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Abstract— This paper evaluates new techniques to improve 

performance, fairness and jitter of workloads consisting of 

multiple multithreaded applications running on Chip 

MultiProcessors (CMP). Current thread assignment 

techniques which are tailored for single-thread applications 

result in sub-optimal usage of the multiprocessor resources, 

unfairness between applications and jitter in execution 

runtimes when dealing with multiple multithreaded 

applications running in parallel. Multithreaded applications 

contain serial phases (single thread) and parallel phases (many 

threads). In this paper, we propose a new thread assignment 

mechanism that takes into account the different requirements 

of each phase, granting higher priority to applications during 

their critical-serial phases. Analytic and experimental 

evaluation of the proposed thread assignment mechanism on 

both symmetric and asymmetric multiprocessors show 

throughput improvements by as much as 16%, improved 

fairness by as much as 26% and reduced jitter by as much as 

88%. 

Keywords- Asymmetric Multiprocessors, Operating Systems, 

Scheduling. 

 

I.  INTRODUCTION 

Multithreaded applications can take advantage of the 
added computing ability offered by today's multiprocessors 
by executing in parallel on many cores. With an ever-
increasing core population embedded in state-of-the-art 
systems ‎[17], the use of multithreading in applications is 
expected to increase. In this paper, we strive to improve 
system performance as measured by several metrics when 
several multithreaded applications are run in parallel on 
symmetric multiprocessors, where all cores are identical, as 
well as on asymmetric multiprocessors ‎[12], where some 
computing cores are faster than others. 

When examining multithreaded applications, one can 
identify two types of execution phases: serial phases and 
parallel phases. In serial phases, only one thread is active, 
whereas parallel phases are comprised of many concurrently 
active threads.  

When several multithreaded applications run 
simultaneously on a multiprocessor, the serial thread of one 
application may be available for execution together with the 
threads of the other applications. Fig. 1 shows an example of 
the four possible joint states of two multithreaded 

applications. The vertical axis represents time, and the 
number of active threads of each application is shown for 
each point in time. 

Current thread assignment techniques, such as the 
technique used in the Linux scheduler ‎[1], are not aware of 
the phases of the running applications. When multiple 
multithreaded applications are run in parallel, this lack of 
awareness‎results‎in‎lower‎throughput,‎jitter‎in‎applications’‎
runtimes (unpredictable performance), and unfairness 
between applications. These undesired characteristics may 
happen because the serial phases, which are critical 
bottlenecks for the applications, compete for CPU time with 
the many concurrently executing parallel threads. If these 
serial‎ phases‎ were‎ executed‎ quickly,‎ the‎ application’s‎
bottlenecks would be freed, allowing the application to take 
advantage of the multiprocessor resources by using many 
threads.  

 

 
Fig. 1. Illustration of joint states of two sample applications running 

simultaneously. 

In this paper, we propose to add another dimension to the 
current thread assignment mechanisms by using information 
about the parallel and serial phases of applications. Our 
proposed thread assignment technique monitors the number 
of active threads in each application, and hence it can 
identify and grant higher priority to serial threads.  

Fig. 2 shows the four possible joint-states of two 
applications executing in parallel: (Serial, Serial: S,S), 
(Serial, Parallel: S,P), (Parallel, Serial: P,S), and (Parallel, 
Parallel: P,P), as well as the possible transitions among them. 
The large arrows on the state transition arcs denote the most 

(P,S)

(S,S)

(P,P)

(S,P)

App-A App-B

t P=Parallel, S=Serial



likely transition. The proposed thread assignment technique, 
shown in Fig. 2b, favors the serial thread, thus increasing the 
probability for transition from (S,P) and (P,S) states to (P,P) 
state. Current OS schedulers (shown in Fig. 2a), however, 
treat the serial and parallel threads equally, thereby 
lengthening the time required for the serial application to 
transition into its parallel phase. The proposed technique is 
expected to improve throughput by reducing the time spent 
in (S,S) in which there are idle cores, resulting in increased 
core utilization. 

 
 

 
 

Fig. 2. Illustration of the four possible joint states of two applications 

running in parallel. 

