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I. The basic framework 
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Figure 1. The convention used in this document for describing the various device parameters. 
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As in the convention shown in Figure 1 positive current flows in the –z direction (right to 

left) we added a minus sign to the conventional equations: 
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Here ne, nh, and S are the electron, hole, and singlet exciton density, respectively.  De and 

Dh are the electron and hole diffusion coefficients. In most cases we’ll assume that the 

Einstein diffusion relation holds for these systems hence, /D kT q
e e

  and 

/D kT q
h h

  (where q is the unit of electrical charge).  z is the distance from the 

cathode and  is the permeability (taken to be =3). 

 

In the following sections we will use numerical simulation which solves the above 

equations self consistently to provide some insight and hopefully a bit intuition too. 
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II. J-V 

The simplest method to extract mobility is to insert the material in between two 

electrodes and measure the current-voltage characteristics. The only catch is that in 

order to be able to extract parameters from the device we need to know the physical 

mechanism governing the J-V curves and in organic device this is often not trivial. 

For example: 

 

The general expression for SCL current is 
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where K is given by 0
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  with N0 being the injected charge density at the 

contact. 

If the contact is not limiting (N0 is large and K is small compared to d): 
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If the contact is limiting (N0 is small and K is large compared to d): 

(11) 
0

V
J qN

d
  

Equations (10) and (11) are describing the same material but for different contact 

properties. Moreover, if the contact material is metallic and the contact barrier 

lowering due to image force has to be accounted for than equation (11) becomes a bit 

more complicated as the effective N0 may be a function of the applied bias. 

For more details on how to analyze J-V curves see [1, 2] 
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III. Time of flight 

 

The time of flight (TOF) is a method used to measure the time it takes electrons to travel 

across a sample, i.e. between the excitation and detection points.[3, 4] The standard time 

of flight is: 

V

Scope

 
Figure 2. Typical experimental set up of the time of flight (TOF) technique. 

 

To create some basic intuition for the TOF method we present in Figure 3 results of a 

numerical simulation of a 1m long device which is biased at 20V using non-injecting 

contacts. The device is excited using light pulse assuming ~20nm absorption depth. The 

different pictures show that very quickly the charge packet assumes the shape of a 

Gaussian which broadens as it propagates (the span of the x-axis is kept at 350nm for 

better visualization of the effect). We also note that the current starts to drop as the packet 

starts to exit the device.  

 

0

5 10
-10

1 10
-9

1.5 10
-9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
u

rr
e
n

t 
(A

c
m

-2
)

Time (ms)

=1e-6cm
2
/Vs

VAppl=20V

L=1m

0

1 10
12

2 10
12

3 10
12

4 10
12

5 10
12

6 10
12

0 50 100 150 200 250 300 350

C
h

a
rg

e
 D

e
n

s
it
y
 (

c
m

-3
)

Distance (nm)

0

2 10
11

4 10
11

6 10
11

8 10
11

1 10
12

1.2 10
12

1.4 10
12

0 50 100 150 200 250 300 350

C
h

a
rg

e
 D

e
n

s
it
y
 (

c
m

-3
)

Distance (nm)

t=0.05ms

0

1 10
11

2 10
11

3 10
11

4 10
11

5 10
11

550 600 650 700 750 800 850 900

C
h
a

rg
e

 D
e

n
s
it
y
 (

c
m

-3
)

Distance (nm)

t=0.35ms

0

5 10
10

1 10
11

1.5 10
11

2 10
11

2.5 10
11

3 10
11

3.5 10
11

4 10
11

650 700 750 800 850 900 950 1000

C
h
a

rg
e

 D
e

n
s
it
y
 (

c
m

-3
)

Distance (nm)

t=0.5ms

 
Figure 3. Simulated current response to a pulse excitation generating charges very close to the (non-injecting) 

contact. The surrounding figures show snap shots of the charge density distribution at the marked points in 

time. 
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The parameter set used in the simulation is: 

Parameter Value 

Length d=1000nm 

Bias V=20V 

Absorption length Labs=20nm 

Cathode ne(0,t)=10
10

cm
-3

 

nh(0,t)=10
10

cm
-3

 

Anode ne(d,t)=10
10

cm
-3

 

nh(d,t)=10
10

cm
-3

 

Electron mobility e=10
-6

cm
2
/Vs 

Hole mobility h=10
-6

cm
2
/Vs 

Total density of states 10
21

cm
-3

 

 

To formally analyze this experiment we rewrite equations (1)  

 

(12) ( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , )e e e e en z t D n z t E n z t E z t R z t G z t
t z z


   

       
 

Assuming that for t>0 one can neglect generation and recombination and that we are 

dealing only with one type of carriers (electrons), equation (7) is written as: 
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Assuming D and  to be independent of position (and charge density) and that the charge 

density is too low to significantly alter the electric field
1
 we rewrite (12): 
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Neglecting the transient phenomena close to t=0, the steady state solution to the above is: 

(15) 

2

40( , )
2 π

e

e

V
z t

d

D te
e

e

n
n z t e

D t


 
 

 

  

Namely, shortly after the pulse excitation the charge packet will assume the shape of a 

Gaussian (see Figure 3). Integrating equation (13): 

                                                 
1
 In cases where the sample is doped we require that the sum of the injected and dopant (ne0) induced 

charges is small enough. 
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Performing change of variables: 
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is negatively large enough to be 

considered : 
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Figure 4. Graphic description of the error function (erf). 

 

Examining equation (18) and Figure 4 we see that we have arrived at the functional form 

that is described by the numerical simulation shown in Figure 3. Equation (18) also 

shows that for the mobility extraction the transit time (tr) is the point where the current 
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drops to half of its initial value (ignoring any transient phenomena close to t=0): 
2

1
( ) (0)
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e

d
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V



   

III.A. Charge injection layer 

In cases where the sample is too thin or that the absorption length is too long it is 

common to employ a charge generation layer that selectively absorbs the excitation and 

supply the charges for the TOF measurement (see schematic at the top of Figure 5). For 

this technique to work properly one has to make sure that there is no barrier for transport 

from the charge generation layer to the bulk of the sample. If such a barrier exists it 

would alter the response in a manner demonstrated through the simulation presented in 

Figure 5 where the effect of the barrier is entered as exp
E

kT
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Figure 5. Simulated current response to a pulse excitation of the charge generation layer. The figure illustrates 

the effect of energy level mismatch which turns the charge generation layer into an effective charge trap the 

depth of which is dictated by the energy mismatch or barrier.  

