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Abstract

Consider a vector quantizer that is equipped with N side information bits of an ar-

bitrary representation of the statistics of the input source. We investigate the minimum

value of N such that rate-distortion performance of this quantizer would be essentially

the same as the optimum quantizer for the given source.
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1 Introduction

Let us consider an l-dimensional vector quantizer with M = 2Rl codewords, where R is the

coding rate in bits per source symbol. Suppose that the quantizer has access to N side

information bits of some arbitrary representation of the statistics of the source. We focus

on the following question: What is the minimum value of N such that for every source,

the rate-distortion performance could be essentially as good as that of the optimal rate R,

l-dimensional quantizer?

In fact, one half of this question, the su�ciency part, has been answered recently by

Linder, Lugosi, and Zeger [4]. Their results imply that if N is exponentially larger than M

(i.e., N � 2(R+�)l for some � > 0), and the N side information bits represent a sequence of

(�nely quantized) i.i.d. l-dimensional training vectors, 1 then the distortion is essentially as

small as Dl(R), the minimum achievable distortion among all rate R, l-dimensional vector

quantizers. We shall henceforth refer to this result as the direct theorem.

In this paper, we attempt to answer the second half of the above question, i.e., the

necessity part. Speci�cally, we �rst show (in Section 2) that if N is exponentially slightly

smaller than M , that is N � 2(R��)l, then no matter what representation of the source is

used, there exists at least one probability density function (PDF) of l-vectors for which the

distortion must be signi�cantly larger than Dl(R). For instance, one can �nd a PDF for

which the distortion cannot be below 2Dl(R). We shall henceforth refer to this result as

the converse theorem.

The direct and converse theorems together tell us, therefore, that N = 2Rl (in the

exponential sense) is the minimum amount of side information, and there is an interesting

\threshold e�ect" of a jump in the distortion when the exponent of N crosses the value R.

Both the direct theorem of Linder et al. and our converse theorem in Section 2 focus on

PDFs of l-dimensional vectors, and it is not immediately apparent that these two results

are applicable to stationary ergodic sources. In particular, the direct theorem requires

independent training vectors, which are never quite available from any �nite length sample

unless the stationary ergodic source is memoryless. For memoryless sources, however, the

necessary amount of training vectors need not grow with l because it is entirely dictated by

1In [4] the training vectors were not quantized. Nevertheless, in order to represent the training vectors by
a �nite number of bits as in our setting, we think of them as being quantized. This quantization, however,
should be su�ciently �ne so that the resulting additional distortion will be relatively small.
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the one dimensional marginal PDF, which can be estimated e�ciently from a relatively short

data record. As for the converse theorem, we construct in Section 2, a set of counterexample

PDFs, none of which is seemingly an lth order marginal of a stationary ergodic process.

In Section 3, we de�ne a class of stationary ergodic sources w.r.t. which both the direct

and the converse theorems still hold though in a slightly di�erent formulation. However, for

the direct part we still need to assume that the training vectors from the source are drawn

independently, as in [4]. The construction of the class of sources in this section parallels

that of Hershkovits and Ziv [3] and it will be detailed here for the sake of completeness.

Finally, we would like to mention some previous related work about the problem of

characterizing the minimum amount of statistical side information. Wyner and Ziv [6]

have investigated a classi�cation problem in that setting: A classi�er accepts an exact

characterization of an lth order marginal of a stationary ergodic probability measure Q

and N bits of partial information about the l-dimensional statistics of a possibly di�erent

stationary ergodic measure P . This classi�er is required to decide whether P = Q or else

P and Q di�er signi�cantly in the sense that D(P jjQ) exceeds a prescribed threshold. How

large should N be so that the right decision will be made for every P ? More recently,

Hershkovits and Ziv [3] have investigated the problem of lossless source coding from the

same aspect: A lossless source encoder, operating on l-vectors, is informed of N information

bits about the statistics of a stationary ergodic source P . How large should N be so that

the entropy of the source would be achievable? For both questions the critical exponent

value of N turns out to be intimately related to the l-th order entropy Hl. The intuition

is that the necessary important information is carried by a set of typical l-sequences of P ,

and there are about 2lHl such sequences.

The present work is a natural extension of [3] from lossless to lossy source coding. The

main message is that in rate-distortion coding, one no longer needs to know the set of all

typical sequences, but actually, only the set of all Voronoi region centers of the optimum

quantizer. Another interesting aspect of our results is that, similarly as in [3] and [6], their

validity is not restricted merely to the asymptotic limit l !1. Although we assume that

l is large enough that certain quantities are negligible, we still do not require that l is so

large that the best l-dimensional vector quantization performance is close to the asymptotic

rate-distortion limit. This di�erence is meaningful for sources where Dl(R) converges very

slowly to the distortion-rate function D(R), e.g., sources with very long memory.
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2 PDFs of l-Dimensional Vectors

A rate R, l-dimensional vector quantizer Q is a measurable map from the l-dimensional

Euclidean space IRl to a �nite set of code words fy1; :::; yMg � IRl, where M = 2Rl. This

map is de�ned by the nearest neighbor rule, i.e.,

Q(x) = yi if jjx� yijj � jjx� yjjj for all j; (1)

where jj � jj denotes the Euclidean norm, and ties are broken arbitrarily. Let X denote an

l-dimensional random vector governed by a probability measure P . Given a quantizer Q,

de�ne the distortion (mean square error distortion) as

�(Q) =
1

l
EjjX �Q(X)jj2; (2)

where E denotes expectation w.r.t. P . Let

Dl(R) = min
Q

�(Q); (3)

where the minimum is over all rate R, l-dimensional vector quantizers. The existence of

a minimizing quantizer is proved in [5] under the assumption EjjXjj2 < 1. The function

Dl(R), the minimum attainable distortion at rate R and vector dimension l, can be thought

of as the distortion-rate function of P w.r.t. dimension l. This distortion is achievable, of

course, only if we design the vector quantizer on the basis of perfect knowledge of P .

