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Low-Complexity Sequential Lossless Coding
for Piecewise-Stationary Memoryless Sources

Gil 1. Shamir, Student Member, IEEEand Neri Merhav Fellow, IEEE

Abstract— Three strongly sequential, lossless compression areas, like compression of speech or text retrieved from several
schemes, one with linearly growing per-letter computational sources, edge information in images, and abrupt scene changes
complexity, and two with fixed per-letter complexity, are in video coding

presented and analyzed for memoryless sources with abruptly In thi dobt this simol del oPi .
changing statistics. The first method, which improves on Willems’ n this paper, we adopt this simpleé moadel oFacewise-

weighting approach, asymptotically achieves a lower bound Stationary Memoryless Source (PSM$Jeither the source
on the redundancy, and hence is optimal. The second schemeparameters at any stationary segment, nor the transition loca-

achieves redundancy ofO (log N/N) when the transitions in tions and their number are assumed to be known in advance.

the statistics are large, andO (loglog N/log V) otherwise. The na can show that traditional adaptation mechanisms com-

third approach always achieves redundancy ofO (y/log N/N). . . . :
Obviously, the two fixed complexity approaches can be easily bined with classical compression schemes perform poorly

combined to achieve the better redundancy between the two. fOr this class. Dynamic Huffman coding requires large block
Simulation results support the analytical bounds derived for length, and thus exponentially large dictionary, in order to
all the coding schemes. approach the entropy even in a stationary segment. Variations
Index Terms—Change detection, ideal code length, minimum of the Lempel-Ziv (LZ) algorithm require increasing window
description length, piecewise-stationary memoryless source, re-length, which results in slow convergence to the source
dundancy, segmentation, sequential coding, source block code,entropy. One may use adaptive entropy coding with respect to
strongly sequential coding, transition path, universal coding, (.r.t.) estimated letter probabilities across a sliding window
weighting. or an exponential one, but such estimates have nondecaying
variance, and thus yield poor coding performance.
|. INTRODUCTION This calls for a different approach. First, recall the well-
<nown fact that, ignoring asymptotically negligible integer
gth constraints, the problem of sequential lossless coding
ing, e.g., arithmetic coding [7], [8]), is completely equiv-
nt to the problem of sequential probability assignment,

RADITIONAL sequential universal lossless source co
ing schemes are usually designed for classes of station
sources. Not surprisingly, these schemes may perform poo

when the source is nonstationary, unless some adapta the lenath functi £ th de i derstood th
mechanism is applied. While adaptive schemes such as ere the fengih function of the code 1S understood as the

dynamic Huffman code [4], [9], [18], [25] and variationsnegative logarithm of the assigned probability, i.e.,' itheal

of the sliding-window Lempel-Ziv algorithm [24], [27], [28] code lengthHence, we can treat the IatFer problem instead of
have been developed and applied for general nonstationH} former, and we do so from this pc_)lnt on. .

sources, much less attention has been devoted to system%tisO the best of our knowledge, universal coding for the

rigorous theoretical development of universal codesfmple | MSlSmO(:AeI r\]/vas I\'rSt 'g\;ﬁsi'gt’ﬁted by Merhgv [12|] (de
classes of nonstationary sources. One example of suctft o [13]). Merhav showed that the average universal coding

class is that of memoryless sources with piecewise-fixed Iet{% undancy over all sequences &t Ietters,_dr{;\wn from an

probabilities [12]-[13], [19]-[22], namely, sources for whict phabet O_f"_ letters by almost any PSMS W|thffxednumb_er

the probability mass function (PMF) is subjected to occasio gl of transitions between segments each of lengtv), is

abrupt changes. This model is useful in several applicati cH/ver-bounded by

log N
N
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another. This term consists éfg N/N bits per symbol for O (log? N/N) overall. To the best of our knowledge, no fixed
each such transition. Note that the derivation of the loweomplexity universal scheme has been obtained for PSMS's.
bound require€” to be fixed (see [12]) and all segments to be In this paper, we derive, analyze, and present simulation
of lengthO (N). If C is larger thanO (1), an algorithm with results of three new universal strongly sequential data com-
an upper bound of the form pression schemes for PSMS’s based on context tree coding.
log(N/C) The first scheme achieves the lower bpund on the redundancy,
—1 -7 (2) whereas the two other schemes provide slower decay rate of
N the redundancy, but haviixed complexity(and logarithmic

can be obtained (refer to Theorem 1), and therefore thé storage complexity). The first scheme is a generalization
lower bound must be smaller or equal to this bound. Notef Merhav's scheme which uses Willems’ linear transition
however, that if the transitions are not evenly spaced, thatd&gram with different weights. Similarly as Willems’ scheme,
some segments are shorter tHagN/C), even smaller lower it is of linearly increasing per-letter complexity. Two different
bounds can be obtained that are logarithmic with the length¢grsions of this scheme that differ only in the transition
the dominant longest stationary segments and linear with thef@ights are proposed. Unlike all the schemes presented in [12],
number, which is smaller tha@'. [19]-[22], for which the number of states grows with time, the

In []_2], Merhav also demonstrated a universal Compressi!ﬁﬁt two schemes have a fixed number of states, and hence can
scheme for the PSMS that achieves the lower bound ¢ applied for practical purposes. Although the convergence
(1). This scheme employs the method of mixtures in tw@te does not meet the bound, it is better than any existing
stages. The first-stage mixture gives Krichevskiy—Trofimd@w-complexity scheme for PSMS'’s.
probability estimates [10] for each set of transition times, The second scheme combines decisions based on the ob-
henceforth referred to asansition path The second-stage served past with a reduced-state transition diagram, using
mixture is performed over all possib|e transition paths_ Aifferent state transition Weights than those used by Willems.
strongly sequentiaversion of this scheme was also obtainedt Uses decisions to eliminate unlikely states in the diagram,
That is, a scheme that sequentially updates the conditioffais preserving a fixed number of states. This scheme achieves
coding probability of the next symbol given the past, indepe@verageredundancy ofO (log N/N) for large transitions if
dently of the future and of the horizaN. Merhav’'s scheme the number of stationary segments is upper-bounded by some
is of linearly increasing per-letter coding complexity whegonstantS that depends on the design parameters of the
we assume at most a single transition. It can be generaliggneme. Otherwis@ointwiseredundancy (for anyv-tuple) of
to any fixed number of transitions, yielding an algorithm okt mostO (loglog N/log N) is obtained. In the third scheme,
polynomially increasing complexity, and to an exponentiallye partition the data sequence into smaller blocks and encode
increasing complexity scheme if no assumption of a fixeeRch one separately. Using the optimal block length, we
number of transitions is made. achieve pointwise redundancy 6f(/log N/N). Simulations

Three Strong|y Sequentia| schemes of smaller but still |ﬁhOW that the true redundancies of the last two schemes are
creasing complexity for universal coding of PSMS’s wergven better than the upper bounds obtained.
later proposed by Willems [19]-[22]. These schemes are allWe can easily combine both fixed complexity schemes
based on context tree coding [23] combined with arithmetf@ obtain the better redundancy between the two for any
coding. They all obtain redundancy of at le@tlog N/N), sequence. We hence obtain a maximum upper bound on the
but with coefficients larger than the coefficient of the lowepointwise redundancy aP (/log N/N), which is better than
bound in [12]. Willems implemented two-stage mixtures dgrown fixed-complexity schemes and, in fact, better than the
described above by constructing suitable state diagrams ¢sirrently knownO (1/log V') upper bound of the Lempel-Ziv
the second-stage mixture. The weight of a transition path @gorithm (see [11], [16]).
the mixture is hence obtained by state transition weights alongThe outline of this paper is as follows. Section Il contains
the path. The first two schemes ([19]-[21]) take into accouRgtation and definitions. In Section Ill we generalize the analy-
all transition paths. In [20] and [21], all transition path$is for the redundancy of a coding scheme. Section IV presents
that assume the same most recent transition time are unified first scheme of linear per-letter complexity. In Section V
into one diagram state. This results in linearly increasirje describe and analyze the second scheme of decisions and
per-letter computational complexity, storage complexity ofeighting. Section VI presents the block partitioning scheme
O (Nlog N), and redundancy di.5(C + 1) log N/N beyond along with the analysis of its rate of convergence. Numerical
the lower bound. The second scheme [19], [20], group€sults are presented in Section VII. Finally, in Section VIII,
transition paths into states according to both the last transitit§ present the summary and conclusions of this work.
time and the hypothesized number of transitions thus far.
The resulting diagram contains more states, each representing
fewer transition paths. This leads to quadratically increasing
per-letter complexity and a total redundancy@$log N/N Let {P,} be a parametric family of memoryless stationary
beyond the bound. The third approach, proposed recenmiiMF's of vectors whose components take on values in a
in [22], selectively eliminates states according to the tinfinite alphabetX of size ». The parametef designates the
they were created. This scheme is still of increasing corfr — 1)-dimensional vector of letter probabilities. A string
plexity of O (log N) and achieves per-letter redundancy ofirawn by the source from time instaitto time instantj,

Ry < (1+5)<%(C+ 1)+C>

Il. NOTATION AND DEFINITIONS
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(i @ig1,- -+, x5),J > ¢, will be denoted byxj Let The first-stage mixture, implemented to obtain the assigned
probability, is performed for a given transition path. The
conditional probability assignmer®(z" | 77) given any

be a string emitted from an-ary PMF whose parametér transition path7’ = (t),---,t.), is recursively defined using
takes on a particular valu fromn = 1ton =¢; — 1; then the Krichevskiy—Trofimov (KT) empirical estimates [10], that

¢ = 6, fromn = ¢, until n = ¢ — 1, and so on. Finally, from result from mixing the parameter with a Dirich(et5) prior.

n =tcton = N, 6 is held atfc. The vectors The KT estimates will be used with relative frequency counts
that are reset at every hypothesized transition. Specifically, the

N A& N A&
Ty =X —($17$27"'7$n7"'7$A’)

EARRARERUIMEN S S CATERMMER 7S 1 SR 7S PR Y L. o . .