 

III.B. Dispersive mobility 

The terms “Dispersive Transport” or “Dispersive Mobility” are typically used to describe 

a situation where the velocity of the carriers varies as a function of time and in some 

cases can be interpreted as if the carriers mobility is a function of time (typically a 

reducing function)[4-6]. As long as the velocity is changing by less than ~50% it may 
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still make sense to define an effective mobility to be the average velocity divided by the 

electric field. However, if the variation is large there is clearly no justification to relate 

the average velocity with a mobility value. The reasoning is that using this average 

“mobility” within the set of equations (1) to (8) will not allow us to even remotely 

reproduce the dynamics of the real system. 

To illustrate what a dispersive curve would look like we repeated the simulation shown in 

Figure 3 and artificially set the mobility to be time dependent  610 exp /e t   with a 

time constant of =1.5ms. 
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Figure 6. TOF transients for time independent mobility (full line, no symbols) and for a mobility decaying 

exponentially with time (=1.5ms). 
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IV. CELIV 

 

As described in the previous section, the time of flight (TOF) is a basic method for 

evaluation of the charge carrier drift mobility in low mobility materials like organic 

semiconductors and amorphous hydrogenated silicon (a-Si:H).  For the TOF method to 

be valid it is essential that the electric field experienced by the charge carriers is equal to 

the one being applied to the sample. If the material is slightly doped such that the free 

charge density (n0) is relatively high than the redistribution of these charges and the 

creation of a depletion zone will alter the electric field distribution in the device. To 

ensure that the change of the electric field due to the depletion zone is negligible the free 

charge concentration has to be low such that 0
0qn d V

d


. The left side denotes the 

maximum depleted charge that can be generated throughout the device and the right side 

is the charge density that can be accumulated at the facets of an ideal capacitor having the 

same dielectric constant (we note that in the context of doping, n0 denotes the activated 

dopant density n0=ne0). This condition can also be expressed as requiring that the material 

dielectric relaxation time () is larger than the transit time (ttr), i.e. 0

0

tr

d
t

qn E





 
   . 

In cases where the measurement is done at low enough electric field such that the free 

charge density, or doping level, is significant a TOF measurement would over estimate 

the mobility.   
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Figure 7. Schematic of the CELIV set-up 

 

As is discussed above, the presence of free carriers (n0) makes the TOF method not so 

reliable and hence a method that relies on the presence of these carriers could be a nice 

substitute. Such a substitute is the carrier extraction by a linearly increasing voltage 

(CELIV) method. [7-9] To create some basic intuition for the CELIV method we present 

in Figure 8 and Figure 9 results of a numerical simulation of a 1m long device subject to 

a voltage sweep (V=A*t). In the simulations we test 3 cases of 3 different doping (n0) 

levels. Figure 8 shows the current response to the applied voltage. We note that the 

response is composed of two parts superimposed on each other: a) a step function b) a 

single peak response. The first part (step function) is independent of the doping level 
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while the second feature is strongly dependent on the doping (free charge) density. As we 

will se below, the step function is associated with the geometrical capacitance (c) of the 

device (I=c*dV/dt=c*A) and the second feature is associated with the free charges being 

swept out of the device. 
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Figure 8. Simulated current response in a CELIV measurements for 3 different doping (n0) levels. 

 

The parameter set used in the simulation is: 

Parameter Value  

Length d=1000nm  

Bias A*t  

Cathode ne(0,t)=10
10

cm
-3

 

nh(0,t)=10
10

cm
-3

 

 

Anode ne(d,t)=10
10

cm
-3

 

nh(d,t)=10
10

cm
-3

 

 

Electron mobility e=10
-4

cm
2
/Vs  

Hole mobility h=10
-4

cm
2
/Vs  

Total density of states 10
21

cm
-3

  

Doping density 10
15

,10
16

,10
17

 cm
-3

  

 

Figure 9 shows the electric field and charge density distribution sampled at the time 

where the response is at its peak (t=tmax). Above each graph we show schematically the 

immobile dopant (+) and the remaining free charge (-). In this figure the applied electric 

field sweep the electrons from left to right leaving a depletion zone starting at x=0. 

The shape of the current induced by the moving charges can be rationalized as follows. 

At first, as the voltage increases the carriers experience a higher electric field and hence 

move faster (higher current). As depletion zone starts to build up two effects take place: 

a) the total number of charges drifting in the device gets smaller b) if the doping is not 
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very small (above ~10
16

cm
-3

) , the electric field affecting the charges gets screened. 

Indeed, in Figure 9, for ne0=10
17

cm
-3

 l(tmax) is significantly shorter and as Figure 8 shows 

it results in tmax being smaller for this doping density. 
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Figure 9. The electric field (full line) and charge density (dashed line) distribution for the three doping 

concentrations and sampled at tmax. 

The above results, that were produced numerically, can be analyzed analytically [7]. We 

first write the applied potential that linearly ramps up the electric field as: 

0

( ) ( , )

d

V t E z t dz At    

As Figure 9 suggests the application of external field causes the charge density to shift 

away from the blocking contact and exit at the opposite contact. For the following 

derivation we’ll assume n type doping at a level ne0. The overall charge (i.e. exposed 

dopants) in the device as a function of time can be written as: 

(19)    0 0 0 0( ) ( ) ( , ) (0, ) ( , ) (0, )eQ t qn l t E E l t E t E d t E t          

Using the convention of Figure 1 and equation (7), the current due to the carriers drifting 

out through the contact at x=d is: 

(20) 0 ( , )drift e ej q n E d t   

And it is also equal to the rate at which the charge is accumulated in the device: 

(21) 0 0

( ) ( )
( , )drift e e e

dQ t dl t
j q n E d t qn

dt dt
     

Due to the electric field distribution in the CELIV scenario (see Figure 9) the voltage 

across the device can be written as: 
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(22)  
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Combining (19) to (22): 
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From these one arrives at the differential equation for 

l(t): 20

0

1 ( )
( )

2

e

e

dl t qn
At d l t

dt 

 
      

 
 

Or: 

(24) 20

0

( )
( )

2

e e edl t At q n
l t

dt d d

 


   

The current through the device is composed of a displacement (capacitance) current and a 

drift current: 
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Integrating over d: 
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Replacing E(d,t) according to 0
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the equation for the current is: 
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From the above one can derive: 
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Namely, using this simple method one can extract , , and the residual doping level n. 

