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1 IntroductionIn the classical Shannon-theoretic approach to cryptology [10], the security of cipher systemsis traditionally measured in terms of the equivocation, that is, the conditional entropy ofthe plaintext (or the key) given the cryptogram. As is well known (see, e.g., [8]), thisconditional entropy can be at most as large as the rate of the purely random key stream.Thus, perfect theoretical secrecy is attainable if and only if the key rate is at least as largeas the message rate. This pessimistic result has stimulated Shannon to establish also thenotion of practical secrecy, which is measured by the average amount of work required tobreak the key given a certain amount of ciphertext. Di�e and Hellman [5] were the �rstto show that practical secrecy (or computational security in their terminology) is possiblewithout any transfer of secret key between the sender and the legitimate receiver. Thenotion of computational security relies on the fact that certain computational tasks (suchas factoring, or taking discrete logarithms of very large numbers) are considered di�cultbecause there are no available procedures of performing them within reasonable amount ofcomputation time.Ever since these two pioneering papers of Shannon [10] and Di�e and Hellman [5] havebeen published, there has been a vast amount of research work on both theoretical andpractical aspects of cryptography, which has been summarized in several excellent tutorialpapers (see, e.g., [7], [8], [11]). The universal assumption in most of these works is that,regardless of the computational resources that the enemy may have, s/he has exactly onechance to estimate the plaintext message or the key based on cryptogram (and perhaps alsoother side information that might be available). Success or failure are then determined bysome measure of quality of this estimator, such as the probability of error or the distortion.The rationale behind this assumption is that in certain instances of the secure communica-tions problem, the enemy may not have the chance to verify whether the estimated messageis correct and to improve it if not.But in other instances of the problem, the enemy eavesdropper might have a testingmechanism by which s/he can know whether his estimate was correct, and then morechances to guess the message in case of failure. For example, the enemy may wish to break anencrypted version of a secret personal veri�cation information and/or an encrypted passwordinto a computer account, or a bank account contacted via the Internet, or any other classi�ed2



database that consists of sensitive information. Here it is clear that upon the �rst successfulestimate, or guess, the system becomes accessible and hence the above mentioned testingmechanism naturally exists. In such cases, the enemy has the option to sequentially submitmultiple estimates, or guesses, where at each trial, the fact that all previous guesses havefailed, serves as an additional side information for the next guess. The work of Hellman[6] can be considered as one step in this direction of multiple guessing. Hellman proposedto measure the degree of security of a cryptosystem in terms of the expected number ofspurious messages, i.e., the expected number of plaintext-key combinations that may explainthe given cryptogram. The assumption in [6] is that the number of meaningful messagesof a given length N within the language of the source, is very small compared to the totalnumber of possible N -vectors.In this paper, we aim at characterizing more directly the best attainable moments ofthe number of guesses that the eavesdropper may have to submit before success. To thisend, the Shannon theory of cipher systems is combined with recent work on guessing valuesof random variables [1], [2]. Assuming that the generation of each guess demands a certainamount of computational burden on the wiretapper's part, this gives an alternative notionof computational security.We consider Shannon's model of a secrecy system [10], where a messageX = (X1; : : : ;XN )is to be communicated as securely as possible from a transmitter to a legitimate receiver.The transmitter and receiver have access to a common key string of K purely randombits U = (U1; : : : ; UK) that is independent of X. The transmitter generates a cryptogramY = fN(X;U) and sends it over a public channel to the receiver. The cryptogram Y isa string (possibly, of variable length) over an alphabet that is not necessarily the same asthe source alphabet. The encryption function is invertible given the key in the sense thatthere exists an inverse, decryption function X = f�1N (Y;U) to be used by the legitimatereceiver who observes both Y and U. An enemy wiretapper, who knows the encryptionfunction fN (and hence also the decryption function f�1N ) and the statistics of the plaintextsource, but not the key itself, aims at decrypting X from the observed cryptogram Y only.The wiretapper has a test mechanism by which s/he can identify whether any given candi-date message X̂ is the true message. Given the encryption function fN and the probabilitymass function of the plaintext messages P (X), the posterior probabilities of all hypothe-sized plaintexts given the cryptogram, P (XjY), are all completely determined. Then, it3



