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ROM, R., ET AL.: Adaptive Cardiac Resynchronization Therapy Device: A Simulation Report. We re-
port the results of a simulation of an adaptive cardiac resynchronization therapy (CRT) device performing
biventricular pacing in which the atrioventricular (AV) delay and interventricular (VV) interval parameters
are changed dynamically in response to data provided by the simulated IEGMs and simulated hemody-
namic sensors. A learning module, an artificial neural network, performs the adaptive part of the algorithm
supervised by an algorithmic deterministic module, internally or externally from the implanted CRT or
CRT-D. The simulated cardiac output obtained with the adaptive CRT device is considerably higher (30%)
especially with higher heart rates than in the nonadaptive CRT mode and is likely to be translated into
improvement in quality of life of patients with congestive heart failure. (PACE 2005; 28:1168–1173)
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Introduction
Cardiac Resynchronization Therapy (CRT) is

currently an established therapy for patients with
congestive systolic heart failure and intraventric-
ular electrical or mechanical conduction delays. It
is based on synchronized pacing of the atrium and
the two ventricles.1 The resynchronization task de-
mands exact timing of the cardiac chambers so that
the overall stroke volume is maximized for any
given heart rate (HR). Optimal timing of activation
of the atrium and the right and left ventricles is
one of the key factors in determination of the car-
diac output. The timing parameters that are pro-
grammable in a CRT device that determines the
pacing intervals are the atrioventricular (AV) de-
lay and interventricular (VV) interval. Clearly, op-
timizing resynchronization is patient dependent
as well as time and activity dependent. Intuitively,
the best combination of pacing time intervals that
restores optimal synchrony will change consider-
ably during normal daily activities. CRT devices
must be individually optimized, “fine-tuned” to
provide optimal benefits. In addition to being time
consuming and expensive, echo-guided AV and
VV interval programming is limited to a static,
sedentary activities. The impact of HR, body po-
sition, medications, and many other variables on
these programmable variable is unknown. Deter-
mining these programmable variables should ide-
ally be automatic and adaptive to the patient’s
activities.
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The next generation of CRT devices should
have online adaptive capabilities determined by
hemodynamic performance.

There are no clinical trial data to date sys-
tematically assessing the effect of optimized ver-
sus nonoptimized programming of CRT devices.
However, the difficulty and importance of optimal
programming of CRT devices is often noted.3,4,5

Optimization of a CRT device by continuous
hemodynamic monitoring using the Medtronic
ChronicleTM device has recently been reported.3
In this case report, the authors demonstrated that
continuous hemodynamic monitoring provided
useful information for optimization of the AV de-
lay. This article takes this to the next level by using
a simulation where both the AV delay and the VV
interval are changed dynamically by a simulated
adaptive CRT device according to hemodynamic
sensors.

Hence, the hypothesis of the adaptive CRT
device presented here is that dynamic optimiza-
tion of the AV delay and VV interval according
to feedback from hemodynamic sensors, and man-
aged by a combined controller and neural network
processor, may significantly improve heart failure
patients’ quality of life and general well-being.

Methods
We use a closed simulation environment

that simulates the intrinsic cardiac electrical and
hemodynamic behaviors and an adaptive CRT
pacemaker. The simulated adaptive CRT pace-
maker is designed to process the simulated heart
module electrical and hemodynamic inputs and
to deliver optimized CRT pacing to the simu-
lated heart. The goal of the simulated systems
is to demonstrate the importance of dynamically
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Figure 1. A: The adaptive CRT
device simulation setup in a
block diagram. B: The elec-
tronic laboratory prototype de-
velopment setup. A heart sim-
ulator of Rivertek Medical Sys-
tems (RSIM 2000) is paced by the
adaptive CRT device prototype.

changing the AV delay and VV intervals accord-
ing to hemodynamic sensors in order to achieve
optimal hemodynamic performance. The simula-
tion modules were implemented both as a soft-
ware simulator and by a hardware simulator in
order to test the spiking neuron co-processor per-
formance with an FPGA (field programmable gate
array) chip. A detailed technical description of
the adaptive CRT device neural network proces-
sor was previously published by the authors of this
article.7,8

