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Abstract—We consider real-time, variable-rate lossy source
coding in the presence of side information (SI) at the decoder.
We show that time-sharing at most two scalar encoder-decoder
pairs achieves optimal performance. We further demonstrate
that in this setting, increasing the number of quantization levels
can reduce the minimum average rate. Finally, two structure
theorems, pertaining to source- or SI look-ahead are given.

I. INTRODUCTION

We consider the following source coding problem. Symbols
produced by a discrete memoryless source are to be encoded,
transmitted noiselessly and reproduced by a decoder which has
access to SI correlated to the source. Operation is in real time,
that is, the encoding of each symbol and its reproduction by
the decoder must be performed without any delay. The average
distortion between the source and the reproduced symbols
is constrained to be smaller than some predefined constant.
Since no delay is allowed, the encoder must, at each stage,
use an instantaneous code which is decoded without error at
the receiving end.

When no distortion is allowed, this problem falls within
the scope of zero-error source coding with SI, which was
initially introduced by Witsenhausen in [1]. Witsenhausen
considered fixed-length coding and characterized the side-
information structure as a confusability graph defined on the
source alphabet. With this characterization, fixed-length SI
codes were equivalent to colorings of the associated graph.
Alon and Orlitsky [2] considered variable-rate codes for the
zero-error problem. Two classes of codes were considered
and lower and upper bounds were derived for both the scalar
and infinite block length regimes. The work of Alon and
Orlitsky was further extended by Koulgi et. al [3] who showed
that the asymptotic zero-error rate of transmission is the
complementary graph entropy of an associated graph. It was
also showed in [3] that the design of optimal code is NP -hard
and a sub-optimal, polynomial time algorithm was proposed.
The combination of zero-error codes and maximum per-letter
distortion was considered in [4]. When the source alphabet is
finite and distortion is allowed, scalar quantizer design boils
down to finding the best partition of the source alphabet into
disjoint subsets. The number of such subsets will be governed
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by the constraints which are imposed on the system (distortion,
rate, encoder’s output entropy etc.). In [5], Muresan and Effros
proposed an algorithm for finding good partitions in various
settings which include the variable rate scalar Wyner-Ziv [6]
setting. However, the optimality of the partitions relied on
the convexity of the subsets. Namely the subsets in each
partition must be intervals in the source alphabet. It was
noted by the authors that this requirement is too strong in the
scalar Wyner-Ziv setting and there are many cases where the
optimal partition contains subsets which are not convex. We
demonstrate such a scenario in the last section of this work.
Bounds on the performance of scalar, fixed-rate source codes
with decoder SI were recently given in [7].

Real–time codes form a subclass of the class of causal
codes, as defined by Neuhoff and Gilbert [8]. In [8], entropy
coding is used on the whole sequence of reproduction symbols,
introducing arbitrarily long delays. In the real time case,
entropy coding has to be instantaneous, symbol–by–symbol
(possibly taking into account past transmitted symbols). It was
shown in [8] that for a discrete memoryless source (DMS),
the optimal causal encoder consists of time-sharing between
no more than two scalar encoders. Weissman and Merhav [9]
extended [8] to the case where SI is also available at the
decoder, encoder or both. The discussion in [9] was restricted,
however, only to settings where the encoder and decoder could
agree on the reconstruction symbol (i.e., the SI was used for
compression, but not in the reproduction at the decoder). Non-
causal coding of a source when the decoder has causal access
to SI (with possibly a finite look-ahead) was considered by
Weissman and El Gamal [10].

The results of [8] for causal coding can be adapted to real-
time coding by replacing the arbitrary long delay entropy cod-
ing with zero-delay Huffman coding, thus showing that time-
sharing at most two scalar quantizers, followed by Huffman
coding, is optimal. When the SI is available to both the encoder
and decoder, the results of [9] can be adapted to real-time in a
similar manner, where at most two scalar quantizers followed
by Huffman coding are used for every possible SI symbol.
The setting where the decoder can use the SI both to decode
the compressed message and to reproduce the source was left
open in [9].

