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Low-Complexity Sequential Lossless Coding
for Piecewise-Stationary Memoryless Sources

Gil I. Shamir, Student Member, IEEE, and Neri Merhav,Fellow, IEEE

Abstract— Three strongly sequential, lossless compression
schemes, one with linearly growing per-letter computational
complexity, and two with fixed per-letter complexity, are
presented and analyzed for memoryless sources with abruptly
changing statistics. The first method, which improves on Willems’
weighting approach, asymptotically achieves a lower bound
on the redundancy, and hence is optimal. The second scheme
achieves redundancy ofO (logN=N) when the transitions in
the statistics are large, andO (log logN= logN) otherwise. The
third approach always achieves redundancy ofO ( logN=N).
Obviously, the two fixed complexity approaches can be easily
combined to achieve the better redundancy between the two.
Simulation results support the analytical bounds derived for
all the coding schemes.

Index Terms—Change detection, ideal code length, minimum
description length, piecewise-stationary memoryless source, re-
dundancy, segmentation, sequential coding, source block code,
strongly sequential coding, transition path, universal coding,
weighting.

I. INTRODUCTION

T RADITIONAL sequential universal lossless source cod-
ing schemes are usually designed for classes of stationary

sources. Not surprisingly, these schemes may perform poorly
when the source is nonstationary, unless some adaptation
mechanism is applied. While adaptive schemes such as the
dynamic Huffman code [4], [9], [18], [25] and variations
of the sliding-window Lempel–Ziv algorithm [24], [27], [28]
have been developed and applied for general nonstationary
sources, much less attention has been devoted to systematic,
rigorous theoretical development of universal codes forsimple
classes of nonstationary sources. One example of such a
class is that of memoryless sources with piecewise-fixed letter
probabilities [12]–[13], [19]–[22], namely, sources for which
the probability mass function (PMF) is subjected to occasional
abrupt changes. This model is useful in several application
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areas, like compression of speech or text retrieved from several
sources, edge information in images, and abrupt scene changes
in video coding.

In this paper, we adopt this simple model of aPiecewise-
Stationary Memoryless Source (PSMS). Neither the source
parameters at any stationary segment, nor the transition loca-
tions and their number are assumed to be known in advance.
One can show that traditional adaptation mechanisms com-
bined with classical compression schemes perform poorly
for this class. Dynamic Huffman coding requires large block
length, and thus exponentially large dictionary, in order to
approach the entropy even in a stationary segment. Variations
of the Lempel–Ziv (LZ) algorithm require increasing window
length, which results in slow convergence to the source
entropy. One may use adaptive entropy coding with respect to
(w.r.t.) estimated letter probabilities across a sliding window
or an exponential one, but such estimates have nondecaying
variance, and thus yield poor coding performance.

This calls for a different approach. First, recall the well-
known fact that, ignoring asymptotically negligible integer
length constraints, the problem of sequential lossless coding
(using, e.g., arithmetic coding [7], [8]), is completely equiv-
alent to the problem of sequential probability assignment,
where the length function of the code is understood as the
negative logarithm of the assigned probability, i.e., theideal
code length. Hence, we can treat the latter problem instead of
the former, and we do so from this point on.

To the best of our knowledge, universal coding for the
PSMS model was first investigated by Merhav [12] (see
also [13]). Merhav showed that the average universal coding
redundancy over all sequences of letters, drawn from an
alphabet of letters by almost any PSMS with afixednumber

of transitions between segments each of length , is
lower-bounded by

(1)

where is a positive number and the base of the
logarithmic function is . This bound was presented as a sum
of two terms: The first term, henceforth referred to asparam-
eter redundancy(PR), corresponds to universality w.r.t. the
unknown source parameters within each stationary segment. It
consists of bits per symbol for each component
of the parameter vector and each stationary segment (see,
Rissanen [15]). The second term, henceforth referred to as
transition redundancy(TR), corresponds to universality w.r.t.
the unknown transition times from one stationary segment to
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another. This term consists of bits per symbol for
each such transition. Note that the derivation of the lower
bound requires to be fixed (see [12]) and all segments to be
of length . If is larger than , an algorithm with
an upper bound of the form

(2)

can be obtained (refer to Theorem 1), and therefore the
lower bound must be smaller or equal to this bound. Note,
however, that if the transitions are not evenly spaced, that is
some segments are shorter than , even smaller lower
bounds can be obtained that are logarithmic with the length of
the dominant longest stationary segments and linear with their
number, which is smaller than .

In [12], Merhav also demonstrated a universal compression
scheme for the PSMS that achieves the lower bound of
(1). This scheme employs the method of mixtures in two
stages. The first-stage mixture gives Krichevskiy–Trofimov
probability estimates [10] for each set of transition times,
henceforth referred to astransition path. The second-stage
mixture is performed over all possible transition paths. A
strongly sequentialversion of this scheme was also obtained.
That is, a scheme that sequentially updates the conditional
coding probability of the next symbol given the past, indepen-
dently of the future and of the horizon . Merhav’s scheme
is of linearly increasing per-letter coding complexity when
we assume at most a single transition. It can be generalized
to any fixed number of transitions, yielding an algorithm of
polynomially increasing complexity, and to an exponentially
increasing complexity scheme if no assumption of a fixed
number of transitions is made.

Three strongly sequential schemes of smaller but still in-
creasing complexity for universal coding of PSMS’s were
later proposed by Willems [19]–[22]. These schemes are all
based on context tree coding [23] combined with arithmetic
coding. They all obtain redundancy of at least ,
but with coefficients larger than the coefficient of the lower
bound in [12]. Willems implemented two-stage mixtures as
described above by constructing suitable state diagrams for
the second-stage mixture. The weight of a transition path in
the mixture is hence obtained by state transition weights along
the path. The first two schemes ([19]–[21]) take into account
all transition paths. In [20] and [21], all transition paths
that assume the same most recent transition time are unified
into one diagram state. This results in linearly increasing
per-letter computational complexity, storage complexity of

, and redundancy of beyond
the lower bound. The second scheme [19], [20], groups
transition paths into states according to both the last transition
time and the hypothesized number of transitions thus far.
The resulting diagram contains more states, each representing
fewer transition paths. This leads to quadratically increasing
per-letter complexity and a total redundancy of
beyond the bound. The third approach, proposed recently
in [22], selectively eliminates states according to the time
they were created. This scheme is still of increasing com-
plexity of and achieves per-letter redundancy of

overall. To the best of our knowledge, no fixed
complexity universal scheme has been obtained for PSMS’s.

In this paper, we derive, analyze, and present simulation
results of three new universal strongly sequential data com-
pression schemes for PSMS’s based on context tree coding.
The first scheme achieves the lower bound on the redundancy,
whereas the two other schemes provide slower decay rate of
the redundancy, but havefixed complexity(and logarithmic
bit storage complexity). The first scheme is a generalization
of Merhav’s scheme which uses Willems’ linear transition
diagram with different weights. Similarly as Willems’ scheme,
it is of linearly increasing per-letter complexity. Two different
versions of this scheme that differ only in the transition
weights are proposed. Unlike all the schemes presented in [12],
[19]–[22], for which the number of states grows with time, the
last two schemes have a fixed number of states, and hence can
be applied for practical purposes. Although the convergence
rate does not meet the bound, it is better than any existing
low-complexity scheme for PSMS’s.