But what happens if instead of full information about the lth order statistics P we

are given only N information bits of an arbitrary representation of this information? This

representation may take on many forms, e.g., a set of quantized values of the PDF over

some grid, or some approximation of the characteristic function of P , or a set of training

vectors, and so on. The question that we investigate here is the following: What is the

minimum value of N , as a function of the rate R and the dimension l, such that there

exists a quantizer, depending on the N side information bits, that essentially achieves the

minimum distortion Dl(R) for every P ?

More precisely, the problem is de�ned as follows. Let Pl be a certain class of PDFs

on the l-dimensional Euclidean space IRl. An N -bit representation for sources in Pl is a
deterministic mapping F : Pl ! f0; 1gN . For every b 2 f0; 1gN , let Qb denote a rate R,

l-dimensional vector quantizer associated with b. For a given � > 0 and a positive integer l,

let Nl(R; �) be the smallest positive integer N for which there exists an N -bit representation
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F for Pl and a set of 2N rate R, l-dimensional vector quantizers fQb; b 2 f0; 1gNg, such
that for every P 2 Pl

�(QF (P )) � Dl(R) + �: (4)

We would like to characterize the behavior of Nl(R; �) as a function of R and l for small

� > 0. In particular, we focus on the asymptotic behavior of Nl(R; �) when l!1 and R is

held �xed. It will be assumed that as l grows, the sequence of classes fPlg contains sources
for which Dl(R) is bounded away from zero for all l, and therefore � can be chosen very

small compared to Dl(R).

For example, it is easy to see that if Pl is the class of all PDFs for which each coordinate

of X is absolutely bounded with probability one by a constant B > 0, then

Nl(R; �) � 2Rl � l log
�

Bp
B2 + ��B

�
; (5)

where log(�) is de�ned to the base 2 throughout this paper. The right-hand side of this

inequality is achieved if F maps P into a binary N -sequence formed by concatenating

quantized versions of the code words fyig of the optimum vector quantizer w.r.t. P . Each

coordinate of each code word vector is quantized by a uniform scalar quantizer of log(B=�)

bits and step-size 2�, where � =
p
B2 + � � B. Since the quantization error in each

coordinate never exceeds �, the overall extra distortion beyond Dl(R) does not exceed

2Bj�j + �2 = �, and so eq. (4) is satis�ed. Thus roughly speaking, as l grows without

bound, Nl(R; �) is at most of the exponential order of 2Rl in this example.

This simple example, however, has one drawback. The proposed representation F that

is given by quantizing the code words of the optimum vector quantizer, is not available in

reality if the source is unknown. In practical situations, the statistical side information is

normally given in the form of random training data drawn from the same source, and the

vector quantizer is designed empirically from the training data. Of course, if the training

data is given in limited precision, then the total amount of side information bits N is

�nite. Thus, using the above terminology, the N -bit representation is given by a random

rather than a deterministic mapping F in this case. Nevertheless, if one can claim the

existence of a good random mapping, this is stronger than the parallel claim about a

deterministic mapping. The latter follows from the former by invoking a simple `random

coding' argument: if for every P 2 Pl, N = N0 bits of (quantized) random training data

are su�cient to keep the expected distortion less than Dl(R) + � (where the expectation
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involves the ensemble of training sets as well), then there must be a deterministic binary

N0-sequence F (P ) for which the distortion is as small, and so, Nl(R; �) � N0. For these

reasons, achievability results stated in terms of random training data are more desirable,

though they provide merely an existence proof with no constructive strategy.

Linder, Lugosi, and Zeger [4, eq. (15)] have established a result in this spirit, though

without quantization of the training data. This result, with slight modi�cations in the

formalism, is summarized in the following theorem.

Theorem 1 [4, eq. (15)] Let R and B be given positive constants, and let P be any

member of the class Pl = Pl(B) of all sources that satisfy PrfjjXjj2 � Blg = 1. Let

Z = fZ1; Z2; :::; Zmg be i.i.d. random vectors in IRl drawn from P , independently of X. Let

Q�(�jZ) minimize m�1Pm
i=1 jjZi�Q(Zi)jj2 over all rate R, l-dimensional vector quantizers,

and let

Dl(RjZ) = 1

l
EfjjX �Q�(XjZ)jj2jZg; (6)

where the expectation is taken w.r.t. the ensemble of X. Then,

EDl(RjZ) � Dl(R) + 16
p
2Bl

q
(l + 1)2Rl + 1

s
logm

m
+ o

0
@
s
logm

m

1
A ; (7)

where the expectation is taken w.r.t. the ensemble of Z.

In words, if m is large the performance of the empirically-optimum quantizer is essen-

tially as good as that of the optimum quantizer on the average. Now, if we �x � > 0 and

let m = 2(R+�)l , the excess distortion beyond Dl(R) in eq. (7) vanishes as l ! 1. If each

training vector Zi is quantized into kl bits, then the quantized training set is represented

by N = klm = kl2(R+�)l bits. If, in addition, k is su�ciently large (though �xed), then the

additional distortion due to quantization of the training data can be made negligibly small.

This follows from the following consideration.

Let us cover the sphere of radius
p
Bl with non-overlapping l-dimensional cubes of size

2�, centered at points whose coordinates are integer multiples of 2�. Now suppose that

every training vector Zi, whose norm is less than
p
Bl, is quantized to the center of its

cube. By doing this, we cause a quantization error whose absolute value never exceeds � in

each coordinate, and the number of bits is approximately the logarithm of the ratio between

the volume of the sphere and the volume of the cube, i.e., k � 0:5 log[�eB=(2�2)]. Now, by
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using the quantized training data, we obtain a sequence of empirically-designed quantizers

that tends to the optimum for the probability distribution ~P of these quantized training

vectors. But since the quantization error of the training data is uniformly small and the

support of P and ~P is bounded, then as �! 0, the expected distortion of every Q w.r.t. ~P

tends to �(Q) uniformly. Therefore, an optimum quantizer for ~P is nearly optimum for P .

Thus, we are again led to the conclusion that the exponential growth rate of Nl(R; �)

does not exceed R. This time, however, this conclusion was reached more generally from

the viewpoint of random training set representations. This result is now stated formally in

the following theorem.

