
Scheduling Multiple Multithreaded Applications

on Asymmetric and Symmetric Chip Multiprocessors

Tomer Y. Morad, Avinoam Kolodny, Uri C. Weiser

Department of Electrical Engineering

Technion

Haifa, Israel

{tomerm@tx, kolodny@ee, uri.weiser@ee}.technion.ac.il

Abstract— This paper evaluates new techniques to improve

performance, fairness and jitter of workloads consisting of

multiple multithreaded applications running on Chip

MultiProcessors (CMP). Current thread assignment

techniques which are tailored for single-thread applications

result in sub-optimal usage of the multiprocessor resources,

unfairness between applications and jitter in execution

runtimes when dealing with multiple multithreaded

applications running in parallel. Multithreaded applications

contain serial phases (single thread) and parallel phases (many

threads). In this paper, we propose a new thread assignment

mechanism that takes into account the different requirements

of each phase, granting higher priority to applications during

their critical-serial phases. Analytic and experimental

evaluation of the proposed thread assignment mechanism on

both symmetric and asymmetric multiprocessors show

throughput improvements by as much as 16%, improved

fairness by as much as 26% and reduced jitter by as much as

88%.

Keywords- Asymmetric Multiprocessors, Operating Systems,

Scheduling.

I. INTRODUCTION

Multithreaded applications can take advantage of the
added computing ability offered by today's multiprocessors
by executing in parallel on many cores. With an ever-
increasing core population embedded in state-of-the-art
systems ‎[17], the use of multithreading in applications is
expected to increase. In this paper, we strive to improve
system performance as measured by several metrics when
several multithreaded applications are run in parallel on
symmetric multiprocessors, where all cores are identical, as
well as on asymmetric multiprocessors ‎[12], where some
computing cores are faster than others.

When examining multithreaded applications, one can
identify two types of execution phases: serial phases and
parallel phases. In serial phases, only one thread is active,
whereas parallel phases are comprised of many concurrently
active threads.

When several multithreaded applications run
simultaneously on a multiprocessor, the serial thread of one
application may be available for execution together with the
threads of the other applications. Fig. 1 shows an example of
the four possible joint states of two multithreaded

applications. The vertical axis represents time, and the
number of active threads of each application is shown for
each point in time.

Current thread assignment techniques, such as the
technique used in the Linux scheduler ‎[1], are not aware of
the phases of the running applications. When multiple
multithreaded applications are run in parallel, this lack of
awareness‎results‎in‎lower‎throughput,‎jitter‎in‎applications’‎
runtimes (unpredictable performance), and unfairness
between applications. These undesired characteristics may
happen because the serial phases, which are critical
bottlenecks for the applications, compete for CPU time with
the many concurrently executing parallel threads. If these
serial‎ phases‎ were‎ executed‎ quickly,‎ the‎ application’s‎
bottlenecks would be freed, allowing the application to take
advantage of the multiprocessor resources by using many
threads.

Fig. 1. Illustration of joint states of two sample applications running

simultaneously.

In this paper, we propose to add another dimension to the
current thread assignment mechanisms by using information
about the parallel and serial phases of applications. Our
proposed thread assignment technique monitors the number
of active threads in each application, and hence it can
identify and grant higher priority to serial threads.

Fig. 2 shows the four possible joint-states of two
applications executing in parallel: (Serial, Serial: S,S),
(Serial, Parallel: S,P), (Parallel, Serial: P,S), and (Parallel,
Parallel: P,P), as well as the possible transitions among them.
The large arrows on the state transition arcs denote the most

(P,S)

(S,S)

(P,P)

(S,P)

App-A App-B

t P=Parallel, S=Serial

likely transition. The proposed thread assignment technique,
shown in Fig. 2b, favors the serial thread, thus increasing the
probability for transition from (S,P) and (P,S) states to (P,P)
state. Current OS schedulers (shown in Fig. 2a), however,
treat the serial and parallel threads equally, thereby
lengthening the time required for the serial application to
transition into its parallel phase. The proposed technique is
expected to improve throughput by reducing the time spent
in (S,S) in which there are idle cores, resulting in increased
core utilization.

Fig. 2. Illustration of the four possible joint states of two applications

running in parallel.

In this paper, we propose a new thread assignment
technique that grants higher priority to applications in their
serial phases in order to increase the multiprocessor
throughput, improve fairness and reduce the jitter in
execution runtimes. The expected improvements are
quantified by a simple analytical model. We validate our
proposed techniques by experiments running on a real
symmetric CMP with a current version of the Linux
operating system, and with workloads consisting of multiple
multithreaded applications executing in parallel. We also
validate our techniques on asymmetric structures that are
emulated on the real symmetric CMP, with the addition that
serial threads are granted higher priority to run on faster
cores.