The second scheme combines decisions based on the ob-
served past with a reduced-state transition diagram, using
different state transition weights than those used by Willems.
It uses decisions to eliminate unlikely states in the diagram,
thus preserving a fixed number of states. This scheme achieves
averageredundancy of for large transitions if
the number of stationary segments is upper-bounded by some
constant that depends on the design parameters of the
scheme. Otherwise,pointwiseredundancy (for any -tuple) of
at most is obtained. In the third scheme,
we partition the data sequence into smaller blocks and encode
each one separately. Using the optimal block length, we
achieve pointwise redundancy of . Simulations
show that the true redundancies of the last two schemes are
even better than the upper bounds obtained.

We can easily combine both fixed complexity schemes
to obtain the better redundancy between the two for any
sequence. We hence obtain a maximum upper bound on the
pointwise redundancy of , which is better than
known fixed-complexity schemes and, in fact, better than the
currently known upper bound of the Lempel–Ziv
algorithm (see [11], [16]).

The outline of this paper is as follows. Section II contains
notation and definitions. In Section III we generalize the analy-
sis for the redundancy of a coding scheme. Section IV presents
the first scheme of linear per-letter complexity. In Section V
we describe and analyze the second scheme of decisions and
weighting. Section VI presents the block partitioning scheme
along with the analysis of its rate of convergence. Numerical
results are presented in Section VII. Finally, in Section VIII,
we present the summary and conclusions of this work.

II. NOTATION AND DEFINITIONS

Let be a parametric family of memoryless stationary
PMF’s of vectors whose components take on values in a
finite alphabet of size . The parameter designates the

-dimensional vector of letter probabilities. A string
drawn by the source from time instantto time instant ,
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, will be denoted by . Let

be a string emitted from an-ary PMF whose parameter
takes on a particular value from to ; then

from until , and so on. Finally, from
to , is held at . The vectors

will be referred to asstationary segments, and correspondingly,
will be called the segmental parameters. It

will be assumed that the different segments are statistically
independent. The extended vector will be
denoted by , and will be referred to as theparameter set.
The -dimensional vector, representing the time instants
before which transitions take place, , will be
denoted by , and referred to as thetrue transition path. For
convenience, we define and . We will
assume that the number of transitionsis either fixed or is
of lower order than the time. Noting that is a function of
the dimension of the other parameters, the PMF of the PSMS
is parameterized by the pair , and defined as follows:

(3)

where the PMF of each segment is obtained by

(4)

where is the probability of the letter drawn by ,
which for simplicity will be denoted by , and
denotes the number of occurrences of within the th
segment.

The per-letter average entropy of a PSMS is obtained by

(5)

where is the entropy of theth segment.
Since we assume no prior knowledge of , we will

not be able to assign the true probability of the sequence for
a coding scheme. Instead, we will seek a universal sequen-
tial probability assignment that will implement a two-stage
mixture and will serve as the basis for arithmetic coding. The
probability assigned to the substring by an algorithm will
be denoted by . To enable sequential updating of ,
the conditional probability defined by [15] as

(6)

must be well defined. Additionally, in order to enable the use
of arithmetic coding, the assigned probability must satisfy the
conditions described in [23]

(7)

where the probability of the empty string is one by convention.

The first-stage mixture, implemented to obtain the assigned
probability, is performed for a given transition path. The
conditional probability assignment given any
transition path , is recursively defined using
the Krichevskiy–Trofimov (KT) empirical estimates [10], that
result from mixing the parameter with a Dirichlet prior.
The KT estimates will be used with relative frequency counts
that are reset at every hypothesized transition. Specifically, the
conditional letter probability is defined as

(8)

and the probability assigned to an-tuple is given by

(9)

where represents the null string, whose probability is one
by convention.

To implement the second stage mixture, the probability
assigned to an -tuple will be a weighted sum of conditional
probability assignments given transition paths. Each probabil-
ity assumes a different path from a set of paths ,
selected by the algorithm . Each path will be weighted with
someweight function

(10)

The weight function must be nonnegative for all and satisfy

(11)

The set contains the only transition paths that are
weighed in the second stage mixture to obtain the assigned
probability of scheme . Paths that are not contained in
this set are not weighed in the mixture. A single transition
path can be chosen from to estimate .
If , then we can choose . This is the
case in schemes like those proposed by Willems in [20], that
contain all possible paths in , including the true path .
However, if , a different path
must be used to estimate. In order to achieve good per-
formance (i.e., small redundancy), a coding scheme, that
implements the two stage mixture probability assignment, must
construct a proper group that either contains or at
least contains a good estimateof , for which
and are large. If , the choice of defines a
hypothesized PSMS , which is derived from the true
PSMS parameters . For example, if

i.e., a single true transition, but the estimate (i.e., no
transitions) is chosen to estimate, then , where

. As in the example, the hypothesized
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parameter set is defined by the convex combinations of
the true segmental parameters along each hypothesized
segment, where the weights in the combination for a hypoth-
esized segment are the relative durations of eachin this
segment. Theprobability of an estimated PSMS, denoted by

, is defined similarly as in (3) w.r.t. parameter
sets and instead of and , respectively. If ,
then and .

III. T HE REDUNDANCY

Thepointwise redundancyof scheme for an -tuple ,
emitted by , is defined as

(12)

ignoring negligible integer length constraints. For simplicity,
we will omit the conditioning on the PSMS parameters. The
(expected) th-orderredundancyof scheme is defined as

(13)

where denotes the expectation w.r.t. a given PSMS
.

The pointwise redundancy of an-tuple for a PSMS can
be expressed as

(14)

Equation (14) decomposes the pointwise redundancy into
three terms: —transition redundancy(TR), —parameter
redundancy(PR), and —decision redundancy(DR). The
TR reflects universality w.r.t. the transition path. The PR is
the cost of universality w.r.t. for a given transition path.
The DR is the additional redundancy caused by estimation
error of the transition path and the segmental parameters it
imposes. These terms all depend on the specific algorithm, but
of course, it is the total redundancy that should be compared
to the lower bound.

The PR can be upper-bounded as follows. Using the KT
estimates to assign probability to a stationary segment of
length results in additional code
bits for that segment [10], [17]. Therefore, using the KT
estimates for each of the hypothesized segments of, as done
in (8) and (9) to obtain , results in

(15)

where the second inequality is obtained by the Jensen inequal-
ity.

From (10) and the definition of TR in (14), we conclude that
the TR depends on the weight ofand can be upper-bounded
by

(16)

The inequality holds by definition of .
The DR results from coding more than one true stationary

segment as if it were a single stationary block. Assume the
block of length contains data drawn bydistributions

to , and assume this block is coded as if it were
drawn by a stationary PMF , then is defined as the convex
combination of the true PMF’s, where each PMF is
weighed by its relative duration in the block. It is easy to show
that the contribution to the DR of this block is upper-bounded
by the entropy of the relative durations vector multiplied
by and normalized by the complete sequence length.
Since the vector consists ofcomponents, we can bound the
contribution of this block to the DR by

(17)

The DR of an -tuple is the sum of the contributions of all
segments hypothesized by.

IV. A N OPTIMAL LINEAR PER-LETTER COMPLEXITY SCHEME

The scheme presented in this section uses Willems’ linear
weighting scheme [20], [21] to group transition paths into
states in a diagram, but with different weight functions,
corresponding to the weights used by Merhav in [12]. We will
denote a general linear weighting scheme by, and propose
two different optimal versions of the new scheme, one that
performs better when the number of transitionsis small,
denoted by , and the other, denoted by , performs better
when grows with . Willems’ original linear scheme will
be denoted by . Both versions of the new scheme will be
shown to achieve the lower bound on the redundancy of (1),
as opposed to Willems’ scheme.

