
Universal Prediction�Neri Merhavy Meir FederzJuly 23, 1998AbstractThis paper consists of an overview on universal prediction from an information-theoreticperspective. Special attention is given to the notion of probability assignment under the self-information loss function, which is directly related to the theory of universal data compression.Both the probabilistic setting and the deterministic setting of the universal prediction problemare described with emphasis on the analogy and the di�erences between results in the twosettings.Index Terms: universal prediction, probability assignment, universal coding, stochastic com-plexity, redundancy-capacity, Bayes envelope, entropy, loss function, linear prediction, �nite-statemachine.

�This work was supported by the Israel Science Foundation administered by the Israeli Academy of Sciences andHumanities.yN. Merhav is with the Department of Electrical Engineering, Technion { Israel Institute of Technology, Haifa32000, Israel. E-mail: merhav@ee.technion.ac.il.zM. Feder is with the Department of Electrical Engineering { Systems, Tel Aviv University, Tel Aviv 69978, Israel.E-mail: meir@eng.tau.ac.il. 1



1 IntroductionCan the future of a sequence be predicted based on its past? If so, how good could this predictionbe? These questions are frequently encountered in many applications. Generally speaking, onemay wonder why should the future be at all related to the past. Evidently, often there is such arelation, and if it is known in advance, then it might be useful for prediction. In reality, however,the knowledge of this relation or the underlying model is normally unavailable or inaccurate, andthis calls for developing methods of universal prediction. Roughly speaking, a universal predictoris one that does not depend on the unknown underlying model and yet performs essentially as wellas if the model was known in advance.This is a survey that describes some of the research work on universal prediction, that hasbeen carried out throughout the years in several scienti�c disciplines such as information theory,statistics, machine learning, control theory, and operations research. It should be emphasized,however, that there is no attempt to cover comprehensively the entire volume of work that hasbeen done in this problem area. Rather, the aim is to point out a few of the highlights and theprincipal methodologies from the authors' personal information-theoretic perspective. Also, alongthe paper there are a few new results whose derivations are given in detail.Historically, the information-theoretic approach to prediction dates back to Shannon [104], whorelated prediction to entropy and proposed a predictive estimate of the entropy of the Englishlanguage. Inspired by Haggelbarger, Shannon [105] created later a \mind-reading" machine thatpredicts human decisions. About that time, Kelly [59] showed the equivalence between gambling(which in turn is de�nitely a form of prediction) and information. Following Cover [17], Rissanen[89, 90], and Rissanen and Langdon [93], it is well recognized to date that universal predictionis intimately related to universal lossless source coding. In the last three decades, starting fromthe pioneering work of Fittingo� [42] and Davisson [27], and later Ziv [124], Lempel and Ziv[68, 125, 126], Rissanen and Langdon [93] Krichevsky and Tro�mov [63] and others, the theory andpractice of universal coding have been greatly advanced. The state-of-the-art knowledge in this areais su�ciently mature to shed light on the problem of universal prediction. Speci�cally, predictionschemes as well as fundamental performance limits (lower bounds), stemming from those of universalcoding, have been derived. It is the relation between universal coding and universal prediction thatis the main theme of this paper, both from the aspects of algorithms and performance bounds.Let us now describe the prediction problem in general. An observer sequentially receives asequence of observations x1; x2; : : : ; xt; : : : over some alphabet X . At each time instant t, afterhaving seen xt�1 = (x1; :::; xt�1) but not yet xt, the observer predicts the next outcome xt, or more2



generally, makes a decision bt based on the observed past xt�1. Associated with this predictionor decision, bt, and the actual outcome xt, there is a loss function l(bt; xt) that measures quality.Depending on the particular setting of the prediction problem, the objective would be to minimizethis instantaneous loss, or its time-average, or the expected value of either one of these quantities.Obviously, prediction in the ordinary sense, is a special case of this, where bt = x̂t is an estimateof xt based on xt�1 and l(bt; xt) = l(x̂t; xt) is some estimation performance criterion, e.g., theHamming distance (if xt is discrete) or the squared error l(bt; xt) = (xt � bt)2 (if xt is continuous).Another special case, which is more general than the above examples, is based on assigningweights or probabilities to all possible values of the next outcome. For example, the weather-manmay assess 70% chance of rain tomorrow, instead of making a commitment whether it will rain ornot. This is clearly more informative than the ordinary prediction described above because it givesan assessment of the degree of con�dence or reliability associated with the prediction. In terms ofthe above described prediction problem, here bt is a conditional probability assignment of xt givenxt�1, i.e., a non-negative function bt(�jxt�1) that integrates (or sums) to unity for every xt�1. Uponobserving xt, the performance of bt is assessed with respect to a suitable loss function l, whichshould decrease monotonically with the probability assigned to the actual outcome bt(xtjxt�1). Avery important loss function of this kind is the self-information loss function, which is also referredto as the log-loss function in the machine-learning literature. For every probability assignmentb = fb(x); x 2 Xg over X and every x 2 X , this function is de�ned asl(b; x) = � log b(x); (1)where logarithms throughout this paper are taken to the base 2 unless otherwise speci�ed. Forreasons to be discussed in Section 2, the self-information loss function plays a central role in theliterature on prediction and hence also throughout this survey.Let us now return to the prediction problem in its general form. Quite clearly, solutions tothis problem are sought according to the particular assumptions on the data generating mechanismand on the exact objectives. Classical statistical decision theory (see e.g., [35]) assumes that aknown probabilistic source P generates the data, and so, a reasonable objective is to minimize theexpected loss. The optimum strategy b�t then minimizes the expected loss, given the past, i.e.,Efl(b;Xt)jXt�1 = xt�1g = ZX dP (xjxt�1)l(b; x); (2)where random variables are denoted by capital letters. Moreover, under suitable assumptions onstationarity and ergodicity, optimum prediction fb�t g in the expected loss sense, is optimum also inthe sense of minimizing the almost-sure asymptotic time-average of l(bt;Xt) (see e.g., [4]). Given3



Xt�1 = xt�1, the quantity U(xt�1) = infb R dP (xjxt�1)l(b; x), is referred to as the conditional Bayesenvelope given xt�1. For example, if fXtg is a binary source, bt = x̂t, and l(�; �) is the Hammingdistance, then b�t = ( 0 if P (0jxt�1) � P (1jxt�1)1 otherwise (3)and the conditional Bayes envelope given xt�1 is U(xt�1) = minfP (0jxt�1); P (1jxt�1)g. Forl(b; x) = (b � x)2, b�t = E(XtjXt�1 = xt�1) and U(xt�1) = VarfXtjXt�1 = xt�1g. If, in addi-tion, the underlying source P is known to be Gaussian (or, if only the class of linear predictors isallowed), then b�t is well-known to be a linear function of xt�1 given as a special case of the causalWiener �lter [119] (see also [86, Chap. 14-3]). In the self-information loss case, b�t (�jxt�1) = P (�jxt�1)minimizes Ef� log b(XtjXt�1 = xt�1)g, namely, the best probability assignment is the true one.The conditional Bayes envelope given xt�1, is the (di�erential) entropy of Xt given Xt�1 = xt�1,i.e., U(xt�1) = �E logP (XtjXt�1 = xt�1).While classical theory (e.g., Wiener prediction theory) assumes that the source P is known, themore realistic and interesting situation occurs when P is either unknown, or not at all existent. Inthe second case, there is no probabilistic data-generating mechanism and the data are consideredarbitrary and deterministic. Both cases fall in the category of the universal prediction problem,where the former is referred to as the probabilistic setting, and the second is called the deterministicsetting. Let us now elaborate on these two settings.The Probabilistic SettingIn the probabilistic setting the objective is normally to minimize the expected cumulative lossasymptotically for large n simultaneously for any source in a certain class. A universal pre-dictor fbut (xt�1)g does not depend on P , and at the same time, keeps the di�erence betweenEf 1nPnt=1 l(but ;Xt)g and�Un(P ) = 1n nXt=1EU(Xt�1) = 1n nXt=1Efinfb E[l(b;Xt)jXt�1)]g; (4)vanishingly small for large n. The cumulative Bayes envelope of eq. (4) represents the performanceof the optimal predictor tuned to P . For a stationary and ergodic source, the sequence f �Un(P )gn�1has a limit �U(P ), referred to as the asymptotic Bayes envelope, that coincides (by the Cesarotheorem [23]) with limt!1EfU(Xt)g, which in turn exists by non-increasing monotonicity. In theself-information loss case, �U(P ) is the entropy rate of P , which means that the goal of universalprediction is equivalent to that of universal coding.There are essentially three levels of universality according to the degree of uncertainty regardingthe source. 4



Universality with respect to indexed classes of sources. Suppose that the source is unknown exceptfor being a member of a certain indexed class fP�; � 2 �g, where � is the index set. Most commonly,� designates a parameter vector of a smooth parametric family, e.g., the families of �nite-alphabetmemoryless sources, k-th order Markov sources,M -state sources, AR(p) Gaussian sources, but otherindex sets (e.g., �nite sets) are possible as well. There are two interesting issues here. The �rst isto devise universal prediction schemes that asymptotically attain �Un(P�) in the above de�ned sensefor every � 2 �, and the second is performance bounds beyond �Un(P�) that apply to any universalpredictor. Analogously to the universal coding terminology, the extra loss beyond �Un(P ) will bereferred to as the redundancy. Redundancy bounds are useful to establish necessary conditionsfor the existence of universal schemes as well as limitations on the rate of convergence. Bothare dictated by a certain measure of the richness of the class fP�g. Furthermore, even if theredundancy bound does not vanish as n ! 1, and hence universal schemes in the above de�nedsense do not exist, the question of universality can be extended to that of achieving this bound.For self-information loss prediction, we will explicitly characterize such bounds, and demonstrateachievability by certain universal schemes.Universality with respect to very large classes of sources. Suppose that all we know about the sourceis that it is Markov of an unknown �nite order, or that it is stationary and ergodic, or mixing in acertain sense. For such large classes, quantitative characterizations of uniform redundancy rates donot exist [60, 106, 107]. Here, one cannot hope for more than weak universality, a term mentionedand de�ned in [27], which means that universality is attained at a non-uniform convergence rate.Sometimes even weak universality cannot be obtained, and in [60] there are necessary and su�cientconditions for the existence of universal schemes.Hierarchical Universality. In this level, the goal is to devise universal schemes with respect to asequence �1;�2; ::: of index sets of sources, which may (though not necessarily) have some structurelike nesting, i.e., �k � �k+1 for every positive integer k. Perhaps the most common example iswhere for every k, �k is the class of all k-th order Markov sources of a given alphabet. Here theonly prior knowledge that one may have on the source is that its index � belongs to � = Sk�1 �k.The straightforward approach would be to consider � as one big class and to seek universal schemeswith respect to �. The drawback of this approach, however, is that it is pessimistic in the sensethat the convergence rate towards �U(P�), might be very slow, if at all existent, because � couldbe a very rich class. In the above Markov example, while each �k falls within the category of the�rst level above, the union � falls in the second level. Nonetheless, it turns out that in certain5



situations it is possible to achieve redundancy rate that is essentially as small as if k were knowna-priori. This gives rise to an elegant compromise between the two former levels of universality. Itkeeps the fast convergence rates of the �rst level without sacri�cing the generality of the class ofsources of the second level.The Deterministic SettingIn this setting, the observed sequence is not assumed to be randomly drawn by some probabilitylaw, but is rather an individual, deterministic sequence. There are two di�culties in de�ning theuniversal prediction problem in this context. The �rst is associated with setting the desired goal.Formally, for a given sequence x1; x2; :::, there is always the perfect prediction function de�nedas bt(xt�1) = xt, and so, the prediction problem seemingly boils down to triviality. The seconddi�culty is in the other way around. For a given deterministic predictor fbt(�)gt�1, there is alwaysthe adversary sequence where at each time instant t, xt is chosen to maximize l(bt; xt).The �rst di�culty is fundamental because it means that without any limitations on the classof allowed predictors, there is a severe over�tting e�ect, which tailors a predictor to the sequenceso strongly, that it becomes, in fact, anticipating and hence completely misses the essence ofprediction as a causal, sequential mechanism. Therefore, one must limit the class B of allowedpredictors fbt(�)gt�1 in some reasonable way. For example, B could be the class of predictors thatare implementable by �nite-state machines (FSM's) withM states, or Markov-structured predictorsof the form bt(xt�1) = b(xt�k; :::; xt�1), and so on. Such limitations make sense not only by virtue ofavoiding these trivialities, but also because they reect real-life situations of limited resources, likememory, computational power, and so on. Stated more formally, for a given class B of predictors,we seek a sequential predictor fbut gt�1, that is universal in the sense of being independent of thefuture, and at the same time, its average loss, n�1Pnt=1 l(but ; xt) is asymptotically the same asminB n�1Pnt=1 l(bt; xt), for every xn. The universal predictor need not be necessarily in B but itmust be causal, whereas the reference predictor in B, that minimizes the average loss, may (byde�nition) depend on the entire sequence xn.The second di�culty mentioned above is alleviated by allowing randomization. In other words,predictions are generated at random according to a certain probability distribution that dependson the past. Note that this is di�erent from the above discussed case where bt was a probabilityassignment, because now the assigned probability distribution is actually used for randomization.Analogously to the probabilistic case, here we also distinguish between three levels of univer-sality, which are now in accordance to the richness of the class B. The �rst level corresponds to anindexed class of predictors which is dual to the above mentioned indexed class of sources. Examples6