II. RELATED WORK

There are a number of papers addressing the scheduling
of single-threaded applications on asymmetric/heterogeneous
multiprocessors ‎[12], which are based on sampling of
runtime performance on the different core types. Kumar et
al. ‎[13] have proposed a scheduler for multiple single-
threaded applications on a heterogeneous multiprocessor.
Bower et al. ‎[7] have shown the impact on thread scheduling
in symmetric multiprocessors that become heterogeneous
during runtime owing to frequency scaling, process
variations and physical faults. Winter et al. ‎[24] explored
thread assignment algorithms for single-thread applications
on such multiprocessors.

Other papers address the scheduling problem of a single
multithreaded application running on an asymmetric
multiprocessor ‎[4]‎[6]‎[11]‎[15]. Grochowski et al. ‎[4]‎[11]

have proposed a static scheduling mechanism, implemented
at the application level, which schedules the serial phases of
applications on the high performance core. Balakrishnan et
al. ‎[6] proposed a dynamic scheduler for a single
multithreaded application on a heterogeneous
multiprocessor. They have shown that by scheduling the
serial phases on the high performance core, performance
increases and the jitter in runtimes of different executions is
reduced. We extend these methods ‎[4]‎[6]‎[11] for multiple
multithreaded programs, while addressing the scheduling
problem that arises when there are more threads than cores in
the multiprocessor. Our results are compared versus a
baseline environment without the proposals from previous
work, since these proposals are tailored for single
multithreaded applications and therefore will perform
similarly to the baseline environment when more than one
multithreaded application is run in parallel.

Many papers explore fairness and throughput in SMT
architectures ‎[10]‎[14]‎[19]‎[21]. We use and extend their
throughput and fairness metrics for asymmetric
multiprocessors. Other papers explore scheduling multiple
multithreaded applications on symmetric
systems ‎[3]‎[16]‎[23]. We extend these ideas for asymmetric
configurations and present the ability to prioritize
applications based on their phase of execution.

III. EMULATION ENVIRONMENT

All measurements in this paper are performed on an 8-
core multiprocessor (HP ProLiant DL580) consisting of four
dual-core 2.66GHz Intel Xeon processors (7020), 667MHz
front side bus, 8GB of DDR2 memory, and with SMT
disabled for better emulation of symmetric systems. The
operating system used is Linux 2.6.18, and is referred to in
this paper as the baseline environment. Our benchmarks
include the entire SPEC-OMP2001 ‎[5] suite with the
medium‎reference‎ input‎sets,‎with‎ the‎exception‎of‎“galgel”‎
because of compilation difficulties in our setup.

OpenMP offers various scheduling options for its parallel
constructs ‎[18]. We altered the default OpenMP scheduling
policy from static, in which each thread receives an identical
portion of the workload, to dynamic, in which each thread
consumes a predefined small subset of the workload and then
requests additional work. This is similar to what was done
in ‎[6] and ‎[15], and allows higher core utilization on
heterogeneous multiprocessors.

Since the SPEC-OMP2001 benchmarks are highly
parallel and represent only a small fraction of the application
space, we also measure in this paper a synthetic benchmark
written by the authors. The synthetic benchmark mimics
applications with an adjustable ratio of parallel to serial code.
It allows us to get accurate results within a short runtime,
making it practical for exploring various scheduling options
for various combinations of applications running together in
the system. The synthetic benchmark consists of a loop of a
mathematical calculation that fits entirely in the cache.
During the course of its execution, the benchmark switches
randomly between serial phases, in which there is only one

S,S

P,S S,P

P,P

Baseline

(a) (b)

S,S

P,S S,P

P,P

Proposed

active thread, and parallel phases, in which there are n
threads, equal to the number of cores in the multiprocessor.

We model and label multithreaded programs by the ratio
of parallel and serial instructions they contain, divided by the
number of cores used in each phase. In the following
equation, IP and IS denote the number of dynamic
instructions executed in the parallel and serial phases
respectively, n denotes the number of cores in the
multiprocessor, and the normalization factor k is chosen so
that one of the ratios equals one, and the other is greater than
or equal to one. For simplicity, we assume identical IPC for
the parallel and serial phases.

(,) ,P
Parallel Serial S

I
ratio ratio k kI

n

 
  
 

(1)

For example, a benchmark labeled (1:1) on a symmetric

CMP with no synchronization and scheduling overheads will
spend roughly equal time in its parallel phases and in its
serial phases.

The synthetic benchmark may be tuned so that in the
long run it would mimic the parallelism behavior of
applications, ranging from completely parallel applications
(∞:1) to completely serial applications (1:∞). Each
measurement of the synthetic benchmark lasts 60 seconds,
after which the benchmark reports the total number of
iterations it has completed in that time frame.