In this paper, we propose a new thread assignment 
technique that grants higher priority to applications in their 
serial phases in order to increase the multiprocessor 
throughput, improve fairness and reduce the jitter in 
execution runtimes. The expected improvements are 
quantified by a simple analytical model. We validate our 
proposed techniques by experiments running on a real 
symmetric CMP with a current version of the Linux 
operating system, and with workloads consisting of multiple 
multithreaded applications executing in parallel. We also 
validate our techniques on asymmetric structures that are 
emulated on the real symmetric CMP, with the addition that 
serial threads are granted higher priority to run on faster 
cores.  

 

II. RELATED WORK 

There are a number of papers addressing the scheduling 
of single-threaded applications on asymmetric/heterogeneous 
multiprocessors ‎[12], which are based on sampling of 
runtime performance on the different core types. Kumar et 
al. ‎[13] have proposed a scheduler for multiple single-
threaded applications on a heterogeneous multiprocessor. 
Bower et al. ‎[7] have shown the impact on thread scheduling 
in symmetric multiprocessors that become heterogeneous 
during runtime owing to frequency scaling, process 
variations and physical faults. Winter et al. ‎[24] explored 
thread assignment algorithms for single-thread applications 
on such multiprocessors. 

Other papers address the scheduling problem of a single 
multithreaded application running on an asymmetric 
multiprocessor ‎[4]‎[6]‎[11]‎[15]. Grochowski et al. ‎[4]‎[11] 

have proposed a static scheduling mechanism, implemented 
at the application level, which schedules the serial phases of 
applications on the high performance core. Balakrishnan et 
al. ‎[6] proposed a dynamic scheduler for a single 
multithreaded application on a heterogeneous 
multiprocessor. They have shown that by scheduling the 
serial phases on the high performance core, performance 
increases and the jitter in runtimes of different executions is 
reduced. We extend these methods ‎[4]‎[6]‎[11] for multiple 
multithreaded programs, while addressing the scheduling 
problem that arises when there are more threads than cores in 
the multiprocessor. Our results are compared versus a 
baseline environment without the proposals from previous 
work, since these proposals are tailored for single 
multithreaded applications and therefore will perform 
similarly to the baseline environment when more than one 
multithreaded application is run in parallel.  

Many papers explore fairness and throughput in SMT 
architectures ‎[10]‎[14]‎[19]‎[21]. We use and extend their 
throughput and fairness metrics for asymmetric 
multiprocessors. Other papers explore scheduling multiple 
multithreaded applications on symmetric 
systems ‎[3]‎[16]‎[23]. We extend these ideas for asymmetric 
configurations and present the ability to prioritize 
applications based on their phase of execution. 

 

III. EMULATION ENVIRONMENT 

All measurements in this paper are performed on an 8-
core multiprocessor (HP ProLiant DL580) consisting of four 
dual-core 2.66GHz Intel Xeon processors (7020), 667MHz 
front side bus, 8GB of DDR2 memory, and with SMT 
disabled for better emulation of symmetric systems. The 
operating system used is Linux 2.6.18, and is referred to in 
this paper as the baseline environment. Our benchmarks 
include the entire SPEC-OMP2001 ‎[5] suite with the 
medium‎reference‎ input‎sets,‎with‎ the‎exception‎of‎“galgel”‎
because of compilation difficulties in our setup.  

OpenMP offers various scheduling options for its parallel 
constructs ‎[18]. We altered the default OpenMP scheduling 
policy from static, in which each thread receives an identical 
portion of the workload, to dynamic, in which each thread 
consumes a predefined small subset of the workload and then 
requests additional work. This is similar to what was done 
in ‎[6] and ‎[15], and allows higher core utilization on 
heterogeneous multiprocessors.  

Since the SPEC-OMP2001 benchmarks are highly 
parallel and represent only a small fraction of the application 
space, we also measure in this paper a synthetic benchmark 
written by the authors. The synthetic benchmark mimics 
applications with an adjustable ratio of parallel to serial code. 
It allows us to get accurate results within a short runtime, 
making it practical for exploring various scheduling options 
for various combinations of applications running together in 
the system. The synthetic benchmark consists of a loop of a 
mathematical calculation that fits entirely in the cache. 
During the course of its execution, the benchmark switches 
randomly between serial phases, in which there is only one 
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active thread, and parallel phases, in which there are n 
threads, equal to the number of cores in the multiprocessor.  