_ s noihd " = {one A}_ conditional letter probability is defined as

will be referred to astationary segmentand correspondingly, 1

60,61, --,0c will be called the segmental parameterst Xl L A (u)+1/2

will be assumed that the different segments are statistical t “|$1 ’ ) (- Y +r/27

independent. The extended vect@y,0:,---,0) will be #<t<t,, VueX (8)

denoted by®, and will be referred to as thparameter set
The C-dimensional vector, representing tldé time instants and the probability assigned to antuple is given by

before which transitions take placey:,tz,---,tc), will be "

denoted by7, and referred to as thieue transition path For Q=7 | 7) = I_IQ(QjZ | -T?L_lvT/)

convenience, we defing = 1 andtcy; = N + 1. We will i}

assume that the number of transitiofisis either fixed or is = Q27 | 77) - Q(an | 27T (9)

of lower order than the time. Noting thatC is a function of
the dimension of the other parameters, the PMF of the PSM&erez? represents the null string, whose probability is one
is parameterized by the paj®, 7'}, and defined as follows: by convention.
c To implement the second stage mixture, the probability
0,7) = HP@' (aiu,---,a?t7-+1_1) 3) assigned to aV-tuple will be a weighted sum of conditional
o probability assignments given transition paths. Each probabil-
ity assumes a different pathi’ from a set of pathg7 } 4,
selected by the algorithma. Each path will be weighted with

Pz

where the PMF of each segment is obtained by

Par(n, 1) = tiﬁl Py (1) someweight functionW 4(7")
n=ti o Qi)=Y WaTHQEN|T).  (10)
=[P @ @ T
ueD The weight function must be nonnegative foralland satisfy
whereP;, (x,,) is the probability of the lettet,, drawn by P, ,
which for simplicity will be denoted by?;, andn; ** " (u) > WaT) =1 (11)
denotes the number of occurrenceswE ¥ within the ith T'c{T}a

segment.

. _ The set{7} 4 contains the only transition paths that are
The per-letter average entropy of a PSMS is obtained by, {7} y P

eighed in the second stage mixture to obtain the assigned

Al < probability of schemeA. Paths that are not contained in
H(©,T)= N Z(tiJrl — ti)H (6;) ()  this set are not weighed in the mixture. A single transition
=0 path? e {T}4 can be chosen frod{7} 4 to estimate7.
where H(6;) is the entropy of theth segment. If 7 € {T}4, then we can choosé = 7. This is the

Since we assume no prior knowledge {#, 7}, we will case in schemes like those proposed by Willems in [20], that
not be able to assign the true probability of the sequence fswntain all possible paths {Z} 4, including the true path’.
a coding scheme. Instead, we will seek a universal sequefbwever, if 7 ¢ {7} 4, a different path? e {T}A,T #T
tial probability assignment that will implement a two-stagenust be used to estimatg. In order to achieve good per-
mixture and will serve as the basis for arithmetic coding. THfermance (i.e., small redundancy), a coding schefehat
probability assigned to the substring by an algorithm4 will  implements the two stage mixture probability assignment, must
be denoted by? 4(«"). To enable sequential updating@fs, construct a proper group? }4 that either containg or at
the conditional probability) 4(x,, | ") defined by [15] as least contains a good estimateof 7", for which Q(z™ | 7)

Qaln | 275 2 02" /Qa(z"Y) 6) and Wa(T) are large. IfT ¢ T, the choice ofi” defines a

_ N _ hypothesized PSM$C, ©,7 }, which is derived from the true
must be well defined. Additionally, in order to enable the ugegpys parameteré®, 7 }. For example, if

of arithmetic coding, the assigned probability must satisfy the
conditions described in [23] T ={aN +1}, 0<axl

Qa(zi™) = > Qu(z}), Vai™'eX™' (7) ie., a single true transition, but the estimdie= ¢ (i.e., no
©n,CT transitions) is chosen to estimafe then© = {6}, where
where the probability of the empty string is one by conventiofly = o + (1 — «)f;. As in the example, the hypothesized
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parameter se® is defined by the convex combinations of From (10) and the definition of TR in (14), we conclude that
the true segmental parametefs along each hypothesizedthe TR depends on the weight @fand can be upper-bounded
segment, where the weights in the combination for a hypothy
esized segment are the relative durations of egc this

N
segment. Theprobability of an estimated PSM8enoted by Ri(zV; A) 2 1 log Qe NT)
Q(zN | ©,7), is defined similarly as in (3) w.r.t. parameter N7 Qa(=N) )
sets© and7 instead of© and 7, respectively. If7" = 7, B ilo* QzN | T)
then® = © and Q(zY | ©,7) = P(zV | ©,7). =N Y re(Tia WATHQEN | T)
1 .
lIl. THE REDUNDANCY < — 7 logWa(Z). (16)

The pointwise redundancgf schemeA for an N-tuple =,

. ; : The inequality holds by definition of .
emitted by{©, 7}, is defined as

The DR results from coding more than one true stationary
1 P(zN10,7) segment as if it were a single stationary block. Assume the
N log T QAN block z; 11" of lengthm contains data drawn bydistributions
(12) P41 to Py, and assume this block is coded as if it were
drawn by a stationary PMB, then@ is defined as the convex
ignoring negligible integer length constraints. For simplicitygombination of the true PMF’s, where each PME; is
we will omit the conditioning on the PSMS parameters. Theeighed by its relative duration in the block. It is easy to show
(expected)NVth-orderredundancyof schemeA is defined as that the contribution to the DR of this block is upper-bounded
A N by the entropy of the relative durations vector multiplied
Ry(A) = Eqo,ry [R(z75 A)] (13) by m and normalized by the complete sequence lenyth
where E(e, 7, denotes the expectation w.r.t. a given PSM§ince_ thg vector _consists efcomponents, we can bound the
(6,7} ’ contribution of this block to the DR by
The pointwise redundancy of aN-tuple for a PSMS can
be expressed as

R(zN; A) 2 RN, A10,T) &

mlogs

Rd (xi—l—rn,A) S

i+1 0 (17)

RN A) — 1 | ‘Q(Q;N | 7) 1 | ‘Q(Q;N @’7) The DR of anN—tup]e is the sum of the contributions of all
(7 A) = N o8 W + N o8 W segments hypothesized 3.
N
+ el logw IV. AN OPTIMAL LINEAR PER-LETTER COMPLEXITY SCHEME
N7 QN 16,1)

A ; . . The scheme presented in this section uses Willems’ linear

= Ri(2; 4) + Ry(a™5 A) + Ra(2™; A). (14) weighting scheme [20], [21] to group transition paths into
Equation (14) decomposes the pointwise redundancy irtgies in a diagram, but with different weight functions,
three termsR,—transition redundancyTR), R,—parameter corresponding to the welght.s u_sed by Merhav in [12]. We will
redundancy(PR), and R,—decision redundancyDR). The denote a general linear weighting scheme/yand propose
TR reflects universality w.r.t. the transition path. The PR 4o different optimal versions of the new scheme, one that
the cost of universality w.r.t® for a given transition path. Performs better when the number of transitiafisis small,
The DR is the additional redundancy caused by estimatiffnoted byC,, and the other, denoted s, performs better
error of the transition path and the segmental parametersVR€n< grows with N. Willems’ original linear scheme will
imposes. These terms all depend on the specific algorithm, Bt denoted byV. Both versions of the new scheme will be
of course, it is the total redundancy that should be compare@oWn to achieve the lower bound on the redundancy of (1),
to the lower bound. as opposed to Willems’ scheme.

The PR can be upper-bounded as follows. Using the KT The idea of Willems’ linear scheme is to implement the
estimates to assign probability to a stationary segment BfXture method using near transition diagranthat contains -
length m results in additional(r — 1)/2]logm + O(1) code a!l possible transition paths, as |Ilustrat§d in Flg.. 1. This
bits for that segment [10], [17]. Therefore, using the kfliagram reduces the exponential complexity and still enables

estimates for each of the hypothesized segmens, afs done weighting of all transition paths. A directed path along the
in (8) and (9) to obtaim(z j,) results in diagram represents a transition path. Horizontal move denotes

that the source remains in the same stationary segment. An
. . upward move in the graph represents a transition of the source.
log(tit1 — ti) + 0(1)} A box in the diagram represents a state. Staeat time n
) is defined as the time instant of the most recent transition
r—1 4 logé%rl le} within the periodl < ¢ < n. In order to implement the
9 (C+ 1)T o (15) weighting procedure, each state is assigned a weight, «7)
associated with the subsequende The weightG(s,,, z7) is
where the second inequality is obtained by the Jensen inequisfined as the joint probability assigned to the sequerice
ity. along with the event that the last transition before time

C
; 1 7
LCTES D

<

N
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whereZ! — s, is the set of all paths leading 1. The weight
W (7)) is the product of all the transition weights along the
path representing,’ in the diagram.

So far, we have described a general linear scheme as
presented in [20] and [21]. However, we have not defined the
actual state transition weights. The transition weights defined
by Willems use the binary KT estimates of the distance from
the last transition

1/2

. [CEmEsg Sn41 =71+ 1
) W2 (snp1 | 50) 2 {< . (23)
> 1

(n—s,)+1/2 _
(n—sy,)+1 Sp+l = Sn-

The proposed scheme defines state transition weights
WE(spa1 | sn), that are different from those defined above.
The concept used for the weights is the same for both versions

» 1 » 1
/

n=1 2 3 4 of the proposed scheme, although the transition weights

themselves are defined differently fdr; and for £,. The

Fig. 1. Linear transition diagram at time instadt 4. A number in a state weights for both versions are defined as follows. For a given

box denotes the most recent transition point of the state represented by

th
box. The time is denoted below the graph. € % 0, let

1>
—_

")E S 1SN (24)
occurred at = s,,. The probability assigned to} is the sum "
of the weights of all states in the diagram at time Z, 2 Zﬁ(j) (25)
n j=1
Qc(z1) 2 > Gsn, 7). (18) and
sn,=1 o
- . . Zoo =Y _7(j). (26)
We note that by definition of a state the diagram will always =
consist ofn states at timen, that form a partition of all o,
transition paths into disjoint sets. =(n) s — a1
The weight of a state is recursively defined by the KT Wtfl(sn_i_l | 5n) 8 ) Za=Zn 1 ntl = 27)
estimates and the transition rules of the diagram. The KT %, Sn4l = Sn
probability of letterz,, at states, is obtained, similarly as gnd
in (8), by m(rnosntl) PR
— ) nt1 =n+1
nn_l(.’E )+ 1/2 Wt§2 (3n+1 | Sn) 2 {i:—?i_:ﬂ (28)
Q(-Tn | Sn) 2 Q(-Tn | 3n71~71l_1) 2 L (19) Zoo—Tn—s,, Snp+l = Sn-
(n—sn) +7/2 By both weight assignments proposed in (24)—(28), we

The only two possible transitions from statg at timen to assign to each time point, 1 < n < N, a distribution over
states,, ; attimen-+1 are the self-transition, i.es,,y; = s,,, the discrete timet, ¢ > n, for the probability that the next
and the transition to thenly new state formed at time 4+ 1  transition occurs just before tinteIn both cases, the assigned
that assumes a source transition between tiraad timen+1, probability of source transition at time + 1 is the weight
i.e., snp1 = n+ 1. Associated with each such transition, ther&%(n + 1 | s,,). For £, for instance, this probability is(n)

is a weightW,(s,+1 | sn), where normalized by the infinite sum of(¢), t > n, which is equal
Z~ — Zn—1. The probability assigned at timeto a transition
Wis(snt1 = $n [ 80) + Wr(snpr =n+ 1 sa) =1L (20) 45 occur an+2 is (n+1), normalized by the same factor, and