The idea of Willems’ linear scheme is to implement the
mixture method using alinear transition diagramthat contains
all possible transition paths, as illustrated in Fig. 1. This
diagram reduces the exponential complexity and still enables
weighting of all transition paths. A directed path along the
diagram represents a transition path. Horizontal move denotes
that the source remains in the same stationary segment. An
upward move in the graph represents a transition of the source.
A box in the diagram represents a state. Stateat time
is defined as the time instant of the most recent transition
within the period . In order to implement the
weighting procedure, each state is assigned a weight
associated with the subsequence. The weight is
defined as the joint probability assigned to the sequence
along with the event that the last transition before time
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Fig. 1. Linear transition diagram at time instants1 to 4. A number in a state
box denotes the most recent transition point of the state represented by the
box. The time is denoted below the graph.

occurred at . The probability assigned to is the sum
of the weights of all states in the diagram at time

(18)

We note that by definition of a state the diagram will always
consist of states at time , that form a partition of all
transition paths into disjoint sets.

The weight of a state is recursively defined by the KT
estimates and the transition rules of the diagram. The KT
probability of letter at state is obtained, similarly as
in (8), by

(19)

The only two possible transitions from state at time to
state at time are the self-transition, i.e., ,
and the transition to theonly new state formed at time
that assumes a source transition between timeand time ,
i.e., . Associated with each such transition, there
is a weight , where

(20)

The weight of a state is, therefore, recursively updated as in
(21) at the bottom of this page. It is easy to see that the weight
assigned to a state by this procedure is a weighted sum of the
KT estimates assigned to all transition paths of order
that lead to this state

(22)

where is the set of all paths leading to . The weight
is the product of all the transition weights along the

path representing in the diagram.
So far, we have described a general linear scheme as

presented in [20] and [21]. However, we have not defined the
actual state transition weights. The transition weights defined
by Willems use the binary KT estimates of the distance from
the last transition

(23)

The proposed scheme defines state transition weights
, that are different from those defined above.

The concept used for the weights is the same for both versions
of the proposed scheme, although the transition weights
themselves are defined differently for and for . The
weights for both versions are defined as follows. For a given

, let

(24)

(25)

and

(26)

Now

(27)

and

(28)

By both weight assignments proposed in (24)–(28), we
assign to each time point a distribution over
the discrete time for the probability that the next
transition occurs just before time. In both cases, the assigned
probability of source transition at time is the weight

. For for instance, this probability is
normalized by the infinite sum of which is equal

. The probability assigned at timeto a transition
to occur at is , normalized by the same factor, and
so on, for all . Hence, the probability of no transition
to occur at , which is assigned to the self-transition
weight in (27), is the partial sum of the probabilities assigned
at for transitions to occur at all time units larger than .

The weights of in (27) depend on the absolute time,
instead of the relative time from the last transition as in
(23) and (28). This reduces the weight of a transition, thus
weakening weights of transition paths with many transitions,

(21)
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but strengthening weights of transition paths with a few
transitions. Therefore, the use of is justified if we assume
that the number of transitions is small. If we assume that
grows with , better performance can be achieved by.
The use of absolute weights also leads to a computational
improvement. First, the self-transition weight can be computed
once using (27) for all self-transitions in (21). Furthermore,
(21) for reduces, using (18), to

(29)

where is the same for all .
The weights proposed for and for appear to be more

computationally demanding than Willems’ weights. However,
it is straightforward to see that the transition weights to the
new state of have similar behavior to , and
those of behave similarly as . Hence, although
the analysis and understanding of the scheme are simpler with
the original definitions, the weights of both versions of the
scheme can be replaced by the simpler weights.

The TR results from two factors: the transition weights
at transition points, and the cumulative weight assigned to
all self-transitions along the true path. The weights of
transitions to new states must decay as as in , or as

as in and . This results in additional TR
of in the first case and of in the
second for transition . However, additional TR is obtained
from the self-transitions. Therefore, they must be designed
large enough to ensure that the cumulative weight assigned
to all self-transitions results in still negligible contribution to
the TR. This is not the case for the weights of defined
in (23), that are “generous” to new transitions at the expense
of the self-transitions, and therefore do not achieve the PSMS
bound for . The pointwise redundancy of Willems’
weights is bounded by

(30)

The bound of (30) is obtained from the analysis in [20]. The
quadratical per-letter complexity scheme, proposed in [20],
does not achieve the bound either. However, both versions of
the new scheme, on the other hand, achieve the lower bound.
This is stated in the following theorem.

Theorem 1: The redundancies of both versions of the linear
weighting scheme with state transition weights as in (27) and
(28), are upper-bounded by

(31)

respectively, for every -tuple drawn by any PSMS with
transitions, for all .

If we let decayslowly with time, such that

and

(32)

it can be shown that

(33)

and thus the lower bound is asymptotically achieved by both
versions of the scheme.

Theorem 1 makes no prior assumptions on the number of
transitions . However, it derives the expected two conclu-
sions: If , the weights of are optimal since they
are the least “generous” to new transitions. On the other hand,
if is expected to be larger than , the weights of that
are more “generous” to new transitions should be used. We
also note that the weights of (23) are merely a special case of
scheme with . We conclude this section with the
proof of Theorem 1. When we derive an upper bound on the
TR of , we will demonstrate where the weights of (23) fail
to achieve the bound.

Proof of Theorem 1:It is straightforward that this coding
scheme satisfies (10) (see, e.g., [20]), and weighs probabilities
assigned givenall possible transition paths. Therefore, the
probability assigned to the true pathis always contained in
the mixture, and so we can choose , resulting in

, and . The PR is upper-bounded by (15), with ,
and thus attains the first term of the lower bound, as expressed
by the first term of the dominant expression of (31). Note that
to obtain the first term of the bound on the redundancy we use
the relations . The first
inequality is used for , and both are used for . It is now
sufficient to show that the second term of the lower bound is
attained by the TR as well for both versions of the scheme.
To do so, we will show that

(34)

We begin with the TR of . We first use (27) to express
, next we identify which factors result from self-

transitions and which from transitions to new states, and then
upper- and lower-bound the partial sum

, by approximating the sum by an integral. Finally, we
use these bounds on the cumulative weight function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 15, 2009 at 01:39 from IEEE Xplore.  Restrictions apply.



1504 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 5, JULY 1999

to upper-bound the TR by as in (16).
The same procedure is then used to bound .

The weight of is obtained by

(35)

We define . The first equality is
obtained by taking the transition weights along. The second
equality is obtained by multiplication and division by the self-
transition weights at points of true source transitions. We use
the telescopic property of the first product to obtain the last
equality. The first term represents the TR of the self-transitions
and is of , while the second product term, which can
be lower-bounded by , represents the TR of the
true transitions.

Approximating the infinite sum by an integral, we bound
the partial sum by

(36)

We note that , and thus .
Finally, we use the last bounds to upper-bound the TR by the
upper bound of (16). We bound each term separately, and
then sum all the terms to obtain the TR upper bound. The
contribution of self-transitions is bounded by

(37)

The contribution of a single transition is bounded by

(38)

The second inequality is obtained by taking as an upper
bound on . Summing up the last two inequalities, we
conclude that

(39)

proving the first inequality of (34).