We model and label multithreaded programs by the ratio 
of parallel and serial instructions they contain, divided by the 
number of cores used in each phase. In the following 
equation, IP and IS denote the number of dynamic 
instructions executed in the parallel and serial phases 
respectively, n denotes the number of cores in the 
multiprocessor, and the normalization factor k is chosen so 
that one of the ratios equals one, and the other is greater than 
or equal to one. For simplicity, we assume identical IPC for 
the parallel and serial phases.  

 

( , ) ,P
Parallel Serial S

I
ratio ratio k kI

n
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For example, a benchmark labeled (1:1) on a symmetric 

CMP with no synchronization and scheduling overheads will 
spend roughly equal time in its parallel phases and in its 
serial phases.  

The synthetic benchmark may be tuned so that in the 
long run it would mimic the parallelism behavior of 
applications, ranging from completely parallel applications 
(∞:1) to completely serial applications (1:∞). Each 
measurement of the synthetic benchmark lasts 60 seconds, 
after which the benchmark reports the total number of 
iterations it has completed in that time frame.  

 

IV. METHODOLOGY 

This research is focused on the interactions between 
multiple multithreaded applications that are run in parallel. 
In particular, we focus on three metrics: performance, 
fairness, and jitter.  

Measuring the performance improvement of multiple 
applications running in parallel in different environments 
(for example, environments with the same hardware but with 
different OS schedulers) is no trivial task ‎[22]. It is even 
harder when the applications are multithreaded. Alameldeen 
and Wood ‎[2] have shown that the throughput metric of IPC 
used in uniprocessors is not accurate for multithreaded 
programs in multicore architectures. One of the reasons for 
this is that threads in a multithreaded program use polling 
when waiting for sibling threads, resulting in a different 
number of committed instructions in different executions of 
the same program. The accurate throughput metric for 
multithreaded programs is therefore the amount of actual 
work performed divided by the execution time.  

Measuring the throughput of multiple synthetic 
benchmarks running simultaneously is done by summing the 
number of iterations completed in each benchmark during 
the predefined benchmark time. The SPEC-OMP 
benchmarks, however, must run until completion, since they 
report their accurate progress only when they complete.  

One way of measuring the throughput of a thread 
assignment mechanism for multithreaded applications is to 
run two applications and wait for both to finish. This method 

is demonstrated in Fig. 3,‎and‎is‎similar‎to‎the‎“Last”‎method‎
described in ‎[22]. While measuring with this method, we 
found that in many cases one application finished its 
execution well before the other. Since we want to measure 
the interactions between applications, the time segment in 
which only one application is active becomes irrelevant, but 
it does affect the results.  

 

 
Fig. 3. Example of two multithreaded benchmarks running in parallel. 

We handle the throughput measurement problem by 
running two benchmarks that perform the same work, each 
comprised of two applications that are run in a different 
order, as shown in Fig. 4. Since the work of the two 
benchmarks is identical, the runtimes are closer than in the 
previous methods. As a result, the effects of our new 
scheduler can be evaluated more reliably than in the other 
methods ‎[22]. 

 

 
Fig. 4. Two multithreaded benchmarks, each comprising two applications 

in a different order, with closer execution times tB1 and tB2. 

The second metric evaluated in this paper is fairness. 
When two applications are executed in parallel, their 
runtimes are longer than when each application runs alone:  
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If both applications exhibit the same relative speedup, the 

system is said to be fair ‎[10]‎[19]. In this paper, we use the 
fairness metric detailed in ‎[10], which is defined as the 
minimum ratio of speedups of the applications. For two 
applications, fairness is defined as follows:  
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Fairness as defined above can be in the range of zero to 

one, corresponding to completely unfair and to completely 
fair, respectively. We calculate the speedup of application 
“A”‎ in‎ equation‎ (2) as the time required to execute the 
application alone on the multiprocessor, divided by the 
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average duration‎ of‎ application‎ “A”‎ in‎ the configuration 
shown in Fig. 4: tA,alone / 0.5(tA1+tA2). 