of this are parametric classes of predictors, like �nite-state machines with a given number of states,�xed order Markov predictors, predictors based on neural nets with a given number of neurons,�nite sets of predictors, etc. The second level corresponds to very large classes like the class ofall �nite-state predictors (without specifying the number of states), operating on in�nitely longsequences, etc. Finally, the third level corresponds to hierarchical universality and parallels that ofthe probabilistic setting. The nature of the reported results are somewhat similar to those of theprobabilistic approach, but there are several important di�erences in algorithmic aspects as well asin existence theorems and performance bounds.The outline of the paper is as follows. Section 2 is devoted to the motivation and the justi�cationfor the use of the self-information loss function as a performance criterion in prediction. In Section3, the probabilistic setting will be discussed with a great emphasis on the self-information loss casewhich is fairly well-understood. In Section 4, the deterministic setting will be described with specialattention to the similarity and the di�erence from the probabilistic setting. Section 5 is devoted tothe concept of hierarchical universality in both settings. Finally, Section 6 summarizes the paperalong with some open problems and directions for further research.2 The Self-Information Loss FunctionWe mentioned earlier the self-information loss function and its central role in universal predic-tion. In this section, we discuss some motivations and justi�cations for using this loss functionas a measure of prediction performance. As explained in the Introduction, predictive probabilityassignment for the next outcome is more general and more informative than estimating the valueof the next outcome, and a reasonable loss function should be monotonically decreasing with theassigned probability of the actual outcome. The self-information loss function, de�ned in eq. (1),clearly satis�es this requirement, but it also possesses many other desirable features of fundamentalimportance.The �rst advantage of the self-information loss function is technical. It is convenient to workwith because the logarithmic function converts joint probability functions, or equivalently, productsof conditional probabilities into cumulative sums of loss terms. This suits the framework of thegeneral prediction problem described above.But beyond this technical convenience, there is a deeper signi�cance. As is well-known, theself-information manifests the degree of uncertainty, or the amount of information treasured in theoccurrence of an event. The conditional self-information of the future given the past, therefore,reects the ability to deduce information from the past into the future with minimum uncertainty.7



Evidently, prediction under the self-information loss function and lossless source coding areintimately related. This relation stems from the fact that l(b; x) = � log b(x) is the ideal code lengthof x with respect to a probability function b(�). This code length can be implemented sequentiallywithin any desired precision using arithmetic coding [88]. Conversely, any code length function canbe translated into a probability assignment rule [90, 93, 109, 117]. Another direct application of self-information loss minimization to the problem area of prediction, is that of gambling [17, 19, 38] Inthis case, bt(�jxt�1) represents the distribution of money invested in each one of the possible valuesof the next outcome. The self-information loss function then dictates the exponential growth rateof the amount of money with time.The paradigm of predictive probability assignment is also the basis of Dawid's prequentialprinciple [31]. However, the motivation of the prequential principle was not in prediction per-se, but rather the use of probability assignment for testing the validity of statistical models. Agood probability assignment is one that behaves empirically as expected from the true probabilisticmodel. For example, if fxtg are binary, then a good sequence fbt(1jxt�1)g of probabilities assignedto xt = 1 should satisfy 1nPnt=1(xt � bt) ! 0, namely, the law of large numbers. As furtherdiscussed in [32, 33, 34] other requirements are based on the central limit theorem, the law ofiterated logarithm, behavior of con�dence intervals, and so on.Interestingly, it turns out that predictive probability assignment under the self-informationloss criterion can be useful also for the purpose of testing the validity of statistical models asdescribed above. One reason is that when a certain source P governs the data, then it is thetrue conditional probability bt(�jxt�1) = P (�jxt�1) that minimizes Ef� log bt(XtjXt�1 = xt�1)g. Insimpler words, the maximum achievable assigned probability is also the true one (a property sharedby very speci�c loss functions, see [78]). Moreover, by the Shannon-McMillan-Breiman theorem,under certain ergodicity assumptions, this is true, not only in the expected value sense, but alsoalmost surely. Thus, by combining the prequential principle with the Shannon-McMillan-Breimantheorem, a good probabilistic model for the data bt(�jxt�1) must minimize 1nPnt=1� log bt(xtjxt�1),i.e., the average self-information loss.From another perspective, we observe that any sequential probability assignment mechanismgives rise to a probability assignment for the entire observation vector xn byQ(xn) = Qnt=1 bt(xtjxt�1).Conversely, any consistent probability assignment Q for xn, (i.e., Q that satis�es Q(xt�1) =Pxt2X Q(xt) for all t and xt�1), provides a valid sequential probability assignment bybt(xtjxt�1) = Q(xt)Q(xt�1) : (5)Therefore, the choice of fbtg in self-information loss prediction is completely equivalent to the choice8



of Q that assigns maximum probability to xn, that is, maximum likelihood estimation.In our discussion thus far, we focused on motivating the self-information loss function itself.Yet another motivation for studying universal prediction in the self-information loss case is that itsheds light on the universal prediction problem for other loss functions as well. Perhaps the mostdirect way to look at self-information loss prediction is as a mechanism that generates a probabilitydistribution when the underlying source is unknown or non-existent. One plausible approach tothe prediction problem with a general loss function, is then to generate, at each time instant, aprediction that is a functional of the self-information-loss conditional probability assignment. Forexample, in the squared-error loss case, a reasonable predictor would be the conditional meanassociated with bt(�jxt�1), which hopefully tends to the true conditional probability as discussedabove. As will be seen in the probabilistic setting, this technique is often successful, whereas in thedeterministic setting, some modi�cation is required.But there is another way in which self-information loss prediction serves as a yardstick toprediction under other loss functions, and this is the notion of exponential weighting. In certainsituations, minimization of the cumulative loss Pt l(bt; xt) corresponds to maximization of theexponentiated loss e��Pt l(bt;xt) (� > 0), which in turn can be treated altogether as an auxiliaryprobability assignment. In certain important special cases (though not always), the solution to thisprobability assignment problem translates back as a solution to the original problem. We will alsosee the usefulness of the exponential weighting technique as a tool for deriving lower bounds thatare induced from corresponding strong lower bounds of the self-information loss case.3 The Probabilistic SettingWe begin with the problem of probability assignment for the next outcome given the past, underthe self-information loss function. As explained above, this problem is completely equivalent tothat of �nding a probability assignment Q for the entire data sequence.As we mentioned earlier, if the source P was known, then clearly, the optimal Q that minimizesthe above expected self-information loss would be Q = P , i.e., the prediction induced by the trueunderlying source bt(�jxt�1) �= Q(�jxt�1) = P (�jxt�1). The average cumulative loss would then bethe entropy Hn(P ) = �EflogP (Xn)g. If P is unknown and we wish to assign a certain probabilitydistribution Q that does not depend upon the unknown P , then the extra loss beyond the entropyis given by Ef� logQ(Xn)� (� logP (Xn))g = Dn(P jjQ) (6)where Dn(PkQ) is the nth order information divergence (relative entropy) between P and Q. In9



the corresponding lossless compression problem, Dn(PkQ)=n is the coding redundancy, i.e., thenormalized per-symbol di�erence between the average code length and the entropy. Of course, theminimizations of Dn(PkQ) for two or more sources fPg at the same time might be contradictory.Thus, the problem of universal probability assignment is that of �nding a good compromise Q thatis uniformly as `close' as possible, in the information divergence sense, to every P in a given classof sources. We shall elaborate later on this notion of simultaneous divergence minimization.As explained in the Introduction, the theory of universality splits into several levels accordingto the degree of uncertainty regarding the source. We begin with the conceptually simplest casewhere the source is known to belong to a given indexed class of sources fP�; � 2 �g, where � is theindex (e.g., a parameter vector) and � is the index set. Since we look at prediction from the viewpoint of probability assignment and we start from the self-information loss criterion, our survey inthis part, is largely taken from the theory of universal coding.3.1 Indexed Classes of Sources3.1.1 The Self-Information Loss FunctionWe �rst describe two common approaches to universal probability assignment for indexed classesof sources.The Plug-in Approach versus the Mixture ApproachOne natural approach to universal prediction with respect to an indexed class of sources fP�; � 2�g is the so called plug-in approach. According to this approach, at every time instant t, theindex (or the parameter) � is estimated on-line from xt�1 (e.g., by using the maximum likelihoodestimator), and the estimate �̂t = �̂t(xt�1) is then used for prediction as if it was the true parametervalue, i.e., the conditional probability assigned to xt is given by P�̂t(xtjxt�1).The plug-in approach may work quite well under certain regularity conditions. Intuitively, ifthe estimator �̂t is statistically consistent and P�(xtjxt�1) is continuous in � for every xt�1 andxt, then the estimated probability assignment may converge to the true conditional probability inthe probabilistic sense. Nonetheless, this convergence property does not always hold (e.g., when� is the center of a Cauchy density estimated by the sample mean), and even if it does, the rateof convergence might be of crucial importance. Moreover, it is not true, in general, that betterestimation of the conditional probability necessarily yields better self-information loss performance.The plug-in approach is, in essence, a heuristic approach that lacks a well-substantiated, deeptheoretical justi�cation in general.An alternative approach, henceforth referred to as the mixture approach, is based on generatingconvex combinations (mixtures) of all sources in the class fP�; � 2 �g. Speci�cally, given a certain10



non-negative weight function w(�) that integrates to unity (and hence can be thought of as a prioron �), we de�ne the mixture probability mass (or density) function over n-tuples asQw(xn) = Z� dw(�)P�(xn): (7)With an appropriate choice of the weight function w, the mixture Qw, as we shall see later on,turns out to possess certain desirable properties which motivate its de�nition as a universal prob-ability measure. This universal measure then induces a conceptually simple sequential probabilityassignment mechanism de�ned bybt(xtjxt�1) = Qw(xtjxt�1) = Qw(xt)Qw(xt�1) : (8)It is interesting to note [72, Theorem 2] that the above predictive probability function induced bythe mixture of fP�; � 2 �g can be also represented as a mixture of the conditional probabilityfunctions fP�(xtjxt�1); � 2 �g, where the weighting function is given by the posterior probabilitydensity function of � given xt�1, i.e.,Qw(xtjxt�1) = Z� dw(�jxt�1)P�(xtjxt�1) (9)where w(�jxt�1) = w(�)P�(xt�1)R� dw(�0)P�0(xt�1) = w(�)2� log 1=P�(xt�1)R� dw(�0)P�0(xt�1) ; (10)and where the last expression manifests the interpretation of exponential weighting according tothe probability assignment performance (given by log 1=P�(xt�1)) on data seen thus far: Points in� that correspond to good performance in the past are rewarded exponentially higher weights inprediction of future outcomes. The exponential weighting is an important concept. We will furtherelaborate later on it in a broader context of lower bounds and algorithms for sequential predictionunder more general loss functions in the probabilistic as well as in the deterministic setting.For the class of binary memoryless (Bernoulli) sources with � = Prfxt = 0g, the mixtureapproach, with w(�) being uniform over � = [0; 1], leads to the well-known Laplace prediction[66, 67]. Suppose that xt�1 contains t0 zeros and t1 = t� t0 ones, thenQw(xt = 0jxt�1) = R 10 �t0+1(1� �)t1d�R 10 �t0(1� �)t1d� = t0 + 1(t� 1) + 2 = t0 + 1t+ 1 (11)which, in this case, can be thought of also as a plug-in algorithm because (t0 + 1)=(t + 1) can beinterpreted as a biased version of the maximum likelihood estimator of �. Such a bias is clearlydesirable in a sequential regime because the naive maximum-likelihood estimator �̂t = t0=(t � 1)would assign zero probability to the �rst occurrence of `1' which would in turn result in in�nite loss.Also, this bias gives rise to the plausible symmetry consideration that in the absence of any data11