 

If the measurement is done fast enough, such that the drift current is significantly smaller 

compared to the displacement current than: 
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And the simplified expression reads: 
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IV.A. Field dependent mobility 

As the above was developed for field independent mobility we will test numerically if the 

method can also be safely applied in cases where a field dependence exists. In Figure 10 

we show simulation results of a device characterized by a field independent mobility of 

10
-4

cm
2
/Vs (dashed line) and of one characterized by  4 2 1 110 expe E cm V s     with 

= 4.4e-3 (full line). In both cases the voltage sweep is and the doping level is 10
15

cm
-3

. 

Note the change in the curvature of the rising and falling edges which is a signature of 

field dependent mobility. 
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Figure 10. Simulated current response in a CELIV measurement. Dashed line is for a fixed mobility and the full 

line is for a field dependent mobility. 

 

Next, we ran the simulation for several sweep rates (see Figure 11) and used the field at 

tmax as the relevant one to relate the mobility to (equation (30)). 
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Figure 11. Simulated current response in a CELIV measurement for 3 sweep rates (3e7, 3e8, 3e9 V/s). 

 

The results of the analysis is shown in Table I and we note the method underestimates the 

mobility and that the deviation increases as the field at which the mobility is deduced 

increases. As one would expect, the position of the maximum is dependent on the earlier 

part of the sweep where the mobility is lower and hence the increasing deviation. By 

fitting the extracted mobility we found  to be 3.6e-3 instead of 4.4e-3. For such a simple 

method the accuracy of the method is not bad at all!! 

 
Table I.  

Applied 

Voltage at 

tmax 

Applied 

field at tmax 

Actual 

mobility at 

tmax 

Extracted 

mobility 

ratio 

1V 1e4 1e-4 1e-4 1 
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8.7V 8.70E+04 3.66e-4 2.64e-4 0.72 

21.3 V 2.10E+05 7.6e-4 4.4e-4 0.58 

46.5V 4.65E+05 2e-3 9.25e-4 0.46 

90V 9.00E+05 6.5e-3 2.5e-3 0.38 
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V. Step function excitation  

In the following we make extensive use of the ideas and formulations presented in the 

book by Kao and Hwang [2] which is unfortunately long out of print. Let’s assume the 

voltage to be a step function of the form: 

(31) 
0 0

( )
0

t
V t

V t


 


 

Let’s assume the charge carriers are electrons (ne) such that equation (7) can be written 

as: 

(32) 
0( , ) ( , ) ( , ) ( , ) ( , )e e e e

d d
j z t E z t q n z t E z t qD n z t

dt dx
      

And Poisson equation (3) takes the form: 

(33)  0

0

( , ) e

dE q
n z t n

dz 
    

Integrating (32) while remembering equation (8): 

(34) 

 

0

0 0

0
0

0
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0

1 1
( ) ( , ) ( , ) ( , ) ( , ) ( , )

1 ( , )
( , ) ( , )

( , ) (0, ) ( , ) (0, )
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d d

e e e e

d

e e e

e e
e e

d d
j t j z t dz E z t q n z t E z t qD n z t dz

d d dt dz

d dE z t d
V E z t qD n z t dz

d dt d dz dz

d qD
V E d t E t n d t n t

d dt d d

 


 

  



 
      

 

 
      

 

        

 

 



2 20 0

0

( , ) ( , )
( , ) (0, )

2

e e

z d z

d D dE z t dE z t
V E d t E t

d dt d d dz dz

  

 

 
      

 

 

And finally: 

(35) 2 20 0 0

0

( , ) ( , )
( ) ( , ) (0, )

2

e e

z d z

d D dE z t dE z t
j t V E d t E t

d dt d d dz dz

   

 

 
       

 
 

 

We also note that: 

 (36) 
0

( )
( , ) (0, )

Q t
E d t E t


   

Where 
0

( ) ( , )

d

eQ t q n z t dz   is the total amount of charge stored in the device at time t. 

V.A. Contact limited current transients 

We assume that the contact limits the charge density at the contact interface to a level that 

is too low to affect the electric field: 
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(37) 0(0, )*eQ qn t d V
d


   

To have a feeling for the dynamics behind the device response we present numerical 

simulation results of a response to a voltage step of 40V of a device being 1000nm long. 

The mobility is taken to be 10
-6

cm
2
/Vs and the density at the cathode interface is 

~2x10
14

cm
-3 

(see Figure 12). The main graph shows the current response and the 

surrounding ones show snap shots of the charge distribution at different points in time, as 

marked with arrows. 
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Figure 12. Simulated current response to a step function voltage excitation in device having high contact barrier. 

The surrounding figures show snap shots of the charge density distribution at the marked points in time. 

 

The parameter set used in the simulation is: 

Parameter Value  

Length d=1000nm  

Bias V=40V  

Cathode ne(0,t)=10
14

cm
-3

 

nh(0,t)=10
10

cm
-3

 

 

Anode ne(d,t)=10
10

cm
-3

 

nh(d,t)=10
10

cm
-3

 

 

Electron mobility e=10
-6

cm
2
/Vs  

Hole mobility h=10
-6

cm
2
/Vs  

Total density of states 10
21

cm
-3

  

Doping density none  
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As Figure 12 shows, the current is rising linearly with time as the device is being filled 

with charges. Once the charges reach the anode, the device is full and the current 

response flattens. 