is clear that the best guessing strategy (in any reasonable sense) is to �rst guess the mostlikely X given Y, then try the second most likely guess, and so on, until eventually, thecorrect message is found. For a given sequential guessing strategy, i.e., an ordered list ofguesses GN = fx̂1(y); x̂2(y); :::g for any given y, let the random variable GN (XjY) denotethe number of guesses of the wiretapper until identi�cation of the true message X. In otherwords, GN(XjY) is the smallest integer i such that x̂i(Y) = X. The degree of security cannow be measured by the expected number of guesses EfGN (XjY)g, or more generally, byarbitrary positive moments EfGN (XjY)�g, � > 0.The goal is to investigate performance limits of such sequentially guessing wiretappers.For a memoryless plaintext source, we study the highest asymptotic exponential growthrate of the moment EfGN (XjY)�g, as N ! 1, attainable by the encrypter for a givenkey-rate K=N ! R. This exponential growth rate of EfGN (XjY)�g, as a function of Rand �, is henceforth referred to as the guessing exponent function.More precisely, let f1; f2; ::: denote a sequence of encryption functions, for N = 1; 2; :::,to be chosen by the encrypter. Since the wiretapper is assumed to know the encryptionfunction fN for every N and the plaintext message source P , we assume that the guessingwiretapper would always employ the best guessing strategy for fN and P , that is, orderguesses according to descending posterior probabilities as explained above. Under thisassumption, we de�ne E�(R; �) = lim infN!1 supfN 1N logEfGN (XjY)�g; (1)and E+(R; �) = lim supN!1 supfN 1N logEfGN (XjY)�g; (2)where both limits are taken under the regime limN!1K=N = R. Our main result is thatE+(R; �) and E�(R; �) are equal (i.e., the lim inf and lim sup are in fact limits) and bothare given by the single-letter expressionE(R; �) 4= maxQ [�h(Q;R)�D(QjjP )]; (3)where h(Q;R) 4= minfH(Q); Rg, P is the memoryless source that governs the plaintextmessage, H(Q) is the entropy associated with a memoryless source Q, and D(QjjP ) is theinformation divergence between Q and P . Moreover, E(R; �) is attainable by encryptionand guessing strategies that are universal in the sense of being independent of P and �.4



We also investigate the guessing exponent function E(R; �) and examine its behavior asa function of R for �xed �. This study reveals that E(R; �) exhibits di�erent behavior inthree di�erent regions. For rates smaller than the entropy of the source H(P ), the guessingexponent grows linearly as E(R; �) = �R, which means that the key space is su�cientlysmall that exhaustive search over all 2K = 2NR possible key strings is the best thing to do,regardless of the statistics of the message source. On the other extreme, for key rates beyonda certain threshold that is larger than H(P ), the amount of randomness introduced by thekey is so large that the cryptogram becomes virtually useless for the purpose of guessing. Inthis case, the wiretapper may ignore the cryptogram altogether and submit `blind' guessesthat are based only upon prior knowledge of P . The value of E(R; �) coincides, in thisrange, with the guessing exponent without side information [1]. The threshold rate beyondwhich E(R; �) exhibits this plateau behavior is given by the entropy H(P�) of an auxiliarymemoryless source P� whose letter probabilities are proportional to those of the originalsource P , raised to the power of 1=(1+�). SinceH(P�) is never smaller, and normally strictlylarger, than H(P ), this is a rather unexpected result. The reason is that, as mentionedearlier, R = H(P ) is well known to su�ce for perfect secrecy in the traditional Shannon-theoretic sense. The explanation for this more demanding requirement on the key rate,lies in the fact that guessing performance is determined by the large deviations (atypical)behavior of the source, whereas the more familiar equivocation criterion has to do with thetypical behavior. For key-rates in the intermediate range H(P ) < R < H(P�), it turns outthat optimal guessing should target both the key and message statistics simultaneously. Wedescribe such a guessing strategy and give an explicit expression for E(R; �) for this rangeof key-rates as well.Finally, we relate the guessing exponent E(R; �) to the best attainable large deviationsperformance de�ned as the probability of the event GN(XjY) � 2NL (L positive constant)as a function of L and R. It is shown that the exponential rate of this probability as afunction of L for �xed R, is the Fenchel-Legendre transform of E(R; �) as function of �.The outline of the paper is as follows. In the next section, we de�ne the notationand give some de�nitions. In Section 3, we give a single-letter characterization of theguessing exponent function and in Section 4, we investigate this function. In Section 5, wecharacterize the attainable large deviations performance of the guessing wiretapper, andshow that the corresponding rate function is related to the guessing exponent function via5