IV. METHODOLOGY

This research is focused on the interactions between
multiple multithreaded applications that are run in parallel.
In particular, we focus on three metrics: performance,
fairness, and jitter.

Measuring the performance improvement of multiple
applications running in parallel in different environments
(for example, environments with the same hardware but with
different OS schedulers) is no trivial task ‎[22]. It is even
harder when the applications are multithreaded. Alameldeen
and Wood ‎[2] have shown that the throughput metric of IPC
used in uniprocessors is not accurate for multithreaded
programs in multicore architectures. One of the reasons for
this is that threads in a multithreaded program use polling
when waiting for sibling threads, resulting in a different
number of committed instructions in different executions of
the same program. The accurate throughput metric for
multithreaded programs is therefore the amount of actual
work performed divided by the execution time.

Measuring the throughput of multiple synthetic
benchmarks running simultaneously is done by summing the
number of iterations completed in each benchmark during
the predefined benchmark time. The SPEC-OMP
benchmarks, however, must run until completion, since they
report their accurate progress only when they complete.

One way of measuring the throughput of a thread
assignment mechanism for multithreaded applications is to
run two applications and wait for both to finish. This method

is demonstrated in Fig. 3,‎and‎is‎similar‎to‎the‎“Last”‎method‎
described in ‎[22]. While measuring with this method, we
found that in many cases one application finished its
execution well before the other. Since we want to measure
the interactions between applications, the time segment in
which only one application is active becomes irrelevant, but
it does affect the results.

Fig. 3. Example of two multithreaded benchmarks running in parallel.

We handle the throughput measurement problem by
running two benchmarks that perform the same work, each
comprised of two applications that are run in a different
order, as shown in Fig. 4. Since the work of the two
benchmarks is identical, the runtimes are closer than in the
previous methods. As a result, the effects of our new
scheduler can be evaluated more reliably than in the other
methods ‎[22].

Fig. 4. Two multithreaded benchmarks, each comprising two applications

in a different order, with closer execution times tB1 and tB2.

The second metric evaluated in this paper is fairness.
When two applications are executed in parallel, their
runtimes are longer than when each application runs alone:

, ||

,

A A B

A

A A

Performance
speedup

Performance


(2)

If both applications exhibit the same relative speedup, the

system is said to be fair ‎[10]‎[19]. In this paper, we use the
fairness metric detailed in ‎[10], which is defined as the
minimum ratio of speedups of the applications. For two
applications, fairness is defined as follows:

|| min ,A B
A B

B A

speedup speedup
Fairness

speedup speedup

 
  

 

(3)

Fairness as defined above can be in the range of zero to

one, corresponding to completely unfair and to completely
fair, respectively. We calculate the speedup of application
“A”‎ in‎ equation‎ (2) as the time required to execute the
application alone on the multiprocessor, divided by the

A

B

tB1 = tcompletion

t

Benchmark-1

Benchmark-2

tB2

A

B

B

A

t

Benchmark-1

Benchmark-2
tA1

tA2

tB1 = tcompletion

average duration‎ of‎ application‎ “A”‎ in‎ the configuration
shown in Fig. 4: tA,alone / 0.5(tA1+tA2).

The third metric we consider is jitter in execution
runtimes. Balakrishnan et al. ‎[6] have already shown that
operating system schedulers in asymmetric multiprocessors
present unpredictable application runtimes for a single
multithreaded application. In this paper, we quantify runtime
jitter by measuring the standard deviation of the normalized
execution times of the workload in N experiments of the
same benchmark:

2

,

1 ,

1
1

N
A n

A

n A avg

t
Jitter

N t

 
   

 


(4)

V. ANALYSIS

In this section, we analyze the performance, fairness, and
jitter metrics for multiple multithreaded applications running
in parallel. These applications have one active thread in their
serial phases and n active threads in their parallel phases,
which is also equal to the number of cores in the
multiprocessor. This assumption does not always hold in
reality, since not all threads reach their barriers at the same
time. When using dynamic work distribution with workloads
consisting of long parallel phases, however, the effects of
having less than n active threads in the parallel phases can be
neglected. The applications in this model may differ in their
parallel/serial ratios. The performance figures in this section
are normalized to the performance of one thread on one
small core.

We begin by considering two multithreaded applications,
AppA and AppB, running on a symmetric multiprocessor with
n identical cores. When both applications are in their serial
phase, they are indifferent to each other's existence, since the
scheduler would schedule each thread on a different core.
Thus, two serial threads will exhibit no slowdown, and n-2
cores will be idle. When both applications are in their
parallel phases, there are 2n running threads that compete for
n cores. The Linux scheduler will schedule two threads on
each core, thereby slowing down each application by a factor
of two, assuming that the threads have equal priority and are
not IO bound.