The weight of a state is, therefore, recursively updated asS on. for all > n.+2. Hence, the probability of no transition
(21) at the bottom of this page. It is easy to see that the weidAtoccur att = + 1, which is assigned to the self-transition
assigned to a state by this procedure is a weighted sum of ¥ight in (27), is the partial sum of the probabilities assigned
KT estimates assigned to all transition paths of ordern atn for transitions to occur at all time units larger than- 1.

that lead to this state The weights of£; in (27) depend on the absolute time,
. ) o instead of the relative time from the last transition as in
G(smal) = > W(ITDQ(2}|T) (22) (23) and (28). This reduces the weight of a transition, thus
Ti—sn weakening weights of transition paths with many transitions,
Wtr(sn = Spn—1 | Sn—l) . G(Sn—lvxrll_l)v Sp <N

G(sp,27) = Q(an | sn) - § n=1 (21)
( 1) Z Wtr(sn =n | Sp—1 = J)G(Sn—l :jvxrll_l)v Sp = 1.

j=1
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but strengthening weights of transition paths with a few If we let ¢ decayslowly with time, such that
transitions. Therefore, the use 61 is justified if we assume

that the number of transitions is small. If we assume that & £ M E>1
grows with N, better performance can be achieved By. log j
The use of absolute weights also leads to a computatiogald
improvement. First, the self-transition weight can be computed N - 1
once using (27) for all self-transitions in (21). Furthermore, n(j) £ 570 = oz ) (32)
(21) for s,, = n reduces, using (18), to Jog =
o ( n) it can be shown that

£i{8n =1, 2 ; r—1 log N

ne RzML) < | —=(C+ 1)+ 0| =—
= Q| 5)WE (50 =1 | 501 <1)Qe, (z77Y) (29) (@75 £1) < [ g (C+D+ } N

whereWtfl(sn =n|s,_1 <n)isthe same for aly,, ; < n. + O<M>

The weights proposed faf; and for £, appear to be more N (33)

computationally demanding than Willems’ weights. However, R(zV:Ly) < [7’ - 1(C+ 1)+ C} log(N/C)

it is straightforward to see that the transition weights to the ’ - N

new states,,.; = n+1 of £1 have similar behavior te/n, and Cloglog(N/O)

those ofC, behave similarly as/(n—s,+1). Hence, although +0 <T)

the analysis and understanding of the scheme are simpler Wity s the lower bound is asymptotically achieved by both

the original definitions, the weights of both versions of thga sions of the scheme.

scheme can be replaced by the simpler Welght_s_. ) Theorem 1 makes no prior assumptions on the number of
The TR results from two factors: the transition weightganitionsc. However, it derives the expected two conclu-

at transition _p_omts, and the cumulative weight §55|gned $ons: 10 = O(1), the weights ofz; are optimal since they

all self-transitions along the true path. The weights of 50 the least “generous” to new transitions. On the other hand,

transitions to new states must decay®§l/n) asinL1, 0ras it s expected to be larger tha¥(1), the weights ofC, that

O(1/(n—s.)) asinLy and. This results in additional TR 516 more “generous” to new transitions should be used. We

of (log#;)/IV in the first case and dfog (#; —#;—1)l/N inthe 5156 pote that the weights of (23) are merely a special case of

second for transitiort;. However, additional TR is Obta'”edscheme,c2 with & = 0.5. We conclude this section with the

from the self-transitions. Therefore, they must be designﬁ%of of Theorem 1. When we derive an upper bound on the

large enough to ensure that the cumulative weight assigneg of £, we will demonstrate where the weights of (23) fail
to all self-transitions results in still negligible contribution tq, 5chieve the bound.

the TR. This is not the case for the weights 8f defined
in (23), that are “generous” to new transitions at the expense Proof of Theorem 1:lt is straightforward that this coding
of the self-transitions, and therefore do not achieve the PSNeheme satisfies (10) (see, e.g., [20]), and weighs probabilities
bound forC' < O (N). The pointwise redundancy of Willems’ assigned giverall possible transition paths. Therefore, the
weights is bounded by probability assigned to the true pathis always contained in
the mixture, and so we can chod®e= 7, resulting inR,; =
R(zV; W) < E(O+1)+3C+1} log(N/C) +O<g>. 0, andC = C. The PR is upper-bounded by (15), with= C,
2 2 N N and thus attains the first term of the lower bound, as expressed
(30) by the first term of the dominant expression of (31). Note that

. . . to obtain the first term of the bound on the redundancy we use
The bound of (30) is obtained from the analysis in [20]. Th . ) ) ] '
quadratical per-letter complexity scheme, proposed in [2 € relationdog (N/(C'+1)) < log (N/C) < log V. The first

does not achieve the bound either. However, both versionsI o?qu_ahty is used foi;, and both are used fof;. It is now .
. sufficient to show that the second term of the lower bound is
the new scheme, on the other hand, achieve the lower bou

- . : ggained by the TR as well for both versions of the scheme.
This is stated in the following theorem. .
To do so, we will show that
Theorem 1: The redundancies of both versions of the linear N 1 ) ) )
weighting scheme with state transition weights as in (27) and™t(%" i £1) < (€ +€)log N +log(1 +€) — Cloge]
(28), are upper-bounded by

. 1 N N
NoL£y) < = |Clog = 1)elog
Ri(z ,/Jg)_NC’ogO—i-(C—i- )60g0+1

RN L) < [E(OJF 1) +O+s} log +O<9>

= 1
2 N N + (C+1)log +E+10g5 . (34)
N r—1 €
R(z™; L2) < [ 9 (C+D+C+(C+ 1)5} We begin with the TR off;. We first use (27) to express
log (N/C) C W, (T), next we identify which factors result from self-
T O<N) (31) transitions and which from transitions to new states, and then

upper- and lower-bound the partial suffy, — Z,,, ¥n : 0 <
respectively, for everyV-tuple drawn by any PSMS witl’ n < N, by approximating the sum by an integral. Finally, we
transitions, for alle > 0. use these bounds on the cumulative weight functig (7°)
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to upper-bound the TR by-(1/N)logW, (7) as in (16).  To bound the TR of,, we must represeni¥,(7) a little

The same procedure is then used to boidr?; £). differently from the representation d¥., (7) in (35). Let
The weight of 7 is obtained by us defineW(teq1|sy = te) = 1, (where we recall that
- tcqyr = N + 1), then
We (T) = H Wi (se, =t | St,—1 =ti—1) C [tiqi—2
=0 We () =[] | TI Welsnsr=tilsn=t)
toiq1—1 7=0 n=t;
i4+1
H Wtr(é’j =1; | Sj—1 = ti) - Wir (Sti+1 =tit1 | Stiy1—1 = ti)
J=ti+1 _ Cﬁl oo — Lty iy —tim1 7(tiyr — ti)
i N . ZOO ZOO - Ztg+1*tg*l
= H Wtr(sn-l—l = Sn | Sn) i=0
n=1 ) Lo — LN
. [C Wie(se, =t | tio1) _ Zoo
- Wir (St. =t;,_1 ti—l — W(ti-l—l - ti) . Zoo — ZN*t(f 40
= | I177- 7o (o)
- Z, 7(t; — 1) =
= H _ _ The second equality is obtained by substituting the transition
Z - Zoo — i1 ; . IR
weights, and by the telescopic product of self-transitions inside
o — N1 < 7r(ti -1 35 a stationary segment. The inner product in the first line of
- Z ' 1—[1 Zoo — Zp._1 (35) (40) is the contribution of self-transitions, while the outer term

constitutes the contribution of true transition points to the TR.
We defineW(s1 = 1| so = t_1) £ 1. The first equality is |t js easy to show, using the Stirling formula, that if we assign
obtained by taking the transition weights alahigThe second /¥ in (40) instead ofi¥~, the contribution to the TR of
equality is obtained by multiplication and division by the selfself-transitions in segmeritwill be of 0.5log (t;41 — ¢;)/N,
transition weights at points of true source transitions. We uggich is not negligible, while each true transition will still
the telescopic property of the first product to obtain the lagésult in TR oflog (¢; — ¢;_;)/N. This is the reason that the
equality. The first term represents the TR of the self-transitiongights used i} do not achieve the lower bound.
and is ofO (N—<), while the second product term, which can The last equality of (40) consists @ + 1 terms, each
be lower-bounded by) (N~C), represents the TR of th& representing the contribution of a segment, which consists of

true transitions. the self-transitions in the segment and the true transition out
Approximating the infinite sum by an integral, we boun®f the segment to another segment. This, of course, excludes
the partial sumz,, — Z,, by the last segment, for which only self-transitions occur. The
1 n+l4e contributions to the TR of each of the two general terms in
1) S Do B S e Vn 2 0. (36) (40) are upper-bounded by
— tiv1—t; 1
We note that’., = Z..— Zp, and thusl /e < Z_, < (1+¢)/e. “log m(tiy1—ti) <(14¢)1og (fip1—t;)+log te (41)
Finally, we use the last bounds to upper-bound the TR by the Zoo €
D= 2Nt 1
upper bound of (16). We boun_d each term separately, and loe N—tc <elog (N+1—te)+loge+log +5'
then sum all the terms to obtain the TR upper bound. The Zoo €
contribution of self-transitions is bounded by (42)
g Zoo — ZN_1 < log(sN7) + log l+e Summing up all the terms, normalizing by, and using the
Zoo Jensen inequality w.r.t. the segment lengths in the logarithmic
= clog N +log(1 + 5)- (37) expressions, we conclude the proof of (34), and the proof of
The contribution of a single transition is bounded by Theorem 1.
t—1 t; t; — 1)t
—log m( ) < log( * 5)(1 . ) V. A DECISION WEIGHTING SCHEME
Lo — Zti—l Eti +e

<logN — loge. (38) In this section we show that there exists a fixed complexity

scheme, based on the transition diagram of the linear per-

The second inequality is obtained by takidg as an upper |etier complexity scheme, that achieves vanishing redundancy.
bound on?; + . Summing up the last two inequalities, Werhe redundancy is of the order of the lower bound when

conclude that the transitions are large. We refer to the new scheme as
Ri(z™; L) < _ilogW£1 (T) the decision weighting schemgW), and denote it byD.
N This scheme uses data-dependent reduced-state transition

[(C+5) log N +log(1 + &) — Cloge] diagram It eliminates transition paths with low likelihood,
and it does not create a new state every time instant.
(39) The scheme produces new states every 1 time instants
proving the first inequality of (34). instead of every instant, in order to reduce the diagram’s

2 |
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M(r)

1505

r-1 r r+1

S+1

s-1 s ;
i k 0

Fig. 2. Block partitioning for DW. The solid line represents the data sequence that is divided into blocks ofdlefigile transition occurs &' and can
be only estimated at the block midpoint by statevith likelihood 3 (s), obtained by the empirical data of the two neighboring blogks 1 ands + 1.
Another estimated transition is within blook estimated at its midpoint, with likelihood/(r).

