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Universal Decoding for Memoryless Gaussian 
Channels with a Deterministic Interference 

Neri Merhav, Senior Member, IEEE 

Abstract-A universal decoding procedure is proposed for 
memoryless Gaussian channels with deterministic interfering 
signals from a certain class. The universality of the proposed 
decoder is in the sense of W i g  independent of the channel 
parameters and the unknown interfering signal, and at the same 
time attaining the same random coding e m r  exponent as the 
optimal maximum likelihood (ML) decoder, which utilizes full 
knowledge of the channel parameters and the interfering signal. 
The proposed decoding rule can be regarded as a continuous- 
alphabet version of the universal maximum mutual information 
0 decoder. 

Index Tenns-Universal decoding, maximum mutual informa- 
tion, random coding exponent, Gaussian channels. 

I. INTRODUCTION 
NlVERSAL DECODING for unknown finite-alphabet U channels has been widely studied in the literature. For 

discrete memoryless channels (DMC’s) Goppa [l]  proposed a 
universal decoder, referred to as the maximum mutual infor- 
mation (MMI) decoder, which selects an input message that 
maximizes the empirical mutual information with the given 
output vector. Goppa has shown that if the receiver employs 
the MMI decoder, which is independent of the unknown 
channel statistics, the channel capacity is achievable. Csiszir 
and Komer [2] have sharpened this result and proved the 
existence of a deterministic universal fixed composition block 
code, which when decoded by the MMI decoder, yields the 
random coding error exponent for the given channel. Ziv [3] 
has investigated universal decoding for finite-alphabet, finite- 
state channels under a random coding regime and proposed 
a universal decoder based on the Lempel-Ziv algorithm [4] 
that attains the same random coding exponent as the optimal 
maximum likelihood (ML) decoder, which in turn, assumes 
full knowledge of the channel parameters. In the special case of 
a DMC and a fixed composition random code this decoder can 
be replaced by one that minimizes the empirical conditional 
entropy of the channel input given its output. 

In this paper, we derive a parallel result for memoryless 
Gaussian channels with an unknown deterministic interfering 
signal from a fairly wide class. This interfering signal may 
represent a transmission from a competing source, a jammer, 
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or another noise source which cannot be modeled as a sta- 
tionary Gaussian process. The empirical conditional entropy 
of the channel input given the channel output is induced by an 
auxiliary “backward channel” whose parameters are estimated 
from the given channel output vector and each one of the input 
vectors (codewords). The codewords are assumed to be chosen 
randomly near the surface of a Euclidean sphere whose radius 
corresponds to the power limitation. Similarly as in [3], it is 
shown that the proposed universal decoding rule attains the 
same error exponent as that of the optimal ML decoder which 
is fully informed of the channel parameters and the interfering 
signal. The main contribution of this work is in deriving an 
analogue to the MMI decoding principle for the continuous 
alphabet case. It also might serve as a step towards a derivation 
of a universal decoder for a Gaussian dispersive channel with 
unknown intersymbol interference (ISI) coefficients, which in 
turn has an important application in channel equalization (see, 
e.g., [5] and references therein). We present a conjecture as 
for the extension of the universal MMI decoder in the finite 
IS1 case. 

11. STATEMENT OF MAIN RESULT 

Consider a discrete-time, Gaussian memoryless channel 
characterized by 

yt = axt + zt + W t ,  

where xt  is the desired channel input, a # 0 is an unknown 
fading parameter, {wt} is zero-mean Gaussian white noise 
with an unknown variance u2 > 0, zt is an unknown determin- 
istic interference, and yt is the channel output. It is assumed 
that the noise {tut} is statistically independent of the input 
{xt} and that the interfering signal zt can be represented by 
a series of given orthonormal bounded functions (e.g., sine 
and cosine functions) with an absolutely summable coefficient 
sequence, namely, 

(1) 

i=l 

where Czl IbiI < 00 and lq5i,tl 5 L for all i and t , O  < L < 
00. The coefficients { b i } ; ? ~  are assumed unknown. 