The third metric we consider is jitter in execution 
runtimes. Balakrishnan et al. ‎[6] have already shown that 
operating system schedulers in asymmetric multiprocessors 
present unpredictable application runtimes for a single 
multithreaded application. In this paper, we quantify runtime 
jitter by measuring the standard deviation of the normalized 
execution times of the workload in N experiments of the 
same benchmark:  
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(4) 

 

V. ANALYSIS 

In this section, we analyze the performance, fairness, and 
jitter metrics for multiple multithreaded applications running 
in parallel. These applications have one active thread in their 
serial phases and n active threads in their parallel phases, 
which is also equal to the number of cores in the 
multiprocessor. This assumption does not always hold in 
reality, since not all threads reach their barriers at the same 
time. When using dynamic work distribution with workloads 
consisting of long parallel phases, however, the effects of 
having less than n active threads in the parallel phases can be 
neglected. The applications in this model may differ in their 
parallel/serial ratios. The performance figures in this section 
are normalized to the performance of one thread on one 
small core. 

We begin by considering two multithreaded applications, 
AppA and AppB, running on a symmetric multiprocessor with 
n identical cores. When both applications are in their serial 
phase, they are indifferent to each other's existence, since the 
scheduler would schedule each thread on a different core. 
Thus, two serial threads will exhibit no slowdown, and n-2 
cores will be idle. When both applications are in their 
parallel phases, there are 2n running threads that compete for 
n cores. The Linux scheduler will schedule two threads on 
each core, thereby slowing down each application by a factor 
of two, assuming that the threads have equal priority and are 
not IO bound.  

When one of the applications is serial and the other is 
parallel, there are n+1 threads that are to be scheduled on n 
cores. Out of the n+1 threads, two threads will share a single 
core, and n-1 threads will each have their own core. In the 
worst case for the serial application, it will be assigned to run 
with another thread, thus receiving only half of the 
computing power. In the best case for the serial application, 
it will exhibit no slowdown as it will be scheduled to run on 
a core by itself.  

For simplicity, we assume that all threads have equal 
probability to execute on the two-thread core and on the one-
thread core. The average speedup is therefore:  
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Since the probabilities of each thread to execute on each 

core are identical, the average speedup of the parallel phase 
is identical to that of the serial phase. 

We extend the analysis for an asymmetric multiprocessor 
with n cores: one of the cores is larger as in ‎[15], and is 
faster by a factor (a). For simplicity, we assume that the 
performance factor (a) is identical for all workloads. The 
average speedup, calculated according to (2), and the 
maximum and minimum values in each state for the 
asymmetric multiprocessor are shown in Table 1.  

Table 1. Speedups‎(Min,‎Average,‎Max)‎for‎application‎“A”‎in‎the‎baseline‎
environment on the asymmetric multiprocessor. n=Number of cores. 

a=Performance ratio of the large core. 

Case 

(A,B) 

Minimum 

Speedup 

Average 

Speedup 

Maximum 

Speedup 

Maximum/ 

Minimum 

(S,S) 

  

1

a
 

1 1
1

2 a

 
 
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 1  a  
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1

2a
 

 
1

1

n a

a n
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 1  2a  
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1

1

n

n a


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2
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3
2

1
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 
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n
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 1
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 
2 2

2 1
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 2 2n a

n
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Fairness is calculated according to (3), and is 

summarized in Table 2. When two applications are both in 
their serial phase or both in their parallel phase, the lower 
bound for fairness is given by dividing the minimum and 
maximum speedups of the states (S,S) or (P,P) respectively. 
When one application is serial and the other is parallel, there 
are two cases for fairness. In the first case, the lower bound 
for fairness is given by dividing the minimum speedup in the 
state (S,P) by the maximum speedup in state (P,S). In the 
second case, the lower bound for fairness is given by 
dividing the minimum speedup in state (P,S) by the 
maximum speedup in state (S,P).  

Table 2. Lower bound for fairness in the baseline environment.  

(S,S) (S,P),(P,S) case 1 (S,P),(P,S) case 2 (P,P) 

  

1

a
 

32( )
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n
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 1n

an

  

2 2

n
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The results from Table 1 and the worst case fairness 

equations in Table 2 indicate that as the ratio between the 
performance of the cores in the asymmetric multiprocessor 
(a) increases, the lower bound for fairness decreases and the 
jitter between runtimes increases.  

We extend the analysis in this section for k>2 
multithreaded applications running in parallel. The extension 
results are detailed in Table 3.‎ The‎ “Serial”‎ or‎ “Parallel”‎
rows in the table show the speedups for a serial or parallel 



phase of an application under all possible phases of the other 
applications running in parallel, in comparison with it 
running alone. The analysis predicts that as the number of 
applications (k) that are run in parallel increases, the possible 
jitter widens.  