When one of the applications is serial and the other is
parallel, there are n+1 threads that are to be scheduled on n
cores. Out of the n+1 threads, two threads will share a single
core, and n-1 threads will each have their own core. In the
worst case for the serial application, it will be assigned to run
with another thread, thus receiving only half of the
computing power. In the best case for the serial application,
it will exhibit no slowdown as it will be scheduled to run on
a core by itself.

For simplicity, we assume that all threads have equal
probability to execute on the two-thread core and on the one-
thread core. The average speedup is therefore:

2 1 2
(1) 1

1 2 1 1
serial

n
Speedup

n n n
     

  
(5)

Since the probabilities of each thread to execute on each

core are identical, the average speedup of the parallel phase
is identical to that of the serial phase.

We extend the analysis for an asymmetric multiprocessor
with n cores: one of the cores is larger as in ‎[15], and is
faster by a factor (a). For simplicity, we assume that the
performance factor (a) is identical for all workloads. The
average speedup, calculated according to (2), and the
maximum and minimum values in each state for the
asymmetric multiprocessor are shown in Table 1.

Table 1. Speedups‎(Min,‎Average,‎Max)‎for‎application‎“A”‎in‎the‎baseline‎
environment on the asymmetric multiprocessor. n=Number of cores.

a=Performance ratio of the large core.

Case

(A,B)

Minimum

Speedup

Average

Speedup

Maximum

Speedup

Maximum/

Minimum

(S,S)

1

a

1 1
1

2 a

 
 

 

 1 a

(S,P)
1

2a

 
1

1

n a

a n

 



 1 2a

(P,S)
1

1

n

n a



 

(1)

n

n 

3
2

1

n a

n a

 

 

3
2

1

n a

n

 



(P,P)
 2 1

n

n a 

 1

2

 
2 2

2 1

n a

n a

 

 
 2 2n a

n

 

Fairness is calculated according to (3), and is

summarized in Table 2. When two applications are both in
their serial phase or both in their parallel phase, the lower
bound for fairness is given by dividing the minimum and
maximum speedups of the states (S,S) or (P,P) respectively.
When one application is serial and the other is parallel, there
are two cases for fairness. In the first case, the lower bound
for fairness is given by dividing the minimum speedup in the
state (S,P) by the maximum speedup in state (P,S). In the
second case, the lower bound for fairness is given by
dividing the minimum speedup in state (P,S) by the
maximum speedup in state (S,P).

Table 2. Lower bound for fairness in the baseline environment.

(S,S) (S,P),(P,S) case 1 (S,P),(P,S) case 2 (P,P)

1

a

32()
2

n

n a 

 1n

an



2 2

n

n a 

The results from Table 1 and the worst case fairness

equations in Table 2 indicate that as the ratio between the
performance of the cores in the asymmetric multiprocessor
(a) increases, the lower bound for fairness decreases and the
jitter between runtimes increases.

We extend the analysis in this section for k>2
multithreaded applications running in parallel. The extension
results are detailed in Table 3.‎ The‎ “Serial”‎ or‎ “Parallel”‎
rows in the table show the speedups for a serial or parallel

phase of an application under all possible phases of the other
applications running in parallel, in comparison with it
running alone. The analysis predicts that as the number of
applications (k) that are run in parallel increases, the possible
jitter widens.

The probability of having idle cores decreases
exponentially as more parallel applications are run in parallel
(S,S,S,…).‎Consequently,‎ the‎throughput‎gains‎of‎using‎our‎
mechanism are expected to decrease as the number of
parallel applications that are run in parallel increases.

Table 3. Minimum and maximum speedups for 2<=k<=n applications
running in parallel.

Phase
Minimum
Speedup

Maximum
Speedup

Maximum / Minimum

Serial
1

ka
 1 ka

Parallel
 1

n

k n a 

1

1
2

1

k
n a

n a


  

 

1
1

2

k
n a

k
n


  

VI. PROPOSED ALGORITHM

We propose a new thread assignment algorithm that aims
to improve performance, improve fairness and reduce the
jitter in execution runtimes. The proposed algorithm grants
higher scheduling priority to serial threads. As a result, when
a serial thread is executed concurrently with a parallel
application, the serial thread is granted a core for itself, and
the threads of the parallel application will compete for the
remaining cores. The scheduling mechanism results in the
speedups shown in Table 4.

Table 4. Minimum‎and‎maximum‎speedups‎of‎application‎“A”‎for‎the‎
proposed thread assignment technique on asymmetric multiprocessors.