(i.e., t0 = t� 1 = 0) one would assign equal probabilities to `0' and `1'. But this would be also thecase with any estimator of the form �̂t = (t0 + �)=(t + 2�), � > 0. Indeed, other weight functions(from the Dirichlet family) yield di�erent bias terms and with slight di�erences in performance (seealso [62]). This discussion carries over to general �nite alphabet memoryless sources [63] (as willbe discussed later) and to Markov chains [28, 91]. However, it should be kept in mind that for ageneral family of sources fP�; � 2 �g, the mixture approach does not necessarily boil down to aplug-in algorithm as above, and that the choice of the weight function might have a much moredramatic impact on performance [76]. In this case, we would like to have some theoretical guidanceregarding the choice of w.This will be accomplished in the forthcoming subsection, where we establish the theoreticaljusti�cation of the mixture approach in a fairly strong sense. Interestingly, in the next section,it will be motivated also in the deterministic setting, and for loss functions other than the self-information loss function.Minimax and Maximin UniversalityWe have seen (eq. (6)) that the excess loss associated with a given probability assignment Qwhile the underlying source is P�, is given by Dn(P�jjQ). The �rst fundamental justi�cation of themixture approach (presented in [76]) is the following simple fact: Given an arbitrary probabilityassignment Q, there exists another probability assignment Qw in the convex hull of fP�; � 2 �g,(that is, a mixture) such that Dn(P�jjQw) � Dn(P�jjQ) simultaneously for every � 2 �. Thismeans that when seeking a universal probability assignment, there is no loss of optimality in anyreasonable sense, if we con�ne attention merely to the convex hull of the class fP�g. Nonetheless,this interesting fact does not tell us how to select the weight function w(�) of the mixture Qw. Tothis end, we make a few additional observations.As mentioned earlier, we wish to �nd a probability assignment Q that is independent of theunknown �, and yet guarantees a certain level of excess loss beyond the minimum achievable losshad � been a-priorily known (i.e., the nth order entropy Hn(P�)). Referring again to eq. (6), thissuggests to solve the following minimax problem:infQ sup�2�Dn(P�kQ) = infQ supw Z� dw(�)Dn(P�kQ): (12)The value of this quantity, after normalizing by n, is called the minimax redundancy and denotedby R+n in the literature of universal coding. At �rst glance, this approach might seem somewhatpessimistic because it is a worst case approach. Fortunately enough, in many cases of interest,R+n ! 0 as n ! 1, which means that the minimax Q asymptotically achieves the entropy rate,12



uniformly rapidly in �. Moreover, as we shall see shortly, the minimax approach, in the self-information loss case, is not at all pessimistic even if R+n does not tend to zero. Again, in view ofthe discussion in the previous paragraph, the minimax-optimal Q is a mixture of the sources in theclass.An alternative to the minimax criterion is the maximin criterion, whose de�nition has a strongBayesian avor that gives rise to the mixture approach from a seemingly di�erent point of view.Here is the idea: Since � 2 � is unknown, let us postulate some prior probability density functionw(�) over �. The performance of a given probability assignment Q would be then judged withrespect to the normalized weighted average redundancy Dn(P�jjQ), i.e.,Rn(Q;w) = 1n Z� dw(�)Dn(P�kQ): (13)It is easy to see that for a given w, the Q that minimizes Rn(Q;w) is just Qw de�ned in (7), andthat the resultant average redundancy Rn(Qw; w), is exactly the mutual information Iw(�;Xn)between random variables � and Xn whose joint probability density function is given by �(�; xn) =w(�)P�(xn). But w is arbitrary and the question that again arises is what would be an `appropriate'choice of w? Let us adopt again a worst-case approach and use the \least favorable" prior, thatmaximizes infQRn(Q;w), that is, solve the maximin problemsupw infQ Rn(Q;w); (14)whose value, when normalized by n, is referred to as the maximin redundancy and denoted by R�n .It is important to note that R�n , which is the supremum of Iw(�;Xn)=n over all allowable w's,is given the interpretation of the capacity of the `channel' from � to Xn, de�ned by the class ofsources. In this de�nition, each source P�(xn) is thought of as the conditional probability functionof the `channel output' given the `channel input' �. We will refer to this channel capacity as thecapacity of the class of sources fP�; � 2 �g and will denote it by Cn. Thus, Cn is identical to R�n .These notions of minimax and maximin universality were �rst de�ned by Davisson [27] in thecontext of universal coding (see also [11, 28, 30, 37, 58] and others). Several years after Davisson'spaper [27] it was observed (�rst by Gallager [45], and then independently by Davisson and Leon-Garcia [29], Ryabko [96] and others) that the minimax and the maximin solutions are equivalent,i.e., R+n = R�n = Cn. Furthermore, the mixture Qw�, where w� is the capacity-achieving prior(i.e., Iw�(�;Xn)=n = Cn), is both minimax and maximin optimal. This result is referred to as theredundancy-capacity theorem of universal coding.The capacity Cn, therefore, measures the \richness" of the class of sources. It should be pointedout, though, that Cn is not very sensitive to `distances' among the sources in the class, but rather13



to the e�ective number of essentially distinct sources. For example, the source P1 that generates0's only with probability one is at in�nite divergence-distance from the source P2 that generates 1'sonly. Yet their mixture 12P1 + 12P2 (in the level of n-tuples) is within normalized divergence of 1=nfrom both, and so, the capacity of fP1; P2g is very small. It is a remarkable fact that the theory ofuniversal coding is so intimately related to that of channel capacity. But moreover, the importanceand signi�cance of the redundancy-capacity theorem, are fairly deep also in the broader context ofprobability assignment and prediction.On the face of it, at this point the problem of universal probability assignment, or equivalently,universal prediction under the self-information loss function with respect to an indexed class ofsources, is fairly well addressed. Nonetheless, there are still several important issues to be consid-ered.The �rst concern comes from a practical aspect. Explicit evaluation of the proposed mini-max/maximin probability assignment is not trivial. First of all, the capacity-achieving prior w� ishard to evaluate in general. Furthermore, even when it can be computed explicitly, the correspond-ing mixture Qw� as well as the induced conditional probabilities Qw�(xtjxt�1) might still be hard tocompute. This is in contrast to the plug-in approach, which is relatively easy to implement. Nev-ertheless, we shall return later to the earlier example of the mixtures of Bernoulli sources, or moregenerally, �nite-alphabet memoryless sources, and see that fortunately enough, some satisfactoryapproximations are available.The second technical point has to do with the evaluation of capacity, or at least, its asymp-totic behavior, which is of crucial importance. As mentioned earlier, the capacity measures the\complexity" or \richness" of the class of sources, and Cn ! 0 if and only if uniform redundancyrates are achievable (i.e., strong universality). This means that if the class of sources is too richso that Cn does not vanish as n grows without bound, one can no longer hope for uniformly smallredundancy rates [48, 107]. We shall see examples of this later on.Another problem that calls for attention is that the predictor, or the sequential probabilityassignment mechanism that we are proposing here is not really sequential in the sense that thehorizon n must be prescribed in advance. The reason is that the capacity-achieving prior w�depends on n, in general. A possible remedy (both to this and to the problem of computability)is to seek a �xed prior w, independent of n, that achieves capacity at least asymptotically, i.e.,limn!1 Iw(�;Xn)=(nCn) = 1. This is fortunately possible in some important examples.Finally, we mentioned earlier that the minimax approach is pessimistic in essence, a fact whichseems to be of special concern when R+n = Cn does not tend to zero as n grows. The reason is that14



although Dn(P�jjQw�) � nCn for all �, minimaxity guarantees that the lower boundDn(P�jjQ) � nCn 8Q (15)is valid for one source P� in the class. The maximin point of view tells us further that this holdstrue also in the sense of the weighted average of Dn(P�jjQ) over � with respect to w�. Still, theoptimality of Qw� is on seemingly somewhat weak grounds. Nonetheless, a closer inspection revealsthat the right-hand side of eq. (15) is essentially a lower bound in a much stronger sense which willnow be discussed.A Strong Converse TheoremIt turns out that in the self-information loss case, there is a remarkable `concentration' phe-nomenom: It is shown in [76] thatDn(P�jjQ) � (1� �)nCn 8Q (16)for every � > 0 and for w�-most values of �. Here, the term \w�-most" means that the totalprobability mass of points with this property, with respect to w� (or any asymptotically goodapproximation of w�), tends to unity as n!1. This means that if the right-hand side of eq. (15)is slightly reduced, namely, multiplied by a factor (1 � �), it becomes a lower bound for w�-mostvalues of �. Referring again to the uniform upper bound, this means that w�-most sources in theclass lie near the surface of a `sphere' (in the divergence sense) of radius nCn, centered at Qw� .Considering the fact that we have assumed virtually nothing about the structure of the class ofsources, this is quite a surprising phenomenom. The roots of this are explained and discussed indetail in [76] and [39] in relation to the competitive optimality property of the self-informationfunction [20] (see also [61]).There is a technical concern, however: For a class of �nite-alphabet sources and any �niten, the capacity-achieving prior must be discrete with support of at most An points in � [44, p.96, Corollary 3]. Strictly speaking, the measure w� then ignores all points outside its support,and the term \w�-most sources" is not very meaningful. Again, fortunately enough, in most ofthe important examples, one can �nd a smooth weight function w, which is independent of nand asymptotically achieves capacity. This solves both this di�culty and the horizon-dependencyproblem mentioned earlier. As an alternative remedy, there is another, more general version of thisstrong converse result [39], which allows for an arbitrary weight function w. It tells that Qw isoptimal for w-most points in �. But note that D(P�jjQw) may depend on � for a general w, andso the uniformity property might be lost. 15



The above result is, in fact, a stronger version of the redundancy-capacity theorem as detailedin [76], and it generalizes the well-known strong converse to the universal coding theorem due toRissanen [90] for a smooth paramteric family fP�g whose capacity behaves like Cn � k2n logn,where k is dimension of the parameter vector. Rissanen, in his award-winning paper [90] was the�rst to show such a strong converse theorem that applies to most sources at the same time. Thereader is referred to [76] (see also [39]) for detailed discussion on this theorem and its signi�cancein general, as well as in the perspective of Rissanen's work in particular. Let us now examine a fewexamples in light of these �ndings.ExamplesPerhaps the simplest example is the one where � = f1; 2; :::; Ng, namely, there are N sourcesP1; : : : ; PN in the class, and the weight function w is represented by a vector (w1; :::; wN ) of non-negative numbers summing to one. In this case, the above described `concentration' phenomenonbecomes even sharper [44, Theorem 4.5.1], [45] than in the general case because D(PijjQw�) =nCn for every i for which w�i > 0. In other words, w�-all sources lie exactly on the surface ofthe divergence sphere around Qw� . If the sources fPig are easily distinguishable in the sensethat one can reliably identify which one of the sources generated a given vector Xn, then theredundancy-capacity of the class is nearly logN=n, because the `channel input' i can be `decoded'from the `channel output' Xn with small error probability. In this case, w� tends to be uniformover f1; 2; :::; Ng and the best mixture Qw� is essentially a uniform mixture. If the sources arenot easily distinguishable, then the redundancy-capacity is smaller. This can be thought of as asituation where the `channel' is more `noisy', or alternatively, that the e�ective number of distinctsources is smaller than N . In the extreme case where P1 = P2 = : : : = PN , we have Cn = 0 asexpected, since we have, in fact, only one source in the class.Let us now revisit the Bernoulli example, or more generally, the class of memoryless sources witha given �nite alphabet of size A. This is obviously a parametric class whose natural parameterizationby � is given by the letter probabilities with A � 1 degrees of freedom. As mentioned earlier, w�is discrete in the �nite alphabet case, it depends on the horizon n, and it is di�cult to compute.It turns out that for smooth parametric families with a bounded parameter set �, like the oneconsidered here, there is no much sensitivity to the exact shape of w (used for Qw) as long as itis bounded away from zero across �. In fact, any such `nice' prior essentially achieves the leadingterm of the capacity, which is A�12n log n. Di�erences in performance for di�erent choices of w arereected in higher order terms. Speci�cally, Clarke and Barron [15, 16] have derived a very accurate16



asymptotic formula for the redundancy associated with a mixture w:Dn(P�jjQw) = A� 12 ln n2�e + ln jI(�)j1=2w(�) + o(1) (17)where jI(�)j is the determinant of the Fisher information matrix of fP�g (see also Takeuchi andBarron [111] for extensions to more general exponential families). In the maximin setting, theweighted average of Dn(P�jjQw) is then asymptotically maximized (neglecting the o(1) term) by aprior w that maximizes the second term above, which is well-known as Je�reys' prior [7, 16, 57, 92]wJ(�) = jI(�)j1=2R� jI(�0)j1=2d�0 : (18)In our case, jI(�)j is inversely proportional to the square root of the product of all letter probabilities,qQAi=1 �i. This in turn is a special case of the Dirichlet prior [63], whose general form is proportionalto the product of arbitrary �xed powers of f�ig. Dirichlet mixtures Qw and conditional probabilitiesderived from them have easy closed-form expressions as well. Generalizing the earlier Bernoulliexample to the size-A alphabet parametric family, and using Je�reys' prior, we get the universalprobability assignment QwJ (xt = jjxt�1) = tj + 1=2(t� 1) +A=2 (19)where tj is the number of occurrences of x� = j, 1 � � � t � 1. The uniform prior that leads tothe Laplace estimator discussed earlier, is yet another special case of the Dirichlet prior. It shouldbe noted that Je�reys' prior asymptotically achieves capacity and so, it induces an asymptoticallymaximin probability assignment. Interestingly, as observed in [122], it is not asymptotically mini-max, and it should be slightly modi�ed to obtain minimax optimality. These results extend to moregeneral parametric families under certain regularity conditions detailed in the above cited papers.But the main point to be remembered here is that for parametric classes, the choice of w isnot crucial in terms of performance. This gives rise to the freedom of selecting a prior from im-plementational considerations, i.e., the availability of closed-form expressions for mixtures, namely,conjugate priors [35]. We have just seen the example of the Dirichlet prior in classes of memorylesssources. As another example, consider the case where fP�g is a family of Gaussian memorylesssources with mean � and variance 1. Clearly, Qw with respect to a Gaussian prior w is Gaussianitself in this case. The idea of conjugate priors carries over in a natural manner to more generalexponential families.It should be pointed out that there are other recent extensions [51, 53, 54, 74, 83] of theredundancy-capacity theory to more abstract classes of sources whose capacities are proportionalto k, where the number k is attributed a more general notion of dimensionality that is inducedby the Hellinger distance, the Kullback-Leibler distance, the VC dimension, etc. Other extensions17