the Fenchel-Legendre transform. Finally, in Section 6, we summarize the results and statesome open problems.2 De�nitions and Notation ConventionsThroughout the paper, scalar random variables will be denoted by capital letters while theirsample values will be denoted by the respective lower case letters. A similar convention willapply to random vectors and their sample values, which will be denoted by boldface letters.Thus, for example, if X denotes a random vector (X1; :::;XN ), then x = (x1; :::; xN ) woulddesignate a speci�c realization of X.The plaintext message will be assumed to be drawn from a discrete memoryless source(DMS) with a �nite alphabet X and probability mass function (PMF) P = fP (x); x 2 Xg.The probability of a vector x, will be denoted P (x), which is given by QNi=1 P (xi). TheNth order Cartezian power of X , that is, the space of all N -vectors over X , will be denotedby XN . The probability of an event A � XN will be denoted by P (A) or PrfAg. We shalluse the letter Q to denote a generic DMS over the alphabet X , and use the same notationalconventions as for P .For a DMS Q, we recall that the Shannon entropy is given byH(Q) = �Xx2X Q(x) logQ(x); (4)where logarithms throughout the sequel are taken to the base 2. The relative entropybetween Q and P is de�ned asD(QjjP ) = Xx2X Q(x) log Q(x)P (x) : (5)The R�enyi entropy [9] of order � (� > 0, � 6= 1) associated with Q is de�ned asH�(Q) = 11� � log Xx2X Q(x)�; (6)with H1(Q) being interpreted as the Shannon entropy H(Q).For a given source vector x 2 XN , the empirical probability mass function (EPMF) isthe vector Qx = fQx(a); a 2 Xg, where Qx(a) = Nx(a)=N , Nx(a) being the number ofoccurrences of the letter a in the vector x. The set of all EPMF's of vectors in XN , that is,rational PMF's with denominator N , will be denoted by QN . The type class Tx of a vectorx is the set of all vectors x0 2 XN such that Qx0 = Qx. When we need to attribute a type6



class to a certain rational PMF Q 2 QN rather than to a sequence in XN , we shall use thenotation TQ. It is well-known [4] that the number of type classes of N -vectors is boundedby (N + 1)jX j�1, where jX j denotes the cardinality of X . The standard reference aboutthe method of types is the book by Csisz�ar and K�orner [4]. Finally, throughout the sequel,o(N) designates a quantity that grows sub-linearly with N , i.e., o(N)=N ! 0 as N !1.3 The Guessing Exponent FunctionOur main result in this section is the following.Theorem 1 For every DMS P and every � > 0,E+(R; �) = E�(R; �) = E(R; �); (7)where E(R; �) is de�ned as in eq. (3).The remaining part of this section is devoted to the proof of Theorem 1 along with adescription of saddle-point strategies.Proof. Since E�(R; �) clearly cannot be strictly larger than E+(R; �), it is su�cient toprove that E+(R; �) � E(R; �) � E�(R; �): (8)The left inequality is a direct theorem whereas the right inequality is a converse theoremfrom the viewpoint of cryptography.We start from the proof of the left inequality. For the sake simplicity, we will present asuboptimal (but asymptotically optimal) guessing strategy that is easy to analyze. Consider�rst a guessing strategy that ignores the cryptogram altogether: Let x1;x2; : : : consist of anenumeration of all vectors of XN in ascending order of empirical entropies, i.e., H(Qx1) �H(Qx2) � : : :. More precisely, suppose one �rst lists all elements of the type class TQ withthe minimum entropy H(Q), then those of the type class with the second smallest entropy,and so on. (The ordering within each type class is immaterial.) Now, if the message xbelongs to TQ, then the number of guesses is clearly upper bounded byPQ0:H(Q0)�H(Q) jTQ0 j.Since jTQ0 j � 2NH(Q0) [4, p. 30] and the number of type classes is bounded polynomially inN , the total number of guesses is further upper-bounded by 2NH(Q)+o(N).7