Case

(A,B)

Minimum

Speedup

Average

Speedup

Maximum

Speedup

Maximum /

Minimum

(S,S)

1

a

1 1
1

2 a

 
 

 

 1 a

(S,P) 1 1 1 1

(P,S)
1

1

n

n a



 

1

1

n

n a



 

1

1

n

n a



 
 1

(P,P)
 2 1

n

n a 

 1

2

 
2 2

2 1

n a

n a

 

 
 2 2n a

n

 

For the symmetric case (a=1), our analysis predicts

identical minimum and maximum execution times for all
states, so that jitter will be minimized and fairness between
applications will improve using our proposed scheduler.

It is expected that the proposed scheduler will reduce the
time in which there are idle cores on the multiprocessor. As a
result, the cores will spend more time performing useful
work, increasing overall multiprocessor throughput.

In state (S,S) on the asymmetric multiprocessor, there are
two active serial threads but only one of them is granted the
large core. This presents jitter in execution times, which
could be avoided, for example, by the method proposed by

Fedorova et al. ‎[8] at the expense of many thread migrations.
Another possible method is to grant priority for computing
power per application and not per thread. State (P,P) is
similar, and the jitter in this state could also be avoided by
using similar methods.

The predicted speedups of the proposed scheduler for
more than two applications running in parallel are given in
Table 5.

The Linux scheduler has been extended to support the
proposed algorithm. Detection of whether an application is in
its parallel phase or in its serial phase is done by keeping
track of the number of ready threads in each thread group.
This is performed in O(1) time whenever a thread changes its
ready state. A thread group is considered parallel when it has
more than two ready threads, and is considered serial
otherwise. We chose two as the threshold since we noticed
that an Open-MP application frequently switched between
one and two active threads.

Table 5. Speedups for 2<=k<=n applications running in parallel using the
proposed scheduler.

Phase Minimum Speedup Maximum Speedup Maximum / Minimum

Serial

1

a
 1 a

Parallel
 1

n

k n a 

 1

1

n k

n a

 

 
 1n k

k
n

 

The scheduler was also extended to grant higher priority

to serial threads. In Linux, each thread has a property known
as dynamic priority. When the dynamic priority figure of a
thread is lower, the thread is granted more CPU time. The
priority of the thread was therefore boosted by subtracting
ten [1] from its dynamic priority property.

The load balancer of the Linux kernel was extended as
well; the baseline scheduler will not migrate a running
thread, and will not migrate a ready thread from a slow core
to a fast core if it is the only running thread on the slow core.
These were changed to allow for better load balancing on
asymmetric multiprocessors.

When at least two applications are in their parallel
phases, and each has a number of active threads that is at
least equal to the number of cores in the system, the
applications compete with each other without any throughput
gains. This competition, which is favored by our proposed
technique, results in many unnecessary context switches that
thrash the cache and lower the overall throughput of the
system. In order to avoid this situation, our proposed
technique boosts the priority of the application that was the
first to enter its parallel phase. We call this mechanism
“seniority‎ boost”,‎ as‎ the‎ scheduler‎ chooses the senior
application and boosts its priority. This mechanism is similar
to gang scheduling ‎[9]‎[20]. When using this mechanism, the
application with the seniority boost is expected to finish its
parallel phase sooner, while the system exhibits fewer
context switches. When one of the applications finishes its
parallel phase, the system transitions to one of the joint states
(P,S) or (S,P) and the seniority boost is removed. In order to
avoid starvation, following a specific timeout in state (P,P)

the seniority boost is removed and applied to the other
application.

The baseline Linux scheduler's thread migration policy
has also been revised. Threads whose applications become
serial are automatically rescheduled on the idlest core and
granted more priority. In asymmetric configurations, the high
priority given to these threads will usually result in migration
to the high performance core.

The asymmetric multiprocessor is emulated by changing
the frequency (duty cycle) of seven out of eight cores in our
symmetric multiprocessor, as done in ‎[6] and ‎[11]. In our
case, we chose a=2, so the frequency of seven of the eight
cores was halved. Additionally, we configured the scheduler
to treat the large core as having more performance by using
the‎Linux‎CPU‎group‎property‎“CPU_POWER”.‎As‎a‎result,‎
the scheduler attempted to schedule more work on the larger
core.

The proposed scheduler will require additional changes
to perform well when there are more applications than cores,
since serial threads may dominate the computing resources.
Such changes may include a timeout for the bonus granted to
serial threads.

VII. EXPERIMENTAL RESULTS

The idle time percentage measured for two synthetic
benchmarks running in parallel decreased as expected, from
20% to 17.2% (reduction by 14%) in the symmetric
configuration, and from 25.6% to 22.8% (reduction by
10.9%) in the asymmetric configuration. This is in-line with
our expectations that the multiprocessor’s utilization will be
increased with the proposed scheduler. Throughput improved
by 3% and 4.5% respectively for the symmetric and
asymmetric configurations, as shown in Table 6 for the
asymmetric configuration.

Table 6. Measured speedup of two concurrently running synthetic
benchmarks using the proposed technique on an asymmetric multiprocessor

configuration (a=2).