This paper has several contributions. Primarily, we prove a
theorem that states that when SI is available to the decoder



only, it is optimal to time-share at most two scalar encoders
and decoders. The encoders transmit their messages using
zero-error instantaneous codes, as defined in [2]. We also show
that there is no performance gain if the decoder has non-causal
access to the SI and in fact, only the current SI symbol is
useful. Moreover, in the real-time setting, if we a-priori restrict
attention to scalar decoders (that use only the current encoder
message and SI symbol), there is no performance gain if the
encoder has access to the whole sequence of source symbols
in advance.

The rest of this paper is organized as follows. In Section
II we give the formal setting and notation used throughout
the paper. In Section III, we state and discuss the main
contributions of this paper. We prove Theorem 1 in Section
IV. We end this paper with some examples in Section V.

II. PRELIMINARIES

We begin with notation conventions. Capital letters repre-
sent scalar random variables (RV’s), specific realizations of
them are denoted by the corresponding lower case letters, and
their alphabet – by calligraphic letters. For a positive integer
i, xi will denote the vector (x1, . . . , xi). The source alphabet,
X , as well as all other alphabets in the sequel, is finite. The
probability distribution over X , will be denoted by PX(·).
When there is no room for ambiguity, we will use P (x) instead
of PX(x). 1 {A} will denote the indicator of the event A.

We investigate the following real–time problem. An encoder
observes Xt and transmits a compressed version, Wt, to a
decoder which observes Yt. The decoder produces X̂t ∈ X̂ ,
a reproduction of Xt, where X̂ is the reproduction alphabet.
Given a constant D and a distortion measure d : X × X̂ →
R, it is required that lim supn→∞

1
nE

∑n
t=1 d(Xt, X̂t) ≤ D.

Operation is in real–time. This means that the transmitted data,
Wt, can be a function only of the encoder’s observations no
later than time t, namely, Xt. Similarly, the decoder’s estimate,
X̂t is a function of (W t, Y t). Let Ln denote the total number
of bits sent after observing n source symbols. The rate of the
encoder is defined by R

4
= lim supn→∞

1
nELn. Our goal is

to find the tradeoffs between R and D.
Since no delay is allowed, Wt must be encoded by an instan-

taneous code. Note that in general P (wt, yt) 6= P (wt)P (yt)
(since (Xt, Yt) are not independent) and therefore, we will
need to consider instantaneous coding of Wt in the presence
of correlated SI at the decoder. We restrict the coding of Wt

to be error-free. The remainder of this section will be devoted
to definitions that are needed for zero error transmission in the
presence of SI.

For a joint distribution P (x, y), we say that x, x′ ∈ X
are confusable if there is a y ∈ Y such that P (x, y) > 0
and P (x′, y) > 0. A characteristic graph G is defined on the
vertex set of X and x, x′ ∈ X are connected by an edge if
they are confusable. The pair (G,P ), denotes a probabilistic
graph consisting of G together with the distribution P over its
vertices (here P denotes the marginal on X ). We say that two
vertices (x, x′) are adjacent if there is an edge that connects
them in G. The chromatic number of G, χ(G), is defined to

be the smallest number of colors needed to color the vertices
of G so that no two adjacent vertices share the same color.

We will focus only on (x, y) pairs with P (x, y) > 0 and
thus restrict attention only to restricted inputs (RI) protocols,
as defined in [2]. A protocol for transmitting X when the
decoder knows Y , henceforth referred to as an RI protocol,
is defined to be a mapping φ : X → {0, 1}∗ such that if
x and x′ are confusable then φ(x) is neither equal to, nor a
prefix of φ(x′). An encoder that uses an RI protocol will be
referred to as a SI-aware encoder. The length in bits of φ(x)
will be denoted by |φ(x)|. Note that for restricted inputs, the
prefix condition should be kept only over edges of G. Namely,
for every y ∈ Y , the prefix condition should be kept over the
subset {x : P (x, y) > 0}. The fact that the same x ∈ X can be
contained in multiple such subsets, but can have only a single
bit representation, complicates the search for the optimal RI
protocol. Let lY (φ)

