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Abstract— An analytical prototype model for the electromagnetic radiation emitted from a
nanometric organic light-emitting diode device is presented and thoroughly investigated herein.
The results are obtained via asymptotic evaluation of the resultant radiation integral in con-
junction with coherence considerations, resulting in closed-form analytical expressions. For the
sake of simplicity and clarity, we focus on a two-dimensional canonical configuration excited by
impulsive (line) sources. The resultant expressions can be most effectively utilized by engineers
for improved design, as they enable the calculation of the device’s physical parameters, such as
electrical to optical conversion efficiency and emission angular distribution, as a function of de-
vice structure. It should be pointed out that the incorporation of both rigorous electromagnetic
analysis and coherence effects is addressed in our report, to the best of our knowledge, for the
first time. This results in a precise model capable of repeating and interpreting experimental and
simulated data.

1. INTRODUCTION

Organic light emitting diodes (OLEDs) have been intensively investigated for the past two decades
as potentially promising candidates for the fabrication of thin and flexible displays as well as other
novel optoelectronic devices [1–4]. The relatively simple and cheap manufacturing procedures
involved in OLED production, the prospects for wide viewing angle and high luminescence as in
inorganic LEDs and the fast response compared to liquid crystal displays (LCDs) have made OLED
technology a very attractive one [1, 4]. In recent years a major technological effort has been made
in order to design durable efficient OLEDs with wide viewing angle [3, 5–7].

Electromagnetic modeling of OLEDs is crucially important for analysis and synthesis of their
radiation pattern and radiation efficiency, thereby determining the devices’ performance. Indeed,
vast research in the past few years aimed at optical modeling of OLEDs in order to achieve an
understanding of how the layer dimensions and material composition alter their electromagnetic
properties [5–10].

Most of these attempts rely on the early work of Chance, Prock and Silbey [11] (CPS) which
showed that a radiatively decaying excited molecule can be modeled by a classical oscillating dipole,
and presented integral expressions for the radiative and non-radiative decay rates of such dipole
when embedded in layered media, from which the radiation efficiency is readily achieved. The CPS
model uses the Hertz vectors formalism and later the dyadic Green function method [12] to express
the possible source excitations and apply the layered media constraints on the electromagnetic fields.
Numerically evaluating the integral expressions, they found good agreement between simulation and
experimental results for fluorescence lifetime of molecules near metallic interfaces.

The intimate connection between the radiation pattern and coherence properties of the radiation
source is widely studied by Wolf, and well summarized in [13]. Intuitively speaking, it is clear that
sharp interference patterns in emission angular distribution as well as interference fringes on a
distant screen are caused by some consistent phase difference between two sources. As temporal
or spatial coherence decrease this phase difference is no longer consistent in time or space, thus
averaging on a large ensemble of sources diminishes these effects dramatically.

In this paper we present a rigorous electromagnetic analysis of two-dimensional OLED radia-
tion. The basis of our analysis is the decomposition of the source term into its plane-wave spec-
trum [12, 14, 15], a method which preserves the fundamental physical intuition of plane-wave optics.
Asymptotic evaluation of the resultant radiation integral leads to closed-form analytical expressions,
which, along with the plane-wave interpretation, enables clear identification of dominant factors
which determine the device’s radiation pattern properties. The coherence effects are explicitly
incorporated in the electromagnetic model and their impact is readily observed in the simulated
results, outlined in Sections 2 and 3, respectively.
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2. FORMULATION

Let us consider a two-dimensional device with M + N + 2 layers, with a line source embedded
at a certain plane, z = z′, sandwiched between layers (−1) and (+1), as depicted in Fig. 1. The
homogeneous layer formed by combining layers (−1) and (+1), containing the line source, is termed
the active layer. Each layer is characterized by its permittivity, permeability, and conductivity
marked εn, µn and σn, respectively, for the n-th layer. Furthermore, the n-th and (n + 1)-th layers
are separated by the plane z = dn for n > 0 and z = dn+1 for n < 0. Note that ε−1 = ε1, µ−1 = µ1,
and σ−1 = σ1. For the sake of completeness, we treat here both transverse electric (TE) and
transverse magnetic (TM) modes, excited via electric line source and magnetic line source (Fig. 1),
respectively. Throughout the entire paper we use e and m left superscripts or subscripts to denote
electric or magnetic cases, respectively. Both sources are assumed to be time harmonic, with time
dependence of ejωt. The wave number and wave impedance of the n-th layer are given as

kn = ω
√

µnεn [1− jσn/ (ωεn)] = (ω/c) (nn − jκn) , Zn =
√

µn/ {εn [1− jσn/ (ωεn)]}, (1)