growth rate. This forms a partition of the data infé/%

serves as asymptotically optimal statistics for testing whether

nonoverlapping blocks of length, and for each block only or not two sequences emerged from the same source [6], [26].
one state is created. The parameteis a design parameterHence, a state that is created at the midpoint of a blogk
that will be referred to as thdlock length In order to with largeM(s) is likely to represent transition in a surviving
keep the number o$urviving states (and the computationatransition path in the diagram. Fig. 2 illustrates the partitioning

complexity) fixed, we assign to each statex metric M (s)

mechanism. The metrid{/(s) is nonnegative for alk > 1,

that determines the likelihood of a transition within the blockven if transition has not occurred. This can cause elimination
represented by. States with low metric values are eliminatedof s = 1 if its metric had been defined smaller, even when
The number of surviving states with high metri§sis the other transitions have not occurred. Since state 1 always
second design parameter of the algorithm. By definition of tliepresents a transition, we thus define its metric to be infinite.
transition diagram, the set of surviving states defines a set ofThe probability assignment scheme can be described by
surviving transition paths, and a transition path that leads ttee state diagram shown in Fig. 3 féar= 4 and S = 3.

an eliminated state is said to be eliminated and not to exigte diagram begins when aff large metric states already

in the diagram.

exist, i.e., in steady state. The boxes in the diagram denote the

The state numbes represents the block number in whichstates, and the numbers in the boxes the block numbers of the
the most recent transition is assumed to have occurred. A statest recent transitions assumed by the states. As in the linear
s, s > 1, that estimates transition at any time within the blockcheme, each state is assigned a wefgf#,, z7) associated
it represents, is created at the block midpoint. The first statéth the subsequencel. The weight of a state is recursively

s = 1 is naturally created at the first time instant.

The metric of a states is defined as follows. Let(u)
be the number of occurrences of the letiein block s. The
empirical per-letter entropy of the block is given by

H(s):—zns—(u)logns—(u).

k k (43)

uey

The empirical entropy of the concatenation of bloekand
s is given by

) ny(u) +ns(u) '

) _ ”7(“) + s (“)
H(r,s) = EE; o log o (44)
Now, M (s) is defined by
M(1) £ 0o (45)
M(s)2H(s—1,s+1)—05H(s — 1) — 0.5H(s + 1),
Vs> 1. (46)

The quantity M(s) measures the “distance” between the

defined by the KT estimates and the transition rules shown
in the diagram. The KT probability of letter,, at states,, is
obtained by
n—1
A ne1y & N (@n) +1/2
n n = n n» = R e— 47
Qlan | $0) = Qn | 5n.277) (n—7p)+r/2 (47)
where the timer, is the first time instant after the last
transition assumed by,,, which is defined by

A ].7 Sp = 1
T (s —0.5)k] +1,  sp > 1.

The transition rules and update procedures at each time point
are defined for three different cases as follows:

1) At a block midpointn = |(m — 0.5)k| + 1;m > 1
fixed, a new staten is created. The state weights are
recursively updated almost as in the linear scheme by
(49) at the bottom of this page, where the transition
weights are given by

(48)

_mlm=j) -
empirical distributions of blocks — 1 and s + 1. If M(s) Wea(sman|sn = j) 2 4 Zo it Sntl =10
is large then it is likely that a change has occurred between e Feehnai g =
the two blocks inside block. It is well known thatM(s) T (50)
Wtr(sn = Sp—1 | Sn—l) . G(Sn—lvxrll_l)v Sp <M
G(sn,x?) =Q(zy | 8p) - { m=1 (49)
Z Wtr(sn =m | J)G(Sn—l =Js xrll_l)v Sp = M.

j=1
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A
test r-3 with test r-2 with test r-1 with
{r-2,r-1,1,81,82} {r-1,r,1,51,52} {rr+1,1,51,52}
Eliminate r-3 Eliminate r-2 Eliminate s1

v

n=m+ 1 2 3 4 5 6 7 8 9 10

Fig. 3. Example of DW transition diagram in steady state foe= 4 and S = 3. The diagram starts right after time instamt at the first point of
the » 4+ 1 block. A single new state is created at each block midpoint, and a single low metric state is eliminated at each block partitioning point.
Time instants are denoted below the diagram.

(The weight of a previously eliminated stateis zero, and the first possible elimination of a state, the steady-state
G(j,271) = 0). The transition weights depend on theliagram containss + 3 states at time points of first halves of
relative block number from the last transition asdp, partitioning blocks, ands + 4 states at time points of second
and not on the absolute block number, as{in The halves.
proof of Theorem 2 will be based on this fact. The elimination procedure at= mk + 1 takes three stages
2) At the first point of @ new blocks = mk +1; m > 5 of testing the metric of the state created at — 3.5k. If
fixed, at most a single stateis eliminated into another ; _ | o 5 — 2 exist in the diagram, state is eliminated,
sta_tej._The weight ofs is ad(_jed into_the weight qf, since M(s — 1) > M(s) or M(s — 2) > M(s), respectively.
which is the smallest state in the diagram that is stihiheryise, state is tested against states-1 ands +2, and if
larger than:. Only the self-transitions are performedM(S+1) > M(s) or M(s+2) > M(s), s is eliminated. Ifs
from all other stgtes (see (51) at the bottom o'f.th|s pag‘?z)assed both tests and there are less thstates, created before
3) At any other point: there are only self-transitions. timen — 3.5k, no elimination is performed. If there afesuch
G(50,27) = Q@ | $n) - G(sn = sp_1,27 1), (52) States, the state with the lowest metric among the existing
states, created at time — 3.5k or earlier, is eliminated. A
The elimination retains a fixed number of states in thstate is always eliminated by adding its weight into the weight
diagram. It also ensures that no more than one state of afithe closest newer state. This strategy minimizes the DR in
three consecutive states remain in the diagram. This is dafgse a true transition is eliminated by replacing it by the closest
to avoid a situation where a single transition is represented Wpothesized transition point, still existing in the diagram.
two or three states. If a transition occurs at the midpoint of The probability assigned to the subsequericés obtained,

block s, all three states — 1, s, and s + 1 may have large as in the linear scheme, by the sum of the weights of all states
metrics, but we only need to save one of them to represgfb: exist in the diagram at time instant

the transition. We will therefore eliminate the states with the

lower metric values among the three. The computation of the Qp(a7) = Z G(sn,27) (53)
metric of states requires delay ofl .5k time points, to obtain o

the empirical data of block + 1. An additional delay o2k Where the notation) , represents a sum over all states
points is required for computation of the metricssof 1 and existing in the diagram at time instant In contrast to the

s + 2 that are tested against Hence, every new state will linear scheme, this strategy does not satisfy the general mixture
exist at least3.5k time points before it is tested for the firststructure presented in (10), but can be easily shown to yield a
time. Due to the delay 08.5% time points between creationvalid probability function that satisfies both (6) and (7).

0, Sp =1
G(sn,27) = Q@ | 50) - { Gli,a7 ™) + G(G.27™),  sa=j (51)
G(sn, 2771, otherwise.
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Start: n=0
Create single state: s = 1

Metric: M(1) = oo
Weight: G(1, ¢) =1

| n=n+1 I:

'

| Input next letter: x

n

Compute
Does n = k(b+1) Metric M(b)
. Yes —p L
for fixed b > 1? o of (existing) state:
b
No
n = (b+3)k+1; Test value n = (b-0.5)k+1;
fixed b>1 ofn fixed b>1
State b-i exists Create new state:
or M(b+i) > M(b)? other n— ’

fori=1 or i=2 b

No

e Update weights

G(s, x); Vs,

S+4 states (including b).
in diagram? Use equations for
creation of new

state.
Yes No
\ 4
Update
G(s, x); Vs.
Only self transitions.
No Yes
h 4 A 4 \ 4
Eliminate state b J Eliminate state s Update
into into occurrence counters
state b+1. minimal r, r > s. » Vs inthe diagram. |—
¢ Compute
Q=% G{s, x).
Update G(s, x); V's. T
» Use equations for state
elimination.

Fig. 4. Flow diagram of the DW. Metrics of new states are computed at block endpoints. The diagram splits into three different cases for updating
the state weights. At block midpoints, new states are created. At block partitioning points, states are eliminated using the eliminationtcaitgria. A
other point, no transitions occur between different states.

The update procedure of the transition diagram is fullgf smaller order). Both theorems show that the redundancy
described in a flowchart in Fig. 4. The per-letter computationdecays to zero, and specifically at the rate of the lower
complexity of this scheme i© (). Since we will assume a bound for large transitions. The next theorem upper-bounds
fixed S, O (S) = O(1). Every state stores occurrence countie pointwise redundancy.

of O (N), therefore, the storage complexity of the scheme is Theorem 2: The pointwise redundancy of the DW is

O (log N). _ _ _ bounded uniformly for all PSMS's by
We conclude this section with two theorems that upper-

bound the pointwise and average redundancies of the DW by
expressions that vanish &sand /V increase (as long as is

R(x]\r.p) < T — 110%]%

<R 0N (54)
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for every z¥ and any number of transition€’, where block length is updated accordingly By = (1 + w)ko. All

a(C, N, k) is defined by surviving states can be reset, excluding the state created at the
1k hypothesized horizon change point, and the algorithm starts

a(C, N, k) 2 max{_, _} (55) over with the new parametér;. This process can go on at

ko N any timen, in which the most recently hypothesized horizon

has been reached. It is possible to show that the upper bound of

Theorem 2 makes no prior assumptions on the number Bieorem 2 remains of the same order even when this strongly
transitionsC’ that does not have to be bounded. (Of course, dbquential version of the algorithm is applied.
C > o(N/k), thena(C, N, k) does not vanish, and the bound \we now present the main theorem of the DW scheme. We

is no longer useful). The proof of Theorem 2 is presented Bgin with two definitions that characterize a PSMS. Eher
Appendix A. Itis based on the choice of the transition weighiscponentof a PSMS,E(0), is defined as

in (50), that depend on the relative block number from the last

transition and not on the absolute time or the absolute block > VPP (u) + 1
number. E(©)2 min { —2log “=

The DW scheme performs decisions. Obviously, there is 0sisc-l 2
a tradeoff consideration associated with the choice of the (59)

parameterk. A larger k provides a more reliable metric,

leading to smaller probability of eliminating the b&stOn the The error exponent expresses the “size” of the “minimal”
other hand, a largér increases the DR caused by estimation afansition between adjacent segments of a PSMS. It can easily
transitions at block midpoints. An upper bound on the average shown thatl < E(©) < 2. The larger isE(©), the larger
Nth-order redundancy as a function/otan be obtained basedis the “minimal” transition of the PSMS.