Theorem 2 Let R > 0 be given and let Pl be de�ned as in Theorem 1. Then, for every

� > 0,

lim sup
l!1

1

l
logNl(R; �) � R: (8)

We now state a converse to Theorem 2 that tells us that not only the converse inequality

holds true as well, but moreover, if N is of exponential order strictly less than 2Rl, the

distortion must be signi�cantly larger than Dl(R) at least for one source.

Theorem 3 Let R > 0 be given and let Pl be de�ned as in Theorem 1. Then,

lim
�!0

lim inf
l!1

1

l
logNl(R; �) � R: (9)

Furthermore, for every � > 0 and � > 0, if N < 2(R��)l and l is su�ciently large, then

for any deterministic N -bit representation F : Pl ! f0; 1gN and any set of 2N rate R,

l-dimensional vector quantizers fQb : b 2 f0; 1gNg, there exists a PDF P 2 Pl such that

Dl(R) > �, and at the same time

�(QF (P )) > 2Dl(R): (10)

At this point, a few comments are in order.

� The reason for requiring Dl(R) > � is to guarantee that eq. (10) contradicts the

achievability inequality (4).

� Note that Theorem 3 is stated for deterministic representations and hence is stronger

than a strict converse to Theorem 1.
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� Clearly, the combination of Theorem 2 and the �rst part of Theorem 3 establishes the

fact that for Pl de�ned as in Theorem 1,

lim
�!0

lim
l!1

1

l
logNl(R; �) = R: (11)

� The factor of two on the right-hand side of eq. (10) is immaterial. In fact, it can be

replaced by any arbitrarily large (but �nite) number.

� The signi�cance of Theorem 3 is primarily in sharpening the result of Linder et al. by

claiming that from the viewpoint of vector quantization, there is essentially no more

e�cient way to represent a source than that of using independent training vectors.

The remaining part of this section is devoted to the proof of Theorem 3.

Proof. Since the �rst part of the theorem follows from the second part, it will be

su�cient to prove the second part. The main idea of the proof of the second part is in

applying a \sphere covering" argument similar to that in [6] and [3]. We shall construct

a counterexample set of su�ciently many PDFs that are \far apart" from one another in

the sense that only a small fraction of them can be quantized by a single quantizer with

distortion less than 2Dl(R). Thus, if N is not large enough, then any set of 2N di�erent

vector quantizers cannot possibly \cover" the whole family of PDFs, and therefore there

must be at least one PDF for which the distortion exceeds 2Dl(R).

Let R, �, and � be given positive reals de�ned as in Theorem 3. Select two positive

reals D0 and A, so that D0 > 2� and A > 36D04
R. (The reason for these choices will

become apparent shortly.) Construct a set of K l-dimensional vectors fu1; u2; :::; uKg in

the following manner: The �rst vector u1 is chosen arbitrarily from the sphere S0(
p
Al),

where Su(r) denotes the l-dimensional sphere of radius r centered at u. The second vector

u2 is chosen arbitrarily from S0(
p
Al) � Su1(6

p
lD0), the third vector u3 is selected from

S0(
p
Al)�[Su1(6

p
lD0)

S
Su2(6

p
lD0)], and so on. This procedure terminates when S0(

p
Al)

is exhausted. The total number K of vectors generated by this procedure is lower bounded

by the volume of a sphere of radius
p
Al divided by the volume of a sphere of radius 6

p
lD0,

i.e.,

K � VolfS0(
p
Al)g

VolfSu1(6
p
lD0)g

= exp2

�
l

2
log

�
A

36D0

��
�
= 2Gl: (12)

The above choice of A guarantees that G > R and hence K >> M = 2Rl for large l.
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Consider now a �nite class W of PDFs de�ned as follows. Each PDF corresponds to a

particular subset of M out of the K vectors u1; :::; uK . To avoid cumbersome notation, let

us re-index the M vectors associated with a given source in W as u1; :::; uM . For a given

subset of vectors u1; :::; uM , the corresponding PDF is de�ned as

P (x) =
1

M

MX
i=1

H(x� ui); x 2 IRl; (13)

where H(x) is the uniform PDF on the surface of S0(
p
lD0). In words, x is uniformly

distributed over all the (disjoint) surfaces of spheres of radius
p
lD0 centered at ui, i =

1; 2; :::;M . It is shown in Appendix A, that for each such source,

D0 � Dl(R) � D0 � �l; (14)

where �l ! 0 as l ! 1, hence Dl(R) > 2� � �l > � for all large enough l. Since all PDFs

in W emit vectors whose norms never exceed (
p
A +

p
D0)

2l, then every PDF of W is a

member of Pl with B = (
p
A+

p
D0)

2. Thus, we know that all these sources are in Pl and
they all satisfy Dl(R) > �, as required in the assertion of Theorem 3.

We would now like to upper bound the number of PDFs inW for which a single quantizer

distorts by less than 2D0. Suppose that we have a quantizer Q that induces distortion less

than 2D0 for a given PDF in W. Let

�i =
1

l
EfjjX �Q(X)jj2jX 2 Sui(

p
lD0)g; i = 1; :::;M: (15)

Then, by our hypothesis

2D0 � 1

M

MX
i=1

�i; (16)

or, equivalently,
1

2
�

1
M

PM
i=1�i

4D0
� 1

M
jfi : �i � 4D0gj; (17)

where the second inequality follows from Chebychev's inequality. This means that more than

M=2 spheres associated with the PDF contribute distortion less than 4D0. But in order for

a certain sphere Sui(
p
lD0) to contribute distortion less than 4D0, there must be at least

one code word yj within distance 3
p
lD0 from the center of that sphere. By construction

of the set fu1; :::; uKg and the triangle inequality, it is clear that if a certain code word is

at distance less than 3
p
lD0 from one sphere center ui, it must be at a larger distance from

any other sphere center. Consequently, in order for a quantizer to induce distortion less
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than 2D0 for as many sources as possible, it is necessary that every code vector yi be at

distance less than 3
p
lD0 from some source center ui. Therefore, the maximum number L

of PDFs inW that can be covered by one quantizer in the sense of providing distortion less

than 2D0 is bounded by

L �
MX

i=M=2

 
M
i

! 
K �M
M � i

!