Consider next, a codebook C = {d, z2, . . , z’} of M = 
Z n R  equiprobable messages 22 = (xi, xi, . , xf , . . , xk) E 
R”, i = 1, 2, .  , M where R is the coding rate in bits per 
channel use. Clearly, if the parameter a and the interference 
signal zt were known, the best decoder would have been the 
ML decoder, which in the Gaussian case considered here, 
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selects the message zi that minimizes xy=l(yt - zt - ax:)2.  
Similarly as in [3], the probability of error associated with the 
ML decoder will be denoted by P,,o(C, R, n). 

Since the design of a codebook C that minimizes P,,,(C, R, 
n)  under an input power constraint is prohibitively complex 
for large n,  will shall adopt the random coding approach, 
where each codeword is randomly chosen with respect to some 
probability density function (pdf) q(z), and independently of 
all other codewords. For a given power constraint, a reasonable 
choice of q( . )  would be a Gaussian pdf restricted to an n- 
dimensional Euclidean sphere whose radius is about n e u; 
(see, also [6, p. 326, (7.3.13)-(7.3.14)]). Specifically, let 

n 

(3) 

where z = (21, e - - ,  x n ) ,  *A(z), is the indicator function of 
the set DA 4 {z : In-'CY="=,: - 5 An;}, A << 1, 
and p normalizes the measure (3) such that it would integrate 
to unity. It is well known [6, ch. 71 that Pe,o(R,n)  4 
E(P,,,(C, R, n)}, where the expectation is taken over en- 
semble of randomly selected codebooks under q, decays ex- 
ponentially for every rate R that is less than the channel 
capacity C = 0.51og(l + a2u;/u2). The exponential rate of 
the error probability E(R) - limn-,oo n-l logP,,,(R, n) 
is called the random coding error exponent. The previously 
defined input pdf q ( - )  is known [6] to attain an exponent 
higher than that of the Gaussian pdf with the same variance, 
intuitively, because of the fact that it does not allow low energy 
codewords. 

Since the fading parameter a and the interfering signal { z t }  
are unknown, the ML decoder is obviously inapplicable. We 
next demonstrate a decoding procedure which is universal in 
the sense of being independent of a and {z t} ,  and at the same 
time attaining E(R).  In other words, let P,,,(C, R, n) denote 
the error probability associated with the universal rule for a 
given codebook C, and let P,,,(R,n) = E{P,,,(C, R,n)}. 
Then, P,,,(R,n) decays exponentially at the same rate E(R)  
as that associated with the ML decoder. This is analogous 
to an earlier result by Ziv [l] for finite-alphabet, finite-state 
channels. 

We now turn to present the proposed decoding rule. To this 
end, define an auxiliary backward channel of order k by the 
conditional pdf 

V(ZIY, 8, k) 
n 

t=l 

(4) 

where J = (yl, . - . , ! ~ n )  and 8 2 (U:, a, PI, P2, ..., P k )  
is the parameter vector of the kth-order backward channel. 
Note that the definition of the auxiliary backward channel is 
completely detached from the underlying probabilistic model 
in the sense that it does not agree with the conditional pdf 
of z eiven U that is induced bv the underlvine ioint Ddf of 

z and y. In particular, it allows vectors z outside DA. Let 
{ kn}n2 1 be any monotonically nondecreasing integer-valued 
sequence satisfying kn + 00 and kn/n1l3 + 0 as n + 00. 

Our decoding rule will select a message 2' that maximizes 
the function 

m,axV(zilu, 8, kn) 

4(za) 
u(zi,y) A (5) 

among all M codebook messages. 