To bound the TR of , we must represent a little
differently from the representation of in (35). Let
us define , (where we recall that

), then

(40)

The second equality is obtained by substituting the transition
weights, and by the telescopic product of self-transitions inside
a stationary segment. The inner product in the first line of
(40) is the contribution of self-transitions, while the outer term
constitutes the contribution of true transition points to the TR.
It is easy to show, using the Stirling formula, that if we assign

in (40) instead of , the contribution to the TR of
self-transitions in segmentwill be of ,
which is not negligible, while each true transition will still
result in TR of . This is the reason that the
weights used in do not achieve the lower bound.

The last equality of (40) consists of terms, each
representing the contribution of a segment, which consists of
the self-transitions in the segment and the true transition out
of the segment to another segment. This, of course, excludes
the last segment, for which only self-transitions occur. The
contributions to the TR of each of the two general terms in
(40) are upper-bounded by

(41)

(42)

Summing up all the terms, normalizing by, and using the
Jensen inequality w.r.t. the segment lengths in the logarithmic
expressions, we conclude the proof of (34), and the proof of
Theorem 1.

V. A DECISION WEIGHTING SCHEME

In this section we show that there exists a fixed complexity
scheme, based on the transition diagram of the linear per-
letter complexity scheme, that achieves vanishing redundancy.
The redundancy is of the order of the lower bound when
the transitions are large. We refer to the new scheme as
the decision weighting scheme(DW), and denote it by .
This scheme uses adata-dependent reduced-state transition
diagram. It eliminates transition paths with low likelihood,
and it does not create a new state every time instant.

The scheme produces new states every time instants
instead of every instant, in order to reduce the diagram’s
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Fig. 2. Block partitioning for DW. The solid line represents the data sequence that is divided into blocks of lengthk. True transition occurs atT and can
be only estimated at the block midpoint by states with likelihood M(s), obtained by the empirical data of the two neighboring blockss � 1 and s + 1.
Another estimated transition is within blockr, estimated at its midpoint, with likelihoodM(r).

growth rate. This forms a partition of the data into
nonoverlapping blocks of length, and for each block only
one state is created. The parameteris a design parameter
that will be referred to as theblock length. In order to
keep the number ofsurviving states (and the computational
complexity) fixed, we assign to each statea metric
that determines the likelihood of a transition within the block
represented by. States with low metric values are eliminated.
The number of surviving states with high metricsis the
second design parameter of the algorithm. By definition of the
transition diagram, the set of surviving states defines a set of
surviving transition paths, and a transition path that leads to
an eliminated state is said to be eliminated and not to exist
in the diagram.

The state number represents the block number in which
the most recent transition is assumed to have occurred. A state

that estimates transition at any time within the block
it represents, is created at the block midpoint. The first state

is naturally created at the first time instant.
The metric of a state is defined as follows. Let

be the number of occurrences of the letterin block . The
empirical per-letter entropy of the block is given by

(43)

The empirical entropy of the concatenation of blocksand
is given by

(44)

Now, is defined by

(45)

(46)

The quantity measures the “distance” between the
empirical distributions of blocks and . If
is large then it is likely that a change has occurred between
the two blocks inside block . It is well known that

serves as asymptotically optimal statistics for testing whether
or not two sequences emerged from the same source [6], [26].
Hence, a state that is created at the midpoint of a block
with large is likely to represent transition in a surviving
transition path in the diagram. Fig. 2 illustrates the partitioning
mechanism. The metric is nonnegative for all ,
even if transition has not occurred. This can cause elimination
of if its metric had been defined smaller, even when
other transitions have not occurred. Since state always
represents a transition, we thus define its metric to be infinite.

The probability assignment scheme can be described by
the state diagram shown in Fig. 3 for and .
The diagram begins when all large metric states already
exist, i.e., in steady state. The boxes in the diagram denote the
states, and the numbers in the boxes the block numbers of the
most recent transitions assumed by the states. As in the linear
scheme, each state is assigned a weight associated
with the subsequence . The weight of a state is recursively
defined by the KT estimates and the transition rules shown
in the diagram. The KT probability of letter at state is
obtained by

(47)

where the time is the first time instant after the last
transition assumed by , which is defined by

(48)

The transition rules and update procedures at each time point
are defined for three different cases as follows:

1) At a block midpoint
fixed, a new state is created. The state weights are
recursively updated almost as in the linear scheme by
(49) at the bottom of this page, where the transition
weights are given by

(50)

(49)
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Fig. 3. Example of DW transition diagram in steady state fork = 4 and S = 3. The diagram starts right after time instantm at the first point of
the r + 1 block. A single new state is created at each block midpoint, and a single low metric state is eliminated at each block partitioning point.
Time instants are denoted below the diagram.

(The weight of a previously eliminated stateis zero,
). The transition weights depend on the

relative block number from the last transition as in,
and not on the absolute block number, as in. The
proof of Theorem 2 will be based on this fact.

2) At the first point of a new block
fixed, at most a single stateis eliminated into another
state . The weight of is added into the weight of,
which is the smallest state in the diagram that is still
larger than . Only the self-transitions are performed
from all other states (see (51) at the bottom of this page).

3) At any other point there are only self-transitions.

(52)

The elimination retains a fixed number of states in the
diagram. It also ensures that no more than one state of any
three consecutive states remain in the diagram. This is done
to avoid a situation where a single transition is represented by
two or three states. If a transition occurs at the midpoint of
block , all three states , , and may have large
metrics, but we only need to save one of them to represent
the transition. We will therefore eliminate the states with the
lower metric values among the three. The computation of the
metric of state requires delay of time points, to obtain
the empirical data of block . An additional delay of
points is required for computation of the metrics of and

that are tested against. Hence, every new state will
exist at least time points before it is tested for the first
time. Due to the delay of time points between creation

and the first possible elimination of a state, the steady-state
diagram contains states at time points of first halves of
partitioning blocks, and states at time points of second
halves.

The elimination procedure at takes three stages
of testing the metric of the state, created at . If

or exist in the diagram, state is eliminated,
since or , respectively.
Otherwise, state is tested against states and , and if

or , is eliminated. If
passed both tests and there are less thanstates, created before
time , no elimination is performed. If there aresuch
states, the state with the lowest metric among the existing
states, created at time or earlier, is eliminated. A
state is always eliminated by adding its weight into the weight
of the closest newer state. This strategy minimizes the DR in
case a true transition is eliminated by replacing it by the closest
hypothesized transition point, still existing in the diagram.

The probability assigned to the subsequenceis obtained,
as in the linear scheme, by the sum of the weights of all states
that exist in the diagram at time instant

(53)

where the notation represents a sum over all states
existing in the diagram at time instant. In contrast to the
linear scheme, this strategy does not satisfy the general mixture
structure presented in (10), but can be easily shown to yield a
valid probability function that satisfies both (6) and (7).

otherwise.

(51)
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Fig. 4. Flow diagram of the DW. Metrics of new states are computed at block endpoints. The diagram splits into three different cases for updating
the state weights. At block midpoints, new states are created. At block partitioning points, states are eliminated using the elimination criteria. At any
other point, no transitions occur between different states.

The update procedure of the transition diagram is fully
described in a flowchart in Fig. 4. The per-letter computational
complexity of this scheme is . Since we will assume a
fixed , . Every state stores occurrence counts
of , therefore, the storage complexity of the scheme is

.
We conclude this section with two theorems that upper-

bound the pointwise and average redundancies of the DW by
expressions that vanish asand increase (as long as is

of smaller order). Both theorems show that the redundancy
decays to zero, and specifically at the rate of the lower
bound for large transitions. The next theorem upper-bounds
the pointwise redundancy.