To rigorously analyze the response we remember that under the physical conditions 

assumed here we can typically also neglect diffusion currents and hence equation (35) 

can be written as: 

(38) 
0

2 2 2 20 0 0( ) ( , ) (0, ) ( , ) (0, )
2 2

t
e ed

j t V E d t E t E d t E t
d dt d d

    

            

And using (36): 

 

(39) 
0

0 0

( ) ( ) ( ) ( )
( ) 2 ( , ) 2 (0, )

2 2

t
e eQ t Q t Q t Q t

j t E d t E t
d d

 

 

    
      

   
 

As we assumed the charge density to be low 0Q V
d

 
 
 

: 

(40) 
0

0

2

( , )
( ) ( ) ( ) ( )

( ) 2 (0, )
2

d

e
t

e e e

tr tr

q n z t dz
Q t Q t V Q t V Q t

j t E t
d d d d

  

 



       


 

To find Q(t) we rewrite equation (1) neglecting diffusion and generation/recombination: 

(41)  ( , ) ( , ) ( , )e e en z t n z t E z t
t z


 


 

 

The assumption of the charge density being low 0Q V
d

 
 
 

allows us to deduce that 

 ( , ) 0eE z t
z






 and hence: 

(42) ( , ) ( , )e e en z t E n z t
t z


 


 

 

And finally the differential equation for the total charge density Q is: 

(43)  
0 0

( ) ( , ) ( , ) ( , ) (0, )

d d

e e e e e eQ t q n z t dz q E n z t q E n d t n t
t t z

 
  

      
     

The boundary conditions are ne(0,t)=ne(0) and Q(0)=0. 

From the above we deduce the charge density at the anode to be: 

(44)
0

( , )
(0)

tr

e

e tr

t
n d t

n t






 


 

And the total charge density can thus be written as: 

(0) (0)
( )

(0)
(0)

e e tr e e tr

e e tr tr
e tr

V
q En t t q n t t

Q t d
q En t

qdn t

   

  



  

  
  

 

Inserting into equation (40) we arrive at the expression for the current: 
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(45) 

(0)

( )
(0)

e e
tr

tr

e e
tr

q Vn t
t

d
j t

q Vn
t

d












 
 


 

In this case finding the mobility can be done by locating the crossing between the slopes 

(t=tr) and applying 

(46) 
2

e

tr

d

V
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V.B. Space charge limited current transient 

 

We assume here the charge density that can be supplied by the contacts is high  

(47) 0(0, )*eQ qn t d V
d


  .  

To have a feeling for the carrier and field distribution dynamics we present numerical 

simulation results of a response to a voltage step of 40V of a device being 300nm long. 

The mobility is taken to be 10
-6

cm
2
/Vs and the density at the cathode interface is 10

19
cm

-3 

(see Figure 13). The main graph shows the current response and the surrounding ones 

show snap shots of the charge distribution and electric field at different points in time, as 

marked with arrows (note the electric field axis is reversed). 
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Figure 13. Current response to a voltage step of 40V of a device being 300nm long. The mobility is taken to be 

10-6cm2/Vs and the density at the cathode interface is 1019cm-3. The main graph shows the current response and 

the surrounding ones show snap shots of the charge distribution and electric field at different points in time, as 

marked with arrows (note the electric field axis is reversed). 

 

The parameter set used in the simulation is: 

Parameter Value  

Length d=300nm  

Bias V=40V  

Cathode ne(0,t)=10
19

cm
-3

 

nh(0,t)=10
10

cm
-3

 

 

Anode ne(d,t)=10
10

cm
-3

 

nh(d,t)=10
10

cm
-3

 

 



Experimental techniques to determine transport parameters                                                         Page 22 of 51 

Electron mobility e=10
-6

cm
2
/Vs  

Hole mobility h=10
-6

cm
2
/Vs  

Total density of states 10
21

cm
-3

  

Doping density none  

 

As the injection contact is the cathode, at z=0, it is common to assume:  

(48) (0 , ) 0E t   

And we note that this is supported by the numerical results shown in Figure 13. Inserting 

(48) into (35) we get: 

(49) 2 20 0 0

0

( , )
( ) ( , ) ( , ) (0, )

2 2

e e e e
e

z

D dE z t qD
j t E d t E d t n t

d d dz d d

    



     

Assuming 20 ( , ) (0, )
2

e e
e

qD
E d t n t

d d

 
: 

(50) 20( ) ( , )
2

ej t E d t
d

 
  

The above assumption can also be written as   02 (0, ) /
/

e

V
qn t d V

kT q d

 
  

 
 which 

together with equation (47) implies: 

(51) 1
/

V

kT q
 

This condition is usually replaced by saying that diffusion is being neglected. 

Another  expression for the current can be derived by considering that until the charge 

front reaches the anode (t<tr) the current at the anode interface is displacement current 

only: 

(52) 0( ) ( , ) ( , )
d

j t j d t E d t
dt

    

Combining (50) and (52) we get for t<tr: 

(53) 2( , ) ( , )
2

ed
E d t E d t

dt d


   

To solve (53) we add the boundary condition at t=0 - ( ,0)
V

E d
d

  . 

The solution takes the form: 

1 1

1

1

( , ) ( ,0) 1 ; ( ,0)
2

et
E d t E d t E d

t d


 

   
     

  
 which is 

equivalent to: 
1

0

0

( , ) ( ,0) 1 ; 2 2
2 ( ,0)e

t d
E d t E d

E d
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(54) 

1

2

02
( , ) 1 ;2 2

2 e

e

V t d
E d t

dd V

V








 
 
    
 
 
 

 

Inserting (54) into (52): 

(55) 

1

0 2
( ) ( , ) 1

2
e

d V t
j t j d t

ddt d

V





  
  
 

      
  
    

 

And finally, for t<tr, we get: 

(56) 

2

2

0 23
( ) 1 ;   

2
2

e
tr

e

V t
j t t

dd

V


 





 
 
   
 
 
 

 

To find tr we use the fact that the carrier front is experiencing the same field as at the 

anode (see Figure 13): 
1

2

2 2

0 0 0

2

( , ) 1

2 2

tr tr tr

e
e e e

e e

d

V t V V
d E d t dt dt dt

d dd d
t

V V

  


  

 



   
   
       
   

   
   

    

2 2 2 2

2

0

1
2 2 ln 2 ln 2 2 ln 1 / 2

2

tr

e tr tr

e e e e

e

V d d d d
d dt d d

dd V V V V
t

V



  
   



 
           
               
            
 



hence: 

(57) 
1 12

2 2
0 02 1 2 1 0.786tr

e

d
e e

V
  



    
      

   

 

Namely, the peak of the current takes place at 
2

0.786tr

e

d
t

V



   or the mobility can be 

found from: 

(58) 
2

0.786e

tr

d

V



  where the electric field related to this mobility is in the range of [V/d, 

1.5V/d]. 