Theorem I :  Assume that { z t }  can be expanded to a series 
of bounded orthonormal functions with an absolutely summable 
coefficient sequence { b,},>l. Let the codewords of C be chosen 
randomly with respect to the pdf q(.) defined as in (3) and 
independently of each other. Then, 

1 
n-m n limsup -[logP,,,(R,n) - logP,,,(R,n)] I A(A), (6) 

where A is as in (3) and A(A) -+ 0 as A + 0. 

The proof appears in Section 111. 
The intuitive interpretation of (5) is that n-l logu(z, y) = 

n-l maxe log V(zIy, 8, k)/q(z) is an empirical version of the 
per-letter mutual information between z and y. Thus, we 
select the input 2' that seems empirically "most dependent" 
upon the given output vector y, which corresponds to the 
MMI principle [l], [2]. Note that on the support of q( . ) ,  
the term n-l logq(zi) is nearly a constant independent of i. 
Thus, this decoding rule is essentially equivalent to one that 
maximizes maxeV(z; ly, 8, k), namely, maximum a posteriori 
(MAP) decoding. This is the continuous-alphabet counterpart 
of the minimum conditional entropy decoder of [3] for uniform 
input pdf's in the memoryless case. 

It turns out that the extension of Theorem 1 to non- 
memoryless channels is not trivial. Consider, for example, a 
Gaussian channel with a linear intersymbol interference (ISI), 
characterized by yt = h2zt-a + wt, where {hi}!==, is the 
channel impulse response and wt is a Gaussian white noise. 
The difficulty appears to be in an appropriate definition of the 
auxiliary backward channel V(. I a ) .  A natural straightforward 
guess, in view of (4), could have been 

However, we were unable to prove that this backward chan- 
nel, when plugged in (5), results in asymptotically optimal 
decoding. The problem seems to lie in the fact that the 
above conditional pdf depends on a 2(k + 1)- dimensional 
vector of sufficient statistics associated with 2, while there are 
only (k + 2) degrees of freedom to adjust their conditional 
expectations. (For details, see Section 111, Lemma 3). We 
conjecture that an appropriate definition of the backward 
channel in this case will be 
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where 0 = (ai, a, . , a k ,  PO, . . . , P k )  and G,(B, k,y) is a 
normalization factor chosen such that the pdf will integrate to 
unity. 

111. PROOF OF THEOREM 1 

Let z and y be arbitrary fixed vectors and define 

SO(Z,Y) = (2’ : W(YIZ’) > W(YlZ>), (7) 

where W(y)z) is the conditional pdf associated with the 
channel, i.e., 

Similarly, let 

Su(z,y) = (2’ U(Z’,Y) > 4 Z , Y ) ) .  (9) 

The average error probabilities associated with the ML decoder 
and the proposed decoder are given by 

and 

- 
Pe,u(R,n) = 1 - E 

respectively, where expectations are taken with respect to 
the joint pdf p(z,y = q(z)W(ylz). Equation (10) (and 
similarly (11)) follows from a simple consideration explained 
in [3], which for the sake of completeness, will be re- 
peated here. Fix a transmitted codeword z and a received 
vector y. Since other codewords 2’ are selected randomly, 
the probability that 2’ has a score W(ylz’) smaller than 
W(ylz) is (1 - Jso(z,ar) q(z’)dz’). Thus, in order for the 
decoded message to be correct, all (2nR - 1) remaining 
codewords must provide a score lower than W(y(z). Since 
the codewords are chosen independently, this happens with 
probability [l - Jso,,,q) q(~’)dz’]~’’~-’. Finally, the overall 
correct decision probability is the expectation over z and y of 
the latter expression. 

For S > 0 we define the set 

1 { e  n S,6(z,y) = 2’ : - logW(yl2’) > - logW(y(2) - 6 

and correspondingly, 

In what follows, we shall compare the exponential behavior 
of Pe+(R ,n )  to that of P,,,(R,n) for a small S > 0. In the 
final step of the proof, this will be justified by showing that 

4 

1 4  
limsup n+m -[logP,,,(R,n) n - logP,,,(R,n>] I 6’, (14) 

where 6‘ -+ 0 as both 6 ---t 0 and A ---f 0. The use of 
P,,,(R, n) as an intermediate reference is done for technical 
reasons which will become clear in the sequel. 