on the analysis in Appendix B. By differentiating this bound The divergence(relative entropy)D(P || Q) between distri-
w.r.t. k, it can be shown that the optimal choice bfis of butions P and QQ is defined as

the form R P(u)
D(P = P(u)log ——=. 60
k= Alog N 4 O (loglog N) (56) S EE; () * Q) (60)
where the parameter depends on the parameters of th¥Ve define themean PSMS DR divergenes
PSMS. Since we desire a universal scheme, we will define e
the block length as D(©)2 LN D(PL | P)+ DB P} (61
k= Alog N (57) =t

where the parametet will be a design parameter of the DW Theorem 3:Let k = Alog N. Assume a PSMY©,7}

scheme. By substituting the block length of (57) in Theoregth C < S transitions, separated by segments all longer than

2, we conclude that the pointwise redundancy for this choi e(k)' Then, the averagéVth-order redundancy of the DW

of & is upper-bounded by ;chheerr;e is upper-bounded by (62) at the bottom of this page,
N r—1loglog N 1 ClogN r—1
R(z";D)< 64 TogN +O| max ogN' N . K, 2 { 5 (C+ 1)} +[(14+¢)C+¢
(58) +{2.54]log e + D(©)]C}, (63)
In most practical applications, a typical choice of the design Ky £ (A+1)* D Clog(C + 1), (64)

parameterk satisifies (57) w.r.t. the actual sequence IengtB (3) denotes the order of, ando(/3) denotes order smaller
N, and determines the coefficiedt However, we want our '
th&n the order of3.

scheme to be a strongly sequential one. Therefore, we cann
assume thatV is known in advance, and use this knowledge Theorem 3 demonstrates that we can achieve the order
to determinek as in (57). The solution in this case is toof the lower bound with a fixed complexity scheme if the

assume an initial horizorVy, and use it to determine antransitions are large enough, while for smaller transitions we
initial block length k. If time unit n = Ny is reached, the can still achieve decaying redundancy. It is also possible to
horizon can be updated t&/; = N01+‘°', w > 0, and the show that the strongly sequential version of the DW scheme,

Ky lal g o(Sloel) if £(©)> % and D(®) < x
(D) < 2.5ACE N | O(Cloe Ny if E(©)> 2 and D(8) = )
N - log*"— U N Clog N e 1 2
K> spe=r + O(5%), if § <E@O)<3
A+ O(max (g, SR, T EO) <%
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proposed in the discussion following (58), achievesthe samg| | | | | | | | | ] | |

asymptotical behavior (although the coefficients are larger). ' ' ' ' T ! ! ! ! ! ! !

The proof of Theorem 3 is presemed in Appendix B. Th@g. 5. _Description of_ bloc_k partitioning_._The h_orizontal line represents the

bounds obtained are not tight. Tighter bounds of the sarf{B® @S and the vertical lines the partition points.

orders may be obtained by a much more complicated analysis

than the one presented in Appendix B. DW scheme performs poorly and does not achieve better rate
We note the different behavior of the average redundangtyan LZ. In this section we present such a scheme, that can be

for different transition “sizes.” IfE(©) > 1/A, it is likely combined with the DW scheme in order to achieve the better

that there exists a surviving path, such that (s.t.” = C, redundancy for any PSMS. The new scheme is referred to as

and all transitions are estimated near their true times. For latge block partitioning(BP) scheme and will be denoted B

transitions,£(©) > 2/A, the redundancy is mostly influenced The BP scheme partitions th®¥-tuple into B blocks, and

by the block partitioning, i.e., by estimating transitions only afodes each block, 1 < & < B of lengthm, as if it were

block midpoints. This factor increases if the PSMS contains stationary segment, using its KT estimate. The probability

transitions of infinite divergence, thus obtaining the secoradsigned to anV-tuple is defined as

region of the bound. When the transitions are smallgr < A .

E(®) < 2/A, the redundancy is determined by the probability Qp(z") £ QN

that the smallest transition is not detected near its true time, A e a . . N _

If the PSMS contains very small transitions(©) < 1/4, WhereZ = {fi,f2,---,¢p_.1} is independent of:™ and is

the scheme cannot ensure that a good estimat® ufill be 'ecursively defined as

o_btained, and therefore we can only achieve redundancy of AL L+, 1<b<B-1 (66)

higher order.

The number of segments must be bounded.byas a \wheref, £ 1. (Hence, by definition3 £ € + 1.) The idea
condition of Theorem 3 in order to ensure that if the lags to choose the sefm,} that will give the fastest decay of
true transition has the smallest metric among all transitiongie pointwiseredundancyuniformly over all PSMS's. We will
the scheme will still create a surviving state for it. This statgchieve decay rate slower than(log N/N) but faster than
represents the true transition path. In practice, however, O@Y(IOglog N/log N).
the state that represents the most recent true transition, anflrom (16) we note that there is no TR, since there is a
therefore the true transition path, needs to survive in tfgﬁ]gm transition path and no weighting. The redundancy is,
diagram. Furthermore, the weigli(s,, «1) of this state is therefore, obtained by trading off the PR, which decreases
likely to be larger than the weights of all other states thaiith the block length sinc&” decreases (see (15)), and the
represent past transitions in the true path, but need not surviyR which increases with the block length (see (17)). It can

in the diagram. Therefore, older surviving states with smallge shown that for a givelV, the best tradeoff is achieved by
weights G(s,,«}) can be eliminated in spite of their |afgeselecting the block length as

metrics, allowing reuse of states and hence better performance

if more thanS — 1 transitions occur. Mopt = O (v/Nlog N), vb. (67)
Theorem 3 requires all segments to be larger thah) only

for mathematical convenience purposes. This condition resuf#§ice V is unknown in advance, we can define the block

in the very simple expressions for the error exponent and ti§&gth to increase with s.t. at time instant: the length of a

PSMS divergence, presented above, but has no effect on B#eek will be O (v/nlogn). The BP block length, obtained by

nature of the results. Therefore, similar asymptotic behavidfe following equation, satisfies this requirement:

though with different coefficients, is achieved for PSMS’s

with shorter segments. The mathematical representations of the my = |ablogb], b>1 (68)

error exponent and the PSMS divergence, however, becoWﬁereml 2 1, The parameter is a design parameter. This
much more complex, and they depend alsdorFor instance, ,qgjgnment ensures that the last blocks wiltbg/NTog V)

in the first region of the upper bound, shorter segments Will, i “|arger than the preceding blocks, and therefore will

increase the low-order term to become of the same order as {ag,inate the redundancy. Fig. 5 demonstrates the partitioning
dominant term. If segments shorter ti@nremain undetected ¢ 4, N-tuple.

(by not detecting at least one of the respective two transitions), o _
they too will result in DR in the order of the bound. Theorem 4: The pointwise redundancy of the BP scheme is

bounded uniformly for all PSMS’s witli transitions by

; -—1 log N log N
VI. BLock CODES RN P) < <7 +C\/&> [log +o<C og )7
The DW scheme achieves low-order redundancy for some 2V N N

PSMS'’s, while for others it achieves redundancy that vanishes vz, (69)
very slowly asO (loglog N/log N). It can be shown that the

LZ-78 algorithm has a pointwise upper bound with the sankhe proof of Theorem 4 is presented in Appendix E. Again, we
rate (see, e.g., [14]). We desire a scheme that attains bettetke no assumptions on the number of transiti@nalthough
redundancy for the second group of sources, for which titeis easy to see that the upper bound is no longer useful if

7) (65)
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C > o(y/(N/log N)). It is easy to show that i€ is known 4 .

T T T T T T T T
Linear Scheme L1 er=~1

in advance, the choice of I — snear Scneme -1 v
r—1 — ——— Linear Willems’ Scheme W
o= (70)

w
T

2C
will obtain the best upper bound

R(zY;P) < V2(r - 1)C 1OiN * 0<C 10§7N>,

vz, (71)

N
v
T

N
T

5
T

R(n) * n/{log n)

-
QUi
s g t

If C is unknown, we can choose= (r — 1)/2 to obtain

; C+D+vr—1 [logN log N
N.py < { /
R(z";P) < NG N +0<C ~ 0

N _05 1 L L I L £ N 1 1
Vo (72) 0. 0 100 200 300 400 T_SOO 600 700 800 900 1000
ime —n

T,he BP scheme is very simple to |mplement and requ_lreS,F@. 6. Pointwise redundancies of the linear schemesNoe= 103 bits

single state only. Its per-letter computational complexity i&awn by abinary PSMS) = {0.8,0.2,0.1,0.4}, 7 = {201,601,851}.

O (1) and its total storage complexity 3 (log N). The redundancies are multiplied by (log n). For both{; andLz, € = 0.1.

We can easily combine the DW and the BP schemes into

a combined scheme, denoted &yObviously, the probability the less “generous” weights &f; . This result demonstrates the

assignment tradeoff in performance between the two schemes. If shorter
Nl N 1 N segments are expected (i.e., more transitions in a given time

Qe(z™) = §QD($ )+ QQP(JC ) (73) interval), £, achieves better results, while if longer segments
ﬁ-rF expected, it is better to uge. The true performance of all

attains the minimal redundancy between the two schemes. . .
T : . chemes is better than the upper bounds of Theorem 1. This
pointwise redundancy of this scheme is always upper-bounde - A
IS because the upper bounds are pessimistic by not taking into

by O (C+/log N/N) as in Theorem 4. If a PSMS satisfies the ; ; e _
conditions of Theorem 3, its averagéth-order redundancy is account weights of adjacent transition paths, and by bounding

. all cases by the worst case, in which all segments are of the
upper-bounded by (74) at the bottom of this page. same length\/(C + 1).

