYDT in (b) results in one entry in the 
RT of node Z, since the path contradicts XY. 

 
Figure 8.  XYDT Examples: (a) No routing table entries (b)One routing 

table entry in node Z towards destination D 

3.3. Source Routing for Turning-Points (SRDP) 
SRDP is an SR method intended to reduce the size of 

the full SR headers that are stored in the sources. It 
combines a fixed routing function (we show XY 
example) with a partial list of SRDP tags which are only 
used at specific nodes, termed deviation points (DP). 

SRDP tag is a list of routing commands for each DP 
node on the traversed path. The size of the SRDP tag is 
two bits for a DP node that implements all ports and less 
in cases when some port are missing. DP nodes are 
network nodes such that a direction of at least one routing 
path through them deviates from the decision of the fixed 
routing function (i.e. XY). SRDP algorithm marks these 
nodes as DPs and any packet (for each destination) that 
traverses them would have to carry an SRDP routing tag 
for these nodes. Usually, nodes that become DPs are 
routers that do not implement all ports (Z in  Figure 8 a) or 
routers that lead to a dead-end when using a fixed routing 
function, because of a mesh irregularity on the reminder 
of the path (Z in  Figure 8b). 

For example, let us apply the SRDP method on the 
example illustrated in  Figure 8b. The example shows a 
network with two sources S0 and S1 and a destination D. 
Applying a traditional SR scheme would result in six 
routing tags because S0 and S1 are both three hops from 
the destination. Applying the SRDP scheme would reduce 
the amount of SR information to only one tag, since the 
path from S0 to D can utilize XY function at each hop 
and the path from S1 to D deviates from XY in only one 
hop (node Z). Therefore node Z is defined as a DP and 
requires one SR tag. 

Similar to the XYDT, when the SRDP routing method 
is used, the path that makes minimum route deviations 
from XY results in the minimal total number of DPs and 
consequently minimizes the total amount of SRDP 
routing headers. Therefore, the problem of SRDP is 
equivalent to the problem of XYDT (see Section  3.2). 
SRDP Routing Algorithm: 

The algorithm is formally described in  Figure 9. First 
SRDP applies the XYDT algorithm to all destinations in 
order to create XY-correlated routing paths between all S-
D pairs (lines 1-6). Then, all routing paths are analyzed, 
and nodes that at least one routing step through them 
deviates from the predefined routing function are marked 
as DPs (line 7). When all DPs are found, SRDP headers 
are calculated for all routing paths (lines 8-10). 

 
Figure 9. SRDP routing algorithm for all S-D pairs 

4. PERFORMANCE COMPARISON 
In this section we compare existing table-based routing 

techniques (DR and SR) with the proposed routing 
techniques (TT, XYDT and SRDP) in irregular meshes. 
We also explore the scalability of the techniques, by 
plotting the cost savings versus network size. In addition, 
we demonstrate that DR is preferred over SR as the 
number of destinations per source grows. 
4.1. Evaluation method 

A random irregular mesh topology is created by 
random insertion of holes into a regular mesh (removing 
routers and links). The following assumptions regarding 
the traffic pattern (amount of S-D connections) in typical 
NoCs are used: Several nodes are hotspots, with a very 
high probability to be a destination to other network 
nodes, and all others are non-hotspots, with low-
probability of being a destination(not all possible 
communication pairs exist).We perform a set of 
simulations on several such random networks, while 
varying the degree of mesh irregularity (number of holes) 
and the probability of a node to communicate to a hot-
spot node. The probability to communicate to a non-
hotspot node is kept low at 0.1. Locations of holes and 
hotspots are also randomly generated. The results are 
averaged over 40 random systems derived with the same 
parameters. The cost of each routing method is derived by 
equation(1). 
4.2. Algorithm Comparison in Typical NoCs 
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Figure 10. The routing costs as a function of hotspot traffic(few holes, 

many hotspots): 34X  savings by XYDT; 2X by SRDP  

 Figure 10 shows the significant savings obtained by the 
proposed hardware-efficient routing methods. It 
illustrates a 12x12 mesh with a low number (10) of holes 
and many hotspots (50 out of 134 nodes). Among the DR 
methods, XYDT cost 34 times less than the original table-
based DR (from 99Kbits to 2.9Kbits, a 97% saving). 

1)foreach destination D 
2) run XYDT(D) 
3)end foreach 
4)foreach S and D: 
5)  Paths <- Extract_Routing_Path(S,D) 
6)end foreach 
7)Find_and_Set_DPs(Paths) 
9)Calc_SRDP_header(Paths) 
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Among SR methods, SRDP halves the cost of the original 
SR (from 43Kbits to 21Kbits). The TT method also 
reduces the cost of DR (3.7 times), but it is less efficient 
than XYDT. The routing cost of traditional table-based 
methods grows considerably with the number of S-D 
pairs (connection probability growing), while the cost of 
XYDT remains almost constant as it utilizes XY routing 
function in most cases, thanks to the regularity of the 
network (few holes). 

 Figure 11 illustrates a typical NoC with many holes 
and few hotspots (50 holes, 10 hotspots). As a result there 
are fewer source nodes in the network. The costs of DR 
and SR are smaller, since there are less source-destination 
pairs. The cost of XYDT grows due to higher irregularity. 
The savings obtained by XYDT reach 8 times (87%) of 
the original DR. SRDP achieves 2.5 times (60%) savings 
of the original SR. 
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Figure 11. The routing costs as a function of hotspot traffic in typical 

NoC: 8X  savings by XYDT; 2.5X by SRDP 

4.3. Scaling of Savings in Routing Cost 

Savings vs. network size
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Figure 12. Savings vs. network size (90% of DR and 60% of SR) in 

typical NoC  

We study scaling of cost savings by simulating typical 
NoCs with a growing number of nodes ( Figure 12). NoC 
size grows from 9 to 256 nodes. About 40% of the routers 
are missing in each NoC, and about 10% of the nodes are 
hotspots. The probability of each node to communicate 
with each hotspot is 0.5 and the probability to 
communicate with a non-hotspot node is 0.1. The curve 
with triangles shows the saving of XYDT against 
traditional DR and the circled curve shows the saving of 
SRDP against traditional SR. The graph clearly shows 
that savings in routing costs grow rapidly (super-linear) 
with the size of the network. In all points, the relative 
savings obtained by XYDT and SRDP were around 90% 

and 60% respectively. 
4.4. Scaling of DR vs. SR 

Table-based routing suffers from lack of scalability 
when the size of the network grows ( Figure 12). When 
using source routing, scaling is even worse. In SR, in 
addition to the linear growth of the table with the size of 
the network, the amount of the routing information that is 
stored in each entry grows linearly with the length of the 
routing path. Therefore SR is feasible only for 
communication patterns with a small number of S-D 
pairs. This is shown clearly in  Figure 13. When the 
number of destinations is low, the cost of SR is on-par 
with the cost of DR. As the number of destinations grows, 
the cost of SR grows faster than the cost of DR. The same 
is true for the more efficient SRDP. 
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Figure 13. The routing cost as a function of hotspot number. SR 

scales poorly with growing number of destinations 
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