The following lemma is a modified version of [3, Corollary 
11 for the continuous alphabet case considered here. 

Lemma I: Let {Hn}n21 be a sequence of sets of pairs (z, y) 
of n-dimensional vectors such that 

limsup -log q(z)W(ylz)dzdy < -E(R), (15) 
n-m n l S  

H:, 

-6 

where the superscript c denotes the complementary set. Then, 
for all large n, 

The proof of Lemma 1 appears in the Appendix. 

of sets H,  over which the ratio 
Lemma 1 will be useful if we can define such a sequence 

is uniformly overbounded by a subexponential function of 
n,i.e., e”€“, where E, ---t 0 as n + 00 uniformly for all 
(z,y) E H,. Once this is accomplished, the proof of the 
theorem will be complete. 

The main difference between Lemma 1 and Corollary 1 
of [3] is that in the latter the supremum over (z,y) is not 
constrained. Observe, however, that in contrast to the finite 
alphabet case, here since the measurements are unbounded, 
then an unconstrained supremum in (16) might be arbitrarily 
large. Thus, the role of H ,  is in dividing the space of pairs 
(z, y) into two parts, where in one the supremum of (16) grows 
subexponentially and the other possesses a probability smaller 
than the desired exponential function e-nE(R) (15) and hence 
negligible. 

The set H ,  will be defined as follows. For a given pair 

(18) 

(Z,Y) let 

8 = (@,&,bl , . . . ,bk)  A argmaxV(z(y,8,k).  e 

Fix a positive constant B and define the set 

H ,  = H,(B) 

1 
82 > -, I&) 5 B ,  5 B,i = 1, * * O - B  

The motivation behind this choice of H,(B) is that it guaran- 
tees uniform continuity of n-l log V(z(y, e, k) with respect to 
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small perturbations of the sufficient statistics as will be seen 
in the sequel. We now have the following lemma which is 
proved in the Appendix. 

Lemma 2: There exists a sufficiently large B such that 
{Hn(B)}n21 satisfies (15). 

To overbound (17) within H, (B), we derive an upper bound 
on the numerator of (17) and a lower bound on its denominator, 
and show that these are exponentially equivalent. To this end, 
we first need to define a conditional type and establish some 
of its properties. For a given pair of vectors (z,y) and E > 0, 
define the kth order conditional €-type of z given y as 

(20) 

where 3 = (31, ...,&). The set T!(zly) is regarded as 
a conditional type of z given y as it contains all vectors 
3 E D A  which, within E, have the same sufficient statistics 
as 2. This means that for every conditional type T$(zly), 
z, y E Hn(B), and for any two vectors U = (211, , U") and 
U = (VI, - . + ,  v,) in T!(zJy), the conditional pdf's W(ylu) 
and W(ylv) are exponentially equivalent, provided that IC is 
sufficiently large. Specifically, let U ,  v E ~!(zly). Then, 

1 1 I ; log W Y b )  - ; 1% W(YlV) 1 

< c l . E + C Z ' c k ,  (21) 

where C1 and c2 are some positive constants and c k  A 
x z k + l  IbiI tends to zero as k -+ CO by the absolute summa- 
bility of the sequence { b i } ~ l .  Clearly, the right-most side of 
(21) can be made arbitrarily small by choosing E sufficiently 
small and k sufficiently large. Similarly, q(u) and q(v) are 
also exponentially equivalent, provided that they both belong 

to the support S of q( . ) ,  namely, 

(22) 
1 1 

I,logq(u) - ;logq(v)I I C 3 ' E ,  

for some constant C,. 
The following lemma provides an upper and a lower bound 

on the volume of T!(zly), where the volume of a set A c R" 
is defined as Vol{A} L! SA dz. 