Consider next, an exhaustive key-search attack de�ned by using the following guessinglist f�1N (y;u1); f�1N (y;u2); : : :, where u1;u2; : : : is an arbitrary ordering of all possible keystreams of length K = NR. Clearly, this guessing list �nds any message x using no morethan 2NR guesses. Finally, to gain the bene�ts of both lists, let us examine the interlacedlist G�N = fx1; f�1N (y;u1);x2; f�1N (y;u2); : : :g;which needs no more than twice the number of guesses of the better of the two original listsfor any given message x. Thus, for any x 2 TQ, the corresponding number of guesses isupper bounded byG�N(xjy) � 2 �minf2NR; 2NH(Q)+o(N)g = 2N minfR;H(Q)g+o(N) = 2Nh(Q;R)+o(N): (9)Since P (TQ) � 2�ND(QjjP ) [4, p. 32], we obtainEfG�N (XjY)�g � XQ2QN 2�ND(QjjP )2�Nh(Q;R)+o(N) (10)� 2N maxQ[�h(Q;R)�D(QjjP )]+o(N) (11)= 2NE(R;�)+o(N): (12)Since the last inequality holds for every encryption function fN , then by the de�nition ofE+(R; �), we get E+(R; �) � lim supN!1 1N logEfG�N (XjY)�g � E(R; �); (13)completing the proof of the left inequality in eq. (8).To prove the right inequality in eq. (8), consider the following encryption function f�N .Given a source vector x 2 TQ, we �rst compress it losslessly into a codeword c(x) of thefollowing structure. The �rst �eld of l1(x) = dlog jQN je bits describes the index of thetype class TQ = Tx. The second �eld of l2(x) = dlog jTQje bits gives the index of x withinTQ. Now, assume that NR is integer and consider the two cases NR < log jTQj andNR � log jTQj. If NR < log jTQj then the second �eld of the code is in turn implementedin two parts. We partition TQ into n = bjTQj=2NRc disjoint subsets T 1Q; T 2Q; :::; T nQ, eachof size 2NR, and perhaps an additional remainder subset T n+1Q of size at most 2NR � 1.Now, the �rst part of the second �eld encodes the index i of the subset T iQ that contains x,whereas the second part, of NR bits, encodes the index of x within T iQ. Having compressed8



x in the above described manner, encryption is carried out as follows. If NR � log jTQj,then the cryptogram y is the code word c(x) with the last l2(x) bits encrypted using simplebit-by-bit XOR with the bits of U. (Note, that since NR is assumed integer, NR � log jTQjactually implies NR � dlog jTQje = l2(x).) Otherwise, only the last NR bits of the codeword (that is, the second part of the second �eld) are encrypted in the above manner.For the purpose of obtaining a lower bound on EfGN (XjY)�g, we may assume thatthe guesser is informed of the type TQ of the message x. Obviously, any lower boundon EfGN (XjY)�g for such an informed guesser is also a lower bound for the original,uninformed guesser. Since P is assumed memoryless, then for any given Q, the conditionalPMF P (xjx 2 TQ) is uniform within TQ independently of P . Due to the above describedencryption mechanism, the conditional probability of y given x in TQ, is given by P (yjx) =2�m(x) for y 2 B(x) and zero elsewhere, where m(x) = minfNR; dlog jTQjeg and B(x) isthe set of y-vectors that can be obtained as cryptograms of x, i.e., all y-vectors of the samelength as c(x), which agree with c(x) except perhaps for the last m(x) bits. By the Bayesrule, it now follows that for x 2 TQ and y 2 B(x),P (xjy;x 2 TQ) = P (xjx 2 TQ)P (yjx)Px02TQ P (x0jx0 2 TQ)P (yjx0)= jTQj�12�m(x)Px02TQ\B�1(y) jTQj�12�m(x0)(a)= 1jTQ \B�1(y)j 4= 1M(y) ; (14)where B�1(y) = fx : y 2 B(x)g and equality (a) follows from the fact that m(x) isconstant within a type class.Now, since P (xjy;x 2 TQ) is a uniform PMF over a set of M(y) elements, then for anyguesser that is informed of the type of X, we haveEfGN (XjY)�jX 2 TQ;Y = yg = Xx2TQ\B�1(y)P (xjy;x 2 TQ)GN (xjy)�= 1M(y) M(y)Xi=1 i�� 1M(y) Z M(y)0 u�du= M(y)�1 + � : (15)9