One way to ensure that the device is operating within the physical picture used in this 

section is to verify that the shape of the current profile is similar to the one shown in 

Figure 13. To assist this we compute the following: 
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To finalize this part we show in Figure 14 the current response for several types of 

contacts reflected by the boundary condition at the cathode, ne(0,t). 
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Figure 14. Current response as a function of the charge density supplied by the contact. Note that as the density 

is lowered from 1019cm-3 to 1016cm-3 the shape changes from SCLC type to contact limited type. 
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V.C. Optical step function excitation 

The idea behind applying an optical step function excitation is to have a physical scenario 

similar to the one described in section V.A but with the boundary condition at the contact 

being a generation rate rather than a fixed charge density. By controlling the height of the 

step (i.e. the optical power) as well as by choosing different applied biases one can 

generate different steady state charge densities which would be equivalent to varying the 

barrier height in section V.A. Due to the relatively slow response time of organic LEDs 

one can use inorganic LEDs as the excitation source to produce ideal enough step 

function. Suitable experimental set-up is shown in Figure 15. 

LED

Pulse Generator 

Spot Conditioning 

(Integrating Sphere)

Transimpedance Amp

Scope
Signal Generator 

Trigger

Trigger

Si detector

To Scope 

ch2

 
Figure 15. Schematic description of a suitable experimental set-up. 

 

To have a feeling for the carrier distribution dynamics we present (Figure 16) numerical 

simulation results of a response to a step function optical excitation. The device was 

1000nm long and biased at 40V. The mobility is taken to be 10
-6

cm
2
/Vs and the 

absorption depth is 100nm. The main graph shows the current response and the 

surrounding ones show snap shots of the electron distribution at different points in time, 

as marked with arrows. The first and last snap shots include also the hole’s distribution in 

blue dashed line. 
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Figure 16. Current response to a light step of a device being 1000nm long and biased at 40V. The mobility is 

taken to be 10-6cm2/Vs and the absorption depth is 100nm. The main graph shows the current response and the 

surrounding ones show snap shots of the electron distribution at different points in time, as marked with arrows. 

The first and last snap shots include also the hole distribution in blue dashed line. 

 

The parameter set used in the simulation is: 

Parameter Value  

Length d=1000nm  

Absorption length Labs=100nm  

Bias V=40V  

Cathode ne(0,t)=10
10

cm
-3

 

nh(0,t)=10
10

cm
-3

 

 

Anode ne(d,t)=10
10

cm
-3

 

nh(d,t)=10
10

cm
-3

 

 

Electron mobility e=10
-6

cm
2
/Vs  

Hole mobility h=10
-6

cm
2
/Vs  

Total density of states 10
21

cm
-3

  

Doping density none  

 

V.C.1. Simple mathematical analysis 

 

To simplify the analysis we assume that the absorption length is negligibly small. Under 

this assumption we can neglect the contribution of holes to the current and, in analogy to 

section V.A, we can rewrite equation (40): 
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(59) 
0

0

2

( , )
( ) ( )

( )

d

e
t

e

tr tr

q n z t dz
Q t V Q t

j t
d



 



   


 

On the other hand, equation (42) must be rewritten to include a generation term 

(60) ( , ) ( , ) ( , ) ( , )e e en z t E z t n z t G z t
t z


 

 
 

  

Where our assumption of negligibly small absorption length leads to: 

(61)
0 0

( , )
0 0

G z
G z t

z


 


 

Under the assumption that diffusion currents are not important we can replace the 

boundary condition (61) with: 

(0, ) (0, ) (0, ) 0e e e

V
n t n t G t

t d



   


 

Or: 

(62) 0(0, )e

e

d G
n t

V


  

This brings us to the point where we can now use the results of section  V.A using (62) as 

the boundary condition: 

(63) 
0

0

( )
tr

tr

tr

t
q G t

j t

qG t









 
 

 

As before, finding the mobility can be done by locating the crossing between the slopes 

(t=tr) and applying 

(64) 
2

e

tr

d

V
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Figure 17. The response shown in Figure 16 (solid line), the slope of the long time response (dashed line), the 

short time response (dotted line). The yellow circles denote the points where the slope seems changes. 

 

As Figure 17 shows, the response is almost identical in shape to the one shown in Figure 

12 for a single carrier injection from a limiting contact. This similarity motivated us to 

simplify the analysis above by assuming very short absorption length and negligible 

contribution of holes to the current. We return now to these assumptions and we note the 

apparent difference in the existence of a faster slope at the very beginning. To isolate this 

additional feature we first fitted the slope of the long time linear rise (dashed line) and 

subtracted it from the full response to arrive at the response shown in dotted line.  

To understand the origin of this additional feature we remember that the optical 

excitation is generating both electrons and holes and that for low enough excitation the 

two responses are almost independent. 

Lifting the assumption of negligible contribution of holes to the current we rewrite (59): 

(65) 
0

0 0

2 2

( , ) ( , )

( ) ( ) ( )

d d

h h e e
t

h e

q n z t dz q n z t dz

j t j t j t
d d

 


   
 

 

And if we recall that holes are extracted by the contact through which the light is shining 

we can assume that holes distribution would resemble the absorption profile (see also 

Figure 16):  

( , ) (0, )exph h

abs

z
n z t n t

L

 
  

 
 

and for Labs<<d  
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(66) 
0

( , ) (0, )

d

h abs hn z t dz L n t  

Examining Figure 16 we can also write for the steady state:  

(67) 
0

( , ) ( , )

d t

e en z t dz d n d t   

To supplement the above we note that at steady state there is no charging of the device. 