�
MX

i=M=2

 
M
i

! 
K

M � i

!

� M

 
M
M=2

! 
K
M=2

!
; (18)

where we have assumed, without essential loss of generality, that M is even. The �rst

inequality follows from the fact that for every quantizer, the count of PDFs corresponding

to distortion less than 2D0 must contain sources for which at least M=2 PDF centers fuig
are chosen in the vicinity of code vectors while the other centers may be chosen freely from

the remaining K �M sphere centers fuig. The �rst binomial coe�cient on the right-most

side of eq. (18) is upper bounded by 2M . As for the second binomial coe�cient, we will now

use the following chain of inequalities for arbitrary nonnegative integers m and n, where

m � n:

log

 
n
m

!
� nh(

m

n
)

= m log
n

m
+ (n�m) log

1

1� m
n

� m log
n

m
+ (n�m)(

1

1� m
n

� 1) log e

= m(log
n

m
+ log e); (19)

where h(�) is the binary entropy function. The �rst inequality can be found in [1] and the

second inequality follows from lnu � u � 1. In a similar manner [2, p. 285, eq. (12.5.2)]

(see also [1]),

log

 
n
m

!
� nh(

m

n
)� log(n+ 1)

� m log
n

m
� log(n+ 1): (20)

By applying (19) to eq. (18), we get

L � exp2

�
M

2
(log

K

M
+ 3 + log e) + logM

�
: (21)
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By applying eq. (20), we get the following lower bound on the total number of sources in

W:

jWj =
 

K
M

!
� exp2[M log

K

M
� log(K + 1)]: (22)

The ratio jWj=L, which expresses the minimum number of quantizers needed to \cover"

W, is therefore lower bounded by

1

L

 
K
M

!
� exp2f

M

2
[log

K

M
� 3� log e]� logM � log(K + 1)g: (23)

Now, M = 2Rl and K � 2Gl. Since [0:5M logK � log(K +1)] is a monotone nondecreasing

function of K for every M � 2, then substituting 2Gl instead of K would further decrease

the right most side of eq. (23), and we obtain

1

L

 
K
M

!
� exp2

�
1

2
2Rl[l(G�R)� 3� log e]�Rl � log(2Gl + 1)

�
: (24)

This quantity in turn, is larger than 22
(R��)l

for every � > 0 (chosen above) and su�ciently

large l. Thus, if the total number of quantizers 2N is less than this number, that is, if

N < 2(R��)l, there must be at least one PDF with distortion larger than 2D0 � 2Dl(R).

This completes the proof of Theorem 3. 2

3 Stationary and Ergodic Processes

So far we focused on lth order marginals of sources without any concern as to whether these

marginals can be obtained from any stationary ergodic sources. Indeed, we are not aware of

the existence of a stationary ergodic process whose lth order marginal agrees exactly with

the PDF of any of the sources constructed in the proof of Theorem 3.

Our main concern in this section is to provide a converse theorem for stationary and

ergodic processes. Roughly speaking, the direct theorem for processes will be largely a

re-statement of Theorem 1 where now the l-th order marginal P should be thought of as

being derived from a process. In other words, we still require independent training vectors

similarly as in [4]. Strictly speaking, this assumption cannot be met for a non-memoryless

process. However, it can be approached provided that the memory of the process fades

away and the time gap between consecutive training vectors is su�ciently large. It is an

open problem, however, to prove the direct part for dependent training vectors drawn from

the underlying process.
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Before we turn to the converse theorem for processes, we �rst extend Theorem 1 so as

to apply to a broader class of sources than in Section 2. The reason for this extension is

that the counterexample processes that will be constructed in the proof of the forthcoming

converse theorem will have lth order marginal PDFs with unbounded support, and hence

will not belong to Pl of Section 2. Speci�cally, we de�ne a class of stationary processes M
as follows.

For a given stationary process �, let �2(�) = EjX1j2, where X1 is the �rst coordinate of

X. For a given � > 0, and a given l, let B(�; �; l) denote the in�mum value of B such that

1

l
E
�
jjXjj2 � 1fjjXjj2 > Blg

�
� �; (25)

where X is a random vector in IRl drawn from �, and 1f�g is the indicator function of

an event. For two given positive reals �2 and B0, and a given function L0(�), let M =

M(�2; B0; L0) be the set of all stationary processes f�g that uniformly satisfy the following

conditions:

1. �2(�) � �2.

2. For every � > 0, l � L0(�) implies B(�; �; l) � B0.

Generally speaking, M is a class of stationary processes for which there is a uniform

bound on the second order moment, and the `tails' decay uniformly rapidly in a certain

sense. For example, Gaussian processes and �nite mixtures of Gaussian processes with

variance less than or equal to �2 are all in M for a certain choice of B0. The following is

an extension of Theorem 1 for processes in M.

Theorem 4 Let R > 0 be given and let Z = (Z1; :::; Zm), m = 2(R+�)l, be i.i.d. random

l-vectors drawn from �. For a given B > 0, let Q(�jZ) minimize
P

i2I jjZi�Q(Zi)jj2 over all
rate R, l-dimensional quantizers, where I is the set of all 1 � i � m for which jjZijj2 � Bl.

Then, for every � > 0 there exists a su�ciently large B > 0 such that for all su�ciently

large l,
1

l
EfE[jjX �Q(XjZ)jj2jZ]g � Dl(R) + � (26)

for every � 2M.

The proof of Theorem 4 appears in Appendix B.
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Note that Theorem 4 makes a claim about an empirically-designed quantizer that is

trained selectively only on training vectors whose norms fall within a certain bound. It

does not re
ect a belief that this is the best training strategy, but it makes the proof easier.

Let us now turn to the converse part for stationary processes. For some positive con-

stants �2, B0, and C1 and C2 (to be determined later), let us de�ne M = M(�2; B0; L0),

where L0(�) = C1 log(C2=�).