to wider classes of sources exhibit di�erent behavior of the redundancy-capacity [25, 123]. Still,the general underlying information-theoretic principle remains the same; the richness of the classis measured by its Shannon capacity. Other examples of classes of sources that are not necessarilyparametric, are given in [76] and [39].3.1.2 General Loss FunctionsIt turns out that satisfactory solutions to the universal prediction problem under the self-informationloss function, may prove useful for more general loss functions. Intuitively, under suitable continu-ity conditions, an optimal predictor with respect to l, based on a good estimator of P�(xtjxt�1),should be close to optimum under the true conditional probability. Generally speaking, since min-imum self-information loss probability assignments are essentially maximum likelihood estimates(cf. Section 2), which are statistically consistent in most situations, this requirement is satis�ed.Speci�cally, in the discrete alphabet case, let P� denote the underlying source and considerthe universal probability assignment Q = Qw� for which Dn(P�kQ) � nCn for all � 2 �. UsingPinsker's inequality (see e.g. [24, Chap. 3, problem 17]) and the concavity of the square rootfunction, we havepCn � r 1nDn(P�jjQ)= vuut 1n nXt=1 Xxt�1 P�(xt�1)Xxt P�(xtjxt�1) log P�(xtjxt�1)Q(xtjxt�1)� vuuut 12 ln 2 � 1n nXt=1 Xxt�1 P�(xt�1)24 Xxt2X jP�(xtjxt�1)�Q(xtjxt�1)j352� 1p2 ln 2 � 1n nXt=1 Xxt�1 P�(xt�1)Xxt jP�(xtjxt�1)�Q(xtjxt�1)j: (20)Now, for a general loss function l, letb�t (xt�1) = argminb E�fl(b;Xt)jXt�1 = xt�1g (21)where E� denotes expectation with respect to P�, andbut (xt�1) = argminb EQfl(b;Xt)jXt�1 = xt�1g; (22)where EQ denotes expectation with respect to Q. Assume that l is non-negative and bounded bysome constant L > 0. Then, by the inequality above, we getE� ( 1n nXt=1 l(but ;Xt))�E� ( 1n nXt=1 l(b�t ;Xt))18



= 1n nXt=1 Xxt�1 P�(xt�1)Xxt P�(xtjxt�1)[l(but ; xt)� l(b�t ; xt)]� 1n nXt=1 Xxt�1 P�(xt�1)Xxt [Q(xtjxt�1) + jP�(xtjxt�1)�Q(xtjxt�1)j][l(but ; xt)� l(b�t ; xt)]� 1n nXt=1 Xxt�1 P�(xt�1)Xxt jP�(xtjxt�1)�Q(xtjxt�1)j[l(but ; xt)� l(b�t ; xt)]� Ln nXt=1 Xxt�1 P�(xt�1)Xxt jP�(xtjxt�1)�Q(xtjxt�1)j� Lp2Cn ln 2: (23)In words, the optimum predictor with respect to the universal probability assignment Qw� is withinLp2Cn ln 2 close to optimum simultaneously for every � 2 �. The important conclusion fromthis result is the following: The existence of universal predictors with uniformly rapidly decayingredundancy rates under the self-information criterion, is a su�cient condition for the existence ofsuch predictors for general loss functions.At this point, two comments are in order: First, the above assumption on boundedness of l canbe weakened. For example, the left-most side of eq. (23), which can be thought of as a generalizeddivergence between P� and Q [75], can often be upper bounded in terms of the variational distancebetween P� and Q. We have adopted, however, the boundedness assumption to simplify the ex-position. The second comment is that the upper bound of eq. (23) might not be tight since thetrue redundancy rate could be faster in certain situations. For example, minimum mean squareerror, �xed order, universal linear predictors [26, 90] have redundancy rates as small as O(log n=n),whereas the above upper bound gives O(plog n=n). The question that arises now is whether wecan provide a more precise characterization of achievable redundancy rates (tight upper and lowerbounds) with respect to general loss functions.A natural way to handle this question is to take the minimax-maximin approach similarly tothe self-information loss case. The minimax predictor fbtg is the one that minimizessup�2�E� ( 1n nXt=1[l(bt; xt)� l(b�t ; xt)]) = supw Z� dw(�)E� ( 1n nXt=1[l(bt; xt)� l(b�t ; xt)]) : (24)Unfortunately, there is no known closed-form expression for the minimax predictor for a generalloss function. Nonetheless, game theoretic arguments tell us that sometimes the minimax problemis equivalent to the maximin problem. Analogously to the self-information loss case, the maximinproblem is de�ned as the supremum ofinffbtg Z� dw(�)E� ( 1n nXt=1[l(bt; xt)� l(b�t ; xt)]) = inffbtgEQw ( 1n nXt=1 l(bt; xt))� Z� dw(�) �Un(P�) (25)19



over all non-negative weight functions w(�) that integrate to unity. In general, the minimax andmaximin problems are well known to be equivalent for convex-concave cost functions [95]. In ourcase, since eq. (25) is always a�ne and hence concave in w, the remaining condition is that theset of allowable predictors is convex, and that E�fPnt=1 l(bt; xt)g is convex in fbtg for every �. Thelatter condition holds, for example, if l(b; x) = jb� xj�, � � 1.The maximin-optimal predictor is clearly the one that minimizes EQwfl(b;Xt)jXt�1 = xt�1gfor the worst case choice of w, i.e., the one that maximizes�Un(Qw)� Z� dw(�) �Un(P�): (26)In general, the maximizing w may not agree with the capacity-achieving prior w� that has beende�ned for the self-information loss case. Nonetheless, similarly as in eq. (22), these minimax-maximin considerations again justify the approach of Bayes-optimal prediction with respect to amixture of fP�g. It should be pointed out that in certain cases (e.g., the parametric case), predictionperformance is not sensitive to the exact choice of w.By de�nition, vanishingly small minimax redundancy rates guarantee uniform convergence tothe Bayes envelope. However, unlike the self-information loss case, for a general loss function, thereis not necessarily a \concentration phenomenon" where w-most points of � lie at nearly the sameredundancy level. For example, in the Bernoulli case with l(b; x) being the Hamming distancebetween b and x [77] there are only two optimal predictors: One predicts always `1' and the otherpredicts always `0', according to whether Prfxt = 1g is smaller or larger than 1=2. Thus, it iseasy to �nd a zero-redundancy predictor for one half of the sources in the class, and hence therecannot be a non-trivial lower bound on the redundancy that applies to most sources. Nevertheless,by using the concept of exponential weighting, in some cases it is possible to derive strong lowerbounds that hold for w-most points in � at the same time.Speci�cally, let us assume that b is an estimate of x, the subtraction operation x � b is well-de�ned, and that the loss function is of the form l(b; x) = �(x � b), where the function �(z) ismonotonically increasing for z > 0, monotonically decreasing for z < 0, and �(0) = 0. We nextderive a lower bound on E�f 1nPnt=1 �(Xt � bt(Xt�1))g, which holds for w�-most points in �, andfor any predictor fbtg that does not depend on �. This will extend the lower bound on universalminimum mean square error prediction of Gaussian ARMA processes given by Rissanen [90].We assume that �(�) is su�ciently \steep" in the sense that R e�s�(z)dz < 1 for every s > 0,and de�ne the log-moment generating function (s) = � log �Z e�s�(z)dz� ; s > 0; (27)20



and �(d) = infs>0[sd�  (s)]; d > 0: (28)The function �(d) can be interpreted as the (di�erential) entropy associated with the probabilityfunction qs(z) = e�s�(z)+ (s), where s is tuned so that Es�(Z) = d, Es being the expectation oper-ation with respect to qs. For a given predictor fbtg, consider the following probability assignmentQ(xn) = Z 10 ds�(s) nYt=1 qs(xt � bt(xt�1)); (29)where �(�) is a locally bounded away from zero \prior" on s. According to [103], � logQ(xn) canbe approximated as follows.� logQ(xn) = n � infs>0[s � 1n nXt=1 �(xt � bt(xt�1))�  (s)] + 12 logn+R(xn)= n � �( 1n nXt=1 �(xt � bt(xt�1))) + 12 log n+R(xn) (30)where R(xn) is a small remainder term. If E�R(Xn) = O(1) for all �, then following the strongconverse of the self-information loss case (16), we have that for w�-most points of �,1nE�f� logQ(Xn)g = E�� 1n nXt=1 �(Xt � bt(Xt�1))!+ logn2n +O( 1n)� Hn(P�)n + (1� �)Cn (31)for every � > 0 and all su�ciently large n. Since �(�) is concave (T), interchanging the orderbetween the expectation operator and the function � would not decrease the expression on theright-hand side of the �rst line of eq. (31), and so,� E� ( 1n nXt=1 �(Xt � bt(Xt�1)))! � Hn(P�)n + (1� �)Cn � log n2n �O( 1n) (32)for every � > 0, n su�ciently large, and w�-most � 2 �. Since � is monotonically non-decreasing,this gives a lower bound on E�f 1nPnt=1 �(Xt � bt(Xt�1))g.The above lower bound is not always tight. Evidently, tightness depends on whether the abovede�ned Q also satis�es the reverse inequality in (31) for some predictor. This in turn is the casewhenever the self-information lower bound is achievable by universal predictive coding, which modelsthe prediction error et = xt� bt(xt�1) as a memoryless process with qs being the marginal for somes > 0. Referring to the case where Cn ! 0, the above bound is non-trivial if �( �U (P�)) = �H(P�),the entropy rate of P�. When this is the case, our lower bound suggests a converse to the previousstatement on conditions for uniform redundancy rates: The existence of universal predictors withuniformly rapidly decaying redundancy rates under the self-information criterion (i.e., Cn ! 0), is21



a necessary condition for the existence of such predictors for general loss functions. In summary,under suitable regularity conditions, there is a uniform redundancy rate for a general l, if and onlyif there is one for the self-information loss function. Furthermore, even if �( �U(P�)) = �H(P�), thereis another requirement for the bound to be non-trivial, which is Cn > log n2n . Indeed, in the Bernoullicase, where it is possible to achieve zero redundancy for half of the sources (as mentioned earlier),Cn � log n2n and the bound becomes meaningless.Let us consider an important example where the above bound is useful. For �(z) = z2, qs is thezero-mean Gaussian density function with variance 1=(2s). Therefore, the log-moment generatingfunction is given by  (s) = 12 ln � s� �, and the di�erential entropy is �(d) = 12 ln(2�ed). Thus, wehave E� ( 1n nXt=1(Xt � bt(Xt�1))2) � 12�e exp�Hn(P�)n + (1� �)Cn � lnn2n �O( 1n)� : (33)If fP�g is the class of Gaussian ARMA(p,q) sources with driving noise of variance �2, thenHn(P�) =12 ln(2�e�2) and Cn � (p+ q + 1) lnn=(2n), and we further obtainE� ( 1n nXt=1(Xt � bt(Xt�1))2) � �2 expf(1� �)(p+ q) lnnn g� �2 �1 + (1� �)(p+ q) lnnn � : (34)This bound has been obtained by Rissanen [90], and it is known to be tight at least in the autore-gressive case [26]. Another example of a class of Gaussian sources is the one where xt = �t + vt,fvtg being zero-mean i.i.d. Gaussian noise with power �2, and � = f�tgt�1 is a deterministic signalwith power, lim supn!1 1nPnt=1 �2t , limited to S and relative bandwidth (normalized by 2�) limitedto 0 �W � 1. Here again, Hn(P�) = 12 ln(2�e�2) for every �, but now Cn = W2 ln(1+ S�2W ) + o(1),the capacity of the band-limited Gaussian channel, which giveslim infn!1 E� ( 1n nXt=1(Xt � bt(Xt�1))2) � �2 exp�(1� �)W ln�1 + S�2W ��= �2 �1 + S�2W �(1��)W : (35)As for achievability of the above bound, recall that the corresponding universal probability as-signment problem is solved by the mixture Qw with respect to the capacity-achieving input whichis Gaussian, and therefore Qw is Gaussian itself. When Qw is in turn factored to a product ofQw(xtjxt�1), each one of these conditional densities is again a Gaussian density, whose exponentdepends only on (xt � bt(xt�1))2, where bt(�) is a linear predictor, and the asymptotic varianceis given by expf 12� R 2�0 ln(F (!) + �2)d!g, F (!) being the power spectral density of the capacity-achieving input process. It can be shown (using techniques similarly as in [41]) that this Bayesianlinear predictor asymptotically attains the above bound.22