Namely, the rate at which holes exit the device at z=0 is equal to rate at which electrons 

exit at z=d:  

(68) (0, ) ( , )h h e eEn t En d t   

Combining (65) to (68) we find that for the steady state 

( )

( )

e abs

h t

j t L

j t d
  

We recall that the simulations were carried out for d=1m and Labs=100nm and indeed 

the response shown in Figure 17 with dotted line is about 10
th

 of the total response (i.e. it 

represents the contribution of holes to the current).  
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VI. Excitation of LEDs 

VI.A. Time Domain. 

The physical picture we will be concerned here is similar to the one described in ref [10]. 

We assume a step function voltage excitation resulting in double injection of electrons 

and holes from their respective contacts. We also assume that the one of the charge 

carriers is much faster than the other so that in the output EL we could expect to be able 

to differentiate between the contributions made by the transport of each type of carriers. 

Figure 18 shows results of numerical simulations of such scenario. In this simulation the 

electrons are 20 times faster than the holes (h=0.05ee =10
-6

cm
2
/Vs) and we would 

expect to start seeing light output once electrons reach the opposite contact and meet the 

holes that have hardly moved. The device length is d=100nm and the applied voltage is 

(V-Vbi)=5V. The contact barriers are set at 0.2eV making the injection not limited by the 

contact. Figure 18a shows the first 30s and Figure 18b shows the long time response. 

The top curve (marked Rec) denotes the overall recombination (exciton generation) in the 

device which in the absence of any quenching effects would represent the light output. 

The curves marked Rec (5nm) and Rec (10nm) were calculated excluding the 5nm and 

10nm close to the contacts, respectively. The curves surrounding the temporal response 

depict the charge distribution at the point in times marked with the arrows.
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Figure 18.  

 

 

VI.A.1. Simple mathematical analysis 

For simplicity we will assume that one of the charge carriers is much faster than the other 

(as in Figure 18) and that the injection of these carriers is contact limited.  
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a) Analysis of the fast carriers 

We attempt here to derive an expression describing the fast turn on of the 

electroluminescence that is associated with the fast carriers transport. Namely, the 

physical scenario is almost identical to the one described in section V.A. The only 

difference now is that we are interested in the light output which under the present 

assumptions corresponds to the charge density (of the fast carriers) at their exit contact. 

We recall equation (44) 

(69)
0

( , )
(0)

tr

e

e tr

t
n d t

n t






 


 

 

And if we assume that the light emission is proportional to the charge recombination 

than: 

(70) ( , ) ( , )h eEL B n d t n d t    

Which for t not much lathe than the transit time of the fast carriers (electrons in the above 

equations): 

(71)
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Figure 19. Schematic description of the EL as a function of time according to equation (71). 

 

In real experiments the EL rise is not so sharp and can span time period that is of the 

order of tr (see Figure 22). In such a case it becomes non trivial to define the transit time. 
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Do we choose the onset  or the top of the step? In ref [10] this was answered with the aid 

of numerical simulation and we will try to approach it here in a somewhat more analytic 

manner. 
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Figure 20. (a) Illustration of a delta function charge excitation which was studies in section III. (b) Illustration of 

a step function charge excitation which is studied in this section. 

 

We first ignore the drift motion of the charges and deal only with diffusion. For the delta 

function excitation (d(z)) we know the solution to be (see also equation (15)): 

(72) 

2

40( , )
2 π

e

z

D te
e

e

n
n z t e

D t



  

For the step function excitation (H(z)) we can write the solution as a convolution with the 

response to a delta function: 

(73) 

2 2

4 40 0( , ) ( )
2 π 2 π

e e

s s

D t D te e
e

ze e

n n
n z t e H z s ds e ds

D t D t

  



     

Changing variables: 
2 e

s
k

D t
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(74) 
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In analogy to equation (15) we add the drift velocity: 

(75) 0

1 1
( , )

2 2 2

e

e e

e

V
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And finally 
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Figure 21. Calculation of equation (76) using =10-5cm2/Vs, d=100nm, V=2.5V, D=(kT/q) 

 

As equation (76) and Figure 21 show, the transit time is to be measured at the point 

where the intensity reached half of its final value. Note that if one uses the onset time 

(~3x10
-7

) the mobility would be overestimated and the effect would be more pronounced 

for short devices and low applied voltages. 
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Figure 22. The short time EL response for a step function excitation of (V-Vbi)=5V shown in Figure 18 (dashed 

line, round symbols) and a fit using equation (76) (full line).  

 

Figure 22 shows the simulated response presented in Figure 18 (dashed line, round 

symbols) and a fit using equation (76) (full line). The fit of equation (76) to the 

experimental curve results in 6 21.33 10 /fast cm Vs   , 1fast fast

kT
D

q
  .  

To show the application to experimental data we show in Figure 22 a fit to data similar to 

the one reported in ref. [10]. 
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Figure 23. Measured EL response for a step function excitation of (V-Vbi)=3.1V applied to a LED having a 

thickness of d=75nm (round symbols). (a) The first 15s (b) Longer time scale showing also the contribution of 

the slow carriers. The full line is a fit using equation (76). Device structure = (ITO/ PEDOT:PSS 

[50nm]/PPVcp[75nm]/Ca). 
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Figure 22 shows the response of a PPV co-polymer to a voltage step function excitation 

and the device structure was (ITO/ PEDOT:PSS [50nm]/PPVcp[75nm]/Ca). While we 

know that in this device the fast carriers are holes we will perform the analysis using the 

equations developed as if the electrons are the fast carriers. The fit of equation (76) to the 

experimental curve results in 6 27 10 /fast cm Vs   , 40fast fast

kT
D

q
  . This anomalous 

enhancement of the diffusion constant (Einstein relation) seems too high to be due to the 

semiconductor being degenerate and is most likely due to spatial dispersion of the 

transport properties.[11-13]  

 

b) Analysis of the slow carriers 

In the previous section we defined the electrons as being the fast carriers hence we are 

now interested in the effect of the holes penetrating the device. The final density of the 

holes in the device can be limited by either of the following two: 

1. Recombination with the electrons (i.e. zero hole leakage current) 

2. Their front reaching the cathode and filling the entire device (i.e. high hole 

leakage current). 

