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Abstract—TO BE CONSIDERED FOR THE IEEE JACK
KEIL WOLF ISIT STUDENT PAPER AWARD. We consider the
multi-user lossy source-coding problem for continuous alphabet
sources. In previous work, Ziv proposed a universal coding
scheme which uses uniform quantization with dither, followed
by a lossless source encoder (entropy coder). In this paper, we
generalize Ziv’s scheme to the multi-user setting. For this gen-
eralized scheme, upper bounds are derived on the redundancies,
defined as the differences between the actual rates and the closest
corresponding rates on the boundary of the rate region. It is
shown that this scheme can achieve redundancies of no more than
0.754 bits per sample, for each user. These results are obtained
without knowledge of the multi-user rate region, which is an
open problem in general.

I. INTRODUCTION

Consider the case where two correlated sources are observed
separately by two non-cooperative encoders which communi-
cate with one decoder. The decoder needs to reconstruct both
sources and the distortions between the reconstructions and the
corresponding sources should not exceed some given values.
The general version of this problem has remained open for
several decades, even under the assumption of memoryless
sources. However, many special cases have been solved. When
no distortion is allowed, this is the problem considered by
Slepian and Wolf [1]. Their well-known result states that two
discrete sources X1 and X2 can be losslessly reproduced if
and only if

R1 ≥ H(X1|X2)

R2 ≥ H(X2|X1)

R1 +R2 ≥ H(X1, X2) (1)

where R1 is the rate of the encoder observing X1 and R2 is the
rate of the encoder observing X2. The setting in which one of
the variables is known to the decoder, is the original Wyner-
Ziv problem [2]. Other examples include the source coding
problem with side information of Wyner [3] and Ahlswede-
Korner [4], where an arbitrary distortion is allowed for one
of the sources and the other source should be reconstructed
losslessly. Berger and Yeung [5] considered a setting where
one of the sources is to be perfectly reconstructed and the other
source should be reconstructed with a distortion constraint
(their setting subsumes all previous examples). Zamir and
Berger [6] characterized the rate-distortion region in the high-
SNR limit. Wagner and Anantharan [7] presented a new outer

bound which is better than the previous outer bounds in the
literature.

Recent results for specific sources and distortion measures
include the work of Wagner, Tavildar, and Viswanath [8], who
determined the rate region for the quadratic Gaussian multi-
terminal source coding problem, by showing that the Berger-
Tung [9] inner bound is tight. In addition, characterization of
the rate region under logarithmic loss was given by Courtade
and Weissman [10]. Finally, a version of this problem, where
both users and the decoder must operate with zero-delay, was
considered by Kaspi and Merhav [11], who characterized the
rate region in this case.

In [12], Ziv presented a universal coding scheme for the
single-user case. This scheme is composed of a uniform, one-
dimensional quantizer with dither, followed by a noiseless
variable-rate encoder (entropy encoder). He then showed that
this scheme can yield a rate that is, for any n, no more
than 0.754 bits per sample higher than the best possible
rate associated with the optimal n-dimensional quantizer. This
result was later revisited and developed by Zamir and Feder
[13], [14], who also gave a redundancy upper bound which
depends on the source distribution. However, their derivation
of the global upper bound relies on the known formula of the
single-user rate-distortion function.

In this paper, we investigate a generalized scheme for the
multi-user setting. In this scheme, each user uses dithered
quantizer followed by Slepian-Wolf encoder. We show that the
rates achieved by this scheme are no more than 0.754 bits per
sample away from the boundary of the achievable rate region,
for each user. This is done regardless of the characterization of
the achievable region, which is, as mentioned before, unknown
in general. As a direct consequence of these results, inner and
outer bounds on the achievable region are obtained.

A. Problem formulation

Throughout the paper, random variables will be denoted
by capital letters and their alphabets will be denoted by
calligraphic letters. Random vectors (all of length n) will be
denoted by capital letters in the bold face font.