Another approach to derivation of lower bounds on performance of universal schemes has beenproposed in the broader context of the multi-armed bandit problem [1, 2, 64, 108]. In this line ofwork, tight upper and lower bounds on redundancy rates have been given for a class of uniformlygood schemes in the sense of adapting to the underlying source. However, these results are con�nedto the case where � is a �nite set.3.2 Very Large Classes of SourcesSo far we have discussed classes of sources where there exists a uniform redundancy rate, which isgiven in terms of the capacity Cn, at least in the self-information loss case. The capacity may ormay not tend to zero as n!1, but even if it does not, the predictive self-information performance,or the compression ratio of the corresponding universal code, Hn(�)=n+Cn, might still be less thanlogA (where A is the alphabet size) for all � 2 �, provided that n is su�ciently large. This meansthat some degree of compression (or non-uniform probability assignment) is still achievable for allsources at the same time, although there is no longer hope to approach the entropy for every �.In this section, we focus on much wider classes of sources where even this property does nolonger exist. These classes are so rich that, in the self-information loss case, for every �niten and every predictive probability assignment Q, there exists a source in the class such thatEf� logQ(Xn)g � n logA � o(n). In other words, there is a total `breakdown' in terms of self-information loss performance, and similar behavior with other loss functions. This happens, forinstance, with the class of all stationary and ergodic sources [56, 106, 107] the class of all �nite-orderMarkov sources (without limiting the order), and many other classes that can be represented as in-�nite unions of nested index sets �1 � �2 � : : :. Nonetheless, universal schemes that approach theentropy rate, or more generally, the asymptotic Bayes envelope, may still exist if we do not insist onuniform redundancy rates. In other words, weakly universal schemes [27] are sometimes available.For example, the Lempel-Ziv algorithm (and hence also the predictive probability assignment thatit induces [65]) is weakly universal over the class of all stationary and ergodic sources with a given�nite alphabet [126]. Necessary and su�cient conditions for the existence of weak universality canbe found in [60].One straightforward observation that we can now make from an analysis similar to that of eq.(23), is that a su�cient condition for the existence of a weakly universal predictor for a general(bounded) loss function, is the existence of such predictor for probability assignment in the self-information case. Thus, the predictive probability assignment with respect to the self-informationloss function is again of crucial importance. In view of this fact, the fundamental problem, in thiscontext, is that of estimating conditional probabilities.23



Cover [18] has raised the question whether it is possible to produce consistent estimates ofconditional probabilities with jbt(Xt = xjXt�1) � P (Xt = xjXt�1)j ! 0 almost surely as t ! 1.Bailey [6] gave a negative answer to this question (see also Ryabko [98, Proposition 3]), but pointedout a positive result (Orenstein [85]) to a similar question. It states that for a two-sided stationarybinary process, it is possible to estimate the value of P (X0 = xjX�1; :::;X�t) strongly consistentlyas t ! 1. The proposed estimates are based on �nite-order Markov approximations where theorder depends on the data itself. A similar estimator for P (Xt = xjXt�1) turns out to converge tothe true value in the L1(P ) sense, which is weaker than the almost sure sense. This estimator hasbeen shown by Bailey [6] to give 1nPt log[P (XtjXt�1)=bt(XtjXt�1)]! 0 almost surely as n!1.Algoet [3] gave an extension of Orenstein's results to more general alphabets, which was latersimpli�ed by Morvai et al. [80]. In a more recent paper Morvai et al. [81] have simpli�ed theestimator (which is based on empirical averages) for the �nite alphabet case, at the expense oflosing the strong consistency property. Their estimator is consistent in the self-information sense,i.e., for every stationary P , limt!1E �log P (X0jX�1;X�2; :::)bt(X0jX�1; :::;X�t)� = 0 (36)which implies consistency in the L1(P ) sense.Another line of research work concentrates on the square-error loss function. Since the minimummean square error predictor for a known source is the conditional mean, bt(xt�1) = EfXtjXt�1 =xt�1g, most of the work in this direction focuses on consistent estimation of the conditional mean.For Gaussian processes with unknown covariance function, Davisson [26] has shown that a kthorder linear predictor, based on empirical covariances gives asymptotic cumulative mean-squareerror that behaves like �2(k)(1 + k lnn=n), where �2(k) is the residual error of optimal kth orderlinear prediction with known covariances. Thus, by letting k grow su�ciently slowly with time,the conditional mean, given the in�nite past, can be eventually attained. For general stationaryprocesses, Scarpellini [102] used sample-averages with certain spacing between time instants inorder to estimate EfXkjX0;X�1; :::g where k > 0 is a �xed time instant. Modha and Masry [79]considered mixing processes and proposed an estimator based on slow increase of the predictionmemory, using complexity regularization methods. The limitation of their method is that it dependson knowledge of the mixing rate. Meir [73] proposed a complexity regularization method in thesame spirit, where for a given complexity, the class of allowable predictors is limited by a �niteVapnik-Chervonenkis (VC) dimension.Finally, for a general loss function l, Algoet [4] (see also [5] for the special case of log-optimuminvestment) has proved strong ergodic theorems on the cumulative loss. First, for a known station-24



ary and ergodic source, it is shown that the strategy that minimizes the conditional mean of l(b;Xt)given the past, is also optimal in the almost sure (and L1) limit of the time-average loss. When Pis unknown, empirical estimates of the conditional probability are provided. By plugging in theseestimates instead of the true P , universal schemes are obtained with the same ergodic property asabove.4 The Deterministic SettingIn the traditional, probabilistic setting of prediction, that was described in the previous section,one assumes that the data are generated by a mechanism that can be characterized in statisticalterms, such as a memoryless source, Markov source, or more generally, an arbitrary stationary andergodic source. As we have seen, the observer estimates on-line either explicitly (plug-in approach)or implicitly (mixture approach) the conditional probability of the next outcome given the past,and then uses this estimate for prediction of future outcomes.But when it comes to the deterministic setting of individual data sequences, the underlyingphilosophy must be substantially di�erent. There is no longer an assumption of an ensembleof sequences generated by an underlying probabilistic mechanism, but rather only one arbitrary,deterministic, individual sequence. What is the best prediction strategy that one can possibly usefor this �xed sequence?We realize that, as stated, this question is completely trivial and meaningless. As explained inthe Introduction, formally, for any sequence, there is a perfect predictor that su�ers zero loss alongthis particular sequence. But at the same time, this particular predictor might be extremely badfor many other sequences. Evidently, we are over-tailoring a predictor to one particular sequence,and there is no hope to track the strategy of this predictor in the sequential regime that is inherentto the task of prediction. The root of this `over�tting' e�ect lies in the fact that we allowed, inthe above discussion, too much freedom in the choice of the predictor. Loosely speaking, so muchfreedom that the amount of information treasured in the choice of this predictor is as large as theamount of information conveyed by the sequence itself! Roughly speaking, in these situations thealgorithm \learns the data by heart" instead of performing the task we expect. The unavoidableconclusion is that we must limit the freedom of the choice of predictors to a certain class. Thislimited class of allowable predictors will be henceforth referred to as the comparison class (or targetclass) and will be denoted by B.We would like to have a single universal predictor b�t that competes with the best predictor inB, simultaneously for every xn, in the sense that n�1Pnt=1 l(b�t ; xt) is asymptotically the same as25



minB n�1Pnt=1 l(bt; xt). The universal predictor need not be necessarily in B but it must be thesame predictor for every xn, whereas the choice of the reference predictor in B, that minimizesthe average loss, may depend (by de�nition) on the entire sequence xn. The di�erence betweenthe performance of the sequential universal predictor and the best predictor in B for xn actuallymanifests our regret, because the choice of this optimal predictor is the best we could have done inretrospect within B had we known the entire sequence in advance.Loosely speaking, there is a fairly strong duality between the probabilistic and the deterministicsetting. While in the former, we make certain assumptions and limitations on the data sequencesthat we are likely to encounter, but no prior limitations on the class of prediction algorithms, in thelatter, it is the other way around. Yet, the deterministic setting is frequently considered stronger andmore appealing, because the underlying model seems to be better connected to practical situations:There is no (known) probabilistic mechanism that generates the data, but on the other hand, ouralgorithmic resources are, after all, limited.Perhaps one of the facts that shed even more light on this duality between the probabilistic andthe deterministic setting, is that quite frequently, the comparison class B is de�ned as a collectionof predictors that are obtained as optimal solutions for a certain class of sources in the parallelprobabilistic setting. For example, �xed predictors, where bt(xt�1) is a constant independently ofxt�1, are optimal for memoryless stationary sources, linear predictors are su�cient for the Gaussiancase, Markov predictors are adequate for Markov processes, and so on. In these cases, there is aremarkable degree of duality and analogy between results obtained in the deterministic settingand those of the corresponding probabilistic setting, notwithstanding the considerable di�erencebetween the two concepts. Speci�cally, many of the results of the individual-sequence setting arecompletely analogous to their probabilistic counterparts, where the probabilistic source is replacedby the empirical measure extracted from the individual sequence with respect to certain su�cientstatistics that are induced by B. Indeed, the structure of this section is similar to that of theprevious section, so as to manifest this analogy. Nonetheless, there are still certain aspects inwhich the two scenarios diverge from each other, as we shall see later on.Similarly as in the previous section, our emphasis here is on the information theoretic point ofview, and as such, it again largely focuses on the self-information loss function.4.1 Indexed Comparison ClassesIn analogy to the indexed class of sources, that was extensively discussed in the previous sectionon the probabilistic setting, there has been considerable attention in the literature to the dualcomparison classes in the deterministic setting. An indexed comparison class of predictors is a26



class B that can be represented as fb�; � 2 �g, where � designates the index and � is the indexset. Similarly as in Subsection 3.1, the index set � could be a �nite set f1; :::; Ng (N - positiveinteger), where N may or may not grow with n, a countably in�nite set, a continuum, e.g., acompact subset of the real-line or a higher dimensional Euclidean space (when � is a parameter ofa smooth parametric class), or some combination of these. As was already noted above, in manycases, b� could be de�ned as the optimum predictor for a certain member P� of an indexed class ofsources (cf. Subsection 3.1).4.1.1 Self-Information LossIn analogy to Section 3, let us consider �rst the self-information loss function, or equivalently, theprobability assignment problem for individual sequences. In other words, our goal is to sequentiallyassign a universal probability mass functionQ(xn) = nYt=1 bt(xtjxt�1) (37)to the observed sequence xn, so that � 1n logQ(xn) would be essentially as small as� 1n logmax� nYt=1 b�(xtjxt�1)for every sequence xn, uniformly if possible.Shtarkov [109] has demonstrated that this is indeed possible by minimizing over Q the quantitymaxxn 1n "� logQ(xn)�  � logmax� nYt=1 b�(xtjxt�1)!# : (38)Speci�cally, the minimax-optimal probability assignment is attained by the normalized maximumlikelihood function Q�n(xn) = 1Kn max� nYt=1 b�(xtjxt�1); (39)where Kn is a normalization factor, i.e.,Kn =Xxn max� nYt=1 b�(xtjxt�1): (40)Indeed, it is readily seen that, by de�nition of Q�n,� 1n logQ�n(xn) = � 1n logmax� nYt=1 b�(xtjxt�1) + 1n logKn; (41)and so, the universal probability function Q�n essentially assigns uniformly as high probabilitiesas those assigned by the best member in the comparison class, provided that Kn does not growexponentially rapidly with n. 27



If, for example, fb�g is the class of �nite-alphabet memoryless probability assignments (i.e.,b�(xtjxt�1) = b�(xt)) with � designating the vector of k = A� 1 free letter probabilities, then it iseasy to show (e.g., by using the method of types [24]) that Kn grows asymptotically in proportionto nk=2 and thus eq. (38) behaves like k2n logn. This in turn is the same behavior that was obtainedfor smooth parametric families in the probabilistic setting.The number �n = n�1 logKn is therefore given the interpretation of the deterministic analogueto the minimax redundancy-capacity Cn, where the maximization of redundancy over � in theprobabilistic setting is now replaced by maximization over all possible sequences xn. Intuitively, �nis another measure for the richness of the comparison class of predictors, in addition to the capacityCn of the probabilistic setting. Moreover, it turns out that there are relations between these twoquantities. To demonstrate this relation between �n and the operational notion of capacity as themaximum reliable transmission rate, we note that when � = f1; :::; Ng, the quantity Kn can beinterpreted as N � Pc where Pc is the probability of correct decision of an N -hypotheses testingproblem involving the sources Pi(xn) = Qnt=1 bi(xtjxt�1), 1 � i � N , that are induced by thepredictors, with a uniform prior on i. This is true becausePc = 1N Xxn maxi Pi(xn) = KnN : (42)This means that if the sources fPig are `far apart' and distinguishable with high probability, thenthe minimax redundancy is essentially logN (compare with the �rst example in Section 3). If � iscountably in�nite or a continuum, then any �nite subset f�i; i = 1; :::; Ng of � gives a lower boundon Kn in the above manner. As N grows, Pc normally decreases, but the product NPc can be keptlarge at least as long as N is smaller than 2nCn so as to `transmit' at a rate below capacity, whichallows for keeping Pc close to unity. But the maximum achievable product NPc might be achievedat rates beyond capacity.It is easy to show directly that �n is never smaller than Cn for the same class of sources orprobability assignments indexed by �. This implies that a necessary condition for the existenceof minimax universality in the deterministic setting is the existence of the parallel property in thedual probabilistic setting. In the smooth parametric case both Cn and �n behave like k2n logn.More precisely, (see, e.g., Rissanen [92])Cn = k2n log n2�e + 1n log Z� jI(�)j1=2d� + o( 1n) (43)whereas �n = k2n log n2� + 1n log Z� jI(�)j1=2d� + o( 1n): (44)28