Lemma 3: Let (2, y E H,(B))  for some B > 0. Then, for 
every sufficiently small E > 0 and every positive integer k ,  the 
volume of T!(zly) is bounded as follows. 

' 

a) 

exp [-naB2(B + k + I)] 
"e V(& 6, k )  . 

where L is the uniform bound on +, , t , ,  and m ( A )  is a 
sequence depending only on n and A with the property 
liminf,,,y,(A) 2 1/4 for every A > 0. 

The proof of Lemma 3 appears in the Appendix. 
We are now ready to derive a lower bound on the denomi- 

nator of (17). Since z E S,6(z,y), then in view of (21), there 
exists a sufficiently small E > 0 and a sufficiently large k (both 
depending on 6) such that T:(zly) c S,6(zJy).Thus, from (22) 
and part b) of Lemma 3 we get 

2 [Tn(A)- ~ ( k ~ 2  nE2 + 2 5 ~ 1 1  
exp [-nEB2(B + k + I)] 

m a e  V(ZIY, 6 ,  I C )  
dz) ,  (23) . e - C 3 , E n  

where we have used the fact that (z,y) E Hn(B). 
We next overbound the numerator of (17). The underlying 

idea is to partition the set Su(z,y) into a subexponential 
umber of conditional types, where for each conditional type, 
STt(zlv) q(z')dz' is overestimated using part (b) of Lemma 
3, in a manner similar to (23). However, this cannot be done 
directly, since not every 2' E S,(z,y) is such that (z',y) E 
Hn(B) and hence Lemma 3 cannot be applied to T,k(z'ly). 
To alleviate this difficulty, we first divide S,(z,y) into two 
subsets, S,, (2, y ) n H, (Bo I y) and S, (2, y) n H; ( Bo I y), where 
Hn(BoJy) (2' : ( z ' , ~ )  E Hn(BO)}, Bo 2 B, being a 
constant to be chosen later. Now, in the first subset we can 
apply Lemma 3 while the second has a very low probability 
provided that Bo is sufficiently large. Specifically, let B be 
so large that (15) holds and fix (z,y) E Hn(B). Similarly as 
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in Lemma 2, we can now choose Bo so large that for every 
y’ E Hn(BIz) 4 {y’ : (qy ‘  E &(I?)}, we have 

J q(z’)h’ I e-nQ(Bo), (24) 
H ;  (Bo Iv) 

for all large n, where Q(B0) > 0 can be made arbitrarily large 
by choosing Bo sufficiently large. Thus, we have 

J q(z’)h‘= J q(z’)h’ 

+ J q(z’)h’ 

I J 

su (zs) Su(z,~)nHn(Bol~) 

Su(=#)nH;(BolY) 

q(z‘)h’ + e-nQ(Bo). 

(25) 
su (z,dnH,(Bo IV) 

Now, as for the first term on the right-most side of (25), every 
2’ in the integration domain is such that (z‘,y E Hn(Bo). 
Hence, we can subdivide this domain into kth order conditional 
€-types, whose volumes can be overestimated by Lemma 
3 with BO replacing B. Before doing this, we first have to 
overbound the number of conditional types needed to cover 
S,(z,y)nHn(BoIy) c H,(Boly). We note that in this subset 
n-l CF=l(z:)2 5 Bo and hence 1n-l Cy=l z:$i,tl I BO. 
Since y E Hn(BIz),, then n-1CF=lyt2 I B L Bo, 
and therefore 1n-l Cy=l z:ytl I BO. Thus, the number of 
conditional types {T:(z’ly)}needed to cover Hn(&ly) is not 
larger than ( ~ B o ~ E ) ~ + ’ .  In view of these facts, the first term 
on the right-most side of (25) is bounded above as follows: 

k+2 

L (?) 