4
=
∑

x∈X p(x)|φ(x)|, where the subscript
emphasizes that Y is known to the decoder. Let

LY (X) = min
{
ly(φ) : φ is an RI protocol

}
. (1)

Upper and lower bounds on LY (X) in terms of the entropy
of the optimal coloring are given in [2]. Finding a single-
letter expression for LY (X) is an open problem. We will use
LY (X) as a figure of merit and our results will be single-
letter expressions, in terms LY (X). In Fig. 1, we give an
example of bipartite graphs, formed by two joint distributions
P (x, y) where an edge connects (x, y) if P (x, y) > 0 along
with the characteristic graphs and the optimal RI protocols for
a uniform PX(·).
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Fig. 1: Example of bipartite graphs of P (x, y) along with their
associated characteristic graphs G and a RI protocol for 5 (a)
and 6 (b) letter alphabets with “typewriter” SI.

In Fig 1a, we used 4 different bit representations for the
source symbols. These bit representations are not prefix free,
but are easily seen to be uniquely decodable with the SI. The
optimal bit representations imply a 4-coloring scheme for G,
although χ(G) = 3. In Fig. 1b, however, χ(G) = 2 and indeed
the optimal RI protocol uses a 2-coloring scheme. In Section
V, we will return to this example, as well as another example
where increasing the quantizer output alphabet reduces the
rate.

When the graph G is complete, the prefix condition should
be kept for all x ∈ X thus reducing the RI protocol to regular
prefix coding. In this case, LY (X) is equal to the average
Huffman codeword length of X .

In the proof the converses of our theorems, we use a
“genie” that reveals common information to both encoder and



decoder, thus we define a conditional RI protocol. Let the
triplet (X,Y, Z) be distributed with some joint distribution
P (x, y, z). The information that is known to both parties will
be denoted by Z, while X ,Y continue to play the roles of
source output and the SI respectively. For any z ∈ Z , let Φ(z)
denote the set of conditional RI protocols for z. Namely, the
set of all RI protocols for (x, y) such that p(x, y, z) > 0.
For any φ ∈ Φ(z), let lY (φ|z) 4=

∑
x∈X P (x|z)|φ(x)| be the

average length when Z = z. Similarly, let

LY (X|Z = z) = min
{
lY (φ|z) : φ ∈ Φ(z)

}
. (2)

Finally, let LY (X|Z) = ELY (X|Z = z) where the expecta-
tion is with respect to PZ(·) and we used the same abuse
of notation which is commonly used with the notation of
conditional entropy. It follows that LY (X|Z) ≤ LY (X) since
the set of RI protocols which are valid without the common
knowledge of Z is contained in the set of conditional RI
protocols which are valid when Z is known at both ends.
In the special case where Z = Y , i.e., the SI is known to
both parties, the RI protocol for each y reduces to designing
a Huffman code according to PX|Y (·|y) for every y ∈ Y .

III. MAIN RESULTS

In this section, we state and discuss the main results of
this work. The pair (R,D) is said to be achievable if there
exists a rate- R encoder with causal encoding functions Wt =
ft(X

t), t = 1, 2, . . ., and a decoder with causal reproduction
functions, X̂t = gt(W

t, Y t), such that the average distortion
is smaller than D. Let RRT (D) denote the infimum over all
rates that are achievable with a given D, where the subscript
stands for real-time. Let

RRT (D) = min
h,f

LY (f(X)) (3)

where the minimization is over all deterministic functions h :
Z × Y → X̂ and f : X → Z such that Ed(X,h(Y,Z)) ≤
D (obviously, |Z| ≤ |X |). Finally, denote the lower convex
hull of RRT (D) by RRT (D). In (3), each possible f in the
search domain, along with its optimal h, will incur some given
average distortion. Since there is only a finite number of such
functions f , the R−D plain contains a finite number points.
The lower convex hull of these points will give us RRT (·),
which is therefore piecewise-linear.

The first result of this paper is the following theorem:

Theorem 1. RRT (D) = RRT (D).