Figure 1A shows the adaptive CRT device sim-
ulation setup in a block diagram. A heart mod-
ule that responds to pacing according to its state,
and transmits right atrial, right ventricular, and
left ventricular electrograms (IEGMs) and right and
left ventricular impedance outputs representing
stroke volumes to the adaptive CRT pacemaker
module. The adaptive CRT module is built from
a microcontroller, pulse generator module, and a
spiking neural network co-processor. The spiking
neural network co-processor is the learning mod-
ule that processes the IEGMs and hemodynamic
(impedance) sensors’ data and generates online,
beat-to-beat prediction to the microcontroller for
the hemodynamically optimal AV delay and VV
intervals. The microcontroller is the master of the
electrical system and manages the pulse generator
module and acts also as a teacher that trains the
neural network processor online.

Figure 1B shows the electronic laboratory pro-
totype development setup. A heart simulator of
Rivertek Medical systems (RSIM 2000) is paced by
an adaptive CRT device prototype implemented on
an Altera FPGA, Stratix 80, with additional ana-
log components for the interface with the Rivertek
Heart simulator.

Figure 2 demonstrates the simulated ventric-
ular impedance waveform that is generated at the
heart simulator. The simulated waveform depends
on the HR and on the timing of the ventricu-
lar event, measured from the right atrial event.
The ventricular event in this simulation is the
evoked response topacing delivered by the pulse
generator and managed by the microcontroller.
The impedance waveform is used to evaluate
beat-by-beat hemodynamic performance via the
simulated stroke volume from the adaptive CRT
device. The impedance waveform follows the
hemodynamic of the ventricle. When the ventri-
cle is maximally filled with blood at the end of
diastole (EDV) the impedance value is minimal.
After the ventricle ejects the blood at the end
of systole (ESV) the impedance value is maxi-
mal. The difference between the amplitudes of
the simulated EDV and ESV represents the sim-
ulated stroke volume. When the atrial event is
sensed the impedance waveform begins to de-
crease and when the ventricular event is sensed the
impedance waveform begins to increase. During
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Figure 2. Demonstrates the simu-
lated ventricular impedance wave
form that is generated at the heart
simulator.

the simulation, the impedance waveform changes
beat by beat according to atrial and ventriclular
event timing. The maximal simulated stroke vol-
ume is achieved when the time difference between
the sensed atrial and ventricular events is equal to
the pre-defined optimal AV delay of the simulated
heart.

Simulation Results
Figure 3 shows the simulated cardiac output

during an exercise scenario. The HR was changed
using Rivertek Medical systems’ programming sce-
nario user interface, from 65 beats/min (BPM) to
125 BPM at steps of 20 BPM; six simulation cycles
are shown in Figure 3 and the last simulation cycle
is shown with a blue rectangle. The entire simula-
tion period was slightly more then 2 hours. During
the simulation, the heart simulator pace delay pa-
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Figure 3. The simulated cardiac
output during an exercise scenario.

rameter for the right ventricle was kept constant
(5 ms) and the pace delay parameter for the left
ventricle was programmed such that it was “rate-
adaptive.” At a heart rate of 65 BPM the left ven-
tricle pace delay was 65 m; at 85 BPM, it was 55
ms; at 105, it was 45 ms; and at 125 BPM, it was
35 ms. The left ventricular pace delay was used
to mimic a patient with left bundle branch block
(LBBB) where the conductance to the left ventricle
is slow relative to the right ventriclular conduc-
tance.