We first define the multi-user rate region and the dithered
coding scheme we use. A rate pair (R∗1, R

∗
2) is (D1, D2)-

achievable under the mean-square error distortion measure d
for a memoryless source (X1,X2, PX1X2

) if for any δ > 0



and sufficiently large n, there exists a code of block length n
consisting of two encoders f1, f2 and a decoder g, defined as

f1 : Xn
1 → IM1

, f2 : Xn
2 → IM2

g : IM1
× IM2

→ X̂n
1 × X̂n

2

(2)

such that
1

n
Ed(X1, X̂1) ≤ D1 + δ,

1

n
logM1 ≤ R∗1 + δ

1

n
Ed(X2, X̂2) ≤ D2 + δ,

1

n
logM2 ≤ R∗2 + δ (3)

where IMi , {1, 2, . . . ,Mi}, i ∈ {1, 2}. The convex hull
of the set of (D1, D2)-achievable rate pairs, is denoted by
R∗(D1, D2). From now on, we assume that Xi = X̂i = R,
i ∈ {1, 2}.

Our scheme works as follows. We have two encoders f̃1,
f̃2 and a decoder g

f̃1 : Xn
1 × [−

√
3D1,

√
3D1]→ IM1

f̃2 : Xn
2 × [−

√
3D2,

√
3D2]→ IM2

g̃ : IM1
× IM2

× [−
√

3D1,
√

3D1]

×[−
√

3D2,
√

3D2]→ X̂n
1 × X̂n

2

(4)

Each encoder f̃i, i ∈ {1, 2}, uses a one-dimensional uniform
quantizer Qi, Qi : R→ {0,±2

√
3Di,±2 · 2

√
3Di, . . .} and a

dither random variable (RV) Zi, uniformly distributed over
[−
√

3Di,
√

3Di], to produce Qi(Xi + Zi) , [Qi(Xi,1 +
Zi), Qi(Xi,2 + Zi), . . . , Qi(Xi,n + Zi)], where Zi denotes a
vector of size n composed of n repetitions of the same real-
ization of Zi. For convenience, Qi(Xi +Zi) and Qi(Xi +Zi)
will be denoted by Qi and Qi, respectively. The dither RV’s
{Zi} are available to both encoders and to the decoder and
are independent. As shown in [12, Lemma 1],

1

n
E||Qi − Zi −Xi||2 = Di, i ∈ {1, 2} (5)

where the expectation is taken over Zi. The entropy encoders
use Slepian-Wolf encoding1, with a rate pair (R1, R2), for
losslessly compressing {Qi}2i=1. Complying with Eq. (1), the
rate pair satisfies the following:

R1 ≥ 1

n
H (Q1|Q2, Z1, Z2)

R2 ≥ 1

n
H (Q2|Q1, Z1, Z2)

R1 +R2 ≥ 1

n
H (Q1,Q2|Z1, Z2) (6)

This rate region is achievable for n sufficiently large and it is
denoted by R(D1, D2). Notice that the interesting range of R1

is R1(D1, D2) ,
[
n−1H (Q1|Q2, Z1, Z2) , n−1H (Q1|Z1)

]
and similarly for R2. The decoder first decodes {Qi}2i=1

(correctly with high probability), and then subtracts the dithers
to obtain the reconstruction vectors X̂1, X̂2:

X̂i = Qi − Zi. (7)

1Since Slepian-Wolf encoding works for a finite-source alphabet, we assume
for simplicity that the sources have bounded supports.

We begin with a simple result.
Theorem 1: For any rate pair (R∗1, R

∗
2) ∈ R∗(D1, D2) and

any rate pair (R1, R2) on the boundary of R(D1, D2), with
R1 ∈ R1(D1, D2), we have

R1 +R2 ≤ R∗1 +R∗1 + 2c (8)

Moreover, if R∗1 ∈ R1(D1, D2), then there exists a rate pair
(R1, R2) ∈ R(D1, D2) such that

R1 = R∗1

R2 ≤ R∗2 + 2c (9)

where c = 0.754.
Proof of Theorem 1: We have

1

n
H (Q1,Q2|Z1, Z2)

≤ 1

n
H (Q1,Q2,m1,m2|Z1, Z2)

≤ 1

n
H(m1,m2) +

1

n
H (Q1,Q2|m1,m2, Z1, Z2)