Figs. 7 and 8 demonstrate redundancies obtained by
VII. SIMULATION RESULTS Willems’ logarithmic scheme [22], and by the DW scheme
In this section we present numerical examples of the pewrith different parameters for a binary PSMS with= 3 large
formance of the schemes presented in Sections IV-VI, atrdnsitions. In Fig. 7, pointwise redundancies for a sinyle
compare them to the performance of the schemes presentetuiple are presented, while Fig. 8 presents the mean of 50 trials.
[19]-[22]. We show that we achieve better performance withhe DW scheme is shown in both graphs to perform better
the new schemes, and that the true redundancies are mizn the logarithmic scheme. Both graphs demonstrate that
smaller than the upper bounds. the DW scheme achieves redundancy(®flog N/N), even
Fig. 6 compares pointwise redundancies of the line&or transitions for whichE(©) is much smaller tharg/A.
schemes (Willems’ schenmé’, and the two optimal schemes,For the PSMS in the examplé;(©) = 0.068. Using block
£, and £L,) for a sequence of lengttD00, drawn by a binary length £ = 200, we have2/A =~ 0.2 > E(©), but the DW
PSMS with C = 3 transitions. For bothl; and £,, we still achieves the order of the bound. However, kot 100,
takee = 0.1. The curves demonstrate that both and £> the scheme may perform well for somé&tuples, as shown in
achieve better redundancies the@ The redundancy of; Fig. 7, but the probability of not detecting the last transition
is the better one between the two, before the last transitias.not negligible, as shown by the respective curve in Fig. 8.
However, £5 performs better after the last transition. ThidJsing & = 400, we achieve larger redundancy than with the
is because the third segment is relatively short, and justifisisorter blocks, because transitions can only be estimated every
weights that are more “generous” to new transitions, as tho#@0 time units. Note that the curve fér= 300 demonstrates
used inL2, while the second segment is long enough to justifs§imilar performance to the performance demonstrated by the

o
&)

L

K188 4 o(SIoel), if £(©)> % and D(©) < o0
Ry(C) < { 25408 N | O(CleelNy if £(0) > 2 and D(O©) = o (74)

(572 +COVa) /155 +o(C\/7%5Y),  otherwise.
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25 T T T T T T T T 1 T T T T T T T T T
DW (S = 4, k = 100) (bottom) DW + BP ’
.......... DW (S = 4, k = 200) 09F eeeeeees BP 7
———— DW(S=4 k-=300) - W
20F == DW (S = 4, k = 400) 0.8F «=emem=- DW (10 R(n) log n/ (log log n}} -
——— Logarithmic Scheme (top)
T OO
= e
= o
215 %Qef’ 4
g £
c 50.5 4
(]
S =
T10 =] .
0.3k 4
5 o2k S -
0.1p -
C\ 1 1 1 1 1 1 1 1 O L n e N
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 10
Time - n x 10° x10°

Fig. 7. Pointwise redundancies of the logarithmic scheme (top curvE)g. 9. Pointwise redundancies of the DW scheffe = 2,k = 50,

and the DW scheme with different parameters (bottom curves) fer= 0.1), BP schemda = 0.5), and the combined scheme with the same

N = 10% bits drawn by arbinary PSMSQ = {0.8,0.2,0.7,0.4}, parameters foV = 10° bits drawn by a binary PSMS with a small transition

T ={2-10° 4+ 1,6 - 10° 4+ 1,8.5 - 10° 4 1}. The redundancies are mul- ® = {0.2,0.1}, 7 = {4.5- 10° + 1}. The redundancies in the upper three

tiplied by n/(logn). For the DW scheme = 0.1. curves are multiplied by/n/(log ), and the redundancy in the bottom curve
by 10logn/(loglogn). The redundancy of the DW is shown twice with
different scalings in a top curve and in the bottom curve.

25 T T T T T T T T T

DW (S = 4, k = 100) (bottom)
.......... DW (S = 4, k = 200)

ol T o gfjtfiggi performs better than the DW. The redundancy of the DW is
— Logarithmic Scheme (top) shown twice, once normalized by the same factor as other

i redundancies, in order to compare performance to the other

s schemes, and a second time multiplied by the inverse of its
2 expected order to demonstrate its order. The redundancy of
s the DW is shown to be 0D (loglog N/log V). Before the

E10 P S —— i transition occurs, the DW attains better redundancy. Hence,

the combined scheme takes this redundancy. However, after
the transition occurs, the DW starts to perform poorly. At
i some point, where its redundancy becomes larger than that
of the BP, the combined scheme attains the redundancy
of the BP. The redundancy of the BP is shown to be of

= e, O (y/log N/N).

1 2 3 4 5 6 7 8 9 10
Time - n x 10°
Fig. 8. Mean redundancies of 50 trials of the logarithmic scheme (top
curve) and the DW scheme with different parameters (bottom curves) for VIIl. SUMMARY AND
N = 10% bits drawn by a binary PSMS@ = {0.8,0.2,0.7,0.4}, CONCLUSIONS
T ={2-10°4+1,6-10° +1,8.5-10% +1}. The redundancies are multiplied . . . .
by n/(logn). For the DW scheme = 0.1. In this paper we investigated the problem of low-complexity

universal coding of a PSMS. We showed that the entropy of the

source can be asymptotically achieved with fixed complexity
curve fork = 200 because of the specific source parameterschemes, and that these schemes can attain redundancies that
for which some of the transitions are estimated closer to theiecay faster than those obtained by any known low-complexity
true times withk = 300 than with & = 200. The paramete§ scheme for coding PSMS’s. Specifically, it was shown that the
has no influence on the performance of the DW scheme as lander of the lower bound on the decay rate of the redundancy
as there are enough surviving states. Therefore, similar cureas be achieved when the transitions in the statistics are
are obtained for the DW scheme with afiy> 4. Furthermore, large, and for smaller transitions the order of its square root
the combined DW-BP scheni obtains the same curves ads achieved. The lower bound itself was achieved by an
the DW scheme because the DW has better redundancy tbatimal linear per-letter complexity scheme that was presented.
the BP in this case. Sincd@(0) ~ 1.52, it is apparent that the Finally, all results were supported by simulations that showed
DW scheme attains much smaller redundancy than the upgeat in practice all algorithms perform much better than the
bound of Theorem 3, because the bound is not tight. performance suggested by the analysis. All the schemes can be

Fig. 9 illustrates the performance of the coding schemestended to more complex piecewise-stationary sources using

in the case of a single small transition, in which the BBontext tree coding schemes.
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APPENDIX A Using (15), the PR can be upper-bounded by
PROOF OF THEOREM 2 v —1logk 1
N. - :
We begin the proof of Theorem 2 with a lemma. Rp(x™3D) S —p=—— F O<E>' (A.3)

Lemma A.1:Let 7 be a transition path that is not elim- PR

. " ) SubstitutingC in (A.1), bound the TR b

inated from the transition diagram of the DW scheme, andu stitutingC” in (A.1), we bound the y

let C' be the number of transitions assumed by Then the N. (1+¢)log3+log[(1 +¢)/e] 1

?

pointwise TR is upper-bounded as in (16) by 3k N
. . 1
Ry(z™;D) < —% log Wp(7) = O(E)' (A.4)
1]~ N A N .5 i
< |Clog 2 4 (€ + Delog JAFO Sk To optam t_he upper bou_nld for thg DR, we take the .worst
N kC E(C+1) case in which each transition contributes the most. This case
occurs when there is at most a single true transition in each
+(C+1)log 1+e +loge (A.1) hypothesized segment @f. Since the hypothesized segments
£ are of length3k, the DR is bounded, using (17), by
vyhereWD(T) is the cumulative weight assigned to the path Ra(z:D) < 3CE _ O<%> (AS5)
7 by (50). N N

Proof: The DW scheme weighs all transition paths thag,, proof of Theorem 2 is concluded by realizing tta
survive in the diagram, with additional weights obtained frorg.;armines the dominant term of the redundancy
paths that lead to eliminated states. Hence, unlike equality (10% '

Qp(z™) 2 Y Wp(THQEN | T') =2 Wo(T)Q(=" | T) APPENDIX B
T'cD PROOF OF THEOREM 3

(A-2) To prove Theorem 3, we address two different regions of the

where7” € D denotes the set of (surviving) transition path§'Or exponent separately. F&K(©) < 1/A, we simply use

that exist in the diagram at tima/, and7 is one of these the upper bound of Theorem 2 that apphes_ to the redundancy
paths that is chosen as the estimate of the true transition p&hany sequence, and thus can be applied to the average
Hence, by definition of the TR in (14), the first inequality€dundancy for PSMS’s with small error exponents.

of the lemma is proved, and we require an upper bound onVWWe now prove the upper bounds for the other three regions.
~log W (j,) to prove the second. O To analyze the average redundancy we select a surviving path

R 7 that is most likely to be a good estimate of the true path
The upper bound on-logWnp(7') can be attained from 7, This path is used to form a partition of all data sequences
the bound on the TR off, in (34). Note that the only drawn by the PSMS into two disjoint sets. The first is the set
transitions that contribute nonzero elementstiog Wn(7)  of N-tuples for whichZ is a good estimate, i.e., all transitions
occur at block midpoints, where new states are created. Td}@ estimated near their true time unit. The second set contains
transition weights at these time points, which are defined i the other N-tuples. We then upper-bound the probability
(50), are equivalent to the weights df, defined in (28), of each set and the average redundancy ofVatuples in the

but with a shrinking transformation of the time axis. Sincget. Summing up both terms we obtain an upper bound for the
such transitions occur only evekytime units at| N/k +0.5]  average redundancy.

time points over the complete data sequence, the ho¥on et 7 = 7(+™) be an estimate of the true pafh, s.t.

in the bound of (34) can be replaced Bk +0.5. (Note that 7~ connects the” + 1 states with largest metrics (including
the horizon of the first dominant term is replaced Byk, the first states = 1), and ¢ = C. It is assumed as a
because it is derived from the firét segments, excluding the condition of the theorem that'+1 < . Hence, we will
last hypothesized segment.) We conclude the proof of Lemmgvays haveC + 1 states with largest metrics, and, therefore,
A.1, by replacingC' in the bound of (34) byC', since it can this path will exist. Each transitioty € 7 is estimated by a
be applied to all surviving paths, and not only the true onetransition?; € 7. Let S £ ¢ be a second estimate of the true

Proof of Theorem 2:We now use the lemma to prove Thelransition path that assumes no transitions followtng= 1,

orem 2. The heart of the proof is the choicef Let i.e., 0(S) = 0. This path always exists in the diagram, and
., is represented by the statg; = 1, which must survive due
T={1.5k+1,45k+1,7.5k+1,---}. to its infinite metric.

ES - . Let the setF” be the set of allV-tuples, for whichl#; —¢;| <
The path7 is a partition of N into blocks of length3k. By o5k Vi 1<i<C ie. al trangitions are det|ected|l77§/

definition of the DW scheme, a state is never eliminated beforr]gar their true time points. LeF be the complimentary set
it is used for coding at least5% data letters. Hence, the path P ' b Y

o o i . of N-tuples for which there exists a transition that is detected
7 always exists in the transition diagram and thus can be u ) . . .

) S - arther thar2.54 time points away from its true time. As shown
to estimateZ. By definition of 7

A in Fig. 10, if a transitiont; is detected at; more than2.5k
N/(Bk)—1< C < N/(3k)+ 1. time points away from its true time, nonoverlapping blocks
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Far P Near o Far
Points Points Points
< N >
e Ko » t;

< P » < P >

A B c D E S F G H | J

first last block with true last first
far point near point transition near point  far point

Fig. 10. Far- and near-point definitions. The solid line represents the time axis. A true transition occurs within the centr&lfblactl is noted by an
“X."” Points referred to as near points are at ni$te time units away from the transition. The first far point is one block away from the last near point,
and obtains its metric from empirical data of blocks that do not overlap the blocks that are used to obtain the metric of the true transition.

are used to obtaid/(t;) and M (t;), while if |f; —t;| < 2.5k, segment, we can use (17) with = N ands = C + 1 to
overlapping blocks may have been used for both metriagoper-boundR (=" ; D)
For example: If a true transition occurs in blodkF', then .
block F'G is used for its metric. BlockiH, that is the first ~ Ra(z";D) <
nonoverlapping block, is used to detect transition in bléck
If transition is detected i 1, it is estimated at its midpoint,
which is 2.5k + 1 to 3.5k time points away from any point in
E'F, where the true transition occurs.