Fig. 5 shows a contour graph of the speedup in the

symmetric multiprocessor. Each axis represents an
application, ranging from completely serial (1:∞) to
completely parallel (∞:1). The data in the graph corresponds
to the speedup of the two applications running in parallel on
a symmetric multiprocessor with the proposed scheduler, in
comparison to the baseline scheduler. Peak speedup is
achieved by the combination of benchmark (1:1) with a
similar benchmark (1:1). Speedups decrease monotonically
when moving away from this peak. The expected speedups

of the highly parallel SPEC-OMP2001 benchmarks should
roughly correspond to the (∞:1) and (8:1) benchmarks,
which are between 0%-4% in the symmetric configuration.

Fig. 5. Experimental contours of the speedup of two concurrently running

synthetic benchmarks when the proposed technique is used on a symmetric

multiprocessor configuration (a=1).

Table 7 shows the speedups for the SPEC-OMP2001
benchmarks with the proposed thread assignment technique.
The measurements were performed according to the method
shown in Fig. 4. The speedup exhibited by the highly parallel
SPEC-OMP benchmarks averaged 1.5% in the symmetric
multiprocessor, and 3.5% in the asymmetric multiprocessor.
The‎ “apsi”‎ benchmark‎ showed‎ significant‎ improvement‎
because it had many phase shifts between parallel/serial
phases. Since our proposed mechanism reacts fast to these
frequent‎ phase‎ shifts,‎ the‎ bottlenecks‎ of‎ “apsi”‎ were‎ freed
faster,‎and‎hence‎“apsi”‎achieved‎greater‎speedups.

Table 7. Measured speedup of two concurrently running SPEC-OMP2001
benchmarks using the proposed technique on an asymmetric multiprocessor

configuration (a=2).

The throughput gains for three synthetic benchmarks

running in parallel improved with the new scheduler by 1%
in the symmetric configuration and by 1.87% in the
asymmetric configuration. These results were expected, as

(∞:1)

(∞:1) 1% (8:1)

(8:1) -1% 1% (4:1)

(4:1) -1% 1% 1% (2:1)

(2:1) 0% -1% 4% 4% (1:1)

(1:1) -2% 1% 3% 4% 7% (1:2)

(1:2) 0% 1% 3% 5% 8% 7% (1:4)

(1:4) -2% 2% 0% 6% 9% 11% 8% (1:8)

(1:8) -2% 1% 3% 8% 7% 15% 18% 3% (1:∞)

(1:∞) -2% 2% 3% 6% 12% 16% 17% 10% 12%

AVG -1% 1% 2% 4% 5% 7% 8% 7% 8%

Average speedup of all dual benchmarks: +4.5%

∞:1

8:1

4:1

2:1

1:1

1:2

1:4

1:8

1:∞

∞:1 8:1 4:1 2:1 1:1 1:2 1:4 1:8 1:∞

Sy
n

th
e

ti
c

B
e

n
ch

m
ar

k
"A

"

Synthetic Benchmark "B"

wup

wupwise 2% swi

swim 8% 1% mgr

mgrid 4% 4% 4% app

applu 2% -2% 3% 1% equ

equake 3% 0% 4% 0% 0% aps

apsi 12% 15% 7% 12% 9% 16% gaf

gafort 1% 3% 2% -2% 2% 7% 0% fma

fma3d 1% 5% 3% -3% 0% 9% 3% 3% art

art 2% 0% 4% 3% -1% 15% -1% 2% -1% amm

ammp 3% 1% 4% -2% 4% 13% 0% 4% 1% 1%

average 4% 3% 4% 1% 2% 11% 1% 3% 2% 3%

Average speedup of all dual benchmarks: 3.5%

the measured CPU idle time in the symmetric case for three
benchmarks was 13.62% (or 12.25% with the proposed
scheduler) in comparison to 20% for two applications (or
17.2% with the proposed scheduler). With additional
applications running in parallel, the average idle time
decreases, leaving less room for improvement for our
proposed scheduler.

The jitter for the synthetic benchmarks multiplied by
1000 is shown in Table 8, and was reduced on average by
60% in the symmetric case and by 35% in the asymmetric
case.‎The‎ jitter,‎measured‎on‎five‎runs‎of‎“equake”‎&‎“art”‎
as an example, was almost eliminated in the symmetric case
and was halved in the asymmetric case. Fairness has
improved as well in almost all benchmarks.

Table 8. The average fairness and jitter metrics with the baseline and
proposed environments for the synthetic benchmarks and for SPEC-OMP

(5‎executions‎of‎“art”‎&‎“equake”).