It turns out, however, that richer indexed classes may exhibit a considerably larger gap betweenthese two quantities (see, e.g., the example of arbitrarily varying sources in [76]).The main drawback of the ML probability assignment Q�n is obviously on the practical side:Not only Q�n is hard to compute in general, but more importantly, it is again horizon-dependent,i.e., the sequence length n must be prescribed. To alleviate this di�culty, the maximum likelihoodmax�Qt bt(xtjxt�1) can be exponentially approximated by a mixture using Laplace integration [67].Speci�cally, for the case of stationary memoryless probability assignments, Shtarkov [109] proposed,following Krichevsky and Tro�mov [63], the Dirichlet-(1=2; :::; 1=2) (Je�reys' prior) mixture, whichleads to the purely sequential probability assignmentbt(xt = ajxt�1) = t(a) + 12(t� 1) + A2 (45)where t(a) is the number of occurrences of the letter a in xt�1. We have mentioned earlier, in Section3, the family of sequential probability assignments that arise from Dirichlet weighting in general.But the interesting property of the Dirichlet-(1=2; :::; 1=2) (in addition to being Je�reys' prior forthis family), is that it is asymptotically as good as the ML probability assignment. Speci�cally,with bt(�jxt�1) de�ned as above,maxxn "� log nYt=1 bt(xtjxt�1)�  � logmax� nYt=1 b�(xtjxt�1)!# � k2 log n+Const+ o(1); (46)where only the constant here is larger than the one obtained by Q�n.Further re�nements and extensions of this result have been recently carried out, e.g., in [92, 121].Speci�cally, Xie and Barron [121] introduce also the dual notion of the maximin redundancy (orregret) whose value coincides with �n as well, and show that Je�reys' mixture is asymptoticallymaximin with asymptotically constant regret for sequences whose empirical pmf's are internal to thesimplex. Similarly as in the probabilistic setting, it is not asymptotically minimax though becauseof problematic sequences on the boundary of the simplex. Nevertheless, a slight modi�cation ofJe�reys' mixture (which again, depends on n and hence makes it again horizon dependent), is bothasymptotically minimax and maximin.Finally, Weinberger, Merhav, and Feder [117] have studied the problem of universal probabilityassignment for individual sequences under the self-information loss function with respect to thecomparison class of all probability assignments that are implementable by �nite-state machineswith a �xed number of states. There are no such accurate formulas therein regarding the higherorder redundancy terms. However, it is shown that the k2 log n behavior is not only minimax overall sequences, but moreover, it is a tight lower bound for most sequences of most types de�ned withrespect to those �nite-state probability assignments. This result parallels the w-almost everywhere29



optimality of universal probability assignments in the probabilistic setting (cf. Section 3). In thiscontext, it is interesting to note, as shown in [117], that in contrast to the probabilistic setting,the plug-in approach fails, in general, when it comes to individual sequences. We will elaborate onthese results further in Section 5 in the context of hierarchical comparison classes.4.1.2 General Loss FunctionsThe problem of universal sequential prediction or decision making for individual sequences undergeneral loss functions, is de�nitely a much wider problem area than that of the special case ofprobability assignment under the self-information loss function that we discussed thus far in thissection. In fact, most of the classical work in this problem area, in various scienti�c disciplines, hasconcentrated primarily on the case of constant predictors, i.e., predictors for which each b� yieldsa certain �xed prediction, regardless of the observed past. For example, b�, for a certain value of�, may suggest to predict always `0' as the next outcome of a binary sequence, or, it may alwaysassign a probability of 0.8 for the next outcome being `1'. This is seemingly not a very interestingcomparison class because past information is entirely ignored.Nonetheless, the motivation for carefully studying this simple comparison class is that it isfundamental for examining comparison classes of more sophisticated predictors. For example, a�rst order Markov predictor, characterized by b�(xtjxt�1) = b�(xtjxt�1), can be thought of (in thebinary case) as a combination of two �xed predictors operating, respectively, on two subsequencesof xn: the one corresponding to all time instants ftg that follow xt�1 = 0, and the other - wherext�1 = 1. Having made this observation, the problem then boils down back to that of constantpredictors.One example, which is still closely related to the self information, is that of portfolio selectionfor optimal investment in the stock market [3, 4, 5, 21]. In this model, the goal is to maximize theasymptotic exponential growth rate of the capital, where the current investment strategy dependson the past. The corresponding loss function, in our framework, is then l(b; x) = � log(bTx),with both b and x being m-dimensional vectors, of nonnegative components, where in the formerthese components sum to unity. The vector x represents the return per monetary unit in severalinvestment opportunities (stocks), whereas the vector b characterizes the fraction of the currentcapital allocated to each stock. Cover [21] and Cover and Ordentlich [22] have used techniquessimilar to those of the self-information loss described above, to develop a sequential investmentalgorithm and related it again to universal coding with results of a similar avor. Again, theiruniversal sequential strategy competes with the best constant investment strategy. These resultscan be viewed as an extension of the self-information loss because the latter is actually a special30



case where the vector x is always all-zero except for one component (corresponding to the currentalphabet letter), which is 1.The sequential compound decision problemOther examples of loss functions are not so closely related to that of the self-information loss,and consequently, the techniques and the results are considerably di�erent. The comparison classof constant strategies for more general loss functions has been studied in a somewhat more generalsetting, referred to as the sequential compound decision problem, which was �rst presented byRobbins [94] and has been thoroughly investigated later by many researchers from disciplines ofmathematical statistics, game theory, and control theory (see, e.g., [8, 9, 49, 50, 112]). Perhapsthe most fundamental �ndings of the compound sequential decision problem are summarized inthe theory of Bayes decision rules, that includes the notion of Bayes envelope (that is, the bestachievable target performance as a functional of the empirical pmf of the sequence) and an analysisof its basic properties. This in turn has been combined with approachability-excludability theory,that provides simple necessary and su�cient conditions under which one player (in our case, thepredictor) of a repeated zero-sum game can reach a certain performance level (in our case, theBayes envelope) for every strategy of the opponent player (in our case, Nature that chooses anadversary sequence xn).The sequential compound decision problem is more general than our setting in the sense thatthe observer is assumed to access only noisy versions of the sequence xn, yet the loss function tobe minimized is still associated with the clean sequence (e.g., the expected cumulative loss, or itsprobabilistic limit with respect to the ensemble of noise processes). Hannan [49] has taken a game-theoretic approach to develop upper bounds on the decay rate on the regret, showing a convergencerate of O(n�1=2) in the �nite-alphabet, �nite-strategy space case, and a rate of O(n�1Pnt=1 t��) inthe continuous case, provided that the loss-minimizing strategy b� as a functional of the underlyingempirical pmf of xn, that is, the Bayes response, satis�es a Lipschitz condition of order � > 0.Thus, for � = 1, which is normally the case, this means a convergence rate of logn=n, similarly tothe self-information loss case that we have seen above.One of the essential ideas underlying the analysis techniques, is the following simple `sandwich'argument (see, e.g., [75]): It is easy to show that minB 1nPnt=1 l(bt; xt), i.e., the Bayesian envelope,is upper and lower bounded by the average loss associated with two strategies. The current strategyfor the upper bound is optimal within B for the data seen thus far xt�1, and for the lower bound,it is an (imagined) strategy that is allowed to access xt for this optimization within B. Thus, thestrategy of the lower bound sees merely one more outcome than that of the upper bound. When31



the comparison class is that of constant strategies, the Bayes envelope depends on the sequenceonly through its empirical pmf, and this additional observation perturbs the current empirical pmfby a term proportional to 1=t. Therefore, under the appropriate smoothness conditions (� = 1above), the instantaneous losses of the upper and lower bound di�er also by a quantity that scalesproportionally to 1=t, which when averaged over the integers 1; :::; n, gives O(logn=n). A-fortiori,the di�erence between the upper bound and the Bayes envelope, i.e., the regret, cannot exceedO(log n=n).In some important special cases, however, the loss function and the Bayes response are dis-continuous. This happens, for example, in prediction of binary sequences under the criterion ofrelative frequency of mispredicted outcomes, where the Bayes response with respect to the classof constant predictors is binary itself and it depends on whether the relative frequency of zeroesis below or above 1=2. In this case, randomization of the sequential prediction strategy aroundthe discontinuity point (see, e.g., [40, 99, 100] is necessary in order to achieve the target perfor-mance for problematic sequences whose empirical pmf's visit in�nitely often (as n ! 1) thesediscontinuity points. The cost of this randomization, however, is a considerable slowdown in therate of convergence towards the Bayes envelope. In the above binary case, for example, the rate ofconvergence is O(1=pn), whereas in the parallel probabilistic setting, where such a randomizationis not needed, (cf. Section 3) it is as fast as O(1=n).Van Ryzin [112] has shown that even in the former case of smooth loss functions, the convergencerate can be more tightly upper bounded by O(n�1 log n=n) under certain regularity conditions onthe channel through which the observer receives the noisy measurements. Gilliland [46] furtherinvestigated convergence rates for the special case of the square loss function l(b; x) = (x � b)2under various sets of assumptions. Several later papers [82, 113] deal with the more general casewhere the comparison class consists of Markov strategies, whose importance will be emphasizedlater on.On-line prediction using expert adviceA completely di�erent point of view has been taken more recently primarily by learning theoristsin their studies of a paradigm referred to as on-line prediction using expert advice (see, e.g., [12,13, 36, 43, 69, 115, 84]). In the previously de�ned terminology, the basic assumption is that thecomparison class consists of �nitely many predictors b1; :::; bN , referred to as experts. There areabsolutely no assumptions on any structure or relationships among these experts. The goal is todevise a sequential universal prediction algorithm that performs essentially as well as the best ofthese experts along every individual sequence. 32



We have actually examined earlier this scenario in the context of the self-information loss func-tion and a �nite index set � = f1; :::; Ng, where our conclusion was that the necessary minimaxprice of universality need not exceed logN=n in the worst case, namely, when the probability as-signments bi correspond to distinguishable sources. Interestingly, this behavior essentially continuesto take place for general (but su�ciently regular) loss functions. Vovk [115] and Littlestone andWarmuth [70] proposed independently a sequential prediction algorithm, whose regret with respectto the best expert never exceeds cl logN , where cl is a constant that depends solely on the lossfunction l. At the heart of this algorithm, there is a remarkable similarity to the mixture approach,or, more concretely, the notion of exponential weighting that was discussed in Section 3 in thespecial case of the self-information loss.Here is the idea: Let � > 0 be a given constant (to be chosen later) and consider the weightedaverage of e��l(bit;xt), i.e., NXi=1wt(i)e��l(bit ;xt) (47)where bit is the prediction of the ith expert at time t, and wt(i) is the weight assigned to thisexpert at this time. The weights, at each time instant, are nonnegative numbers summing to unity.Intuitively, we would like to assign higher weights to experts who were proven better in the past.Therefore, a reasonable thing to do, following eq. (10), is to assign to each expert a weight wt(i)that is proportional to e��Pt�1�=0 l(bi� ;x� ), where for t = 0 the summation will be de�ned as zero (i.e.,uniform initial weighting). Now, if we are fortunate enough that there exists a strategy b such thatfor every x, e��l(b;x) � NXi=1wt(i)e��l(bit;x); (48)then it is easy to see that this strategy will serve our purpose. This is true because the abovecondition suggests the following conceptually simple algorithm:0. Initialization: Set w0(i) = 1=N for 1 � i � N and then t = 1.1. Prediction: Choose a prediction b�t at time t that satis�es eq. (48).2. Update: Upon receiving xt, update the weight function according towt+1(i) = wt(i)e��l(bit;xt)PNj=1wt(j)e��l(bjt ;xt) : (49)3. Iteration: Increment t and go to 1.It follows immediately from the de�nition of the algorithm that the exponent of the cumulative33