where c, n and κ denote the velocity of light in vacuum, refractive index and extinction coefficient,
respectively. To satisfy the radiation condition we require ={kn} ≤ 0, leading to ={Zn} ≥ 0.
Furthermore we define the two-dimensional space vector, ~ρ = ρtt̂ + zẑ = (−ρ sin θ) t̂ + (ρ cos θ) ẑ,
where ρt and t̂ are its transverse coordinate magnitude and direction, and θ is the angle between
the z-axis and ~ρ. The transverse coordinate is different for the electric and magnetic cases due to
the different symmetry they induce. In the electric line source scenario, there is no change along
the x direction, therefore e[∂/∂x] = 0, eρt = y and et̂ = ŷ. Analogously, for the magnetic line
source scenario we have symmetry along the y-axis, thus, m[∂/∂y] = 0, mρt = x and mt̂ = x̂. The
source vector in both cases is ~ρ ′ = z′ẑ.

Figure 1: Two-dimensional configuration for the OLED model. The device consists of M +N +2 layers, the
interfaces of which are planes parallel to the x̂y plane and the propagation direction is ẑ. The two-dimensional
model excitation is a line source, sandwiched between layers (−1) and (+1), which form together the active
layer.

The transverse electromagnetic field components can be expressed [15] via the following spectral
integrals

Ex

(
~ρ, ~ρ ′

)
=

1
2π

∞∫

−∞
ex

(
z, z′

)·ej~kt·~ρ, Hy(~ρ, ~ρ ′) =
1
2π

∞∫

−∞
hy

(
z, z′

)·ej~kt·~ρ, (2)

where ex(z, z′), hy(z, z′) and ~kt = ktt̂, denote the plane-wave spectrum and transverse wave vector,
respectively. The transverse plan-wave spectral amplitudes can be readily expressed in terms of
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the one-dimensional Green’s function, g(z, z′),

ex

(
z, z′

)
= jβZ̃Jsg

(
z, z′

)−Ms
dg(z, z′)

dz
, hy(z, z′) = −Js

dg(z, z′)
dz

+ jβỸ Msg(z, z′) , (3)

where
e

mZ̃ = 1/
e

mỸ = Z(k/β)±1 and eJs =e I0,
mMs =m I0,

mJs =e Ms = 0. (4)

The wave equation and associated constraints for g(z, z′) are outlined in [12, 14, 15]. Note that
gn(z, z′) specifies g(z, z′) at the n-th layer. Expanding the work presented in [14] we express the
Green function in the various layers in terms of reflection, transmission and source coefficients,
as demonstrated in Table 1. The recursive expressions for the total reflection and transmission
coefficients are derived via the constraints listed in [15], to the right (forward) and to the left
(reversed) of the active layer, for both electric and magnetic polarizations.

Table 1: Recursive relations of the one-dimensional Green function.

Forward Direction (z > z′) Reversed Direction (z < z′)

One-

dimensional

Green

function

gn

“
z, z

′” =
ejβ1z′

2jβn
·

·
1− bR−1(kt) e−2jβ1z′

1−R1(kt) bR−1(kt)

2
4

nY

p=2
Tp(kt)

3
5
h
e−jβnz−Rn(kt) ejβnz

i
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1−R1(kt) e2jβ1z′
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2
4
−2Y
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bTp(kt)

3
5
h
ejβnz− bRn(kt) e−jβnz

i

Total

reflection

coefficient

Rn(kt)=

8
><
>:

Γn(kt)+

h
1−Γ2

n(kt)
i
Rn+1(kt) e

2jβn+1dn

1+Γn(kt)Rn+1(kt) e
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9
>=
>;
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8
><
>:
bΓn(kt)+

h
1−bΓ2

n(kt)
ibRn−1(kt) e

−2jβn−1dn

1+Γn(kt) bRn−1(kt) e
−2jβn−1dn

9
>=
>;

e2jβndn

Recursion

base

condition

RN+1(kt)=0 bR−(M+1)(kt)=0

Total

transmission

coefficient

Tn(kt)=

h
1+Γn−1(kt)

i
e

j
“

βn−βn−1
”
dn−1

1+Γn−1(kt)Rn(kt) e
2jβndn−1

bTn(kt)=

h
1+bΓn+1(kt)

i
e
−j
“

βn−βn+1
”
dn+1

1+bΓn+1(kt) bRn(kt) e
−2jβndn+1

Local

reflection

coefficient

Γn =
1 − γn

1 + γn

bΓn = −Γn−1 =
1 − bγn

1 + bγn

Impedance
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e
mγn =

 eZn+1
eZn

!±1
e
mbγn = 1/e

m
γn−1 =

 eZn−1
eZn

!±1

Power relations associated with our OLED layered model are crucially important for evaluating
and optimizing the device performance. The most significant relations are the so-called radiation
(emission) pattern, radiation power and absorption power, given via