Theorem 5 Let R > 0 be given and let M be de�ned as above. Then, for every � > 0

and � > 0, if N < 2(R��)l and l is su�ciently large, then for any deterministic N -bit

representation F : Pl ! f0; 1gN and any set of 2N rate R, l-dimensional vector quantizers

fQb; b 2 f0; 1gNg, there exists a stationary and ergodic process � 2 M whose lth order

marginal PDF P satis�es Dl(R) > 2�, and at the same time

�(QF (P )) > 2Dl(R)� �: (27)

The remaining part of this section is devoted to the proof of Theorem 5.

Proof. The idea of the proof is to construct a set of stationary and ergodic processes

in M whose lth order marginals are nearly the same as those constructed in the proof of

Theorem 3. The construction will be based on the same ideas. We �rst describe the set of

counterexample processes, and then prove that:

(a) The processes in this set are all members of M, and

(b) The assertion of Theorem 5 holds.

For a given R, �, and �, let us select D0 > 2� and A > 36D04
R as in the proof of

Theorem 3. Consider again the l-dimensional sphere S0(
p
Al). As in Theorem 1, we �rst

generate a collection of vectors fuig that will serve as centers of spheres of radius
p
lD0.

But now, for reasons that will become apparent later, we would like to guarantee that the

set of all u-vectors as well as all their cyclic shifts are at distance at least 6
p
lD0 from each

other.

Before we describe how this is done, we introduce some new notation. For a given

u 2 IRl, let Tu denote the one-step right cyclic shift of u. We shall think of the operator

T as the l � l permutation matrix that performs this operation. Thus, T i causes i cyclic

shifts to the right while T�i causes i cyclic shifts to the left.

Let R < G < 0:5 log(A=36D0) and let K = 2Gl. Next, perform the following steps:

13



1. Select an arbitrary vector u1 2 S0(
p
Al) such that jjT iu1 � T ju1jj2 � 36lD0 for every

i; j = 0; 1; :::; l � 1, j 6= i.

2. For m = 2; 3; :::K, de�ne the remainder set

Wm = S0(
p
Al)�

m�1[
j=1

l�1[
i=0

ST iuj (6
p
lD0) (28)

and select um 2Wm such that the following conditions are met:

(c1) T ium 2Wm for all i = 0; 1; :::; l � 1.

(c2) jjT ium � T jumjj2 � 36lD0 for every i; j = 0; 1; :::; l � 1, j 6= i.

After completing this procedure, one has generated a set of Kl vectors which can be par-

titioned into K disjoint subsets, each of which includes l cyclically shifted versions of a

certain representative vector ui. All vectors, including the cyclic shifts are at distance at

least 6
p
lD0 from each other.

The reader might wonder whether it is always possible to �nd at each step a vector um

that satis�es Conditions (c1) and (c2). It is shown in Appendix C, that not only is such a

choice possible, but moreover, most points (in the Lebesgue measure sense) in Wm satisfy

these conditions when l is large. The intuition is that the union of the small spheres is very

small compared to the big sphere, and that a randomly chosen vector in a sphere looks

typically almost like an i.i.d. vector and hence is essentially orthogonal to its cyclic shifts.

We shall now construct stationary and ergodic processes from subsets of the represen-

tative vectors fuig in the following manner. Let M = 2Rl=l, and consider the collection of

all subsets of M out of K representative vectors. Every process in the class we construct

corresponds to a certain combination of M representative vectors, hereafter re-indexed

u1; :::; uM . Let Ui denote the (kl)-dimensional vector formed by k concatenated repetitions

of ui, i = 1; 2; :::;M , that is, Ui = (ui; ui; :::; ui). The source will be de�ned by a �nite-state

machine (FSM) that generates a sequence of random variables :::;X�1;X0;X1; ::: in the

following way (see also [3]). Suppose that at time n the machine is in a state labeled 0.

Then, the following steps are performed.

1. Select at random with uniform distribution an integer I 2 f1; 2; ; :::;Mg and a binary

random variable � 2 f0; 1g, independent of I, with probability Prf� = 1g = �, where

0 < � < 1 is a small number.

14



2. If � = 0, set (Xn; :::;Xn+kl�1) = UI + V , where V is a (kl)-dimensional random

vector, independent of I, with i.i.d. zero-mean, variance-D0 Gaussian components.

During the time interval (n + 1; :::; n + kl � 1) the FSM goes through states labeled

(I; 1; 0); (I; 2; 0); :::; (I; kl � 1; 0) and then returns to state 0. Set the time counter n

at n+ kl and go to 1.

3. If � = 1, select a random integer J 2 fl+1; l+2; :::; kl�1g with uniform distribution.

Set (Xn; :::;Xn+J�1) as the J �rst components of UI , contaminated by an additive

noise vector V 2 IRJ (independent of I and J) with i.i.d. zero-mean, variance-D0

Gaussian components. During the time interval (n + 1; :::; n + J � 1) the FSM goes

through states labeled (I; 1; J); (I; 2; J); :::; (I; J � 1; J), and then returns to state 0.

Set the time counter n at n+ J and go to 1.

We shall henceforth refer to the process of concatenated U -vectors and the Gaussian

noise process as the U -process, and the V -process, respectively. Throughout the sequel

we shall re-index the corresponding sequences of random variables as fUng and fVng, re-
spectively, according to the time indexes of fXng. The probability measures of l-vectors

associated with the U -process and the V -process will be denoted PU and PV , respectively.

Throughout the sequel Xj
i , i � j, will denote the segment (Xi; :::;Xj). Similar notations

will be used for segments of the U -process and the V -process.

Since fUng is a two-sided, irreducible, aperiodic �nite-state process it is stationary and

ergodic. Since fVng is an independent i.i.d. process, then fUng and fVng are are jointly

stationary and ergodic and hence so is Xn = Un + Vn. Moreover, due to the underlying

�nite-state process, fXng has an exponentially fast vanishing memory (see also [3]).