loss associated with fb�t g satis�ese��Pnt=1 l(b�t ;xt) � 1N NXi=1 e��Pnt=1 l(bit;xt)� 1N maxi e��PNt=1 l(bit;xt); (50)and so, nXt=1 l(b�t ; xt) � mini nXt=1 l(bit; xt) + 1� lnN: (51)Thus, the crucial question that remains to be addressed is regarding the conditions under which eq.(48) is satis�ed. To put this question in perspective, �rst, observe that for the self-information lossfunction and � = 1, the functions e��Pnt=1 l(bit;xt) are probability measures of n-tuples. Therefore,their weighted average (mixture) is itself a probability measure and as such, can be represented bye��Pnt=1 l(b�t ;xt) for a certain fb�t g, which is the probability assignment corresponding to the �nitemixture. However, in general, the function e��l(�;�) may not be closed to convex combinations.Fortunately, it is shown that under fairly mild regularity conditions (see [52, 115, 116] for details),it is guaranteed that condition (48) holds always provided that � is chosen to be at most 1=cl andthat cl < 1, in which case the regret can be made as small as cl lnN=n. Many of the importantloss functions, like the self-information loss and the square-error loss satisfy these conditions. Forexample, if the function e��l(b;x) is concave (\) in b for every x (which is the case in linear predictionand squared error loss under some conditions [110]), namely,exp "��l( NXi=1wt(i)bit; x)# � NXi=1wt(i)e��l(bit ;x); (52)then it is clear that the weighted average of the experts' predictions will be a suitable solution.Unfortunately, there are also other important loss functions (like the L1 loss function, l(b; x) =jx � bj) for which cl = 1. This means that for these loss functions, the regret does not behavelike O(logN=n), but rather decays in a slower rate with n, e.g., like 1=pn. These cases should behandled separately.What makes this algorithm even more interesting is the fact that it turns out to be minimax-optimal in the sense that cl lnN=n is also an asymptotic lower bound on the maximum regret.Unfortunately, the weak point of this lower bound is that this maximum is taken not only over allsequences fxng, but also over all possible sets of N experts! The algorithm is therefore asymptoti-cally optimal in an extremely pessimistic sense, which is of special concern when N is large. Whatis left to be desired then is a stronger bound that depends on the relationships among the experts.As an extreme example, if all experts are identical then there is in fact only one expert, not N , andwe would expect to obtain zero regret. Intuitively, we would like the formal number of experts N34



to be replaced by some notion of an \e�ective" number of distinct experts, in analogy and as anextension of the role played by capacity Cn or by �n in the self-information loss case. To the best ofour knowledge, to date, there are no reported results of this kind in the literature except for Cesa-Bianchi and Lugosi [14] who characterized the minimax regret along with upper and lower boundsfor binary sequences and the Hamming loss function, but without any constructive algorithm yet.Another drawback is associated with the algorithm itself. To use this algorithm in practice,one should actually implement in parallel the prediction algorithms proposed by all N experts,which might be computationally demanding for large N . This is in contrast to the situation incertain special cases, e.g., when the the experts correspond to all �nite-state machines with agiven number of states [38, 40, 75, 126]. In these cases, there is no explicit implementation of all�nite-state machines in parallel.In spite of these shortcomings, the problem of on-line prediction with expert advice has at-tracted fairly much attention over the last few years and there are quite a few reported extensions,modi�cations, and other variations on the theme (see e.g., [10] for a summary of recent work inon-line learning). One extension that would be especially interesting is to tie it with the settingof the compound sequential decision problem in the sense that the predictor accesses only noisyobservations, whereas the loss function remains in terms of the clean outcomes. Clearly, the aboveweighting algorithm, in its present form, is not directly implementable since there is no perfectfeedback on the loss associated with past expert advice.4.2 Very Large Comparison ClassesWe end this section with a natural analogue to the case of very large classes of sources in the prob-abilistic setting, namely, very large comparison classes of predictors for which there are normallyno uniform redundancy rates.In the general level, consider a nested in�nite sequence of index sets �1 � �2 � : : :, and theirunion � = [k�1�k. Strictly speaking, � is itself an index set, whose members are of the form(k; �), where k is the smallest integer such that � 2 �k. However, the basic property that makes� herein di�erent than the index sets of Subsection 4.1 is that it is so rich, that for every �nitesequence xn, the minimum cumulative loss over all predictors indexed by � is zero. In other words,there is too much freedom within �, and we are confronting again the undesirable over�tting e�ectdiscussed earlier. This happens in many important examples, e.g., when � consists of the class ofall �nite-state predictors with an undetermined (but �nite) number of states, or the class of allMarkov predictors, or even more speci�cally, all linear predictors with an unspeci�ed �nite order,etc. Quite clearly, in all these situations, there are enough degrees of freedom to tailor a perfect35



predictor for any �nite sequence xn, and thus, our earlier de�nition (cf. Subsection 4.1) of the targetperformance min�Pt l(bt; xt) becomes meaningless.We are lead then to the conclusion that we must modify the de�nition of the target performance.The key principle for doing this is to keep an asymptotic regime of n >> k. To �x ideas, consideran in�nite sequence x = (x1; x2; :::), where xn always designates the �rst n outcomes of x. First,similarly as in Subsection 4.1, let us de�neuk(xn) = min�k 1n nXt=1 l(bt; xt); (53)where it is assumed that each �k is an index set of the type discussed in Subsection 4.1. As forasymptotics, we let �rst n grow without bound, and de�neuk(x) = lim supn!1 uk(xn); (54)where the lim sup operation manifests a worst case approach: Since the sequence x is not necessarilyergodic, i.e., the limit may not exist, one must worry about the worst performance level obtainedin�nitely often along x. Finally, we de�ne our target performance asu(x) = limk!1uk(x); (55)where now the limit clearly exists since fuk(x)gk�1 is a monotonically non-increasing sequencewhose elements are obtained from minimizations over increasing sets of predictors. Since the limitn ! 1 is taken �rst, the asymptotic regime here indeed meets the above mentioned require-ment that n >> k. The problem is now to devise a universal prediction algorithm fb�t gt�1 thatasymptotically achieves u(x).One of the most popular applications of this general scenario is the one where � consists of allstrategies that are implementable by �nite-state machines, which means that each �S , S = 1; 2; :::,corresponds to the class of �nite-state machines with no more than S states. Speci�cally, eachmember of �S is de�ned by two functions f and g. The function g, referred to as the next-statefunction, describes the evolution of the state of the machine, st 2 f1; :::; kg, according to therecursion st = g(xt�1; st�1); t = 1; 2; ::: (56)where the initial state s0 is �xed. The function f describes the strategy bt at time t, which dependsonly on st by bt = f(st): (57)The idea behind this model is that the state variable st represents the limited information that themachine can `memorize' from the past xt�1 for the purpose of choosing the current strategy. An36



important special case of a �nite-state machine with S = Ak states is that of a k-th order Markovmachine (also called �nite-memory machine), where st = (xt�k; :::; xt�1).Ziv and Lempel described, in their famous paper [126], a target performance in this spirit in thecontext of data compression of individual sequences using �nite-state machines. The best lim supcompression ratio obtained by �nite-state encoders over in�nitely long individual sequences (in theabove de�ned sense) has been referred to as the �nite-state compressibility of x, and the well-knownLempel-Ziv algorithm (LZ `78) has been shown to achieve the �nite-state compressibility for everysequence. In a later paper [127], Ziv and Lempel extended this de�nition to compression of twodimensional arrays (images), where the additional ingredient is in de�ning also a scanning strategy.In [38], results of the same spirit have been obtained for sequential gambling over individualsequences, where again the comparison class is that of gambling strategies that are implementableby �nite-state machines. Since the gambling problem is completely analogous to that of datacompression, or more precisely, probability assignment under the self-information loss function (seealso [117] discussed in Subsection 4.1) the results therein are largely similar to those of Ziv andLempel [126]. The formal setting of [38], however, is somewhat more compliant than [126] to ourgeneral de�nition of cumulative loss minimization, where each loss term depends on one outcomext only.The results of [38] in turn provided the trigger to a later work [40], where the comparisonclass of �nite-state predictors for binary sequences was studied under the Hamming loss function,de�ned as l(b; x) = 0 if x = b, and l(b; x) = 1 otherwise. In other words, in this case, bt = f(st)is simply an estimate of the value of the next outcome xt, and the performance measure is therelative frequency of prediction errors. Analogously to [126], the quantity u(x), in this special case,is called the �nite-state predictability of x. Similarly, when �k is further con�ned to the class of kthorder Markov predictors, then the correspondingly de�ned u(x) is called the Markov predictabilityof x. There are two main conclusions pointed out in [40].The �rst is that the �nite-state predictability and the Markov predictability are always equiva-lent, which means that it is su�cient to con�ne attention to Markov predictors in order to achievethe �nite-state predictability. It is worthwhile to note that in the probabilistic setting, such a resultwould have been expected under certain mixing conditions because the e�ect of the remote pastfades away as time evolves, and only the immediate past (that is stored as the state of a Markovpredictor) should be essential. Yet, when it comes to individual sequences this �nding is not atall trivial since the sequence is arbitrary and there is no parallel assumption on mixing or fadingmemory. The proof of this result stems from pure information-theoretic considerations.The second conclusion, which is largely based on the �rst one, is on the algorithmic side. It37



turns out that a prediction strategy that corresponds to probability assignments based on theincremental parsing procedure of the LZ algorithm (see also [65, 114]) asymptotically achieves the�nite-state predictability. The incremental parsing procedure sequentially parses a sequence intodistinct phrases, where each new phrase is the shortest string that is not identical to any previouslyparsed phrase. The reason is that the incremental parsing procedure works like a Markov predictorof time-varying order k(t), where in the long run, k(t) is very large most of the time because thephrases become longer and longer. Consequently, the Markov predictability, and hence also the�nite-state predictability, are eventually attained. But the deep point here lies in the simple fact,that the incremental parsing algorithm, which was originally developed as a building block of acompression algorithm, serves also as the engine of a probability assignment mechanism, which isuseful for prediction.This gives rise to the idea that this probability assignment induces a universal probabilitymeasure in the context of individual sequences. Loosely speaking, it means that the universalprobability measure is proportional to 2�LZ(xn), where LZ(xn) is the LZ codeword length for xn[38, 65]. This in turn can be thought of as an extension of Shtarkov's ML probability assignmentbecause 2�LZ(xn) is well-known [87] to be an upper bound (within vanishingly small terms) ofmaxP P (xn), where the maximum is taken over all �nite-state sources with a �xed number ofstates.The problem of [40] was later extended [75] in several directions simultaneously: The alphabetof xn and the loss function were assumed to be more general. Also, classes of predictors other thanthat of deterministic �nite-state predictors were considered, e.g., randomized �nite-state predictors(where the next-state function is randomized), families of linear predictors, etc. Many of the resultsof [40] turn out to carry over to this more general case.Finally, one additional result of [75, Theorem 3] (see, also [126]) relates the individual-sequencesetting back to the probabilistic setting. It tells us that under suitable regularity conditions,for a stationary and ergodic process :::;X�1;X0;X1; :::, the quantity u(X1;X2; :::), de�ned withrespect to �nite-state or Markov predictors, agrees almost surely with the probabilistic performancemeasure infbEfl(b;X0)jX�1;X�2; :::g. One special case of this result [126] is that the �nite-statecompressibility is almost surely equal to the entropy rate of a stationary and ergodic source. Anotherimportant example corresponds to the case where �k is the class of all linear predictors of orderk, and hence u(x) is the linear predictability. In the stationary and ergodic case, the above citedresult suggests that with probability one, u(X1;X2; :::) coincides with the variance of the innovationprocess (that is, the residual linear prediction error) given by �2 = exp h 12� R 2�0 lnS(ej!)d!i, whereS(ej!) is the power spectral density of the process.38



While the duality between certain classes of sources and the corresponding classes of predictorswas quite straightforward in relatively small indexed (parametric) classes, the above result estab-lishes a parallel duality between the very large class of stationary and ergodic sources and the verylarge class of �nite-state predictors or Markov predictors.5 Hierarchical UniversalitySo far we have focused on two substantially di�erent situations of universal prediction, both ofwhich take place in the probabilistic setting as well as in the deterministic setting: Universality withrespect to an indexed class, 1 which is relatively `small', as opposed to universality with respect toa very large class, where no uniform redundancy rates exist. These two extreme situations reectthe interplay between two conicting goals, namely, fast decay of redundancy rates on the onehand, and universality with respect to classes as wide and general as possible, on the other. Forexample, the Lempel-Ziv algorithm for data compression (or for predictive probability assignment)is universal for all stationary and ergodic sources, but when a memoryless source is encountered,this algorithm gives a redundancy rate that might be much slower than that of a universal schemewhich is tailored to the class of memoryless sources, see [71, 87, 101].Our basic assumption throughout this section, is that the large class � of sources (in the proba-bilistic setting) or predictors (in the deterministic setting) can be represented as a countable unionof a sequence of index sets f�kgk�1, which may, but not necessarily, have a certain structure, suchas nestedness �1 � �2 � : : :. In the probabilistic setting, perhaps the �rst example that natu-rally comes into one's mind is where each �k is the class of discrete kth order Markov sources,and hence the union � is the large class of all �nite-order Markov sources. Furthermore, in the�nite-alphabet case, if we slightly extend this class and take its `closure' with respect to the in-formation divergence `distance' measure, it would include the class of all stationary sources. Thisis because every stationary source can be approximated, in the divergence sense, by a sequence ofMarkov sources of growing order [44, Theorem 3.5.1, p. 57], [47, Theorem 2.6.2, p. 52]. A few otherexamples of hierarchical probabilistic models are the following: (i) Finite state sources with deter-ministic/randomized next-state functions, (ii) tree sources (FSMX), (iii) noisy versions of signalsthat are representable by countable families of basis functions, (iv) arbitrarily varying sources [76],(v) sources with countable alphabets (referred to as sequences of classes of growing alphabets) and(vi) piecewise stationary memoryless sources. Most of these examples have dual comparison classesin the deterministic setting.1Since this refers to both the probabilistic and the deterministic setting, the term \class" here corresponds bothto a class of sources in the probabilistic setting, and a comparison class of predictors in the deterministic setting.39