The probability of having idle cores decreases 
exponentially as more parallel applications are run in parallel 
(S,S,S,…).‎Consequently,‎ the‎throughput‎gains‎of‎using‎our‎
mechanism are expected to decrease as the number of 
parallel applications that are run in parallel increases.  

Table 3. Minimum and maximum speedups for 2<=k<=n applications 
running in parallel. 

Phase 
Minimum 
Speedup 

Maximum 
Speedup 

Maximum / Minimum 

Serial 
1

ka
 1  ka  

Parallel 
 1

n

k n a 

 
1

1
2

1

k
n a

n a


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1
1

2

k
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k
n


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VI. PROPOSED ALGORITHM 

We propose a new thread assignment algorithm that aims 
to improve performance, improve fairness and reduce the 
jitter in execution runtimes. The proposed algorithm grants 
higher scheduling priority to serial threads. As a result, when 
a serial thread is executed concurrently with a parallel 
application, the serial thread is granted a core for itself, and 
the threads of the parallel application will compete for the 
remaining cores. The scheduling mechanism results in the 
speedups shown in Table 4. 

Table 4. Minimum‎and‎maximum‎speedups‎of‎application‎“A”‎for‎the‎
proposed thread assignment technique on asymmetric multiprocessors.  
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(A,B) 

Minimum 

Speedup 

Average 

Speedup 

Maximum 

Speedup 

Maximum / 

Minimum 

(S,S) 

  

1

a
 

1 1
1

2 a

 
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For the symmetric case (a=1), our analysis predicts 

identical minimum and maximum execution times for all 
states, so that jitter will be minimized and fairness between 
applications will improve using our proposed scheduler.  

It is expected that the proposed scheduler will reduce the 
time in which there are idle cores on the multiprocessor. As a 
result, the cores will spend more time performing useful 
work, increasing overall multiprocessor throughput. 

In state (S,S) on the asymmetric multiprocessor, there are 
two active serial threads but only one of them is granted the 
large core. This presents jitter in execution times, which 
could be avoided, for example, by the method proposed by 

Fedorova et al. ‎[8] at the expense of many thread migrations. 
Another possible method is to grant priority for computing 
power per application and not per thread. State (P,P) is 
similar, and the jitter in this state could also be avoided by 
using similar methods.  

The predicted speedups of the proposed scheduler for 
more than two applications running in parallel are given in 
Table 5.  

The Linux scheduler has been extended to support the 
proposed algorithm. Detection of whether an application is in 
its parallel phase or in its serial phase is done by keeping 
track of the number of ready threads in each thread group. 
This is performed in O(1) time whenever a thread changes its 
ready state. A thread group is considered parallel when it has 
more than two ready threads, and is considered serial 
otherwise. We chose two as the threshold since we noticed 
that an Open-MP application frequently switched between 
one and two active threads.  

Table 5. Speedups for 2<=k<=n applications running in parallel using the 
proposed scheduler.  

Phase Minimum Speedup Maximum Speedup Maximum / Minimum 

Serial 

  

1

a
  1  a  

Parallel 
 1

n

k n a 

 1

1

n k

n a

 

 
 1n k

k
n
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The scheduler was also extended to grant higher priority 

to serial threads. In Linux, each thread has a property known 
as dynamic priority. When the dynamic priority figure of a 
thread is lower, the thread is granted more CPU time. The 
priority of the thread was therefore boosted by subtracting 
ten [1] from its dynamic priority property. 

The load balancer of the Linux kernel was extended as 
well; the baseline scheduler will not migrate a running 
thread, and will not migrate a ready thread from a slow core 
to a fast core if it is the only running thread on the slow core. 
These were changed to allow for better load balancing on 
asymmetric multiprocessors.  