The averageVth-order redundancy can be expressed as R(zV:D) < log(C + 1) + O<1OgN>, veN e F

mlogs

N
The pathS assumes no transitions. Therefore, using Lemma
A.1 we obtain TR ofO (log N/N) and using (15) we obtain
PR of the same order. Thus

=log(C+1), VzNeF (B7)

_ N
Ry(D) = Pr(F) - Ry(D| F)+ (1 - Pr(F)) - Ry(D | F) (B.8)
(B.1) Using this bound and Proposition B.1 and taking- Alog N

and(Alog N + 1) < (A+1)log N, we can upper-bound the
where Ry (D | £) denotes the averag¥th-order redundancy first term of (B.1) by

given event occurs. We can now treat each term separately o

to prove the theorem. We next present three propositions, (F)-Rn(D | F) < (A+1)4(’ 1)01 N

that upper-bound different terms of (B.1), all assuming the NAE@®©)-1
conditions of the theorem. The proofs will be presented in log(C + 1) + O log N B.9
Appendix C and Appendix D. The mean DR Bfgiven event [ 0g(C'+1) + N - (B9)

€ is denoted byR;(D | ). Summing up (B.9) and (B.6) of Proposition B.3, we obtain an

Proposition B.1: The probability ofF" is upper-bounded by upper bound on the average redundancy Bt®) < cc. If
E(©) > 2/A, the term of (B.6) is dominant, thus obtaining the

N N

Pr(F) < C - N - 2B oset1)], (B.2) first region of the upper bound. If/A < E(©) < 2/A, the
term of (B.9) is dominant, resulting in the third region of the
Proposition B.2: upper bound. fE(0) < 1/A4, the upper bound of (B.9) is no
) klog N Ck o longer useful. IfD(©) = oc, we upper-bound the probability
Ry(z™) < 2.5C + O<—>, vaN e F (B.3) of F'byl, and (B.4) of Proposition B.2 results in the dominant

term of the redundancy iF(©) > 2/A, obtaining the second

RG) < 2.5A010g;N n O<01§)\§N), vz ¢ F.  region of the bound. This concludes the proof of Theorem 3.

(B.4) APPENDIX C
PROOF OF PROPOSITIONB.1

Proposition B.3: We begin the proof of Proposition B.1 with a few definitions.

_ N _ L Ck We then present and prove a lemma, upon which we base the
Pr(£)- Ry (D | ') < 25[loge + D(O)]C - +o0 <N> proof of the proposition. Letl” be defined as in Appendix
(B.5) B, and lett;, 0 < ¢ < C be theith true transition and;
log N Clog N the block that containg;. The distribution before; is P;,_;
g 0g .
< ~ ) (B.6) and att; it becomesP;. Now, letr be any block, s.t. there
existsj, 0 < j < C for which s+l <r < S+t~ 1. For
We will use the patt6 to estimate the transition paths of allgeneralization we defing, = 0 and siv/e) = |N/E] + 1.
N-tuples inF, for which 7 is not a good estimate, anfito Block r is defined s.t. the three blocks— 1, r, andr + 1
estimate the paths d¥-tuples inF. Since the patl$ assumes are entirely within the single true stationary segmgmith
the whole/N-tuple is coded as a single hypothesized stationadystribution £;.

Pr(F)-Rn(D | F) < K,
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<4 C P4 Pd» ' 4-a-»¢si-pe4bP
| . ]
| K . . ]
N '
C ti D . A ti B
+——P—» <+«—Pi1—»4+—Pi—»

Fig. 11 Typical occurrence of everft. The likelihood A/(r), obtained from blocks: and d both drawn by distributionP;, is larger thani/(s;) that
represents the true transition and is obtained from blocks and b.

Lemma C.1:If & € F there exists;, 1 < 4 < C, andr By definition of A;. and M(-), we have
as defined above s.id(s;) < M (r), where both metrics are A ={2" : H(c,d) — 0.5H(c) — 0.5H(d)
obtained from nonoverlapping blocks. '

Proof: For a transition in a blocls;, there are at most > H(a,b) — 0.5H(a) — 0'5H(b)}' (C.4)
three states; —1, s;, ands;+1 that may have metrics obtainedRearranging terms, we can expreds. by means of diver-
by data of two different stationary segments. The DW schergence
allows at most one of these three consecutive states to survive Aip 2{a) : D(P|| Poa) + D(P4 | Poa)
in the diagram and eliminates the other two. By definition
of F, there existst;, s.t. |t} — t;| > 2.5k. Thus there is a 2 D(F || Pap) + D(E, ||Pab)}- (C.5)
transitiont;, for which all these three states were eliminated, By typical sets analysis (see [2] and [3]), and since blocks
but sinceC' = C this transition has an estimate. This estimate, b, ¢, andd are independent of each other, we can bound
must be at some block, s.t. » and its neighboring blocks the probability of A;, by
are ent|r_ely Wlthl_n a stationary segment, _because all surviving Pr(A;) < o k[E(Pi—1, Py Py~ 202D log (k4 1)] (C.6)
states with metrics obtained from two different segments are
associated with other true transitions. Singds eliminated, where E(P;_, F;, P;) is defined as
and it is assumed that the distance between transitions B(P,_,.P,,P;) = min{D(P, || Fi_) + D(P, || P;)
larger thanO (k), it must be thats; was eliminated because Lir

M(s;) < M(r). One of the blocks used to obtai () may + D(F. || P;) + D(P4|| F;)}. (C.7)
still overlap a block used for a metric of somg buts; # si  (The second-order term of (C.6) results from the bound on the
sincelt; —t;| > 2.5k. L' nhumber of types in a block of length which is (k + 1)),

As a result of the lemma, we can bouRd (F') by This bound is used to bound the number of types in each of the

N four independent blocks, and is therefore raised to the power of
Pr(F) < Pr{ds;,r: M(s;) < M(r)} =Pr(4). (C.1) 4.) wWe will now define an evenB;,., for which the minimum

We base the proof of the proposition on this result. We sele%ft (C.7) Is easier to compute, s, € Bi. Since ;. is a

some fixeds; andr, and upper-bound the probability of evenFUbset ofB;,., the minimization ove;, will lower-bound the

A, 2 {M(s;) < M(r)}. Then we use the union bound twice,exponent defined by (C.7). It is easy to show that

once over all possible values ofand then on the values of D(P. || Pea) + D(Py || Pea)

to upper-bound the probability of the right-hand side (r.h.s.) of = D(P. || P}) + D(Py|| P;) — 2D(P.q || P;)
inequality (C.1), which we denote as the probability of event

nequality (C.1) probapilly < D(B|IP) + D(Pa | Py). CE)

Observe some fixed; andr as defined above. For conveWe define B;,. as

nience, let us define s, - 1, b2 s;+ 1, c2r—1,and g, & (N DR, B) + D(Py || P;) = D(Py || Py)
d £ r+1. Fig. 11 illustrates this block partitioning. We define

the empirical PMFP, of block « as + DB || Pan) } (C.9)
() Since A4;,. C B;,
N (U
Py(u) & = Vuex (C2)  EB(P_.,P.P)
> i . .
where n,(v) is the number of occurrences of letterin - Jg?:%{D(P"'||R_1)+D(Pb I17%)
block a. Similarly, we define the empirical PMF of the con- + D(P.|| P;) + D(Py|| P;)}
catenation of blocksy and 3 as > min{D(P, || Pi_1) + D(P, || P)
="t a — (3
Pog(u) 2 M, VueX.  (C.3) + D(Py || Pay) + D(B, || Pay)}
N 2k _ > Py(x)log 20 () +
The empirical per-letter entropies of a block and of a con- min 4 FE€S Pica(@)lla(@)+ D (=)] (C.10)
catenation of two blocks are obtained by (43) and (44), =~ ¢ 3 pb(x)log% '
respectively. = 5 (@) [P (@) + o ()]
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where the constrainf is defined by and in the average to prove Proposition B.3. The second parts
of both propositions are obtained by adding the PR and the
Z P.(z) = Z Py(z) = 1. (c.11) TR to the DR. Throughout this section, we use the definition

of 7 presented in Appendix B.

We begin with some definitions. For< i < C, we define
The second inequality is obtained by applying the constraitfte following block lengths:
of B;., while the last equality is obtained by definition of

zEX rzED

divergence and by expressidQ),(z) as0.5(F,(x) + Py (x)). a; 2 max (t; — ;,0)
The.cc_)nstrained rr_linimization !s performed using Lagrange b; 2 max (£ — t;,0) (D.1)
multipliers. We define the functional(P,, F,) as a R

¢; = min (t;41, fi+1) — max (¢;,t;).

2P
J(P.,B) = ZPa(x) log P )[Pa((:;')—i-P( i We note thatag = by = 0 and that for anyi, either a;
zCS i~ 1) el b\T or b; must be zero. For generalization purposes we define
2P7 =0 £ 0. We next define the vectors associated
+ Z Py(x)log Pi(z)[F, (l;;ga:zp ()] \C/Lvi#eachclgrl]gth.
zED [ a b
i A
+ Ao <Z P,(x) — 1) + A <Z Py(z) — 1). T = (%4 Thgrs 5 T
zED P i = (a:tz. STt 41, a:fi_l) (D.2)
(C12) 372 = (-Tt;-l-bnxt;-l-b;-l-lv Tt —ai g —1) .

It is straightforward to show that the Hessian metrix of the |ast index of a vector is smaller than the first, the vector
J(Pa, Py) w.rt. Po(r) and Py(z) for z € 3 is positive- || pe the empty vector by definition. Therefore, for every

definite. Hence the functional is convex and obtains thegjther ¢ or =i must be the empty vector. The probability
minimum where the first derivatives are zeros. By differenss he empty vector with any distribution will be defined as

tiation we obtain 1. The nonempty vectors obtained from thet 1 sets of the
above three vectors are a complete parsing ofheiple into
2, VPii(x)bi(r) +1 disjoint strings. Hence, we can express the DR as the sum of
E(F,_1,F,,F;) > —2log zex 5 . the contributions of all these vectors, where the contribution of

(C.13) ¢ is zero. Finally, the empirical distribution of vectef, # ¢
is defined as

Substituting the error exponent by its minimal value over all i) & nt,(u) Ve S D3
transitions, we can upper-bound the probabilityAf. by (W) = a; ue (D-3)
Pr(A;) < 2_k[g(@)_4wrk_fw log(k+1)] (C.14) wheren!, (u) is the number of occurrences ofin z,. Fig. 12

demonstrates the definitions presented above. Each stjng
is noted by its lengthy;.