(1) High efficiency case 

Starting with the high efficiency case, as is the simulated case presented in Figure 18, we 

rewrite equation (2) neglecting diffusion and generation: 

(77) ( , ) ( ) ( , ) ( , ) ( , )h h hn z t E E z t n z t R z t
t z


 

  
 

 

(78) 
0 0 0
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d d d

h h hn z t dz E n z t dz R z t dz
t z


 

  
     

Writing the recombination as a bi-molecular rate: 

(79) 
0

1
( ) ( , ) ( , ) ( , )

d

h h h h e

V
Q t n d t Bn z t n z t dz

q t d



 

   

If we assume that the recombination is only a small perturbation to the fast carriers’ 

density (ne): 

(80) 
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1
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If we let 
0( 0 )h hQ t Q   where ( 0 )hQ t   is the total hole charge at the end of the 

electrons transient: 

(82) 0

( , ) ( , )
( ) eBn th h

h h h h

e e

qV n d t qV n d t
Q t Q e

d Bn d Bn
   

   
 

 

From equation (82) we find that the time constant  has the form 
1

eBn

 and assuming 

the recombination to be Langevin:  
0 0

1
e h e e e

q q
n n  

  
   . Namely, by extracting 

e from the fast response and  from the slow response we can deduce the fast carrier 

density:  
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Figure 24. The full response including the slow component of the light turn on. The solid (red) curve is a fit to 

equation (82). 

 

For example, in Figure 24 the full response of the same simulation presented in Figure 18 

(dashed line, round symbols). The full blue line is a fit to equation (82) which results in 

=2x10
-5

sec. From this we can deduce the fast carrier density in the region close to the 
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contact injecting the slow carriers: 
14

16 3

19 5 6

3 8.85 10
6 10

1.6 10 2 10 1.33 10
fastn cm




  

 
  

    
 

which is very similar to the density found in the simulation (6.5x10
16

cm
-3

) and presented 

in Figure 18. 

As the process of filling the device with slow carriers is recombination limited it is 

obvious that _tr slow  or that slow<1x10
-6

cm
2
/Vs. 
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And using this last expression we find e=1.5x10
-6

cm
2
/Vs. 

 

Regarding the slow carrier mobility we can only deduce an upper limit for it. Examining 

Figure 24 we note that the exponential function is not disturbed up to ~100s so we can 

state that tr_slow is larger than that or that h<2x10
-7

cm
2
/Vs (in the simulation code we 

used h=5x10
-8

cm
2
/Vs). 

 

(2) Low efficiency case 
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Figure 25. (a) slow carrier are contact limited (ne(0)~1018cm-3; nh(d)=1014cm-3). (b) fast carriers are contact 

limited and slow carriers are bulk limited (ne(0)~1014cm-3; nh(d)=1018cm-3). (c) both carriers are contact limited 

(ne(0)~1014cm-3; nh(d)=1014cm-3). Dashed line is the current and the full line is the recombination rate (~EL). 
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In Figure 25 we see three cases: 

(a) The slow carriers are contact limited (almost no difference compared to Figure 24). 

(b) The fast carriers are contact limited and the slow carriers are bulk limited. In this case 

the long time EL reflects the evolution of the density of slow carriers and is very similar 

to the current which is SCL. 

(c) Both carrier are contact limited and the long time EL response again reflects the 

evolution of the density of slow carriers. However, in this case the flow into the device is 

not limited by recombination or space-charge and hence it follows conditions similar to 

those describes in section V.C “Optical step function excitation”. 
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VI.B. Frequency Domain  

 

For a single carrier injection we can start by writing the transport equations neglecting 

diffusion and follow [14]: 

(87) 

0 1
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0 1
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e e e

e e e
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E E z E z t
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Here subscript “0” denotes steady state and “1” is the small signal quantity. 

 

(88) 
1 0 1 0 1 1 0( , ) ( ) ( , ) ( , ) ( )e e e e e

d
J E z t q n z E z t q n z t E z

dt
       

(89) 1 0 1 0 1 0 0 1( , ) ( ) ( , ) ( ) ( , )e e e e

d d
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Laplace transform: 
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j s se z s E z q n z e z s E z e z s
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Where the small letters denote the transformed variable. 

(91) 0 0 1 0 1
1 1

0 0 0 0

( ) ( ) ( ,0)
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e e e

e e
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Equation (91) needs to be solved using the appropriate boundary conditions. The result is 

then integrated to yield a relation between the voltage (V1) and the current (je1):  

1 1

0

( ) ( , )

d

v s e z s dz    

from which the admittance (je1/V1) frequency response can be derived (For a frequency 

independent excitation the time dependence of the voltage excitation has to be a delta 

function).  At t=0 the charges have not yet moved in the device and hence the small 

signal electric field 1( ,0)E z const  and for a delta function excitation: 1( ,0) 0E z  . 
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SCL conditions: 

In reference [14] the problem is solved for the case of space charge limited current where 

one uses the common approximations of:  
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J z
E z
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As implied above, for SCL current the electric field at the injecting contact is zero and 

hence: 

(93) 1(0, ) 0e s   

Using above equations one can derive (see Appendix 1 – Frequency response SCL) the 

following: 

(94)
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Contact limited (non metallic contact): 

 

In this case the charge density at the contact is fixed by the contact work-function. As the 

contact is not metallic there is no image force effect and the contact barrier is 

independent of voltage. 