Theorem 2: The pointwise redundancy of the DW is
bounded uniformly for all PSMS’s by

(54)
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for every and any number of transitions , where
is defined by

(55)

Theorem 2 makes no prior assumptions on the number of
transitions that does not have to be bounded. (Of course, if

, then does not vanish, and the bound
is no longer useful). The proof of Theorem 2 is presented in
Appendix A. It is based on the choice of the transition weights
in (50), that depend on the relative block number from the last
transition and not on the absolute time or the absolute block
number.

The DW scheme performs decisions. Obviously, there is
a tradeoff consideration associated with the choice of the
parameter . A larger provides a more reliable metric,
leading to smaller probability of eliminating the best. On the
other hand, a larger increases the DR caused by estimation of
transitions at block midpoints. An upper bound on the average

th-order redundancy as a function ofcan be obtained based
on the analysis in Appendix B. By differentiating this bound
w.r.t. , it can be shown that the optimal choice ofis of
the form

(56)

where the parameter depends on the parameters of the
PSMS. Since we desire a universal scheme, we will define
the block length as

(57)

where the parameter will be a design parameter of the DW
scheme. By substituting the block length of (57) in Theorem
2, we conclude that the pointwise redundancy for this choice
of is upper-bounded by

(58)

In most practical applications, a typical choice of the design
parameter satisifies (57) w.r.t. the actual sequence length

, and determines the coefficient. However, we want our
scheme to be a strongly sequential one. Therefore, we cannot
assume that is known in advance, and use this knowledge
to determine as in (57). The solution in this case is to
assume an initial horizon , and use it to determine an
initial block length . If time unit is reached, the
horizon can be updated to , and the

block length is updated accordingly by . All
surviving states can be reset, excluding the state created at the
hypothesized horizon change point, and the algorithm starts
over with the new parameter . This process can go on at
any time , in which the most recently hypothesized horizon
has been reached. It is possible to show that the upper bound of
Theorem 2 remains of the same order even when this strongly
sequential version of the algorithm is applied.

We now present the main theorem of the DW scheme. We
begin with two definitions that characterize a PSMS. Theerror
exponentof a PSMS, , is defined as

(59)

The error exponent expresses the “size” of the “minimal”
transition between adjacent segments of a PSMS. It can easily
be shown that . The larger is , the larger
is the “minimal” transition of the PSMS.

The divergence(relative entropy) between distri-
butions and is defined as

(60)

We define themean PSMS DR divergenceas

(61)

Theorem 3: Let . Assume a PSMS
with transitions, separated by segments all longer than

. Then, the average th-order redundancy of the DW
scheme is upper-bounded by (62) at the bottom of this page,
where

(63)

(64)

denotes the order of, and denotes order smaller
than the order of .

Theorem 3 demonstrates that we can achieve the order
of the lower bound with a fixed complexity scheme if the
transitions are large enough, while for smaller transitions we
can still achieve decaying redundancy. It is also possible to
show that the strongly sequential version of the DW scheme,

if and

if and

if

if

(62)
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proposed in the discussion following (58), achieves the same
asymptotical behavior (although the coefficients are larger).
The proof of Theorem 3 is presented in Appendix B. The
bounds obtained are not tight. Tighter bounds of the same
orders may be obtained by a much more complicated analysis
than the one presented in Appendix B.

We note the different behavior of the average redundancy
for different transition “sizes.” If , it is likely
that there exists a surviving path, such that (s.t.) ,
and all transitions are estimated near their true times. For large
transitions, , the redundancy is mostly influenced
by the block partitioning, i.e., by estimating transitions only at
block midpoints. This factor increases if the PSMS contains
transitions of infinite divergence, thus obtaining the second
region of the bound. When the transitions are smaller,

, the redundancy is determined by the probability
that the smallest transition is not detected near its true time.
If the PSMS contains very small transitions, ,
the scheme cannot ensure that a good estimate ofwill be
obtained, and therefore we can only achieve redundancy of
higher order.

The number of segments must be bounded byas a
condition of Theorem 3 in order to ensure that if the last
true transition has the smallest metric among all transitions,
the scheme will still create a surviving state for it. This state
represents the true transition path. In practice, however, only
the state that represents the most recent true transition, and
therefore the true transition path, needs to survive in the
diagram. Furthermore, the weight of this state is
likely to be larger than the weights of all other states that
represent past transitions in the true path, but need not survive
in the diagram. Therefore, older surviving states with smaller
weights can be eliminated in spite of their large
metrics, allowing reuse of states and hence better performance
if more than transitions occur.

Theorem 3 requires all segments to be larger than only
for mathematical convenience purposes. This condition results
in the very simple expressions for the error exponent and the
PSMS divergence, presented above, but has no effect on the
nature of the results. Therefore, similar asymptotic behavior,
though with different coefficients, is achieved for PSMS’s
with shorter segments. The mathematical representations of the
error exponent and the PSMS divergence, however, become
much more complex, and they depend also on. For instance,
in the first region of the upper bound, shorter segments will
increase the low-order term to become of the same order as the
dominant term. If segments shorter thanremain undetected
(by not detecting at least one of the respective two transitions),
they too will result in DR in the order of the bound.

VI. BLOCK CODES

The DW scheme achieves low-order redundancy for some
PSMS’s, while for others it achieves redundancy that vanishes
very slowly as . It can be shown that the
LZ-78 algorithm has a pointwise upper bound with the same
rate (see, e.g., [14]). We desire a scheme that attains better
redundancy for the second group of sources, for which the

Fig. 5. Description of block partitioning. The horizontal line represents the
time axis and the vertical lines the partition points.

DW scheme performs poorly and does not achieve better rate
than LZ. In this section we present such a scheme, that can be
combined with the DW scheme in order to achieve the better
redundancy for any PSMS. The new scheme is referred to as
the block partitioning(BP) scheme and will be denoted by.

The BP scheme partitions the-tuple into blocks, and
codes each block of length as if it were
a stationary segment, using its KT estimate. The probability
assigned to an -tuple is defined as

(65)

where is independent of and is
recursively defined as

(66)

where . (Hence, by definition, .) The idea
is to choose the set that will give the fastest decay of
the pointwiseredundancyuniformly over all PSMS’s. We will
achieve decay rate slower than but faster than

.
From (16) we note that there is no TR, since there is a

single transition path and no weighting. The redundancy is,
therefore, obtained by trading off the PR, which decreases
with the block length since decreases (see (15)), and the
DR which increases with the block length (see (17)). It can
be shown that for a given , the best tradeoff is achieved by
selecting the block length as

(67)

Since is unknown in advance, we can define the block
length to increase with s.t. at time instant the length of a
block will be . The BP block length, obtained by
the following equation, satisfies this requirement:

(68)

where . The parameter is a design parameter. This
assignment ensures that the last blocks will be
and larger than the preceding blocks, and therefore will
dominate the redundancy. Fig. 5 demonstrates the partitioning
of an -tuple.

Theorem 4: The pointwise redundancy of the BP scheme is
bounded uniformly for all PSMS’s with transitions by

(69)

The proof of Theorem 4 is presented in Appendix E. Again, we
make no assumptions on the number of transitions, although
it is easy to see that the upper bound is no longer useful if
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. It is easy to show that if is known
in advance, the choice of

(70)

will obtain the best upper bound

(71)

If is unknown, we can choose to obtain

(72)

The BP scheme is very simple to implement and requires a
single state only. Its per-letter computational complexity is

and its total storage complexity is .
We can easily combine the DW and the BP schemes into

a combined scheme, denoted by. Obviously, the probability
assignment

(73)

attains the minimal redundancy between the two schemes. The
pointwise redundancy of this scheme is always upper-bounded
by as in Theorem 4. If a PSMS satisfies the
conditions of Theorem 3, its averageth-order redundancy is
upper-bounded by (74) at the bottom of this page.