We next show that each process fXng in the set we constructed is also in M. First,

observe that for every process in this set,

EjX1j2 = 1

l
EjjXjj2 = 1

l
EjjU l�1

0 jj2 +D0: (29)

Since every realization of U l�1
0 is either a cyclic shift of some ui or it includes the boundary

between two di�erent u-vectors, then its norm is bounded by 2Al, and so, the �rst condition

for membership in M holds with �2 = 2A + D0. As for the second condition, it is easy

to check that for a Gaussian l-vector Y , with mean vector u and independent components
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with variance D0,

EesjjY jj
2
= exp

"
sjjujj2

1� 2sD0
� l log(1� 2sD0)

#
; s <

1

2D0
: (30)

Now,

E
�
jjY jj2 � 1fjjY jj2 > Blg

�
� E

h
jjY jj2 � es(jjY jj2�Bl)

i
= e�sBl

@

@s
EesjjY jj

2

= e�sBl � jjujj
2 + 2D0l(1� 2sD0)

(1� 2sD0)2
�

exp

"
sjjujj2

1� 2sD0
� l log(1� 2sD0)

#
: (31)

Again, since X l�1
0 is distributed according to a �nite mixture of Gaussian PDFs with mean

vectors depending on fuig and their concatenations, and with covariance matrix D0I (I

being the l � l identity matrix), and since the norm of any underlying mean vector never

exceeds 2Al, it is readily seen that

E
�
jjX l�1

0 jj2 � 1fjjX l�1
0 jj2 > Blg

�
�

2le�sBl � A+D0(1� 2sD0)

(1� 2sD0)2
� exp

�
l

�
2sA

1� 2sD0
� log(1� 2sD0)

��
: (32)

Thus, by simple algebraic manipulation, it is easy to verify that for a given allowable choice

of A, D0, and s, the last expression normalized by l, can be made less than �, provided that

B is at least as large than some constant B0 that satis�es

B0 >
2sA

1� 2sD0
� log(1� 2sD0); (33)

and then

L0(�) =
logf2[A+D0(1� 2sD0)]=[�(1 � 2sD0)

2]g
B0 � 2sA=(1 � 2sD0) + log(1� 2sD0)

: (34)

This de�nes the constants C1 and C2 that were mentioned before the statement of Theorem

5.

It remains to demonstrate that at least one of the sources constructed above satis�es

the assertion of the theorem if N is not large enough. The underlying idea is that most of

the time the source creates long repetitions of u-vectors, and therefore, the quantizer, which

is not necessarily synchronized to the source, will \see" noisy versions of cyclic shifts of the

ui's. By the law of large numbers, the l-dimensional noise vectors will usually lie near the
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surface of S0(
p
lD0). Since there are 2

Rl=l representative center vectors and l cyclic shifts of

each one, the total number of sphere centers is 2Rl. Due to the occasional random selection

of J in step 3, the phase of the cyclic shift will be random.

More precisely, consider the vector X l�1
0 as the current input of the quantizer. De�ne

the events

E1 =
n
U l�1
0 : State 0 has not been visited in the time interval f0; 1; :::; l � 1g

o
(35)

and

E2 =

(
V l�1
0 : j1

l

l�1X
i=0

V 2
i �D0j � �0

)
(36)

for some small �0 > 0. Note that E1 is de�ned in terms of the underlying U -process while E2

corresponds to the noise process. Hence E1 andE2 are independent events. Both events have

high probability when k and l are large and � is small. Let us denote � = P (Ec
1)+P (E

c
2) and

select k, l, and � such that � would be arbitrarily small. Thus, the joint event E = E1 \E2

has probability at least 1� �.

Given the event E, the lth order marginal is essentially (for small �0) as in the proof

of Theorem 3, and hence according to this theorem, there exists a process in the class for

which the distortion must exceed 2(D0� �0). Thus, for any N -bit representation F and any

set of 2N quantizers fQbg, there must be a process in the set we have de�ned for which the

overall distortion for the worst process in the class is therefore lower bounded by

EfjjX l�1
0 �QF (P )(X

l�1
0 )jj2g = EfjjU l�1

0 + V l�1
0 �QF (P )(U

l�1
0 + V l�1

0 )jj2g

�
Z
ul�1
0 2E1

Z
vl�1
0 2E2

jjul�10 + vl�10 �QF (P )(u
l�1
0 + vl�10 )jj2PU (dul�10 )PV (dv

l�1
0 )

= P (E1 \E2)

Z
jjul�10 + vl�10 �QF (P )(u

l�1
0 + vl�10 )jj2PU (dul�10 jE1)PV (dv

l�1
0 jE2)

� (1� �) � 2(D0 � �0): (37)

Since Dl(R) is essentially D0 for all sources in this class, the proof is completed by an

appropriate choice of �0.

Appendix A

Proof of eq. (14).

The upper bound to Dl(R) is obvious since D0 is achievable by the quantizer whose

codewords are yi = ui, 1 � i � M . As for the lower bound, we have the following. Let
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I(X; X̂) denote the (unnormalized) mutual information between the source vector X and

the reproduction vector X̂. Then,

Dl(R) � min
1

l
EfjjX � X̂ jj2g (A.1)

where the minimization is over the set of all channels P (X̂ jX) such that I(X; X̂) � Rl.

Now,

I(X; X̂) = h(X) � h(XjX̂) (A.2)

where h(X) is the di�erential entropy of X and h(XjX̂) is the conditional di�erential

entropy of X given X̂ . Since X is uniformly distributed over the surfaces of 2Rl disjoint

spheres of radius
p
lD0, then

h(X) = Rl + log SurffS0(
p
lD0)g (A.3)

where SurffS0(
p
lD0)g designates the surface area of each such sphere. Thus,

I(X; X̂) = Rl + log SurffS0(
p
lD0)g � h(XjX̂)

= Rl � h(X � X̂ jX̂) + log

"
2�l=2(lD0)

(l�1)=2

�(l=2)

#

� Rl � h(X � X̂) +
l

2
log[2�e(D0 � �l)]; (A.4)

where in the last step, �l ! 0 as l!1, following Stirling's formula. Denoting ~X
�
= X� X̂,

we then further lower bound Dl(R) by

min
1

l
Ejj ~X jj2 (A.5)

where the minimum is over all random vectors ~X such that

h( ~X) � l

2
log[2�e(D0 � �l)]: (A.6)

Since the right-hand side of the last inequality is the maximum entropy of a random vector

whose expected norm does not exceed l(D0 � �l), the minimum in eq. (A.5) is obviously

D0 � �l. This completes the proof of eq. (14).