Figure 4 shows a comparison of the simu-
lated cardiac output during a simulation cycle
with dynamic optimization of the AV delay and VV
interval performed by the adaptive CRT device
versus a CRT device optimized at rest (65 BPM)
and subsequently pacing the heart with a constant
intervals. Dynamic optimization of the AV delay
and VV interval produces 30% higher simulated

1170 November 2005 PACE, Vol. 28



ADAPTIVE CARDIAC RESYNCHRONIZATION THERAPY DEVICE

0

20

40

60

80

100

120

140

160

10
7

10
9

11
1

11
2

11
4

11
6

11
8

11
9

12
1

12
3

12
4

12
6

12
8

13
0

Time [Min]

C
O

Adaptive

HR

Non-Adaptive

[ 
A

rb
it

ra
ry

 ] HR=125

HR=105

HR=85

HR=65

Figure 4. A comparison of the
simulated cardiac output with dy-
namic optimization of the AV de-
lay and VV interval vs. nonadap-
tive CRT pacing.

cardiac output on average during a simulation cy-
cle. The benefit of the dynamic optimization is
more significant at higher heart rates where the AV
delay and VV intervals are at their most difference
from resting values.

Figure 5 shows the dynamic optimization of
the AV delay and VV intervals performed by the
adaptive CRT device. The AV delay was 130 ms
at 65 BPM and was reduced gradually to 50 ms at
125 BPM. The VV interval was −60 ms at 65 BPM
and reduced gradually to −20 ms at 125 BPM. This
simulation demonstrates the potential benefits ex-
pected with dynamic optimization according to
hemodynamic sensors in a closed loop system and
clinical advantages over available CRT devices.

Figure 6 shows a comparison of the simulated
stroke volumes of a responder to CRT and a nonre-
sponder to CRT as a function of time. In the adap-
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Figure 5. The dynamic optimiza-
tion of the AV delay and VV in-
tervals performed by the adaptive
CRT device.

tive CRT mode, the AV delay and VV interval are
changed dynamically according to the information
obtained from the hemodynamic sensors. When
the patient is a responder to CRT, the device will
change the pacing intervals in order to achieve a
higher stroke volume as shown in Figure 6 (pink
rectangles). When the patient is a nonresponder,
the stroke volume will not improve and remain
unchanged (blue triangles). When a patient is iden-
tified that does not respond to hemodynamically
derived automatic adjustment of pacing intervals,
the clinician might need to consider other options
including lead repositioning.

Discussion
The simulation results presented here demon-

strate the potential of the adaptive CRT device with

PACE, Vol. 28 November 2005 1171



ROM, ET AL.

20

30

40

50

60
1

4
4

8
7

1
3
0

1
7
3

2
1
6

2
5
9

3
0
2

3
4
5

3
8
8

4
3
1

4
7
4

Time [seconds]

S
V Responder

non-responder

[ 
A

rb
it

ra
ry

 ]

Figure 6. A comparison of the simulated stroke volumes
of a responder to CRT and a nonresponder to CRT.

dynamic optimization of AV and VV intervals for
improving cardiac output beyond the current non-
adaptive CRT devices.

The improvement in the simulated cardiac
output shown in Figure 4, as a result of online
optimization of the AV delay and VV interval ac-
cording to simulated hemodynamic sensors, is the
primary result demonstrated in this study. Hemo-
dynamics are influenced by many variables, activ-
ity being one of the most significant. The model
reported suggests that an online adaptive thera-
peutic device that stimulates the heart and auto
adapts in response to the hemodynamic variation
can improve hemodynamic performance consider-
ably and deliver optimal and consistent CRT. Per-
formance at higher heart rates is especially impor-
tant in CHF patients, who tend to be tachycardic
even at low exercise levels. The present simulation
report demonstrates the potential improvement of
cardiac output with adaptive CRT device at higher
heart rates. This may therefore translate to an im-
provement in exercise capability and quality of life
of CHF patients with a future adaptive CRT device.

The adaptive CRT device working in a closed
loop with hemodynamic sensors will enable a clin-
ician to optimize pacing intervals and to select a
better lead position using a responder to the CRT
online diagram shown in Figure 6. Using this dia-
gram the clinician might be able to convert a “non-
responder” into a “responder” and a “responder”
into a “better responder.”4

The adaptive CRT device is expected to sim-
plify and hence to shorten the time required by
the clinician during a patient’s follow-up. Since
the device has built-in autoprogrammability capa-
bilities the clinicians will primarily need to review
stored histograms and verify the appropriateness
of automatic features.