VII. SIMULATION RESULTS

In this section we present numerical examples of the per-
formance of the schemes presented in Sections IV–VI, and
compare them to the performance of the schemes presented in
[19]–[22]. We show that we achieve better performance with
the new schemes, and that the true redundancies are much
smaller than the upper bounds.

Fig. 6 compares pointwise redundancies of the linear
schemes (Willems’ scheme , and the two optimal schemes,

and ) for a sequence of length , drawn by a binary
PSMS with transitions. For both and , we
take . The curves demonstrate that both and
achieve better redundancies than. The redundancy of
is the better one between the two, before the last transition.
However, performs better after the last transition. This
is because the third segment is relatively short, and justifies
weights that are more “generous” to new transitions, as those
used in , while the second segment is long enough to justify

Fig. 6. Pointwise redundancies of the linear schemes forN = 103 bits
drawn by abinary PSMS,� = f0:8; 0:2; 0:1;0:4g; T = f201;601;851g.
The redundancies are multiplied byn=(logn). For bothL1 andL2; " = 0:1.

the less “generous” weights of . This result demonstrates the
tradeoff in performance between the two schemes. If shorter
segments are expected (i.e., more transitions in a given time
interval), achieves better results, while if longer segments
are expected, it is better to use. The true performance of all
schemes is better than the upper bounds of Theorem 1. This
is because the upper bounds are pessimistic by not taking into
account weights of adjacent transition paths, and by bounding
all cases by the worst case, in which all segments are of the
same length .

Figs. 7 and 8 demonstrate redundancies obtained by
Willems’ logarithmic scheme [22], and by the DW scheme
with different parameters for a binary PSMS with large
transitions. In Fig. 7, pointwise redundancies for a single-
tuple are presented, while Fig. 8 presents the mean of 50 trials.
The DW scheme is shown in both graphs to perform better
than the logarithmic scheme. Both graphs demonstrate that
the DW scheme achieves redundancy of , even
for transitions for which is much smaller than .
For the PSMS in the example, . Using block
length , we have , but the DW
still achieves the order of the bound. However, for ,
the scheme may perform well for some-tuples, as shown in
Fig. 7, but the probability of not detecting the last transition
is not negligible, as shown by the respective curve in Fig. 8.
Using , we achieve larger redundancy than with the
shorter blocks, because transitions can only be estimated every
400 time units. Note that the curve for demonstrates
similar performance to the performance demonstrated by the

if and

if and

otherwise.

(74)
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Fig. 7. Pointwise redundancies of the logarithmic scheme (top curve)
and the DW scheme with different parameters (bottom curves) for
N = 106 bits drawn by arbinary PSMS,� = f0:8; 0:2; 0:7; 0:4g;
T = f2 � 105 + 1; 6 � 105 + 1; 8:5 � 105 + 1g. The redundancies are mul-
tiplied by n=(logn). For the DW scheme" = 0:1.

Fig. 8. Mean redundancies of 50 trials of the logarithmic scheme (top
curve) and the DW scheme with different parameters (bottom curves) for
N = 106 bits drawn by a binary PSMS,� = f0:8;0:2;0:7; 0:4g;
T = f2 �105+1; 6 �105+1; 8:5 �105+1g. The redundancies are multiplied
by n=(logn). For the DW scheme" = 0:1.

curve for because of the specific source parameters,
for which some of the transitions are estimated closer to their
true times with than with . The parameter
has no influence on the performance of the DW scheme as long
as there are enough surviving states. Therefore, similar curves
are obtained for the DW scheme with any . Furthermore,
the combined DW-BP scheme obtains the same curves as
the DW scheme because the DW has better redundancy than
the BP in this case. Since , it is apparent that the
DW scheme attains much smaller redundancy than the upper
bound of Theorem 3, because the bound is not tight.

Fig. 9 illustrates the performance of the coding schemes
in the case of a single small transition, in which the BP

Fig. 9. Pointwise redundancies of the DW scheme(S = 2; k = 50;
" = 0:1), BP scheme(� = 0:5), and the combined scheme with the same
parameters forN = 106 bits drawn by a binary PSMS with a small transition
� = f0:2;0:1g; T = f4:5 � 105 + 1g. The redundancies in the upper three
curves are multiplied by n=(logn), and the redundancy in the bottom curve
by 10 logn=(log logn). The redundancy of the DW is shown twice with
different scalings in a top curve and in the bottom curve.

performs better than the DW. The redundancy of the DW is
shown twice, once normalized by the same factor as other
redundancies, in order to compare performance to the other
schemes, and a second time multiplied by the inverse of its
expected order to demonstrate its order. The redundancy of
the DW is shown to be of . Before the
transition occurs, the DW attains better redundancy. Hence,
the combined scheme takes this redundancy. However, after
the transition occurs, the DW starts to perform poorly. At
some point, where its redundancy becomes larger than that
of the BP, the combined scheme attains the redundancy
of the BP. The redundancy of the BP is shown to be of

.

VIII. SUMMARY AND

CONCLUSIONS

In this paper we investigated the problem of low-complexity
universal coding of a PSMS. We showed that the entropy of the
source can be asymptotically achieved with fixed complexity
schemes, and that these schemes can attain redundancies that
decay faster than those obtained by any known low-complexity
scheme for coding PSMS’s. Specifically, it was shown that the
order of the lower bound on the decay rate of the redundancy
can be achieved when the transitions in the statistics are
large, and for smaller transitions the order of its square root
is achieved. The lower bound itself was achieved by an
optimal linear per-letter complexity scheme that was presented.
Finally, all results were supported by simulations that showed
that in practice all algorithms perform much better than the
performance suggested by the analysis. All the schemes can be
extended to more complex piecewise-stationary sources using
context tree coding schemes.
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APPENDIX A
PROOF OF THEOREM 2

We begin the proof of Theorem 2 with a lemma.

Lemma A.1: Let be a transition path that is not elim-
inated from the transition diagram of the DW scheme, and
let be the number of transitions assumed by. Then the
pointwise TR is upper-bounded as in (16) by

(A.1)

where is the cumulative weight assigned to the path
by (50).

Proof: The DW scheme weighs all transition paths that
survive in the diagram, with additional weights obtained from
paths that lead to eliminated states. Hence, unlike equality (10)

(A.2)

where denotes the set of (surviving) transition paths
that exist in the diagram at time , and is one of these
paths that is chosen as the estimate of the true transition path.
Hence, by definition of the TR in (14), the first inequality
of the lemma is proved, and we require an upper bound on

to prove the second.

The upper bound on can be attained from
the bound on the TR of in (34). Note that the only
transitions that contribute nonzero elements to
occur at block midpoints, where new states are created. The
transition weights at these time points, which are defined in
(50), are equivalent to the weights of , defined in (28),
but with a shrinking transformation of the time axis. Since
such transitions occur only everytime units at
time points over the complete data sequence, the horizon
in the bound of (34) can be replaced by . (Note that
the horizon of the first dominant term is replaced by ,
because it is derived from the first segments, excluding the
last hypothesized segment.) We conclude the proof of Lemma
A.1, by replacing in the bound of (34) by , since it can
be applied to all surviving paths, and not only the true one.