Sρ(θ, ω) =
1
2

[
~E

(
~ρ, ~ρ ′

)× ~H∗ (
~ρ, ~ρ ′

)]· ρ̂
∣∣∣∣
ρ→∞

, (5)

Sr(z, ω) =

∞∫

−∞
dy

{
1
2

[
~E

(
~ρ, ~ρ ′

)× ~H∗ (
~ρ, ~ρ ′

)]· ẑ
∣∣∣∣
z>z′

}
(6)

and

Sa(z, ω) =

∞∫

−∞
dy

{
1
2

[
~E

(
~ρ, ~ρ ′

)× ~H∗ (
~ρ, ~ρ ′

)]· (−ẑ)
∣∣∣∣
z<z′

}
, (7)

respectively. Substituting (2)–(3) in conjunction with Table 1 into (5)–(7) renders closed-form
expressions for the power relations, as summarized in Table 2.

Apparently, coherence effects must be considered when analyzing OLED device, as may be
concluded from [9, 10]. Since spatial coherence can, in general, be neglected when considering
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OLEDs [16], we take into consideration only the temporal coherence effect on the power relation [13],
i.e.,

S(~ρ) =

∞∫

0

p (ω) S (~ρ, ω) dω (8)

where S (~ρ, ω) denotes any of the power relations given in (5)–(7), and p (ω) is the coherence function
of the device, i.e., the appropriately normalized free-space photoluminescence (PL) spectrum. The
Gaussian distribution, being simple analytic and effectively bounded function, is selected as the
coherence function for our simulations. The Gaussian width, ∆ω, is inversely proportional to the
coherence length [13], Lc, given via, Lc = 2πc/∆ω = λ2/∆λ.

Table 2: Power relations for the OLED model. The line source power, Pn, denotes the radiation power of a
line source in an unbounded homogeneous medium (the n-th layer).
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3. RESULTS

The potential promise of our modeling approach, outlined in the previous section, is demonstrated
through radiation pattern simulations, incorporating coherence effects, of a prototype device. A
basic configuration of a five layer bottom-emitting (BE) OLED is selected [1]. The elementary
device, specified in Table 3 and depicted in Fig. 2, corresponds to Fig. 1 (setting M = 1 and N = 3)
with an electric line source excitation located at z′ = 20 nm, radiates typically at λ ≈ 600 nm [17].

n Layer Material nn κn dn[nm]

−2 Silver 0.124 3.73 −∞
−1 MEH-DOO-PPV 1.9 0.01 0

+1 MEH-DOO-PPV 1.9 0.01 200

+2 ITO 1.85 0.0065 300

+3 Glass 1.5 0 106

+4 Air 1 0 +∞

Table 3: Geometrical and electrical properties of a
prototype BE-OLED, corresponding to Fig. 1. Data
is retrieved from [6, 17].

Figure 2: Physical configuration of the prototype
BE-OLED specified in Table 3.

Radiation patterns of prototype BE-OLEDs with varying either glass layer thickness or coherence
length are depicted in Fig. 3 and Fig. 4, respectively. While Fig. 3 patterns correspond to four
glass layers with varying thickness, v1 nm to v1mm, and Lc = 150 µm, Fig. 4 is associated with
three coherence lengths, 5 µm to 150 µm, whereas the glass layer thickness is set to v1µm.

It is readily observed that for device thickness (represented by the dominant glass thickness)
much smaller than the coherence length, interference effects are noticeable whereas the reversed
situation results in a quasi-Lambertian radiation pattern. Furthermore, these observations agree
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Figure 3: The effect of glass thickness on the OLED
radiation pattern, for electric line source excitation,
constant coherence length Lc = 150 µm and four
glass thickness values: v 1 nm (black solid line),
v1 µm (green dashed line), v10 µm (blue line with
plus marker) and v1mm (red solid line).

Figure 4: The effect of coherence length on OLED
radiation pattern, for electric line source excita-
tion, constant glass thickness of v1 µm and three
cohrence length values: 5 µm (black solid line),
15 µm (green dashed line) and 150µm (red line
with plus markers).

well with experimental measurements taken in the two limits, [9] and [6], respectively. Note that the
two extremes correspond to radiation patterns which reflect either the device properties, i.e., thick-
ness dependent interference, or the source characteristics, leading to spectral broadening dominated
pattern.

4. CONCLUSION

A complete analysis for the electromagnetic radiation from two-dimensional OLEDs, incorporating
temporal coherence effects, has been presented and verified through numerical simulations. The
resultant analytical expressions preserve the physical intuition of the device optics and allow for an
efficient implementation and design. Furthermore, as demonstrated for the prototype device, they
establish a clear and simple relation between the device structure and the radiation pattern.
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