≤ R∗1 +R∗2 +
1

n
H (Q1,Q2|m1,m2, Z1, Z2)

≤ R∗1 +R∗2 +
1

n
H (Q1,Q2|g(m1,m2), Z1, Z2)

= R∗1 +R∗2 +
1

n
H
(
Q1,Q2|X̂opt

1 , X̂opt
2 , Z1, Z2

)
≤ R∗1 +R∗2 +

1

n
H
(
Q1|X̂opt

1 , Z1

)
+

1

n
H
(
Q2|X̂opt

2 , Z2

)
≤ R∗1 +R∗2 + 2c (10)

where m1, m2 are the outputs of encoders f1, f2, respectively,
and (R∗1, R

∗
2) ∈ R∗(D1, D2). The last inequality can be

obtained in the same way as in [12]. The left-hand side is
achievable for sufficiently large n. Therefore, for any rate
pair (R1, R2) ∈ R(D1, D2), which lies on the straight line
R1 +R2 = n−1H (Q1,Q2|Z1, Z2), we have

R1 +R2 ≤ R∗1 +R∗2 + 2c (11)

Moreover, if R∗1 ∈ R1(D1, D2), we can always take R1 = R∗1
and obtain:

R2 ≤ R∗2 + 2c (12)

The same can be done, of course, if the roles of the two users
are interchanged. This completes the proof.
The following theorem suggests another result, regarding the
relation between the boundary of R(D1, D2) and that of
R∗(D1, D2).

Theorem 2: For any rate pair (R1, R2) on the boundary of
R(D1, D2), with R1 ∈ R1(D1, D2), there exists a rate pair
(R∗1, R

∗
2) ∈ R∗(D1, D2) such that:

R1 ≤ R∗1 + c

R2 ≤ R∗2 + c (13)



Notice that Theorems 1 and 2 provide a characterization of
R∗(D1, D2). Theorem 1 asserts that the straight line R1 +
R2 = n−1H (Q1,Q2|Z1, Z2) − 2c defines an outer bound
for R∗(D1, D2). In addition, Theorem 2 bounds the distance
between the boundary of R(D1, D2) and that of R∗(D1, D2),
in each coordinate. This result will be useful in Theorem 4
below, where different upper bounds are obtained for each
coordinate. Also notice that using methods similar to those
of [14], we can derive a distribution-dependent upper bound
for the redundancy of the sum of rates. However, this upper
bound contains the divergence between the source and the
Gaussian distribution and thus it is not universal as the bound
of Theorem 1.

We first prove a very simple auxiliary result regarding the
source-coding problem where side information is available
only to the encoders but not to the decoder. The setting is as
follows: A rate pair (R1, R2) is achievable for a memoryless
source (X1,X2, PX1,X2) and some side information S ∈ S
which depends statistically on (Xn

1 , X
n
2 ) through the joint

probability distributions PXn
1 ,Xn

2 ,S , if for any δ > 0 and
sufficiently large n, there exists a block code of length n
consisting of two encoders f1, f2 and a decoder g

f1 : Xn
1 × S → IM1

f2 : Xn
2 × S → IM2

g : IM1
× IM2

→ Xn
1 ×Xn

2 (14)

such that

Pr{g (f1(Xn
1 , S), f2(Xn

2 , S)) 6= (Xn
1 , X

n
2 )} ≤ δ (15)

and
1

n
logM1 ≤ R1 + δ,

1

n
logM2 ≤ R2 + δ (16)

The convex hull of the set of achievable rate pairs is denoted by
R̃. The regular Slepian-Wolf region (without side information)
is denoted by RSW . Obviously, RSW ⊆ R̃. We have the
following:

Lemma 1: Any rate pair (R̃1, R̃2) ∈ R̃ must satisfy the
following constraint:

R̃1 + R̃2 ≥ H(X1, X2). (17)

Therefore, side information available only to the encoders
cannot improve the performance if R̃1 ∈ [H(X1|X2), H(X1)]
or R̃2 ∈ [H(X2|X1), H(X2)].