Proof of Theorem 2:We now use the lemma to prove The-
orem 2. The heart of the proof is the choice of. Let

The path is a partition of into blocks of length . By
definition of the DW scheme, a state is never eliminated before
it is used for coding at least data letters. Hence, the path

always exists in the transition diagram and thus can be used
to estimate . By definition of

Using (15), the PR can be upper-bounded by

(A.3)

Substituting in (A.1), we bound the TR by

(A.4)

To obtain the upper bound for the DR, we take the worst
case in which each transition contributes the most. This case
occurs when there is at most a single true transition in each
hypothesized segment of. Since the hypothesized segments
are of length , the DR is bounded, using (17), by

(A.5)

The proof of Theorem 2 is concluded by realizing that
determines the dominant term of the redundancy.

APPENDIX B
PROOF OF THEOREM 3

To prove Theorem 3, we address two different regions of the
error exponent separately. For , we simply use
the upper bound of Theorem 2 that applies to the redundancy
of any sequence, and thus can be applied to the average
redundancy for PSMS’s with small error exponents.

We now prove the upper bounds for the other three regions.
To analyze the average redundancy we select a surviving path

that is most likely to be a good estimate of the true path
. This path is used to form a partition of all data sequences

drawn by the PSMS into two disjoint sets. The first is the set
of -tuples for which is a good estimate, i.e., all transitions
are estimated near their true time unit. The second set contains
all the other -tuples. We then upper-bound the probability
of each set and the average redundancy of all-tuples in the
set. Summing up both terms we obtain an upper bound for the
average redundancy.

Let be an estimate of the true path, s.t.
connects the states with largest metrics (including

the first state ), and . It is assumed as a
condition of the theorem that . Hence, we will
always have states with largest metrics, and, therefore,
this path will exist. Each transition is estimated by a
transition . Let be a second estimate of the true
transition path that assumes no transitions following ,
i.e., . This path always exists in the diagram, and
is represented by the state , which must survive due
to its infinite metric.

Let the set be the set of all -tuples, for which
, i.e., all transitions are detected by

near their true time points. Let be the complimentary set
of -tuples for which there exists a transition that is detected
farther than time points away from its true time. As shown
in Fig. 10, if a transition is detected at more than
time points away from its true time, nonoverlapping blocks
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Fig. 10. Far- and near-point definitions. The solid line represents the time axis. A true transition occurs within the central blockEF and is noted by an
“X.” Points referred to as near points are at most2:5k time units away from the transition. The first far point is one block away from the last near point,
and obtains its metric from empirical data of blocks that do not overlap the blocks that are used to obtain the metric of the true transition.

are used to obtain and , while if ,
overlapping blocks may have been used for both metrics.
For example: If a true transition occurs in block , then
block is used for its metric. Block , that is the first
nonoverlapping block, is used to detect transition in block.
If transition is detected in , it is estimated at its midpoint,
which is to time points away from any point in

, where the true transition occurs.
The average th-order redundancy can be expressed as

(B.1)

where denotes the averageth-order redundancy
given event occurs. We can now treat each term separately
to prove the theorem. We next present three propositions
that upper-bound different terms of (B.1), all assuming the
conditions of the theorem. The proofs will be presented in
Appendix C and Appendix D. The mean DR ofgiven event

is denoted by .

Proposition B.1: The probability of is upper-bounded by

(B.2)

Proposition B.2:

(B.3)

(B.4)

Proposition B.3:

(B.5)

(B.6)

We will use the path to estimate the transition paths of all
-tuples in , for which is not a good estimate, and to

estimate the paths of -tuples in . Since the path assumes
the whole -tuple is coded as a single hypothesized stationary

segment, we can use (17) with and to
upper-bound

(B.7)

The path assumes no transitions. Therefore, using Lemma
A.1 we obtain TR of and using (15) we obtain
PR of the same order. Thus

(B.8)
Using this bound and Proposition B.1 and taking
and , we can upper-bound the
first term of (B.1) by

(B.9)

Summing up (B.9) and (B.6) of Proposition B.3, we obtain an
upper bound on the average redundancy for . If

, the term of (B.6) is dominant, thus obtaining the
first region of the upper bound. If , the
term of (B.9) is dominant, resulting in the third region of the
upper bound. If , the upper bound of (B.9) is no
longer useful. If , we upper-bound the probability
of by , and (B.4) of Proposition B.2 results in the dominant
term of the redundancy if , obtaining the second
region of the bound. This concludes the proof of Theorem 3.

APPENDIX C
PROOF OF PROPOSITION B.1

We begin the proof of Proposition B.1 with a few definitions.
We then present and prove a lemma, upon which we base the
proof of the proposition. Let be defined as in Appendix
B, and let be the th true transition and
the block that contains . The distribution before is
and at it becomes . Now, let be any block, s.t. there
exists for which . For
generalization we define and .
Block is defined s.t. the three blocks , , and
are entirely within the single true stationary segmentwith
distribution .
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Fig. 11 Typical occurrence of eventF . The likelihoodM(r), obtained from blocksc and d both drawn by distributionPj , is larger thanM(si) that
represents the true transitionti and is obtained from blocksa and b.

Lemma C.1: If there exist , , and
as defined above s.t. , where both metrics are
obtained from nonoverlapping blocks.

Proof: For a transition in a block , there are at most
three states , , and that may have metrics obtained
by data of two different stationary segments. The DW scheme
allows at most one of these three consecutive states to survive
in the diagram and eliminates the other two. By definition
of , there exists , s.t. . Thus there is a
transition , for which all these three states were eliminated,
but since this transition has an estimate. This estimate
must be at some block, s.t. and its neighboring blocks
are entirely within a stationary segment, because all surviving
states with metrics obtained from two different segments are
associated with other true transitions. Sinceis eliminated,
and it is assumed that the distance between transitions is
larger than , it must be that was eliminated because

. One of the blocks used to obtain may
still overlap a block used for a metric of some, but
since .

As a result of the lemma, we can bound by

(C.1)

We base the proof of the proposition on this result. We select
some fixed and , and upper-bound the probability of event

. Then we use the union bound twice,
once over all possible values ofand then on the values of,
to upper-bound the probability of the right-hand side (r.h.s.) of
inequality (C.1), which we denote as the probability of event

.
Observe some fixed and as defined above. For conve-

nience, let us define , , , and
. Fig. 11 illustrates this block partitioning. We define

the empirical PMF of block as

(C.2)

where is the number of occurrences of letter in
block . Similarly, we define the empirical PMF of the con-
catenation of blocks and as

(C.3)

The empirical per-letter entropies of a block and of a con-
catenation of two blocks are obtained by (43) and (44),
respectively.

By definition of and , we have

(C.4)

Rearranging terms, we can express by means of diver-
gence

(C.5)

By typical sets analysis (see [2] and [3]), and since blocks
, , , and are independent of each other, we can bound

the probability of by

(C.6)

where is defined as

(C.7)

(The second-order term of (C.6) results from the bound on the
number of types in a block of length, which is .
This bound is used to bound the number of types in each of the
four independent blocks, and is therefore raised to the power of

.) We will now define an event , for which the minimum
of (C.7) is easier to compute, s.t. . Since is a
subset of , the minimization over will lower-bound the
exponent defined by (C.7). It is easy to show that

(C.8)

We define as

(C.9)

Since

(C.10)
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where the constraint is defined by

(C.11)

The second inequality is obtained by applying the constraint
of , while the last equality is obtained by definition of
divergence and by expressing as .
The constrained minimization is performed using Lagrange
multipliers. We define the functional as

(C.12)

It is straightforward to show that the Hessian metrix of
w.r.t. and for is positive-

definite. Hence the functional is convex and obtains the
minimum where the first derivatives are zeros. By differen-
tiation we obtain

(C.13)

Substituting the error exponent by its minimal value over all
transitions, we can upper-bound the probability of by

(C.14)

Using the union bound and accounting for all
values of first and then for all values of , we obtain the
upper bound on . By using (C.1) we apply this bound
to and conclude the proof of Proposition B.1.