Benchmark Scheduler
Symmetric Asymmetric

Fairness Jitter Fairness Jitter

Synthetic

Baseline 75.9% 9.07 87.5% 38.74

Proposed 90.7% 3.66 88.7% 25.12

Improvement 19.5% 59.7% 1.4% 35.1%

SPEC-OMP

Baseline 79.6% 1.13 49.3% 1.90

Proposed 78.5% 0.13 62.1% 0.94

Improvement -1.4% 88.1% 25.9% 50.5%

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new thread assignment
mechanism that favors serial phases of applications over
parallel phases, in a first attempt to optimize multiple
multithreaded applications running in parallel on symmetric
and asymmetric multiprocessors. Detailed analysis for any
number of multithreaded applications running
simultaneously shows potential for improvement in
throughput, fairness and jitter metrics. In particular, when
two multithreaded scientific applications (SPEC-OMP2001)
are run on symmetric as well as on asymmetric
multiprocessors, analytical and experimental results show
improvements in all metrics; the jitter in execution runtimes
decreased by as much as 88%, throughput in some cases
increased by more than 16%, and the fairness metric
improved by up to 26%.

The experiments in this paper were performed on a real
system, using official benchmarks and a modern operating
system (Linux kernel 2.6.18) with our extensions. The
concepts of this work could‎easily‎be‎implemented‎in‎today’s‎
state-of-the-art multiprocessor operating systems, as
implemented in our experimental system, and could show
immediate performance gains. Moreover, the concepts could
be used in grid architectures to better exploit the computing
power of shared memory nodes by scheduling several
multithreaded workloads at once.

There are various architectural implications for this work.
First, chip architects designing asymmetric multiprocessors
can use the analysis presented in this paper for predicting the
effects of asymmetry on various system metrics. We found
that as asymmetry between the cores widens, fairness

worsens and jitter between execution runtimes increases.
Second, exploiting asymmetry requires faster thread
migration techniques such as those implemented in this
research. We believe that in future designs, hardware may
assist the OS in performing these migrations, as opposed to
current designs in which the OS migrates threads without
any hardware assistance. Third, the performance
improvements presented in this paper for asymmetric
structures show that asymmetry presents even greater
performance potential over symmetric designs than predicted
by previous research.

This work also provides insights into a multitude of
future research issues in the area of multithreaded application
handling in CMP. The analysis could be extended to take
into account the distribution of phase-changing during the
runtime of applications. Additionally, the way multithreaded
programs were modeled in this paper, with either one active
thread or n active threads, could be extended to include the
whole range from one to n. Such extensions could
consequently be used to improve system metrics even
further, even on current symmetric architectures.

With regard to asymmetric configurations, the analysis
could be extended to support various configurations of
asymmetric multiprocessors, such as more than two types of
cores. Additionally, the analysis could take into account
different speedups for different applications on each core
type.

ACKNOWLEDGMENT

The authors would like to thank Dror Feitelson, Idit
Keidar, Avi Mendelson and Ronny Ronen for their insightful
comments. They would also like to thank Andrey Gelman
and Niv Aibester for their help in setting up the emulation
environment.

REFERENCES

[1] J.‎Aas,‎“Understanding‎the‎Linux‎2.6.8.1‎CPU‎scheduler,”‎SGI,‎2005.

[2] A.R. Alameldeen‎ and‎ D.A.‎ Wood,‎ “IPC‎ Considered‎ Harmful‎ for‎
Multiprocessor‎Workloads,”‎IEEE‎Micro‎Jul-Aug 2006.

[3] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy,
“Scheduler‎Activations:‎Effective‎Kernel‎Support‎for‎the‎User-Level
Management of Parallelism,”‎ in‎ ACM‎ Transactions‎ on‎ Computer‎
Systems, Vol. 10, No. 1, February 1992.

[4] M.‎Annavaram,‎E.‎Grochowski,‎ and‎ J.‎ Shen,‎ “Mitigating‎Amdahl’s‎
Law‎Through‎EPI‎Throttling,”‎in‎Proc.‎of‎the‎35th‎ISCA,‎June‎2005.

[5] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W.B. Jones, and
B.‎ Parady,‎ “SPEComp:‎ A‎ New‎ Benchmark‎ Suite‎ for‎ Measuring‎
Parallel‎Computer‎Performance,”‎in‎Proc.‎of‎WOMPAT‎2001.

[6] S.‎Balakrishnan,‎R.‎Rajwar,‎M.‎Upton,‎ and‎K.‎Lai,‎ “The‎ Impact‎ of‎
Performance‎ Asymmetry‎ in‎ Emerging‎ Multicore‎ Architectures,”‎ in
Proc. of the 35th ISCA, June 2005.

[7] F.A.‎Bower,‎D.J.‎Sorin,‎and‎L.P.‎Cox,‎“The‎ Impact‎of‎Dynamically‎
Heterogeneous‎Multicore‎Processors‎on‎Thread‎Scheduling,”‎in‎IEEE‎
Micro May/June 2008.