Now there are three cases: If NR � log jTQj, then TQ \B�1(y) = TQ and so, M(y) = jTQj.Otherwise, if NR < log jTQj and y falls in T iQ for some 1 � i � n, then TQ \B�1(y) = T iQ,because any contents of the last NR bits form an existing code word of some x 2 TQ, andso, M(y) = 2NR. Finally, if NR < log jTQj and x 2 T n+1Q , then TQ\B�1(y) = T n+1Q , whichmight be small, but this happens with probability jT n+1Q j=jTQj � (2NR � 1)=jTQj � 1=2(even if n is as small as 1). Therefore, to summarize all three cases, we have the following:EfGN (XjY)�jX 2 TQg � EfM(Y)�jX 2 TQg1 + �� 12 11 + � hminf2NR; jTQjgi�= 12(1 + �)2N�minfR;H(Q)�o(N)g� 12(1 + �)2N�h(Q;R)�o(N): (16)Finally, by averaging w.r.t. the probabilities of fTQg, taking advantage of the fact thatPrfTQg � 2�ND(QjjP )�o(N), and using the method of types, we conclude that for the abovedescribed encryption scheme, and for any guessing strategy,lim infN!1 1N logEfGN (XjY)�g � E(R; �): (17)Since we have considered a speci�c encryption scheme, the left-hand side is clearly a lowerbound on E�(R; �), and this completes the proof of the right inequality in eq. (8). 2It is interesting to note that both the guessing strategy and the encryption strategydescribed in the above proof are universally asymptotically optimum in the sense of beingindependent of the underlying memoryless source P and the moment order �. Recall, thatthe strictly optimum guessing strategy depends on fP (xjy)g and hence also on fP (x)g.4 A More Explicit ExpressionIn this section, we give a more explicit expression for the guessing exponent function E(R; �)and investigate its behavior as a function of R for �xed �.First observe that�h(Q;R) = �minfH(Q); Rg = min0����[�H(Q) + (�� �)R]: (18)Substituting this into (3), we obtainE(R; �) = maxQ min0����[�H(Q) + (�� �)R�D(QjjP )] (19)10