Theorem 1 implies that optimal performance is attained by
time-sharing at most two scalar SI-aware quantizers along with
scalar decoders. The role of the function f is to partition
the source alphabet into subsets. Note that there is no sense
in creating overlapping subsets since it will only increase
the uncertainty at the decoder (increase the distortion) while
adding edges to the characteristic graph of Z with Y (thus
increasing the rate). Also, there is no loss of generality in
the restriction to deterministic encoders (f ) since LY (Z) is a
concave functional of {P (z|x)} while the distortion is linear

{P (z|x)}. Therefore optimizing over the whole convex set of
stochastic encoders (represented by distributions {P (z|x)}) is
equivalent to optimizing only over the extreme points of this
set which are the deterministic encoders.

Let RyRT (D) denote the infimum over all rates that are
achievable with a given D, with the same encoders as be-
fore and decoders that can use the whole SI sequence, i.e.,
X̂t = gt(W

t, Y n). We have the following theorem:

Theorem 2. RyRT (D) = RRT (D).

The theorem states that allowing the decoder to observe the
future SI symbols will not result in a performance gain. This is
in contrast to the setting of non-causal access to the source and
causal access to the SI at the decoder, treated in [10], where it
was shown that SI look-ahead can improve performance. The
performance gain is achieved through better compression of
the transmitted message and not due to better estimation of
the source with the SI look-ahead. In the real-time setting, the
(real-time) compression of the message cannot be improved by
using the SI look-ahead and therefore there is no performance
gain.

Let RxRT (D) denote the infimum over all rates that are
achievable with a given D, when non-causal encoders are
allowed, i.e., Wt = ft(X

n), but the decoders are restricted
to be scalar, i.e., X̂t = gt(Wt, Yt). We have the following
theorem:

Theorem 3. RxRT (D) = RRT (D).

The last theorem states that in the real-time regime, if
the reproduction functions are scalar, then scalar SI aware
encoders are optimal. This is of course in contrast to the classic
arbitrary delay regime.

We prove theorem 1 in the following section. The proofs of
the other theorems, which follow the line of proof of Theorem
1, are omitted due to the space limitations.

IV. PROOF OF THEOREM 1

1) Converse part: We will prove a stronger converse than
needed, by revealing to the encoder at each stage all the
past SI symbols and revealing all past source symbols to
the decoder. We also do not rule out stochastic encoders
in the converse and therefore do not assume that wt is a
function of xt. Note that with the “genie aided” feedback
and feed–forward, (W t−1, Xt−1, Y t−1) is known to both
parties at the beginning of each stage. Therefore, the minimal
average number of transmitted bits at each stage is given by
LYt

(Wt|W t−1, Xt−1, Y t−1). For any sequence of encoding
functions which are functions of (W t−1, Xt, Y t−1) and any
sequence of reproduction functions which are functions of
(W t, Xt−1, Y t) satisfying the distortion constraint we have:

nR ≥
n∑

t=1

LYt(Wt|W t−1, Xt−1, Y t−1)

=

n∑
t=1

∫
LYt

(Wt|wt−1xt−1, yt−1)dµ(wt−1, xt−1, yt−1)



=

n∑
t=1

∫
LYt

(ft(Xt, x
t−1, wt−1)|wt−1, xt−1, yt−1)×

dµ(wt−1, xt−1, yt−1)

=

n∑
t=1

∫
LYt

(ft(Xt, x
t−1, wt−1))dµ(wt−1, xt−1, yt−1) (4)

where µ(·) denotes the joint probability mass function of
its arguments and the last equation is true since Xt is
independent of (wt−1, xt−1, yt−1). Now, ft(Xt, x

t−1, wt−1)
can be seen as a specific choice of f(Xt) in the definition
of RRT (D). This, along with the fact that we know that
Y t−1 = yt−1 and W t−1 = wt−1, makes the decoding function
X̂t = gt(ft(Xt, x

t−1, wt−1), wt−1, yt−1, Yt) a specific choice
of h(·, ·) in the definition of RRT (D). We therefore have

nR ≥
n∑

t=1

∫
LYt(ft(Xt, x

t−1, wt−1))dµ(wt−1, xt−1, yt−1)