APPENDIX D
PROOFS OFPROPOSITIONSB.2 AND B.3

In this appendix we present the proofs of Propositions B.2
and B.3, that summarize the contribution of eventto the
average redundancy. The difficulty in proving Proposition B.3
lies in the fact that the time instants of the estimatesvary for
different -tuples , thus we cannot assume anything
about the distances except that they are bounded
by . We begin with analyzing the DR of an -tuple

by breaking it into terms, each representing the
contribution of a single segment. We then break each such term
into two different terms, which are analyzed separately. For
each term we obtain a pointwise upper bound and an average
one. Finally, we reconstruct the total DR by adding all the
separate terms in a pointwise manner to prove Proposition B.2

and in the average to prove Proposition B.3. The second parts
of both propositions are obtained by adding the PR and the
TR to the DR. Throughout this section, we use the definition
of presented in Appendix B.

We begin with some definitions. For , we define
the following block lengths:

(D.1)

We note that and that for any , either
or must be zero. For generalization purposes we define

. We next define the vectors associated
with each length.

(D.2)

If the last index of a vector is smaller than the first, the vector
will be the empty vector by definition. Therefore, for every

either or must be the empty vector. The probability
of the empty vector with any distribution will be defined as

. The nonempty vectors obtained from the sets of the
above three vectors are a complete parsing of the-tuple into
disjoint strings. Hence, we can express the DR as the sum of
the contributions of all these vectors, where the contribution of

is zero. Finally, the empirical distribution of vector
is defined as

(D.3)

where is the number of occurrences ofin . Fig. 12
demonstrates the definitions presented above. Each sting
is noted by its length .

We can now use the above definitions to define the distri-
butions that the path assigns to each of its hypothesized
segments. For convenience, we define

(D.4)

and then

(D.5)

where is the true distribution of segment. The distributions
and need not be defined, since they will always

be multiplied by zero. Fig. 12 illustrates the true and the
hypothesized distributions around transitionfor both cases

and . In both diagrams we assume
and .

We can now represent the DR of as the sum of
terms (one for each segment), each consists of two terms,

the first is the contribution of vectors, and the second of
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Fig. 12. Typical occurrence of event�F and its effect on the estimated distributions. The dark line represents the time axis, that is partitioned into strings,
whose lengths are noted above the dark line.The true distributions of the segments are noted byP and the distributions assigned to the hypothesized segments
by the choice of^T are noted byQ. In diagram (A)^ti > ti and in diagram (B)^ti < ti. In both diagrams^ti�1 < ti�1 and^ti+1 > ti+1.

vector .

(D.6)

The equality in the second line of (D.6) is obtained by
definition of strings , , and in (D.2). The string
is drawn by but is assumed to be drawn by . The
other two strings and are drawn by , but are assumed
to be drawn by and , respectively. The last equality
is obtained by noticing that . We summarize the
pointwise and average bounds of and in the following
lemma.

Lemma D.1:

(D.7)

(D.8)

(D.9)

The proof of the lemma is presented at the end of this
section. Using (D.7) and noting that , we
obtain

(D.10)

where the last inequality is obtained by the fact that for each
either or must be zero and by the definition of that

ensures that either must be bounded by . Similarly, we
can show that

(D.11)

Adding both bounds of the last two equations, we conclude
the proof of the first equation of Proposition B.2. The proof of
Proposition B.2 is concluded by simply adding the bounds for
the PR and TR in (15) and (A.1), respectively, with ,
and taking , noticing the DR is the dominant
term. Proposition B.3 is proved similarly to Proposition B.2
with one difference. Instead of taking the bound on of
(D.8), we take the upper bound of (D.9) for the average
over all transitions to obtain . To conclude this section,
we present the proof of Lemma D.1.

Proof of Lemma D.1:Equations (D.7) and (D.8) are proved
by straightforward manipulations. Before proving (D.9) we
present and prove another lemma. We can upper-boundin
the following manner:

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)

Equation (D.13) is obtained by representing the probability of
vector as the sum of the probabilities of its components.
Using the definition of in (D.5) we obtain inequality (D.14).
Then we use the fact that for all ,
to obtain inequality (D.16). This concludes the proof of (D.7).
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We perform similar analysis to show that

(D.17)

The second inequality is obtained by taking and
discarding the denominators of the terms inside the logarithms,
thus concluding the proof of (D.8).

Lemma D.2: Under the conditions of Theorem 3

(D.18)

Proof of Lemma D.2:We prove the first inequality, but
the same analysis can be performed to prove the second.
We first upper-bound the expression for

where .

(D.19)

The first inequality is obtained by Jensen’s inequality, and the
second by the assumption that transitions are more than
time points apart, thus . We now show that
we can obtain the same bound when . We define

.

(D.20)

The first inequality is obtained by Jensen’s inequality, and the
second by the fact that , since transitions
are more than time points apart. We obtain the inequality
by the well-known fact that if , .
Summing up for all terms of we obtain that

(D.21)

which concludes the proof of Lemma D.2.

To conclude the proof of Lemma D.1, we first extend the
definition of and s.t.

(D.22)

The respective strings and are defined as the null strings.
We define , and for all , s.t. , we make
the following definitions:

(D.23)

The idea is to create the concatenated stringsand , s.t.
the first will contain all the letters right before theth true
transition and the second theletters right after the transition,
for all . By using this notation, we can generalize the
analysis for and average over . We conclude by showing
the proof of (D.9). For convenience, we omit the superscript

from all vectors.

(D.24)

(D.25)

(D.26)

(D.27)

(D.28)

(D.29)

(D.30)
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Inequality (D.25) is obtained by Lemma D.2. We then upper-
bound the two logarithmic terms by their absolute values to
obtain (D.26), and add nonnegative terms for (D.27). The
bound (see [5]) is then
used to obtain (D.28). Finally, we sum over all data letters
independent of and , and realize that the distributions
of and are and , respectively (in (D.29)). This
reduces the nonlogarithmic terms of (D.28), which sum up to
a term of , and results in the sum of divergences in
(D.30), multiplied by the length of the strings , therefore
concluding the proof of (D.9).

APPENDIX E
PROOF OF THEOREM 4

To prove Theorem 4, we first need to upper-bound the
number of blocks . We then use this bound to upper-bound
both the PR and the DR. By definition of the scheme

(E.1)

Therefore,

(E.2)

To satisfy the last equation, we must have

(E.3)

As a result of the discussion before (15), each block of
length , coded by the KT estimate, produces

extra PR bits. Hence, we can upper-bound the PR by

(E.4)

(E.5)

(E.6)

(E.7)

Equation (E.6) is obtained by opening the expression inside
the logarithm, and inequality (E.7) by the fact that .

It is obvious from (17) that the largest DR is obtained for
PSMS’s with true transitions at the midpoints of the last
blocks. For these PSMS’s we can upper-bound the DR by

(E.8)

We conclude the proof of Theorem 4 by summing up the last
two upper bounds.
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