= min0����maxQ [�H(Q) + (�� �)R�D(QjjP )] (20)where the maximization and minimization are interchangeable because the bracketed ex-pression is concave in Q and a�ne in �.Let Ps = fPs(x); x 2 Xg denote an auxiliary DMS with letter probabilities given byPs(x) = P 1=(1+s)(x)Px02X P 1=(1+s)(x0) : (21)It is easy to show (see, e.g., [1]) that for s > 0,maxQ [sH(Q)�D(QjjP )] = sH1=(1+s)(P ); (22)and that the maximum is achieved by Q = Ps. Thus, we haveE(R; �) = min0����[�H1=(1+�)(P ) + (�� �)R]: (23)It is also easy to check that dd� h�H1=(1+�)(P )i = H(P�): (24)Thus, the derivative of bracketed term in (23) w.r.t. � is H(P�) � R. Since H(P�) isnondecreasing in � � 0 (as can be easily shown using eq. (22)), the bracketed term in (23)has a nondecreasing slope and hence is convex in � � 0. So, for the minimum in (23) wehave three cases: (i) H(P�) � R > 0 for all 0 � � � �, or equivalently, H(P ) > R, andthe minimum is achieved at � = 0; (ii) H(P�) � R < 0 for all 0 � � � �, or equivalently,H(P�) < R, and the minimum is achieved at � = �; and (iii) there exists a unique solution0 � �R � � to the equation H(P�) = R that achieves the minimum. These may besummarized as follows.Proposition 1 The guessing exponent for a DMS is given byE(R; �) = 8><>: �R R < H(P )(�� �R)R+ �RH1=(1+�R)(P ) H(P ) � R � H(P�)�H1=(1+�)(P ) R > H(P�) (25)where �R is the unique solution of the equation R = H(P�) for R in the range H(P ) � R �H(P�).Thus, for low rates, i.e., R � H(P ), the guessing exponent E(R; �) is just �R, whichcan be interpreted as a situation where the key-rate is so small that it pays o� just to11



make an exhaustive search over all possible key sequences, namely, examine fN (y;ui), forall i = 1; 2; :::; 2NR , and essentially all of them will be examined (in the exponential sense).On the other extreme of high key-rates, R > H(P�), we have E(R; �) = �H1=(1+�)(P )(a plateau region), which means that the cryptogram Y is so \noisy" that it is e�ectivelyuseless for guessing X and the wiretapper might as well ignore it and guess at X directlyonly from knowledge of the prior probabilities fP (x)g. It is not surprising then, that theterm �H1=(1+�)(P ) coincides with the guessing exponent without side-information studiedin [1].For key-rates between H(P ) and H(P�), corresponding to the curvy part of the functionE(R; �), the optimal guessing strategy can be thought of as a combination of exhaustivesearch for the key and the message (in the spirit of the �rst part of the proof of Theorem1). Next consider the slope of E(R; �) as a function of R for a �xed �. The partial derivative@E(R; �)=@R equals � for R < H(P ), and equals zero for R > H(P�). For H(P ) < R <H(P�), we have @E(R; �)@R = �� �R �Rd�RdR + d�RdR dd�R [�RH1=(1+�R)(P )] (26)= �� �R �Rd�RdR + d�RdR H(P�R) (27)= �� �R: (28)The function �R is increasing in R in the range H(P ) < R < H(P�), which starts at �R = 0for R = H(P ) and monotonically increases to �R = � at R = H(P�). Thus, � � �R isdecreasing in R, and hence, E(R; �) is concave in R � 0 for any �xed � � 0. The typicalshape of E(�;R) as a function of R is shown in Fig. 1.5 Large Deviations PerformanceMoments of the number of guesses are intimately related to the large deviations performanceof the guesser (see also [2],[3]), i.e., the best attainable exponential rate of PrfGN (XjY) �2NLg for some positive constant L. Analogously to the de�nitions regarding the guessingexponent function, let us de�neF�(R;L) = lim infN!1 supfN �� 1N log PrfGN (XjY) � 2NLg� ; (29)12