≥
n∑

t=1

∫
RRT (E[d(Xt, gt(ft(Xt, x

t−1, wt−1), wt−1,

yt−1, Yt))|wt−1, xt−1, yt−1])dµ(wt−1, xt−1, yt−1) (5)

≥
n∑

t=1

∫
RRT (E[d(Xt, gt(ft(Xt, x

t−1, wt−1), wt−1,

yt−1, Yt))|wt−1, xt−1, yt−1])dµ(wt−1, xt−1, yt−1) (6)

≥
n∑

t=1

RRT

(∫
E[d(Xt, gt(ft(Xt, x

t−1, wt−1), wt−1,

yt−1, Yt))|wt−1, xt−1, yt−1]dµ(wt−1, xt−1, yt−1)

)
(7)

=

n∑
t=1

RRT

(
E
[
d(Xt, gt(ft(X

t,W t−1),W t−1, Y t))
])

=

n∑
t=1

RRT

(
E
[
d(Xt, X̂t)

])
≥ nRRT

(
1

n

n∑
t=1

E
[
d(Xt, X̂t)

])
(8)

≥ nRRT (D) , (9)

where (5) follows from the definition of RRT (D) and the
discussion following (4), (6) follows from the definition of
RRT (D), (7) and (8) follow from the convexity of RRT (D).
Finally, (9) follows from the monotonicity of RRT (D).

2) Direct part: The direct part of the theorem is obtained
by time–sharing two scalar SI-aware quantizers. By definition
of RRT (D), we have that there exist (D1, D2, λ) such that
D = λD1 + (1 − λ)D2 and (f1, h1), (f2, h2) that are the
achievers of RRT (D1) and RRT (D2), respectively, such that
λRRT (D1) + (1 − λ)RRT (D2) = RRT (D). Let φ1,φ1 be
the optimal protocols for Z1,t = f1(Xt), Z2,t = f2(Xt)
respectively. Also, let kn ≤ n be a non-decreasing sequence
of integers such that limn→∞

kn

n = λ. For every n, we use
(f1, h1) for the first kn stages and (f2, h2) for the rest of

the n–block. The resulting Zi,t, i = 1, 2, are coded with the
optimal protocols φ1 or φ2. The average distortion of this
scheme is given by

1

n

n∑
t=1

Ed(Xt, g(Y t, Zt))

=
kn
n
Ed(Xt, h1(Yt, Z1,t)) +

n− kn
n

Ed(Xt, h2(Yt, Z2,t))

≤ kn
n
D1 +

n− kn
n

D2 (10)

and therefore, limn→∞
1
n

∑n
t=1 Ed(Xt, g(Y t, Zt)) ≤ D. The

rate of the code is given by

1

n
ELn =

1

n

kn∑
t=1

E|φ1(Z1,t)|+
1

n

n∑
t=kn+1

E|φ2(Z2,t)|

=
kn
n
L(f1(X)) +

n− kn
n

L(f2(X)) (11)

Therefore,

R = lim sup
n→∞

1

n
ELn

= λLY (f1(X)) + (1− λ)LY (f2(X))

= RRT (D) . (12)

V. EXAMPLES

A. Lossless transmission

It is interesting to relate the above results to the lossless
case. Since D = 0 cannot be achieved by time-sharing positive
distortions, we get that

LY (X) = min
h,f :h(y,f(x))=x

LY (f(X)). (13)

Let Z = f(X). Any f which is a coloring of the characteristic
graph G and h, which is the mapping from color and y back to
x, are valid candidates in the optimization problem of (13). If f
is not a valid coloring, meaning that two connected x1, x2 will
result in the same z then there is no h which can result in zero
error. In essence, we are looking for the coloring for which the
restricted inputs protocol will produce the smallest rate. Note
that when searching for the best coloring, our performance will
be affected only by the characteristic graph Gz which will be
built with the “source” (Z, Y ). If f is a minimal coloring, i.e,
z ∈ {1, 2, . . . , χ(Gz)}, then Gz is complete. To see this, note
that for a minimal coloring, if z1 and z2 are not connected, then
these colors can be combined and this reduces the number of
colors, contradicting the fact that f(x) is a minimal coloring.
Remember that a complete graph reduces the RI protocol to
Huffman coding. This means that the SI is not helping us to
code the colors. Therefore, looking for colorings which will
induce a non-complete Gz (i.e., non-optimal coloring) will
allow us to use the SI not only to reduce the alphabet of the
encoder output, but also for the coding of it output (namely,
relax the prefix condition on the codewords when the graph is
complete). In the example of Figure 1a, we used a 4-coloring
scheme (we had 4 different bit representations for the vertices