We can now use the above definitions to define the distri-
butionsQ; that the path” assigns to each of its hypothesized
segments. For convenience, we define

Using the union bound and accounting for @gN/k—3C| < N
values ofr first and then for allC' values ofi, we obtain the
upper bound orPr (A4). By using (C.1) we apply this bound
to Pr (F) and conclude the proof of Proposition B.1.
AiZa;+c+bin (D.4)
APPENDIX D
PROOFS OFPROPOSITIONSB.2 AND B.3 and then

In this appendix we present the proofs of Propositions B, A 1
and B.3, that summarize the contribution of evénto the &(“) = o [l (W) + @B £ b P (w)],
average redundancy. The difficulty in proving Prpposition B.3 0<i<C, YueXx (D.5)
lies in the fact that the time instants of the estimatesgary for
different N-tuplesz™ € F, thus we cannot assume anythingvhereP; is the true distribution of segmentThe distributions
about the distancel; — t;| except that they are boundedP-; and P-; need not be defined, since they will always
by 2.5k. We begin with analyzing the DR of aiV-tuple be multiplied by zero. Fig. 12 illustrates the true and the
N € F by breaking it intoC + 1 terms, each representing thenypothesized distributions around transitignfor both cases
contribution of a single segment. We then break each such tefyn> #; and#; < t;. In both diagrams we assumg_; > 0
into two different terms, which are analyzed separately. Fand b,.; > 0.
each term we obtain a pointwise upper bound and an averag&Ve can now represent the DR of' € I as the sum of
one. Finally, we reconstruct the total DR by adding all th€'+1 terms (one for each segment), each consists of two terms,
separate terms in a pointwise manner to prove Proposition Bh2 first is the contribution of vectors, b and the second of
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Fig. 12. Typical occurrence of eveiit and its effect on the estimated distributions. The dark line represents the time axis, that is partitioned into strings,
whose lengths are noted above the dark line.The true distributions of the segments are rotaddbthe distributions assigned to the hypothesized segments
by the choice of7 are noted byQ. In diagram (A)#; > t; and in diagram (BY; < t;. In both diagrams; | < ;1 and#; 411 > t;11.

vector c. where the last inequality is obtained by the fact that for each
1 PN | ©,7) 1 eithera; or b; must be zero and by the definition &f that
Ry(zN;D) 2 T log = - ensures that either must be bounded2oyk. Similarly, we
QzN | ©,7) can show that
P () i () P () c
- - log ‘ 4 2 klog N
N ; Qi(2%) Qi1 (=})Qi(z2) ZRi <2.5C (])f; . (D.11)
, ) ) i=1
1y log Lim1 () Fi()
N Z 08 Qi (28) Qimr () Adding both bounds of the last two equations, we conclude
1:00 ‘ the proof of the first equation of Proposition B.2. The proof of
1 P (972) Proposition B.2 is concluded by simply adding the bounds for

+ N ;bg Qi () the PR and TR in (15) and (A.1), respectively, with= C,
c c c c and takingk = Alog N, noticing the DR is the dominant
2 ) - ) . term. Proposition B.3 is proved similarly to Proposition B.2
;RZ 2 ;RZ +;“' (06 with one difference. Instead of taking the bound & of
(D.8), we take the upper bound of (D.9) for the averdge
The equality in the second line of (D.6) is obtained byyer all transitions to obtaid(©). To conclude this section,
def|n|t|on Of St”ngsx;, xz, al’ld .’E7c |n (D2) The Stl‘ll’lgx; we present the proof of Lemma D.1.
is drawn by P,_; but is assumed to be drawn ly;. The )
other two strings: andz? are drawn byP;, but are assumed Proof of Lemma D.1:Equations (D.7) and (D.8) are proved
to be drawn byQ;_, and Q;, respectively. The last equalityPy Straightforward manipulations. Before proving (D.9) we

is obtained by noticing that® = z0 = ¢. We summarize the present and prove another lemma. We can upper-beuin

pointwise and average bounds gfand R; in the following the following manner:

=0

lemma. 4
a1l DPi(w)
Lemma D.1: i = 5 os Qi (1) (D.12)
a; + bty ) ¢ ; Pz
ri <~ loge, 0<i<C (D.7) = Z Pi(z)log Q((x)) (D.13)
. TEY
R, < Gtb)losN 0 by o ‘ Pz)
= . N ’ == < NZZPé(x)log c_}( ) (D.14)
2.5 e A_l AV
Pr(P)E[R; | F] < = [D(Pi-y || B) + D(F || Fi-1)] . "&EA‘ . o b
i = Slog =t = Sllog 1+171+1) (D.15)
+ 0<N>’ 1<i<C. (D.9) N Tea N Ci
_ | < Gt by (D.16)
The proof of the lemma is presented at the end of this N
section. Using (D.7) and noting that = bci1 = 0, We  gquation (D.13) is obtained by representing the probability of
obtain vector z* as the sum of the probabilities of its components.

: Using the definition ofy; in (D.5) we obtain inequality (D.14).

T bz k‘
T S Z ‘ ;\r, loge < 2.5(log G)CN (D.10) Then we use the fact that for atl > 0, log(1 + z) < zloge
i=1 to obtain inequality (D.16). This concludes the proof of (D.7).

C
i—0

T
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We perform similar analysis to show that To conclude the proof of Lemma D.1, we first extend the
‘ ‘ ‘ ‘ definition of a¢; and b; s.t.
R < aZ 1 . AZ bZ 1 . AZ
SN TNy a;=b=0, 1<i<C, VaNeF (D.22)
< a; + b; log V. (D.17) The re;pecti\ge strings;, andx;, are defined as the null strings.
N We definea = 2.5k, and for allZ, s.t. 1 < 7 < C, we make

The second inequality is obtained by takisy — N and the following definitions:

discarding the denominators of the terms inside the logarithms, w2 o —a;
thus concluding the proof of (D.8). vEa—b
Lemma D.2: Under the conditions of Theorem 3 P (xt-—aaxt-—a+1, .. 'axt;—a;—l) (b.23)
i log L_l(?i) < i log Pi—l(??fz) + O<£) 371 2 (a:t +bis Lt;+b;+1s " -/Eti—l—a—l)-
N Qi(z}) ~ N Pi(?) N (D.1g) The ideas to create the concatenated strifjgsandz;,, s.t.
1 P (x}) P;(x}) k the first will contain all thex letters right before théth true
v o8 Qi1 (z}) < yles Py () Ty ) transition and the second theletters right after the transition,

for all z¥ € ¥¥. By using this notation, we can generalize the
X N .
Proof of Lemma D.2:We prove the first inequality, but analysis forR; and average over” . We conclude by showing

the same analysis can be performed to prove the secofitf Proof of (D.9). For convenience, we omit the superscript
We first upper-bound the expressitug (P;_1(x)/Q;(z)) for « from all vectors.

x € ¥ where P11 (z) > 0. Pr(F ) [R; |F]
Pi1(za) i)
Pi_1(w) == 2 g (D.24)
log .
0g Q7(.’L') a:NEF Qz(-/xa)Qz l(xb)
Py () v Pioi(@a) Pi(s) < )
log < PI‘ ]\ ; +o0
+ [asz 1(z) + i Pi(x) + biy1 Py ()] - Ngg;E:F P( a)Pim1(xs)
—1(x) | by, Pioa(x) (D.25)
S 1 + log .
A P( ) A; -Pi-l—l(x) <+ Z Pr N H -Pz l(xa)
< log P‘(a(:)) +o(1). (0.19) v NoE Fifza)
' Pi(w) k
The first inequality is obtained by Jensen’s inequality, and the + |log P 1(my) } + 0<N>
second by the assumption that transitions are more ¢thg@h) (D.26)
time points apart, thu® (4;) > O (b;11). We now show that 1 P P
we can obtain the same bound when , (z) = 0. We define <5 > Pr(z) Hlog %(x‘)’) + ‘log PL?))
B; S a; + ¢;. zNexN i\Ta i—1\Tb
o = TR T R o :
. . . log — Y2 || 4+ O<—>
Slog%—k%lmp;(l(g;) 5P 1z )} N
i : (D.27)
Pi_1(x) 1 P, 2loge P,
< log + o(1). (D.20) 1 w10 Pim1(@a) oge Fi(za)
-Pz(x) ( ) S Z Pr (.’L’ ) |:10g B(xa) =+ . B_l(xa)
zNenN
The first inequality is obtained by Jensen’s _inequality,_ gnd the ) Pi(x) 2loge P;_1(m)
second by the fact thab (B;) > O (b;4+1), since transitions + log P (z) ¢ Play)
are more thai® (&) time points apart. We obtain the inequality P”_l b 9 log F; b
by the well-known fact that it — 0, log (1 + z) = O (). 1 log i—1(2w) 4 zoee i(#u)
Summing up for all terms of? we obtain that Pi(zu) e Pii(zu)
) Bi(z,) 2loge Pi_1(x,) k
log — 1 (D.2
%108‘13714 = E:PZ o P E()) + g Pi_1(xy) * e  P(z,) to N (D-28)
Qi( x
T&E ( ) Z PZ 1 xua ]‘Og W
Z Pi(x [ 2 +o(1) N e Fua
Pi(z) }
acEE 1 P (.’L’br,-) < k )
) + = Tpyy) log —— = + ol — D.29
_ilogM+o<£> o2 N X Bl pmriso(y) ©29
N Py(xf, N ' _
| ) =20+ D@ Pl o ) 030
which concludes the proof of Lemma D.2. N
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Inequality (D.25) is obtained by Lemma D.2. We then uppeEquation (E.6) is obtained by opening the expression inside
bound the two logarithmic terms by their absolute values tbe logarithm, and inequality (E.7) by the fact tiat < BB,
obtain (D.26), and add nonnegative terms for (D.27). Thelt is obvious from (17) that the largest DR is obtained for
bound |logz| < 2(loge/e)z™! + logz (see [5]) is then PSMS's with true transitions at the midpoints of the l&st
used to obtain (D.28). Finally, we sum over all data lettetsdocks. For these PSMS’s we can upper-bound the DR by
independent of:,, andx;,, and realize that the distributions

of x,, andz,, are P;_; andP;, respectively (in (D.29)). This Ry(z™;P) < c™mB < CQM

reduces the nonlogarithmic terms of (D.28), which sum up to N N

a term of O(1/N), and results in the sum of divergences in —ova 108N 0<C 108‘N> (E.8)
(D.30), multiplied by the length of the stringssk, therefore N '

concluding the proof of (D.9).
We conclude the proof of Theorem 4 by summing up the last

APPENDIX E two upper bounds.
PROOF OF THEOREM 4
To prove Theorem 4, we first need to upper-bound the ACKNOWLEDGMENT

number of blocksB. We then use this bound to upper-bound The authors gratefully acknowledge Prof. J. Ziv, who served
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