2B0 < - eC3En (7) exp [nh;(Bo + k + l)]  

where the last step follows from the definition of S,(z,y). 
Combining (23), (25) and (26), we get for all sufficiently large 
n, 

Now, 

where the last inequality follows similarly to the derivation in 
(A.17XA.18) in the Appendix. Now choose Bo so large that 

(30) 

Then, the last term in the product on the right-hand side of (27) 
tends to unity as n + 00. Thus, in order that (27) will be a 
subexponential function of n, we let E = tend to zero and 
k = k,  tend to infinity such the following three conditions 
will hold simultaneously. 

1 
Q(&) > 5 [logB + log U: + log(l+ A)  + 2A] - 

(31a) 
1, 

kn log - = o(n), 
E n  

lim I C , € ,  = 0, ( 3 W  n+m 

and 

where C4 is some sufficiently large constant. This happens 
if E, = O(n-1/3) and hence kn = O(n1l3). Thus, we have 
shown that 

To complete the proof of the theorem, it remains to justify 
eq. (14). Note that both So(z,y) and S,6(z,y) correspond to 
a known channel and interference. The receiver subtracts zt 
from yt and treats the difference as an output of the channel W 
with no interference. Therefore, we now are dealing, in fact, 
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1 ”  
- ~ x ; - a ~  n 

t=l 

1 ”  
- - E(.;,” 

2n 1=1 

i=l 2n i=l 

1 “  1 ”  
n .  

1 ”  

2 -Cxtyt - -Ex;} 

{ : ”  i = l  i=l 

o = l  

3 z’:- Cx:Yt 2 - E z t y t  + AV: 

<AV:, 

and 

and 

(34) Next define the sets 
= F ( z , y ,  -ACT: - 602) 

( z ,y )  : 1 q(z’ )dz’  5 (2nR - 1)-l 

Now similarly as in Lemma 1, we can overbound the ratio 
F&(R, n)/Pe+(R, n) in terms of the worst case ratio 

si (Z,Y) 

2 -602) q(z’)dz’ 
> (35) 

ss:(z,mr) q(z’)h’ JF(z,y,-Aaz 

Jso(z,mr) q(z’)h’ sF(z,mr,aO;) q(z’)dz’ 

over ( z ,y )  E H,, where H, is a set with high probability. A 
reasonable choice of H ,  here is the set of pairs ( z ,y )  which 
satisfy 

and 

(A.5) S2 = Si n H n ( B ) .  

LgY: 5 B ,  
t=l 

n (37) 

and 

Using the same techniques as previously described, it is 
possible to overbound the numerator and underbound the 
denominator of the right-hand side of (35) in terms of the 
volumes of the conditional types 

(39) 

that are contained in F ( z ,  y, .), and to establish (14). 

Now, similarly as in [l, (A.2)], 

where the last inequality follows from the union bound and 
the fact that the integral of a positive function over the entire 
sample space is larger than its integral over Sa. From [l, 
(A.4)], we have that 

1 - Pr{S1} 5 2Ff,0(R,n) (A.7) 

From the assumption of the lemma, it follows that for all 
sufficiently large n, the probability that (z, y) is outside 
H,(B) will be less than Ff,o(q,  R,n).  This completes the 
proof of Lemma 1. 0 
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Proof ofLemma 2: By the union bound we have 
I .  n 

k 

+ Pr{&i < B - ~ )  + Cpr{l,8il > B}. 
i=l 

( A 4  

Thus, it should be shown that if B is chosen sufficiently large, 
each one of the probabilities on the right-hand side of (AA) 
decays faster than As for the first term, since 

then we have 

which in tum can be made less than e-nE(R) by selecting a 
sufficiently large B as can be shown by a simple application 
of the Chemoff bound (see, e.g., [7, Lemma 12.9.11). As for 
the remaining terms: we have the following expressions for 
the components of 8. 

and 
- n  k 

(A.13) 

Regarding the second term on the right-hand side of (A@, 
we have 

1 
&; = - C(Xt - &yt - c,8i4i,t)'. 

t=l i=l 

(A.14) 

B2/ux(1 + A). Then, (A.14) is further bounded as Let B' 
follows. 