Proof of Lemma 1: The proof follows directly from the
fact that even one encoder, which has access to (X1,X2, S),
cannot do better than H(X1,X2), when the side information
S is not available to the decoder.
The generalization of Lemma 1 to our case where, in addition,
a dither is available to the encoders and decoder, is straight-
forward. We can now prove Theorem 2.

Proof of Theorem 2: Assume that the optimal code
(f1, f2, g), which achieves the rate pair (R∗1, R

∗
2), is known,

and that the encoders of the dithered scheme, which transmit
Q1, Q2 at rates (R1, R2) to the decoder, have access to
f1(X1), f2(X2). According to Lemma 1, this side information

does not change the fact that any rate pair (R1, R2) ∈
R(D1, D2) must satisfy R1 + R2 ≥ n−1H(Q1,Q2|Z1, Z2).
Consider the following auxiliary coding scheme: User i
compresses mi = fi(Xi) using nR∗i bits, i ∈ {1, 2}.
Then, the first user uses Slepian-Wolf coding to compress
Q1 given {m1,m2, Z1} into H(Q1|m1,m2, Z1) bits. The
second user uses Slepian-Wolf coding to compress Q2 given
{Q1,m1,m2, Z1, Z2} into H(Q2|Q1,m1,m2, Z1, Z2) bits.
The decoder, which has access to {m1,m2, Z1, Z2}, first
decodes Q1, using {m1,m2, Z1}. Then, it decodes Q2 using
{Q1,m1,m2, Z1, Z2}. The rate pair of this scheme, (R1, R2),
satisfies

R1 = R∗1 +
1

n
H (Q1|m1,m2, Z1)

≤ R∗1 +
1

n
H (Q1|g(m1,m2), Z1)

= R∗1 +
1

n
H
(
Q1|X̂opt

1 , X̂opt
2 , Z1

)
≤ R∗1 +

1

n
H
(
Q1|X̂opt

1 , Z1

)
(18)

and

R2 = R∗2 +
1

n
H (Q2|Q1,m1,m2, Z1, Z2)

≤ R∗2 +
1

n
H (Q2|Q1, g(m1,m2), Z1, Z2)

= R∗2 +
1

n
H
(
Q2|Q1, X̂

opt
1 , X̂opt

2 , Z1, Z2

)
≤ R∗2 +

1

n
H
(
Q2|X̂opt

2 , Z2

)
(19)

The upper bounds for H(Qi|X̂opt
i , Zi) can be obtained in the

same way as in [12]. Notice that the Slepian-Wolf coding part
requires long blocks of (m1,m2,Q1,Q2) so the results are
asymptotic in nature. Now, since R(D1, D2) ⊆ R∗(D1, D2),
we can always find a rate pair (R∗1, R

∗
2) ∈ R∗(D1, D2) such

that R∗1 + c ∈ R1(D1, D2). From the above, the rate pair
(R1, R2) = (R∗1 + c,R∗2 + c) can be achieved by the auxiliary
scheme. Therefore, it can also be achieved by the dithered
scheme, since R1 ∈ R1(D1, D2), and in this range the regions
of the auxiliary scheme and the dithered scheme coincide.
Notice that any rate pair in R(D1, D2) can be achieved in
practice by time-sharing the two edge points of R(D1, D2).

B. Revisiting the upper bound for H
(
Q|X̂opt,Z

)
The goal of this subsection is to revisit the proof of [12]

for the upper bound on H
(
Q|X̂opt,Z

)
. The new proof is

easier for generalization. The width of the quantization cell is
denoted by ∆ , 2

√
3D ⇒ D = ∆2/12. Notice that in this

subsection we deal with only one source X . First, it can be
easily shown [16] that for each coordinate Xk, k ∈ {1, . . . , n},

E
[
Xk − X̂opt

k + Z
]

= 0. (20)



We now rederive the upper bound for H (Q|Xopt,Z). Using
a method similar to [13], the following can be shown [16]:

H
(
Qk|X̂opt

k , Z
)

= I
(
Xk;Xk + Z|X̂opt

k

)
= h

(
Xk + Z|X̂opt

k

)
− h (Z) (21)