When at least two applications are in their parallel 
phases, and each has a number of active threads that is at 
least equal to the number of cores in the system, the 
applications compete with each other without any throughput 
gains. This competition, which is favored by our proposed 
technique, results in many unnecessary context switches that 
thrash the cache and lower the overall throughput of the 
system. In order to avoid this situation, our proposed 
technique boosts the priority of the application that was the 
first to enter its parallel phase. We call this mechanism 
“seniority‎ boost”,‎ as‎ the‎ scheduler‎ chooses the senior 
application and boosts its priority. This mechanism is similar 
to gang scheduling ‎[9]‎[20]. When using this mechanism, the 
application with the seniority boost is expected to finish its 
parallel phase sooner, while the system exhibits fewer 
context switches. When one of the applications finishes its 
parallel phase, the system transitions to one of the joint states 
(P,S) or (S,P) and the seniority boost is removed. In order to 
avoid starvation, following a specific timeout in state (P,P) 



the seniority boost is removed and applied to the other 
application.  

The baseline Linux scheduler's thread migration policy 
has also been revised. Threads whose applications become 
serial are automatically rescheduled on the idlest core and 
granted more priority. In asymmetric configurations, the high 
priority given to these threads will usually result in migration 
to the high performance core.  

The asymmetric multiprocessor is emulated by changing 
the frequency (duty cycle) of seven out of eight cores in our 
symmetric multiprocessor, as done in ‎[6] and ‎[11]. In our 
case, we chose a=2, so the frequency of seven of the eight 
cores was halved. Additionally, we configured the scheduler 
to treat the large core as having more performance by using 
the‎Linux‎CPU‎group‎property‎“CPU_POWER”.‎As‎a‎result,‎
the scheduler attempted to schedule more work on the larger 
core.  

The proposed scheduler will require additional changes 
to perform well when there are more applications than cores, 
since serial threads may dominate the computing resources. 
Such changes may include a timeout for the bonus granted to 
serial threads. 

VII. EXPERIMENTAL RESULTS 

The idle time percentage measured for two synthetic 
benchmarks running in parallel decreased as expected, from 
20% to 17.2% (reduction by 14%) in the symmetric 
configuration, and from 25.6% to 22.8% (reduction by 
10.9%) in the asymmetric configuration. This is in-line with 
our expectations that the multiprocessor’s utilization will be 
increased with the proposed scheduler. Throughput improved 
by 3% and 4.5% respectively for the symmetric and 
asymmetric configurations, as shown in Table 6 for the 
asymmetric configuration.  

Table 6. Measured speedup of two concurrently running synthetic 
benchmarks using the proposed technique on an asymmetric multiprocessor 

configuration (a=2).  

 
 
Fig. 5 shows a contour graph of the speedup in the 

symmetric multiprocessor. Each axis represents an 
application, ranging from completely serial (1:∞) to 
completely parallel (∞:1). The data in the graph corresponds 
to the speedup of the two applications running in parallel on 
a symmetric multiprocessor with the proposed scheduler, in 
comparison to the baseline scheduler. Peak speedup is 
achieved by the combination of benchmark (1:1) with a 
similar benchmark (1:1). Speedups decrease monotonically 
when moving away from this peak. The expected speedups 

of the highly parallel SPEC-OMP2001 benchmarks should 
roughly correspond to the (∞:1) and (8:1) benchmarks, 
which are between 0%-4% in the symmetric configuration. 

 

 
Fig. 5. Experimental contours of the speedup of two concurrently running 

synthetic benchmarks when the proposed technique is used on a symmetric 

multiprocessor configuration (a=1).  

Table 7 shows the speedups for the SPEC-OMP2001 
benchmarks with the proposed thread assignment technique. 
The measurements were performed according to the method 
shown in Fig. 4. The speedup exhibited by the highly parallel 
SPEC-OMP benchmarks averaged 1.5% in the symmetric 
multiprocessor, and 3.5% in the asymmetric multiprocessor. 
The‎ “apsi”‎ benchmark‎ showed‎ significant‎ improvement‎
because it had many phase shifts between parallel/serial 
phases. Since our proposed mechanism reacts fast to these 
frequent‎ phase‎ shifts,‎ the‎ bottlenecks‎ of‎ “apsi”‎ were‎ freed 
faster,‎and‎hence‎“apsi”‎achieved‎greater‎speedups. 

Table 7. Measured speedup of two concurrently running SPEC-OMP2001 
benchmarks using the proposed technique on an asymmetric multiprocessor 

configuration (a=2).  