For contact limited: 0
0 0( )

V
E z E

d
   , 0 0( ) (0)e en z n az  , 

2

0

0 0

(0)en dq
a

V 
 ; 

at t=0 1( ,0) 0E z   and as the charge density at the injecting contact is fixed 1(0, ) 0
d

e s
dz

  

Solving for these conditions: (to be completed, Nir) 

 

Contact limited (metallic contact): (to be completed, Nir) 
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SCL conditions (single carrier injection) 

In all the previous sections we started with simulations results to promote some level of 

intuitive understanding. For consistency we do the same here although it seems that in the 

current case the contribution of the numerical results to the intuitive understanding is 

very small. In this simulation the contact barriers are set at 0.15eV for electrons and 

0.5eV for holes making the electron injection not limited by the contact and the hole 

injection is negligible. The electrons are 10 times faster than the holes 

(h=0.1ee=10
-6

cm
2
/Vs), the device length is d=100nm, and the DC applied voltage is 

(V-Vbi)=5V. In the simulation we first apply a step voltage of 5V and allow the device to 

reach steady state (see Figure 26a). At t=170s we add to the voltage a small step which 

is 10
-3

 of the large signal applied to turn the device on. Figure 26b shows a zoom on the 

small signal current response to the 5mV increase in voltage. 
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Figure 26. (a) Current response to a step voltage excitation of 0 to 5V at t=0 and 5v to 5.005V at t=170s. (b) 

zoom on the response to the small (5mV) step at t=170s. 

 

After verifying that the response is linear with the applied small-step height we can 

calculate the impulse response by differentiating (d/dt) the step response. This procedure 

is shown in Figure 27. 
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Figure 27. (a) The small signal step response shown in Figure 26b (b) The impulse response derived by applying 

d/dt to the data in (a). 

 

Finally, the frequency response is calculated by Fourier transforming the impulse 

response. Figure 28 illustrates this procedure and Figure 28b shows the real and 

imaginary parts of the response which are proportional to the conductance and 

susceptance, respectively. The angle shown at the top of Figure 28b uses 2w f and 
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Figure 28. (a) The impulse response shown in Figure 27b. (b) The frequency response calculated by Fourier 

transforming the impulse response. The real and imaginary parts are proportional to the conductance and 

susceptance, respectively. 

 



Experimental techniques to determine transport parameters                                                         Page 43 of 51 

 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 1 10
4

2 10
4

3 10
4

4 10
4

5 10
4

6 10
4

7 10
4

N
o

rm
a

liz
e
d

 S
u

s
c
e

p
ta

n
c
e

 (
B

tr
a

n
s
ie

n
t)

Frequency (hz)
 

Figure 29. The transient related susceptance as calculated using equation (94) [solid line] and the one deduced 

from the numerical simulations [dashed line]. 
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VII. Appendix 1 – Frequency response SCL 
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Equation (91) needs to be solved using the appropriate boundary conditions. The result is 

then integrated to yield a relation between the voltage (V1) and the current (je1):  

1 1

0

( ) ( , )

d
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from which the admittance (je1/V1) frequency response can be derived (For a frequency 

independent excitation the time dependence of the voltage excitation has to be a delta 

function).  The initial condition for the small signal electric field at t=0, before applying 

the small signal perturbation, is 1( ,0) 0E z  . 

 

In reference [14] the problem is solved for the case of space charge limited current where 

one uses the common approximations of:  
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As implied above, for SCL current the electric field at the injecting contact is zero and 

hence: 
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 Solving the differential equation 
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 and as the electric field at the injecting contact is fixed at zero 1(0, ) 0e s   
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Inserting: 
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Introducing a normalized distance 
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Alternative derivation: 

The derivation here follows the one published by Shao et. al. [15] which derived the 

frequency dependent impedance 1

1

j
Y G jB

V
  where j1 and V1 are the small signal 

frequency dependent current and voltage. 

We start by writing equation (7) for single carrier: 

0 0( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )e e e e e
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Neglecting diffusion: 
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To this we add the Poisson equation: 

0

( )e

d q
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dz 
   

To solve the response to a small signal we start by following an electron moving from 

one side of sample to the other at a velocity that is dictated by the electric field. We will 

also assume that the electron is leaving at t=tc and that it leaves the electrode with a zero 

velocity (under SCL condition the electric field is zero at the contact). This electron is 

moving at a velocity 
dz

v
dt

  and is experiencing an electric field that is changing 

according to: 
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Using equations (101)  and (100) we find 
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A common method for solving small signal frequency response is to let all variables take 

the form of 
0 1

i ta a a e    where a1 is the small signal of the variable a. using this 

approach we write the current associated with the moving electron as: 
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Inserting (101)  into (101)  and integrating with respect to t: 
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Using the assumption that the charge leaves the contact at  t=tc with a velocity of v=0: 
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By integrating (101)  and knowing that at t=tc z=0 we deduce the distance traveled by the 

electron as: 
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So, if we consider a single carrier exiting the contact at t=tc we can use equation (101)  

and (101)  to know where it would be or what would be its velocity at time t (t - tc). 

However, as these equations show, the result is NOT independent of the time at which 

the charge started its travel (tc). This could be understood if we realize that depending on 

where on the modulation cycle the charge starts its travel it experiences a slightly 

different voltage or field as it crosses the sample. To find a solution that is independent of 

tc (frequency response is by definition time independent) we represent the time it takes to 

reach point z as a small signal response: 

(101)  0 1

i t

ct t T T e      

Here T0 is the mean time to reach z and T1 is the change in the time it takes to reach that 

point under modulation conditions. Namely, we replace the unknown tc with T1 and our 

goal in the following would be to find an expression for T1. Inserting (101)  into (101)  and 

neglecting higher order terms: 
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And similarly with equation (101)  
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Arranging and neglecting higher frequencies (or higher orders): 
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From this we can deduce the mean and time varying position as: 

 

(111)
20

0 0

02

j
z T




  

(111)

   00
11 0

1 0 0 1 2

0

1
i Ti ti t T

i t i t
J e ej T e

z e j T T e
i


 

  

  
   
 
 

 

To find T1 we recall that we defined 0 1

i t

ct t T T e     as the time needed to reach a 

time-independent position z (or z0 in the current notation). Namely, according to our 

definition 1 0z  and from (111)  T1 can be expressed as: 
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Now we are set to find the frequency response that is independent of time (tc). Inserting 

(111)  into (101) : 
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And rearranging: 
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Using (111)
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And finally: 
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we find the expression for the conductance 

and susceptance: 
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The high frequency limit susceptance of the device is due to its geometric capacitance: 
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 To find the contribution due to the transport we subtract it from the overall susceptance: 
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