I ,  n 1 

Again, the exponential decay rate of the second term on the 
right-hand side of (A.15) can be made arbitrarily large. As for 
the first term in (A.15), note that the coefficient vector v = 
(771, . . . , r ]k )  minimizes the quadratic form n-l Cy=, (yt - z:=l t i 4 i , t ) 2  over all vectors , &) in R ~ .  More- 
over, since the energy of y is less than B within the set 
of interest, then the minimizing vector ( = v must lie 
in the k-dimensional sphere ET( 5 B,  where T denotes 
transposition. Fix S > 0, define the grid G = (6 i : 
i = - rB/Sl , .  .. , -1,O, 1 , .  , [B/Sl},  and let Gk denote 
the lcth Cartesian power of G. From the uniform continuity 
of the above quadratic form within the set of all energy- 
limited vectors y, one can find a sufficiently small value of 
S (depending on B) such that there exists a vector ( E Gk 
satisfying 

= ((1, 

2 k 

i=l t=l 

Thus, 

Thus, if we can show that each term on the right-most side 
of (A.16) can be made exponentially less than e-nE(R),  the 
result for the first term in (A.15) will follow as Gk contains 
( r2B/61)k points, which is a constant. (Even if k = kn = 
~ ( n l / ~ ) ,  then still this is a subexponential function of n.) To 
estimate each term on the right-hand side of (A.16), we first 
overbound the volume (Lebesgue measure) of the set 

Define an auxiliary pdf, 

(A.17) 

SA, dy denote the volume of the set At .  Then, Let Vol{A.e} 
we have 

1 L J s ~ y  
AE 

2 Vol{AE}. (~T /B ' ) - " '~  
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(A.18) 

and hence Vol{A,} 5 ( 4 ~ e / B ' ) % / ~ .  Thus, each term in (A.16) 
is overbounded as follows: 

Z€R" YEA< 

dzq(z)] Vol{Ac} (27ra2)-"l2 

(A. 19) 

which can be made less than e-nE(R) by choosing B suffi- 
ciently large. This completes the proof for the second term 
on the right-hand side of (A.8). The same technique exactly 
can be reeeated for bounding the third term. Finally, each 
term Pr{lPil > B }  of can be overbounded by the following 
consideration. From (A.12), we have 

and 

E i { i k q d i , t l y }  =p:, i = l l 2 , . . . , k ,  (A.24) 
t=l 

where E:{.ly} denotes expectation with respect to V(.ly, 8, 
k). This parameter vector, that will be denoted by e, can be 
found by solving (k+2) (A.22HA.24) with (k+2) unknowns. 
The fact that (z, y) E H,(B) guarantees that a solution exists 
(see (A.llHA.13)). The resulting 8 attains the maximum of 
V(zly,B,k) as can easily be seen. 

To estimate the volume of T:(zly), we derive upper and 
lower bounds on its probability under V(.ly, e l k ) .  As for an 
upper bound, we have 

1 2 V({Z : z E T:(z[y)}Jy,e, k )  

= /- V ( Z ( y , i , k ) d Z  

*,"(=lar) 
- > Vol{T:(zly)} . - inf ~ ( ~ l y ,  8, k )  

2 vOl{~:(zly)} . V(ZlY, e 1  k )  
zET,"(zly) 

2 Vol{Tf"(zly)} 9 V(zly, 8, k )  . exp[-neB2(B + k + l)] , 
(A.20) (A.25) 

where the second last inequality follows from a derivation t=1 

similar to (21) and the last inequality follows from the fact 
that (z,y) E H,(B). Thus, we get 

Thus, by the union bound the probability that lfiil exceeds B 
is less than 

which completes the proof of part a) of the lemma. 
As for part b), we use a similar technique by showing that 

the set T,k(z(y) has a high probability under V(.ly, 8, I C ) .  By 
the union bound we have 

v(Tf"(zb)b, 0, k ,  2 V ( D A b ,  e ,  k ,  
which both have been shown already to decay faster than 
e-nE(R)  for a sufficiently large B. This completes the proof 
of Lemma 2. 