 
 
The throughput gains for three synthetic benchmarks 

running in parallel improved with the new scheduler by 1% 
in the symmetric configuration and by 1.87% in the 
asymmetric configuration. These results were expected, as 
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art 2% 0% 4% 3% -1% 15% -1% 2% -1% amm

ammp 3% 1% 4% -2% 4% 13% 0% 4% 1% 1%

average 4% 3% 4% 1% 2% 11% 1% 3% 2% 3%

Average speedup of all dual benchmarks: 3.5%



the measured CPU idle time in the symmetric case for three 
benchmarks was 13.62% (or 12.25% with the proposed 
scheduler) in comparison to 20% for two applications (or 
17.2% with the proposed scheduler). With additional 
applications running in parallel, the average idle time 
decreases, leaving less room for improvement for our 
proposed scheduler.  

The jitter for the synthetic benchmarks multiplied by 
1000 is shown in Table 8, and was reduced on average by 
60% in the symmetric case and by 35% in the asymmetric 
case.‎The‎ jitter,‎measured‎on‎five‎runs‎of‎“equake”‎&‎“art”‎
as an example, was almost eliminated in the symmetric case 
and was halved in the asymmetric case. Fairness has 
improved as well in almost all benchmarks. 

Table 8. The average fairness and jitter metrics with the baseline and 
proposed environments for the synthetic benchmarks and for SPEC-OMP 

(5‎executions‎of‎“art”‎&‎“equake”).  

Benchmark Scheduler 
Symmetric Asymmetric 

Fairness Jitter Fairness Jitter 

Synthetic 

Baseline 75.9% 9.07 87.5% 38.74 

Proposed 90.7% 3.66 88.7% 25.12 

Improvement 19.5% 59.7% 1.4% 35.1% 

SPEC-OMP 

Baseline 79.6% 1.13 49.3% 1.90 

Proposed 78.5% 0.13 62.1% 0.94 

Improvement -1.4% 88.1% 25.9% 50.5% 

 

VIII. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a new thread assignment 
mechanism that favors serial phases of applications over 
parallel phases, in a first attempt to optimize multiple 
multithreaded applications running in parallel on symmetric 
and asymmetric multiprocessors. Detailed analysis for any 
number of multithreaded applications running 
simultaneously shows potential for improvement in 
throughput, fairness and jitter metrics. In particular, when 
two multithreaded scientific applications (SPEC-OMP2001) 
are run on symmetric as well as on asymmetric 
multiprocessors, analytical and experimental results show 
improvements in all metrics; the jitter in execution runtimes 
decreased by as much as 88%, throughput in some cases 
increased by more than 16%, and the fairness metric 
improved by up to 26%. 

The experiments in this paper were performed on a real 
system, using official benchmarks and a modern operating 
system (Linux kernel 2.6.18) with our extensions. The 
concepts of this work could‎easily‎be‎implemented‎in‎today’s‎
state-of-the-art multiprocessor operating systems, as 
implemented in our experimental system, and could show 
immediate performance gains. Moreover, the concepts could 
be used in grid architectures to better exploit the computing 
power of shared memory nodes by scheduling several 
multithreaded workloads at once.   

There are various architectural implications for this work. 
First, chip architects designing asymmetric multiprocessors 
can use the analysis presented in this paper for predicting the 
effects of asymmetry on various system metrics. We found 
that as asymmetry between the cores widens, fairness 

worsens and jitter between execution runtimes increases. 
Second, exploiting asymmetry requires faster thread 
migration techniques such as those implemented in this 
research. We believe that in future designs, hardware may 
assist the OS in performing these migrations, as opposed to 
current designs in which the OS migrates threads without 
any hardware assistance. Third, the performance 
improvements presented in this paper for asymmetric 
structures show that asymmetry presents even greater 
performance potential over symmetric designs than predicted 
by previous research. 

This work also provides insights into a multitude of 
future research issues in the area of multithreaded application 
handling in CMP. The analysis could be extended to take 
into account the distribution of phase-changing during the 
runtime of applications. Additionally, the way multithreaded 
programs were modeled in this paper, with either one active 
thread or n active threads, could be extended to include the 
whole range from one to n. Such extensions could 
consequently be used to improve system metrics even 
further, even on current symmetric architectures.  

With regard to asymmetric configurations, the analysis 
could be extended to support various configurations of 
asymmetric multiprocessors, such as more than two types of 
cores. Additionally, the analysis could take into account 
different speedups for different applications on each core 
type. 
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