[8] A.‎ Fedorova,‎ D.‎ Vengerov,‎ and‎ D.‎ Doucette,‎ “Operating‎ System‎
Scheduling‎On‎Heterogeneous‎Core‎ Systems,”‎ in‎ Proc.‎ of‎OSHMA‎
workshop, 16th PACT, 2007.

[9] D.‎ G.‎ Feitelson‎ and‎ L.‎ Rudolph,‎ “Evaluation‎ of‎ design‎ choices‎ for‎
gang‎scheduling‎using‎distributed‎hierarchical‎control,”‎ in‎J.‎Parallel‎
& Distributed Computing 35(1), May 1996.

[10] R.‎Gabor,‎S.‎Weiss,‎and‎A.‎Mendelson,‎“Fairness‎and‎Throughput‎in‎
Switch‎ on‎Event‎Multithreading,”‎ in‎ Proc.‎ of‎ the‎ 39th‎ International‎
Symposium on Microarchitecture, 2006.

[11] E.‎ Grochowski,‎ R.‎ Ronen,‎ J.‎ Shen,‎ and‎ H.‎ Wang,‎ “Best‎ of‎ Both‎
Latency and Throughput,”‎in‎Proc.‎of‎the‎22nd‎ICCD,‎October‎2004.

[12] Mark‎D.‎Hill‎and‎Michael‎R.‎Marty,‎“Amdahl's‎Law‎in‎the‎Multicore‎
Era,”‎in‎IEEE‎Computer,‎July‎2008.

[13] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas,
“Single-ISA Heterogeneous Multi-core Architectures for
Multithreaded‎ Workload‎ Performance,”‎ in‎ Proc.‎ of‎ the‎ 31st‎ ISCA,‎
June 2004.

[14] K.‎Luo,‎J.‎Gummaraju,‎and‎M.‎Franklin,‎“Balancing‎throughput‎and‎
fairness‎in‎SMT‎processors,”‎in‎Proc.‎of‎the‎ISPASS,‎pages‎164–171,
2001.

[15] T.Y. Morad, U.C. Weiser, A. Kolodny, M. Valero, and E. Ayguadé,
“Performance,‎ Power‎ Efficiency,‎ and‎ Scalability‎ of‎ Asymmetric‎
Cluster‎Chip‎Multiprocessors,”‎in‎Computer‎Architecture‎Letters,‎vol.‎
4, 2005.

[16] D.S. Nikolopoulos, C.D. Antonopoulos, I.E. Venetis, P.E.
Hadjidoukas, E.D. Polychronopoulos, and T.S. Papatheodorou,
“Achieving‎Multiprogramming‎ Scalability‎ on‎ Intel‎ SMP‎ Platforms:‎
Nanothreading‎in‎the‎Linux‎Kernel,”‎in‎PARCO‎1999.

[17] K.‎Olukotun‎ and‎L.‎Hammond,‎ “The‎ future‎of‎microprocessors,”‎ in‎
ACM Queue, vol. 3, no. 7, 2005.

[18] OpenMP Architecture Review Board, “OpenMP Application Program
Interface,” http://www.openmp.org, version 2.5, May 2005.

[19] S.E. Raasch and S. K. Reinhardt, “Applications of Thread
Prioritization in SMT Processors,” in Proc. 1999 Workshop on
Multithreaded Execution and Compilation, 1999.

[20] U. Schwiegeishohn, R. Yahyapour,‎“Improving first-come-first-serve
job‎ scheduling‎ by‎ gang‎ scheduling,” in IPPS'98 Workshop, March
1998.

[21] A. Snavely, D. Tullsen, and G. Voelker, “Symbiotic job scheduling
with priorities for a simultaneous multithreading processor,” in proc.
of the 2002 ACM SIGMETRICS, 2002.

[22] J. Vera, F.J. Cazorla, A. Pajuelo, O.J. Santana, E. Fernández and M.
Valero, “FAME: FAirly MEasuring Multithreaded Architectures,” in
IEEE-ACM PACT Conference. Brasov, 2007.

[23] I.E. Venetis, D.S. Nikolopoulos, and T.S. Papatheodorou,
“A Transparent Operating System Infrastructure for Embedding
Adaptability to Thread-Based Programming Models,” in EuroPar
2001.

[24] J.A. Winter and D.H. Albonesi,‎ “Scheduling Algorithms for
Unpredictably Heterogeneous CMP Architectures,”‎ in proc. of the
38th DSN, June 2008.

	Introduction
	Related Work
	Emulation Environment
	Methodology
	Analysis
	Proposed Algorithm
	Experimental Results
	Conclusions and Future Work
	Acknowledgment
	References