Proof of Lemma 3: Fix a pair (z ) E H n ( B )  and let 
pXx n-'c,"=,xz, pxy n-' xt=lxtyt ,  and pk = 
n-l cy=, xt&,t, i = 1,2, . . . , IC. Consider the auxiliary back- 
ward channel of order k as defined in eq. (4), i.e., the backward 

t=l 
lY% ' A  

-V ({ Z : 1 2 &yt - pzy 1 > E }  Iy, 6 ,  k )  
t=l - ~ ,. 

channel k 

k 
i= l  t=l 

(A.21) 
We next underbound all the probabilities on the right-hand side 

& = ayt + CPi4i.t + vt, 
;-, '-1 

of (A.27). Consider the backward channel defined in (A.21) 
and let where vt is a zero-mean Gaussian white noise with variance 

a:. Since (z,y) E H n ( B )  there exists a parameter vector 
B = (c$,a1P1,... ,P&) such that g(v) = (27~6.02)-~/~ fi exp (-$) (A.28) 

denote the pdf of the noise, where v = ( V I , .  . . , Vn), and let 
E,(.) denote expectation with respect to g ( . ) .  Thus, 

t=l 

(A.22) 
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The term ~ ( D A ~ J Y ,  8, k), depends only on n and A but not on 
E .  Since p x x  must lie in the interval [a;(l - A), a;(l+ A)], 
then its is either an internal point in ,.this interval or an 
endpoint. In the former case, V ( D ~ l y , 8 ,  k )  + 1 similarly 
as in (A.31HA.34). In the latter case, say, pxx  = a;(l- A), 
the dominating event is 

I L[g~:] - E g {  ikv:} t=l  n.9 0 I cj.; n -, P22  t=l 
BS; B2 t=l 

1 I - < -  (A.29) k 

+ Pi+i,t)vt 
ne2 - nE2’ 

where we have used the Chebychev inequality and the facts i=l 
that (z,y) E Hn(B) and 8; I n-’CF=,x:. In the same 
manner, it is easy to see that 

U1 +UP. (A.35) 

The probability of (A.35) is larger than the probability that 
both U1 2 0 and U2 2 0. Now Pr{U1 2 0) + 1/2 
by the central limit theorem. For every sequence v with a 
given energy C,v,“, either U or -U (which both have the 

t=l  
(A.30) 

where L is the uniform bound on 4;,t.  Now, same probability-density) is associated with a positive U2. 
Thus, the probability that both U1 and U2 are nonnegative 
is asymptotically at least 1/4. A similar con:ideration holds 
whenp,, =a~(l+A).Therefore,V(DAlg,O,k) L m ( A )  is 
asymptotically never less than 1/4. Combining (A.23, (A.29), 
(A.30), (A.32), (A.34) and (A.35), we get 

B(kL2 + 25B) 
7n (A) - 

I VOl{T,k(ZlY)) . my(zlJY, 8, 

k exp[n&B2(B + k + l)] , (A.36) 

where the second inequality is derived similarly to (A.25). 
+ s ( u : l ~ ~ ( & Y t + C 8 , 4 i . t ) v t l  >:I. (A.31) 

t=l  i=l 

This completes the pr&f of part b) of Lemma 3. 0 The second term on the right-most side of (A.31) can be 
overbounded similarly to (A.29), resulting in 
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where we have used the fact that projecting a vector on a linear 
subspace shrinks its norm and hence, 

(A.33) 

The first term in (A.31) is again bounded by the Chebychev 
inequality, yielding 

(A.34) 
86; 8B2 = - < -  
ne2 - nE2 * 
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