Now, we can upper bound h
(
Xk + Z|X̂opt

k

)
in the following

way:

h
(
Xk + Z|X̂opt

k

)
= h

(
Xk − X̂opt

k + Z|X̂opt
k

)
=

∑
q∈X̂

PX̂opt
k

(q)h
(
Xk − X̂opt

k + Z|X̂opt
k = q

)
≤ 1

2
log

(
2πeE

[(
Xk − X̂opt

k + Z
)2])

(22)

using Jensen inequality and the maximum-entropy property
of the Gaussian random variable. As a result, we can upper
bound H

(
Q|X̂opt,Z

)
in the following way:

H
(
Q|X̂opt,Z

)
≤

n∑
k=1

H
(
Qk|X̂opt

k , Z
)

≤
n∑

k=1

1

2
log

(
2πeE

[(
Xk − X̂opt

k + Z
)2])

−nh(Z)

≤ n

2
log

(
2πe

1

n

n∑
k=1

E
[(
Xk − X̂opt

k + Z
)2])

−n log ∆

=
n

2
log

(
2πe

1

n
E
∥∥∥X− X̂opt + Z

∥∥∥2)
−n log ∆

≤ n

2
log (2πe2D)− n log ∆

=
n

2
log (2πe2D)− n

2
log(∆2)

=
n

2
log (4πeD)− n

2
log (12D)

=
n

2
log
(πe

3

)
(23)

where the third inequality is due to Jensen, and in the fourth
we used the following:

1

n
E
∥∥∥X− X̂opt + Z

∥∥∥2 =
1

n
E
∥∥∥X− X̂opt

∥∥∥2 +
1

n
E ‖Z‖2

≤ 2D (24)

which stems from the independence of X and Z. This com-
pletes the proof of the basic result.

Notice that this proof can be adapted to any other difference
distortion measure, by replacing the upper bound of Eq. (22)
with an appropriate maximum-entropy bound.

C. Improving the bounds by adding an estimation stage
The goal of this subsection is to enhance the results of

Subsection A by improving the coding scheme described in
the beginning of Subsection 2.1. The idea is to decrease the
distortion by adding an estimation stage at the decoder side.
The new scheme works as follows. After producing Q1,Q2

and instead of just using them as outputs, the decoder uses
them to estimate each one of the source vectors (X1,X2).
For simplicity, we assume that the estimation is done on a
symbol-by-symbol basis.

We begin with the following lemma:
Lemma 2: For the multi-terminal setting described in Sub-

section A, we have (i ∈ {1, 2}):

E[Qi − Zi] = E[Xi] (25)
E[(Qi − Zi)

2] = E[Xi
2] +D (26)

E[Xi(Qi − Zi)] = E[X2
i ] (27)

E [(Q1 − Z1)(Q2 − Z2)] = E [X1X2] (28)
E [X1(Q2 − Z2)] = E [X1X2] (29)
E [X2(Q1 − Z1)] = E [X1X2] (30)

Notice that the results above are true for each coordinate k ∈
{1, . . . , n}. The proof appears in [16].

The improved decoder described below requires the knowl-
edge of the second-order statistics of the source. However,
as Lemma 2 shows, these statistics can be estimated from
{Qi}2i=1, so universality can still be maintained.

The decoder of the multi-terminal setting uses the optimal
linear estimator, under the MMSE criterion, of X1 given
(Q(X1 + Z1)− Z1, Q(X2 + Z2)− Z2, Z1, Z2). The estima-
tion error is calculated by using the results of Lemma 2.
From now on, without loss of generality, we assume that
E[X1] = E[X2] = 0. The covariance matrix of Y ,
[Q(X1 + Z1)− Z1, Q(X2 + Z2)− Z2] is:

Λ =

(
E[X2

1 ] +D1 E[X1X2]

E[X1X2] E[X2
2 ] +D2

)
(31)

and the inverse matrix is:

Λ−1 =
1

|Λ|

(
E[X2

2 ] +D2 −E[X1X2]

−E[X1X2] E[X2
1 ] +D1

)
(32)

The vector E
[
X1 · Y †

]
is given by:

E
[
X1 · Y †

]
=

(
E[X2

1 ]

E[X1X2]

)
(33)