Appendix B

Proof of Theorem 4.
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The idea of the proof is to approximate the lth order marginal P of the process � by a

bounded support probability measure like in Section 2, and to show that the contribution

of vectors that fall outside the bounded support set is negligibly small.

We �rst show that there is no essential loss in optimality if the lth order PDF P of any

process inM is treated as having the bounded support S0(
p
Bl) = fx : jjxjj2 � Blg, where

the constant B > 0 is su�ciently large but independent of the speci�c process in M. For

a given lth order marginal P of � 2M, and B > 0, let

PB(x) = P (xjx 2 S0(
p
Bl)) =

(
P (x)=PfS0(

p
Bl)g x 2 S0(

p
Bl)

0 x 2 Sc0(
p
Bl)

(B.1)

where Sc0(
p
Bl) denotes the complimentary set. Note that by de�nition ofM, PfS0(

p
Bl)g

is arbitrarily close to one for large B, because for B > 1,

PfSc0(
p
Bl)g =

Z
Sc0(

p
Bl)

P (dx) � 1

l

Z
Sc0(

p
Bl)
jjxjj2P (dx) � �: (B.2)

Let QB denote an optimal rate R, l-dimensional quantizer for PB . Then, the per-letter

distortion of QB w.r.t. P can be decomposed as follows.

�(QB) =
1

l

Z
S0(

p
Bl)
jjx�QB(x)jj2P (dx) + 1

l

Z
Sc0(

p
Bl)
jjx�QB(x)jj2P (dx)

�
= I1 + I2 (B.3)

Now, the �rst term I1 is upper bounded by

I1 =
1

l

Z
S0(

p
Bl)
jjx�QB(x)jj2P (dx)

=
1

l
min
Q

Z
S0(

p
Bl)
jjx�Q(x)jj2P (dx)

� 1

l
min
Q

Z
IRl
jjx�Q(x)jj2P (dx)

= Dl(R); (B.4)

and the second term I2 is upper bounded by

I2 =
1

l

Z
Sc0(

p
Bl)
jjx�QB(x)jj2P (dx)

� 1

l

Z
Sc0(

p
Bl)

(jjxjj +
p
Bl)2P (dx)

� 4

l

Z
Sc0(

p
Bl)
jjxjj2P (dx):

(B.5)
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The �rst inequality follows from the fact QB must have all its code words in S0(
p
Bl), and so

jjx�QB(x)jj2 cannot exceed the distance of x from the most distant point in S0(
p
Bl), which

is (jjxjj +pBl)2. The second inequality follows from the fact that (jjxjj +pBl)2 � 4jjxjj2

for every x 2 Sc0(
p
Bl). Combining eqs. (B.3), (B.4), and (B.5), and choosing B � B0, we

get

�(QB) � Dl(R) +
�

3
; (B.6)

for all l � L0(�=12). In words, QB is optimum for P within extra distortion of �=3. Thus, it

will be su�cient to prove that the average distortion incurred by the empirically-designed

quantizer is less than or equal to �(QB) + 2�=3.

The average distortion of the empirically-designed quantizer Q(�jZ) can be decomposed

as follows.

1

l
EfE(jjX �Q(XjZ)jj2jZ)g =

1

l
E

(Z
S0(

p
Bl)
jjx�Q(xjZ)jj2P (dx)

)
+

1

l
E

(Z
Sc0(

p
Bl)
jjx�Q(xjZ)jj2P (dx)

)

� 1

l
E
n
PfS0(

p
Bl)gEB(jjX �Q(XjZ)jj2jZ)

o
+

4

l
E

(Z
Sc0(

p
Bl)
jjxjj2P (dx)

)

� 1

l
EfEB(jjX �Q(XjZ)jj2jZ)g+ �

3
; (B.7)

where EB denotes expectation w.r.t. PB , and the last two steps follow from the same

considerations as in eq. (B.5), since the codewords of the empirically-designed quantizer

are also in S0(
p
Bl). Thus, it remains to show that

1

l
EfEB(jjX �Q(XjZ)jj2jZ)g � Dl(R) +

�

3
: (B.8)

For a given m and a training set Z = (Z1; :::; Zm), let Y = (Y1; :::; Ym) denote the binary

sequence where Yi = 1fZi 2 S0(
p
Bl)g. Let y = (y1; :::; ym) denote a speci�c realization of

Y . Then,

1

l
EfEB(jjX �Q(XjZ)jj2jZ)g =

X
y

PrfY = yg1
l
EfEB(jjX �Q(XjZ)jj2jY = y)g: (B.9)

Now, let m(y) denote the number of ones in y. Given that Y = y, with yi1 = yi2 = ::: =

yim(y)
= 1, it is clear that the relevant training vectors Zi1 ; Zi2 ; :::; Zim(y)

are i.i.d. and

each Zij is governed by the bounded-support density PB . Since the expectation over the
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ensemble of X is taken w.r.t. PB as well, we are actually back in the situation of Section

2. However, for some y-sequences, the number of training vectors m(y) for learning PB is

small.

Let us partition the set of binary y-sequences into two complementary subsets according

tom(y) � 2(R+�=2)l orm(y) > 2(R+�=2)l . As for y-sequences in the �rst subset, the distortion

might be large but it is bounded by the maximum possible per-letter distortion within

S0(
p
Bl), which is 4B. Furthermore, since Y is a Bernoulli process with PrfYi = 1g =

PfS0(
p
Bl)g � 1��, then the probability that m(y) � 2(R+�=2)l , or equivalently,m(y)=m �

2��l=2, decays exponentially with m and hence double-exponentially with l. Thus, for large

enough l, we can make the overall contribution of all y-sequences with small m(y), less

than �=6, and so, the proof will be complete if we bound the overall extra distortion of the

complimentary subset by �=6.