In view of the discussion in the above two paragraphs, a natural question that arises, at thispoint, is the following: Can one devise a universal predictor that enjoys both the bene�ts of asmall indexed class and a large class? In other words, we would like to have, if possible, a universalpredictor with respect to the large class, but with the additional property that it also performsessentially as well as the best universal predictor within every given indexed subclass �k of �. Inthe probabilistic setting, this means that if we are so fortunate that the source happens to be amember of a relatively small indexed class (e.g., a memoryless source), then the redundancy, or theregret, would be essentially the same as that of the best universal predictor for this smaller class. Inthe analog deterministic setting, we would like the universal predictor of this large class to behavesimilarly as the best universal predictor within a certain indexed comparison subclass. Note thatthe above question is meaningful even if � is merely a �nite (rather than a countably in�nite) unionof f�kgk�1. The reason is that the uniform redundancy rate of �, that is, the redundancy-capacity,denoted by Cn(�) in the self-information loss case, might still be larger than that of any subset,Cn(�k). Therefore, even in this case, treating � just as one big class, might not be the best thingto do.In the probabilistic setting, Ryabko [97] was the �rst to address this interesting question forthe above described nested sequence of classes of Markov sources, and for the self-information loss(universal coding). Generally speaking, Ryabko's idea is to apply the following conceptually simpletwo-part code, referred to as a twice-universal code. The �rst part of the code is a codeword foran integer i whose length is L(i) = log i+O(log log i), and the second part is a universal code withrespect to �i, where i is chosen so as to minimize the total codeword length. Clearly, this codeattains redundancy of mini [Cn(�i) + L(i)=n]; (58)which obviously never exceeds Cn(�k) +L(k)=n for the true value of k. Since Cn(�k) behaves likeO(log n=n) in the Markov case, the additional O(1=n) term does not a�ect the rate of convergencewithin each �k. Thus, although there cannot be uniform redundancy rates simultaneously over theentire class of Markov sources � there is still asymptotically optimal behavior within every �k.An alternative to this two-part code, which cannot be transformed easily into a predictionscheme, is the mixture approach. Speci�cally, for the problem of prediction with self-informationloss, the suggested solution is based on a probability assignment formed by two-stage mixture,�rst within each �k, and then over the integers k = 1; 2; : : : [98]. The �rst observation is that themixture approach, with appropriately chosen weight functions, is no worse than the above two-partscheme. To see this, let us assume that fL(i)gi�1 satisfy Kraft's inequality with equality (otherwise40



they can be improved), and consider the two-stage mixtureQ(xn) =Xi�1 2�L(i) Z� dw�i (�)P�(xn) =Xi�1 2�L(i)Qw�i (xn) (59)where w�i is the capacity-achieving prior of �i. Then,� logQ(xn) � � log �maxi�1 �2�L(i)Qw�i (xn)��= mini�1 [� logQw�i (xn) + L(i)]; (60)where the left-most side corresponds to the performance of the mixture approach and the right-most side corresponds to the performance of the two-part scheme with an optimum mixture withineach class. The message here is that for every individual sequence, the mixture approach is noworse than the two-part approach. In [117] this point is further explored and developed for severalexamples of hierarchical classes (�nite-state machines and others) in view of the fact that the �rstterm of the right-most side above is also a lower bound for `most' sequences in a fairly strong sense(cf. Section 3). Of course, the last chain of inequalities continues to hold after taking expectationsin the probabilistic setting.It turns out though, that in the probabilistic setting the mixture approach is not only noworse than the two-part approach, but moreover, it is an optimal approach in a much sharperand deeper sense. As an extension to the result of w-almost everywhere optimality of Qw (cf.Section 2), the following holds for hierarchies of classes [39, Theorem 3]: The two-stage mixturewith arbitrary weight functions fwi(�)gi�1 within the classes, and � = f�igi�1, �i = 2�L(i), overthe positive integers, simultaneously minimizes in essence redundancy for wi-most points in �i of�-most classes f�ig. If, in addition, wi = w�i is the capacity-achieving prior for all i, then thisminimum redundancy can be decomposed into a sum of two terms, the �rst of which is Cn(�k),the capacity within the underlying class �k, and the second is an extra redundancy term thatreects the additional cost of universality with respect to the unknown k. The latter term is alwaysupper bounded by 1n log 1=�k = L(k)=n. However, if we further assume that the classes are \easilydistinguishable" in the sense that there exists a good (model order) estimator for k with smallaverage error probability [39, Theorem 4], then L(k)=n is an asymptotically tight bound. Thismeans that in the case of distinguishable classes, Cn(�k) +L(k)=n is optimal performance even inthe level of the higher order term L(k)=n, which might be considerably larger for large k. However,if the classes are not easily distinguishable, the mixture approach yields a smaller second orderredundancy term whereas the two-part coding approach continues to give L(k)=n. Some guidelinesregarding the choice of � (or, equivalently, fL(i)g) are given in [39]. It should be noted that for anymonotone non-increasing sequence of probabilities, �i � 1=i for all i, namely, L(i) � log i, and so41



Cn(�k) + (log k)=n is optimum redundancy in the distinguishable case, as it can be asymptoticallyattained by a universal code for the integers.From the viewpoint of sequential predictive probability assignment, however, both the two-partmethod and the method of mixtures are not directly implementable because in the former, theminimizing i depends on the entire xn, and in the latter, fw�i g may depend on n. A possiblealternative to the non-sequential minimization over i, could be on-line estimation of i and plug-in. An algorithm in the spirit has been proposed by Weinberger, Rissanen, and Feder [118] forhierarchies of tree sources in the probabilistic setting, where the estimator of i (which is associatedthe context, in this case) was based on algorithm Context. Fortunately, the probability of errorin estimating i decays su�ciently rapidly, so as to leave the leading redundancy term una�ected.In the deterministic setting, however, it can be shown [117] that the method based on the plug-inestimate of i does not work, i.e., there are sequences for which the resulting \redundancy" is higherthan achieved when the class �i is known in advance.The mixture approach, however, is useful in both the probabilistic setting and the deterministicsetting, giving us yet another reason to prefer it. To overcome the problem mentioned above,namely, the fact that the weights of the mixture over the index i depend on the horizon, we use�xed weight functions. Fortunately, as mentioned in Section 2, in many cases w�i are replaceableby mixture weights that do not depend on n and yet asymptotically achieve capacity.At this point it is necessary to address a major practical concern: Is it computationally feasi-ble to implement the two-stage mixture probability assignment? More speci�cally, we have seen(Sections 3,4) that in some important examples the mixture within a single indexed class is eas-ily implementable, but is it still reasonably easy to implement the second stage mixture among(possibly in�nitely) many classes. Unfortunately, there is no positive answer to this question inthe general level. Nonetheless, Willems, Shtarkov and Tjalkens, in their award-winning paper [120]provided a positive answer to this question for �nite hierarchies of classes of tree sources, using ane�cient recursive method, referred to as context-tree weighting. Their method is optimal for everyindividual sequence in the sense of eq. (60). For hierarchies of countably in�nitely many classes,however, the implementation issue is still unresolved. In [117] several examples are demonstratedwhere the countably in�nite mixture over i actually collapses to a �nite one. This happens becausethe contributions of mixtures corresponding to all i beyond a certain threshold i0 turn out to beidentical and then can be merged with the combined weight Pi�i0 �i. The problem is, though, thati0 normally grows with n, and so, the computational burden of computing i0 mixtures at everytime instant, becomes explosively large as time elapses.So far, we have discussed hierarchical universal prediction solely under the self-information loss42



function. What can be said about other loss functions? Apparently, we can deduce from theself-information loss function to other loss functions in the same way that this has been done inSections 3 and 4. Beyond that, we are not aware of much reported work on this topic. We willmention only two directions that have been pursued explicitly. The �rst one is by Helmbold andSchapire [55], who have combined the exponential weighting mechanism of on-line prediction usingexpert advice [115] (with respect to the absolute error loss function) together with the context-treeweighting algorithm of Willems, Shtarkov, and Tjalkens [120] for competing with the best pruningof a decision tree.Other recent work is in hierarchical linear prediction for individual sequences under the squareerror loss function [41, 110]. In these papers, the linear prediction problem is transformed into aGaussian sequential probability assignment problem. The universal assignment is obtained by atwo-stage mixture, over the linear prediction coe�cients and over the model order. For the mixtureover the parameters, a Gaussian prior is used, and the mixture can be evaluated analytically. Theprobability assignment attained by the mixture does not correspond directly to a universal predic-tor, but fortunately, such correspondence can be made for a certain range of values of the predictedsequence. Thus, by a proper choice of prior, the predictor can be scaled to any �nite range of thesequence values. In addition, the mixture over the model order is performed in a computationallye�cient way, since using lattice �lters, all possible linear predictors with model order up to somelargest order M can be weighted in an e�cient recursive procedure whose complexity is not largerthan that for a conventional linear predictor of the model order M . It was also noted, following[75], that a plug-in estimator of the parameter (resulting from the RLS algorithm) leads to uni-versal prediction albeit at a slower rate than the mixture approach. The resulting universal linearpredictor has been implemented and tested experimentally in several practical communication andsignal processing problems [110].6 Conclusion and Future DirectionsIn this paper, an attempt has been made to provide an overview on the current state-of-the-art inthe problem area of universal prediction. As explained in the Introduction, it is de�nitely not, andnot meant to be, a full encyclopedic survey of all scienti�c work that has ever been done on thistopic. The aim was to mention several important concepts from the authors' point of view. Let ussummarize some of these concepts very briey.We have seen that the problem of universal prediction has been studied extensively both inthe probabilistic and the deterministic setting. There are many common features shared by these43



two settings. First of all, in both of them the self-information loss case plays a central role, whichstems from several facts. (i) It is an important loss function on its own right for reasons that wereexplained in the Section 2. One of the main reasons is that we view the prediction problem as oneof probability assignment, and as such, the self-information loss function arises in a very naturalmanner. (ii) In the self-information loss case the theory is fairly mature and well understood, and(iii) Results (both lower bounds and algorithms) for other loss functions can be obtained from theself-information loss function. The second common feature of the probabilistic and the deterministicsettings is in the large degree of parallelism between the theories of universal prediction: universalitywith respect to small indexed classes, universality with respect to very large classes, and hierarchicaluniversality, which actually bridges them. There is also a remarkable degree of analogy between thequantitative results obtained in both settings in some cases. One of the fundamental connections isthat for stationary and ergodic sequences, the best attainable performance level of the deterministicde�nition agrees almost surely with its probabilistic counterpart.However, there are a few di�erences as well: Sometimes minimax redundancy rates of thedeterministic setting are di�erent from those of the probabilistic setting. The plug-in approachfor predictive probability assignment works well in many instances of the probabilistic setting, butit is normally not a good approach in the deterministic setting. The minimax redundancy of thedeterministic setting is di�erent from that of the probabilistic setting. Randomization is sometimesnecessary in the deterministic setting, but not in the probabilistic setting.Perhaps one of the interesting messages is that although the term \probability assignment"originally comes from the probabilistic world, it is still meaningful in the pure deterministic settingas well. This fact is far from being trivial. Moreover, there are very e�cient algorithmic tools forobtaining good probability assignments, and one of them is the incremental parsing procedure ofthe Lempel-Ziv algorithm.We also see a few more theoretical problems which might be interesting to consider for futureresearch. Some of them have been mentioned in the body of the paper:� Develop a more solid and general theory of universal prediction for general loss functions, inparallel and extension of the theory of the self-information loss function. Derive tighter andstronger lower bounds for general loss functions both in the probabilistic setting and in thedeterministic setting. For example, in the framework of prediction using expert advice, takeinto account relations among the experts rather than assuming the worst set of experts.� Extend results on universal prediction with respect to the comparison class of �nite-statemachines to the case noisy observations. 44
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