of G) and not the optimal 3-coloring. Indeed, Gz for the 4-
coloring is not complete. For a uniform source, we get an
average rate of 1.4 with the 4 coloring and if we had used a
3-coloring we would get an average rate of 1.6.

B. Uniform source, fully connected SI model

Let the reconstruction alphabet be the same as the source al-
phabet. We use the Hamming distortion measure (d(x, x̂) = 0
if x = x̂ and d(x, x̂) = 1 otherwise). The encoder partitions
the source alphabet into disjoint subsets A1,A2, . . . ,Ak,
k ≤ |X |. When the encoder observes a new source symbol,
x, it sends the index of the subset containing x, using an RI
protocol, as defined in Section II. With the Hamming distortion
measure, the average distortion is equal to the probability
of error. Therefore, the optimal decoder is the maximum
likelihood decoder, namely:

x̂ = argmax
x

P (y, z|x) = argmax
x∈Az

P (y|x).

where z is the subset index, sent by the encoder.
Let |X | = |Y| = M and let for a small constant p, P (X =

a) = 1
M , P (y = α|x = a) = 1 − p if α = a and P (y =

α|x = a) = p
M−1 for any α 6= a. With this choice of the joint

distribution, since the bipartite graph of {P (x, y)} is fully
connected, the bipartite graph of {P (y, z)} will also be fully
connected, regardless of the choice of Z. Therefore, the RI
protocol used to describe the index of the subsets is reduced
to a Huffman code for Z.

It is shown in [7] that for this distortion measure and
source, only the number of partitions, and not their content
(i.e., the actual alphabet letters in each subset), affects the
average distortion. The distortion as a function of the number
of partitions, K, is given by p

M−1 (|X | −K). It turns out that
in this case, RRT (D) = L(X)− L(X)

p D, which is obtained by
time-sharing the two trivial quantizers: the one that does not
send information (R = 0, D = p) and the lossless quantizer
(R = L(X), D = 0).

C. Uniform source, given SI model

We continue with the Hamming distortion measure and a
uniform source with |X | = 5. The channel from X to Y is
given in Fig. 2 along with the characteristic graph of X . In
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Fig. 2: P (y|x) and the resulting characteristic graph.

this example we set for α ∈ X : P (y = α|x = α) = 1 − p
and a = 1

2p, b = 5
12p, c = 1

12p, d = 3
4p, e = 1

4p. Note that the
chromatic number of G is 4. This means that any partitioning
of the alphabet of X into less than 4 subsets will incur a

lossy reconstruction. Unlike the previous example where the SI
could be used only in the reconstruction, but not to reduce the
length of the transmission (since G was fully connected), here
it will be used for both. Note that as in the example of Figure
1, the optimal rate for lossless transmission is actually obtained
by using more subsets than the chromatic number of X . The
optimal two subset partition (|Z| = 2) is {1, 4} , {2, 3, 5},
yielding an average distortion of 13

60p. The rate for this (and
any binary) partition is 1. The optimal 3-subset partition is
{1, 4} , {2, 5} , {3} yielding an average distortion of 1

60p. The
average rate for this partitioning is 8/5. However, in this case
it is beneficial to split {2, 5} and obtain a lower rate of 7/5
(using the SI to alleviate the prefix requirement). Although we
use more subsets, the rate is reduced. In Figure 3, we compare
RRT (D) to the performance of a system that uses Huffman
codes instead of an RI protocol, i.e., a system that uses the SI
only for reproduction but not for compression.
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Fig. 3: RRT (D) (solid) compared to a system that uses the
SI only for reproduction (dotted) with p = 0.3.
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