Dynamic optimization of the AV interval in re-
sponse to hemodynamic sensors will also be ben-
eficial to patients with a dual chamber pacemaker,

since it is well known that phsyiologically the
AV delay is rate-dependent. Since dynamic op-
timization enables more physiologic pacing, it is
expected to be beneficial to all future pacemakers
and defibrillators after clinical benefit is proven.

The adaptive CRT device shown in the block
diagram in Figure 1, adds a “spiking neuron
network co-processor” to the existing microcon-
troller. This architecture has the advantage of the
combined deterministic algorithmic module (the
microcontroller) and a learning module, the spik-
ing neuron network. The microcontroller master
trains “online” the learning module that is respon-
sible for adjusting to the patient’s intrinsic hemo-
dynamics. The adaptive CRT device architecture
shown in Figure 1 enables minimal changes to the
existing CRT device microcontroller code that will
ease the integration and regulatory efforts.

CRT device management and more specifi-
cally the management of the AV delay and VV
intervals are especially suitable for neural net-
work processing given the marked interindivu-
dal and intraindividual variation in these parame-
ters. Neural network are able to process the hemo-
dynamic sensors biological signals using pattern
recognition techniques and to perform a feedback
control task dynamically and online.5 Neural net-
works are a different paradigm for computing.
They are based on parallel architecture with sim-
ple processing elements and a high degree of inter-
connection. Neural networks are known to have
advantages over standard algorithmic processing
in performing tasks such as adaptive control and
pattern recognition.5 Spiking neural networks ar-
chitectures are a unique form of neural networks
that are inspired by the biological nervous system.6
The adaptive CRT device described here is based
on a novel spiking neural network architecture and
learning rule developed specifically for adaptive
CRT devices and for closed loop therapeutic med-
ical devices more generally.7,8

A primary and novel feature of the spiking
neural network architecture, used here for the
adaptive CRT device, is the combination of a spik-
ing neural network architecture with the Hebbian
learning rule to perform an online feedback con-
trol task combined with a pattern recognition task
implemented to the hemodynamic sensor signal.
The second important feature of the spiking neu-
ron network is its ability to perform both tasks
with extremely low power dissipation or current
drain. Low power dissipation is a crucial point for
implanted pacemakers and defibrillators devices
that need to operate 5–7 years with a battery power
source only.

In the next phase of investigations the adap-
tive CRT device will be tested in an acute ani-
mal experiment with implanted pressure sensors
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in the right and left ventricles and with sono crys-
tals implanted in the left ventricular wall. Later,
in planned chronic animal experiment investiga-
tions and clinical studies the ideal hemodynamic
sensor will be defined. Whether the ideal sensor
is indeed stroke volume as derived from intracar-
diac impedances as used in the in vitro model de-
scribed,9 intraventricular pressure sensing as per-
formed with the Medtronic ChronicleTM device,3
or wall motion sensing as performed with SORIN
peak endocardial accelerometer (PEATM) sensor is
yet to be determined.

Whereas the greatest potential use of the neu-
ral network processor is when integrated into an
implanted cardiac rhythm device with continu-
ous interval adaptation, a similar external adap-
tive CRT device can be developed. In the external
adaptive CRT device, the spiking neuron network
learning module will be utilized externally to the
implanted CRT device that will telemetrically re-
ceive the IEGMs and hemodynamic sensors’ data
and transmit back the optimal AV and VV inter-
vals to the implanted device. The external device
will be used to optimize an implanted CRT device,
to identify responders to CRT and may reduce the

time and cost of the follow-up procedure for CRT
patients.

Conclusion
The present simulation model suggests that

an online adaptive CRT device based on a neu-
ral network—learning module has the potential
to solve major weaknesses of the current CRT de-
vices. The adaptive CRT device with feedback con-
trol from a hemodynamic sensor can provide a so-
lution for the need for auto-programmability and
auto-adjustment capabilities in a CRT device.4

In addition, an external adaptive CRT device
is expected to significantly simplify the follow-up
procedure, to optimize pacing intervals and to se-
lect a better lead position and hence to identify
and improve response to CRT, and subsequently
reduce costs. In vivo data are needed to prove the
clinical benefits expected from the adaptive CRT
device.
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