and similarly, F+(R;L) = lim supN!1 supfN �� 1N log PrfGN (XjY) � 2NLg� ; (30)where the assumptions on the guessing strategy and on the asymptotic key rate are asabove. Our next result is the following.Theorem 2 For every DMS P and every L > 0,F+(R;L) = F�(R;L) = F (R;L) = minfQ: h(Q;R)�LgD(QjjP ): (31)Note that F (R;L) is in�nite for L > R, and given by the source coding exponent [4,p. 45], minfQ: H(Q)�RgD(QjjP ), for L � R.Proof. The proof is similar to the proof of Theorem 1. Again, it is su�cient to prove thatF+(R;L) � F (R;L) � F�(R;L): (32)For the left inequality, consider again the guessing strategy described in the proof of The-orem 1. Since GN (xjy) � 2minf2NR; 2NH(Qx)g = 2 � 2Nh(Qx;R), the probability thatGN (XjY) would exceed 2NL cannot be larger than the probability of the event h(QX; R)+1=N > L, which is easily shown (using the method of types) to decay exponentially at therate of F (R;L).To prove the right inequality in eq. (32), consider again the encryption scheme f�Ndescribed in the proof of Theorem 1. Using the same considerations as in the proof ofTheorem 1, we have the following. For type classes whose size jTQj is less than 2NR,PrfGN (XjY) � 2NLjX 2 TQg = ( 0 jTQj < 2NL1� 2NLjTQj jTQj � 2NL : (33)On the other hand, for type classes whose size jTQj is larger than 2NR,PrfGN (XjY) � 2NLjX 2 TQg � ( 0 2NR < 2NL12 �1� 2NL2NR � 2NR � 2NL : (34)These two equations can be uni�ed toPrfGN (XjY) � 2NLjX 2 TQg � ( 0 minf2NR; jTQjg < 2NL12 �1� 2NLminf2NR;jTQjg� minf2NR; jTQjg � 2NL : (35)
13



Thus, PrfGN (XjY) � 2NLg � XQ2QN P (TQ)PrfGN (XjY) � 2NLjX 2 TQg� XfQ: minf2NR;jTQjg�2NL+1gP (TQ) � 14� XfQ: h(Q;R)�L�o(N)g 2�ND(QjjP )�o(N)� 2�NF (R;L)�o(N): (36)This completes the proof of Theorem 2. 2Note that the same encryption and guessing strategies of the proof of Theorem 1, arealso asymptotically optimal in the large deviations sense.We next show that E(R; �) and F (R;L) are related via the Fenchel-Legendre transform.Theorem 3 For a DMS P and every key rate R,E(R; �) = supL>0[�L� F (R;L)] = sup0<L�R[�L� F (R;L)] (37)and F (R;L) = sup�>0[�L�E(R; �)]: (38)Proof. The �rst equality of eq. (37) is obtained as follows.supL>0[�L� F (R;L)] = supL>0[�L� minfQ: h(Q;R)�LgD(QjjP )]= supL>0 maxfQ: h(Q;R)�Lg[�L�D(QjjP )]= maxQ maxfL: L�h(Q;R)g[�L�D(QjjP )]= maxQ [�h(Q;R)�D(QjjP )]= E(R; �): (39)The second equality of (37) follows from the fact that F (R;L) = 1 for L > R. As for eq.(38), we have the following.sup�>0f�L�E(R; �)] = sup�>0[�L�maxQ [�h(Q;R) �D(QjjP )]g= sup�>0 minQ [�L� �h(Q;R) +D(QjjP )]= minQ sup�>0[�L� �h(Q;R) +D(QjjP )] (40)= minfQ: h(Q;R)�LgD(QjjP )= F (R;L); (41)14



where the interchangeability of minimization and maximization is justi�ed by the fact thatthe bracketed expression is a�ne in � and concave in Q. This is true because h(Q;R) isthe minimum between a constant and a concave function of Q. This completes the proof ofTheorem 3. 26 Open ProblemsIn this paper, we introduced measures of cryptographic security that are based on the notionof guessing, and gave formulas for computing them. To this end, we have combined earlierworks on guessing with Shannon-theoretic cryptography. We would like to mention someextensions of the present problem setting, which might be interesting to consider for futureresearch.First, it would be of interest to generalize the results to sources with memory, such asMarkov sources, that can model natural languages. Secondly, one might consider the casein which the wiretapper is not required to reconstruct the message X exactly, but allowedsome reconstruction error. In other words, as soon as the wiretapper provides a guess withindistortion level D from the true message [2], we might regard the cipher as broken. Theproblem then is to determine the guessing and large deviations exponents. This type ofreconstruction with some distortion has been studied by Yamamoto [12] in the ordinaryparadigm of the Shannon cipher system. Another extension that might be considered isthe case where the wiretapper observes a noisy version of the cryptogram, e.g., after Ypasses through a noisy channel. It would be of interest to determine how the wiretapper'sperformance would be degraded in that case.
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