It can be shown by direct calculation that

Λ−1E
[
X1 · Y †

]
=

1

|Λ|

(
|Λ| −D1(E[X2

2 ] +D2)

E[X1X2]D1

)
Therefore, the optimal linear estimator of X1 given the vector
Y is:

X̂1 = Y · 1

|Λ|

(
|Λ| −D1(E[X2

2 ] +D2)

E[X1X2]D1

)
(34)



The error of the optimal linear estimator is given by:

D∗1 = E
[
X2

1

]
− E

[
X̂2

1

]
(35)

It can be shown by direct calculation that the estimation error
takes the following form:

D∗1 = D1

(
E[X2

1 ](E[X2
2 ] +D2)− E[X1X2]2

(E[X2
1 ] +D1)(E[X2

2 ] +D2)− E[X1X2]2

)
Remember that D∗1 is the distortion of X1 in the multi-
terminal setting, when we add the above estimation stage
after decoding [Q(X1 + Z1), Q(X2 + Z2)]. The same can be
done, of course, for X2. Since the distortion of Xi in the
improved scheme is D∗i , we should compare the rate pair
(R1, R2) of this scheme, to the optimal rate pair (R∗1, R

∗
2)

which achieves (D∗1 , D
∗
2). This fact immediately improves the

results of Theorems 1 and 2. Revisiting the derivation of the
upper bound for H

(
Q|X̂opt,Z

)
in Eq. (23), it can be shown

that (i ∈ {1, 2}):

H
(
Qi|X̂opt

i ,Zi

)
≤ n

2
log

[
πe

6

(
D∗i
Di

+ 1

)]
(36)

by using the following:

1

n
E
∥∥∥Xi − X̂opt

i + Zi

∥∥∥2 =
1

n
E
∥∥∥Xi − X̂opt

i

∥∥∥2
+

1

n
E ‖Zi‖2

≤ D∗i +Di (37)

Notice that when X1 and X2 are independent, E[X1X2] = 0
and we have

H
(
Qi|X̂opt

i ,Zi

)
≤ n

2
log

[
πe

6

(
2− Di

E[X2
i ] +Di

)]
(38)

The maximum interesting value of D∗i is, of course, E[X2
i ].

This value is obtained for Di → ∞. It is not hard to see
that the range of the upper bound in (38) is [0.255, 0.755] and
that it is a decreasing function of D1. For the high-SNR limit,
i.e., Di → ∞, it is well known that the redundancy is 0.255
bits/sample (cf. [15]). It can be shown [16] that this result can
be derived using the mechanism above. We define (i ∈ {1, 2}):

ci(D1, D2) =
n

2
log

[
πe

6

(
D∗i
Di

+ 1

)]
(39)

Using the upper bound in (36), we can state Theorems 3 and
4:

Theorem 3: For any rate pair (R∗1, R
∗
2) ∈ R∗(D∗1 , D∗2) and

any rate pair (R1, R2) on the boundary of R(D∗1 , D
∗
2), with

R1 ∈ R1(D1, D2), we have

R1 +R2 ≤ R∗1 +R∗1 + c1(D1, D2) + c2(D1, D2) (40)

Moreover, if R∗1 ∈ R1(D1, D2), then there exists a rate pair
(R1, R2) ∈ R(D∗1 , D

∗
2) such that:

R1 = R∗1

R2 ≤ R∗2 + c1(D1, D2) + c2(D1, D2) (41)

Theorem 4: For any rate pair (R1, R2) on the boundary of
R(D∗1 , D

∗
2), with R1 ∈ R1(D1, D2), there exists a rate pair

(R1, R2) ∈ R(D∗1 , D
∗
2) such that:

R1 ≤ R∗1 + c1(D1, D2)

R2 ≤ R∗2 + c2(D1, D2) (42)

II. CONCLUSION

We introduced upper bounds on the redundancies of the
dithered scheme in the multi-user setting. The mechanism
used does not depend on the knowledge of the optimal rate
region and can be extended easily to the case of stationary
sources. The suggested scheme requires only one realization
of the dither RV in each round. As mentioned in Subsection B,
the results can also be extended to other difference distortion
measures.
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