But for every y with m(y) > 2(R+�=2)l , we can invoke Theorem 1 and obtain

1

l
EfEB(jjX �Q(XjZ)jj2jY = y)g � Dl(R;B) +

�

12
(B.10)

for all su�ciently large l, where Dl(R;B) is the minimum achievable distortion w.r.t. PB

over all rate R, l-dimensional quantizers. However, if � is su�ciently small and B and l are

su�ciently large, then

Dl(R;B) = min
Q

EB jjX �Q(X)jj2

=
minQ

R
S0(

p
Bl) jjx�Q(x)jj2P (dx)
PfS0(

p
Bl)g

� minQ
R
IRl jjx�Q(x)jj2P (dx)
PfS0(

p
Bl)g

=
Dl(R)

PfS0(
p
Bl)g

� Dl(R) +
�

12
; (B.11)

where the last step follows from the fact that Dl(R) is obviously upper bounded by �2.

This completes the proof of Theorem 4.

Appendix C

Most Vectors in the Sphere Satisfy Conditions (c1) and (c2).
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It will be su�cient to show that even in the last step of the procedure (m = K), the

relative volume of points in S0(
p
Al) that satisfy simultaneously conditions (c1) and (c2),

tends to unity as l ! 1. In other words, a random selection of u under a uniform PDF

within S0(
p
Al) will be successful with high probability.

As for Condition (c1), let Hi = fu : T iu 2 S0(
p
Al) �WK�1g. Clearly, if u 2 [l�1i=0Hi

then Condition (c1) is violated. But, by the union bound, and since all Hi have the same

volume, the volume of [li=0Hi cannot exceed l � VolfH0g. The volume of H0, in turn is

upper bounded as follows.

VolfH0g = Volf
K�1[
j=1

l�1[
i=0

ST iuj (6
p
lD0)g

� Kl �VolfSu1(6
p
lD0)g

= l2Gl � VolfSu1(6
p
lD0)g

� l exp2fl[G+
1

2
log(72�eD0)]g: (C.1)

The last expression, and hence also the volume of [li=0Hi, is exponentially negligible com-

pared to VolfS0(
p
Al)g since G < 0:5 log(A=36D0).

As for Condition (c2), obviously, it is su�cient to require only that jju � T jujj2 >

36lD0 for j = 1; 2; :::; l � 1. Consider the �-surface of S0(
p
Al) de�ned as F = S0(

p
Al) �

S0(
p
(A� �)l). Let Lj = fu : jju � T jujj2 � 36lD0g. Since F occupies most of the volume

of S0(
p
Al) for large l, it is su�cient to show that the volume of [l�1j=1(Lj \F ) is very small

compared to that of S0(
p
Al). First, observe that Lj \ F � fu : utT ju � �lg \ F , where

� = A� 18D0 � � and ut denotes the transposition of the column vector u. Therefore,

Volf
l�1[
j=1

(Lj
\
F )g � Vol

8<
:
l�1[
j=1

fu : utT ju � �lg
\
F

9=
;

�
l�1X
j=1

Vol
n
fu : utT ju � �lg

\
F
o

� (l � 1) � max
1�j�l�1

Vol
n
fu : utT ju � �lg

\
F
o
: (C.2)

We next derive an upper bound on the volume of fu : utT ju � �lgTF . We shall prefer to

represent the quadratic form utT ju as utEju, where Ej = (T j + T�j)=2, because Ej is a

symmetric matrix. Now, for every su�ciently small s > 0, we have

Vol
n
fu : utT ju � �lg \ F

o
=

Z
F
du � 1futEju � �lg
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�
Z
F
du � es(utEju��l)

� el=2
Z
F
du � e�utu=(2A)es(utEju��l)

� el=2e�s�l
Z
IRl

du � e� 1
2A

ut(I�2sAEj)u

= (2�eA)l=2e�s�ljI � 2sAEj j�1=2

= exp[l(
1

2
ln(2�eA) � s�

� 1

2l

l�1X
i=0

ln�i(I � 2sAEj))]; (C.3)

where �i(I�2sAEj) denotes the ith eigenvalue of I�2sAEj . Since I�2sAEj is a circulant

matrix, the eigenvalues are given by the discrete Fourier transform coe�cients of the �rst

row of this matrix, that is,

�i(I � 2sAEj) = 1� 2sA cos

�
2�ij

l

�
; j = 1; 2; :::; l � 1: (C.4)

Now the �rst term in the exponent of the right-most side of eq. (C.3) represents the total

volume of F (or S0(
p
Al)). Therefore, the proof will be complete if we show that for some

s > 0, the expression

J jl (s) = s�+
1

2l

l�1X
i=0

ln

�
1� 2sA cos

�
2�ij

l

��
(C.5)

is uniformly bounded away from zero for all l and 1 � j � l� 1. To this end, we next lower

bound the second term of J jl (s) for s < 1=(2A) and 1 � j � l � 1.

1

2l

l�1X
i=0

ln

�
1� 2sA cos

�
2�ij

l

��
= � 1

2l

l�1X
i=0

ln

(
1 +

1X
m=1

�
2sA cos

�
2�ij

l

��m)

� � 1

2l

l�1X
i=0

1X
m=1

�
2sA cos

�
2�ij

l

��m

= � 1

2l

l�1X
i=0

1X
m=2

�
2sA cos

�
2�ij

l

��m

� � 1

2l

l�1X
i=0

1X
m=2

(2sA)m

= � 2s2A2

1� 2sA
; (C.6)

where the �rst inequality follows from the fact that ln(1+x) � x, and the second inequality

follows from the fact that j cos �j � 1. Thus,

Jrl (s) � s�� 2s2A2

1� 2sA
�
= J(s): (C.7)
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Since the positive term is linear in s while the negative term is quadratic, it is easy to �nd a

small s for which J(s) is strictly positive. Since we have shown that for every 1 � j � l� 1,

the volume of Lj\F is less than expfl[0:5 ln(2�eA)�J(s)]g, then the volume of the union of

these sets cannot exceed (l�1) expfl[0:5 ln(2�eA)�J(s)]g, which is still negligible compared

to the volume of the sphere of radius
p
Al.

Finally, since the fraction of points violating Condition (c1) is negligible and the fraction

of points violating Condition (c2) is negligible, so is the fraction of points in their union.
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