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Abstract

As the title tells, this paper is based on lecture notes of a graduate

course, which focuses on the relations between information theory and

statistical physics. The course was delivered at the Technion during the

Spring of 2010 for the first time, and its target audience consists of EE

graduate students in the area of communications and information the-

ory, as well as graduate students in Physics who have basic background

in information theory. Strong emphasis is given to the analogy and par-

allelism between information theory and statistical physics, as well as

to the insights, the analysis tools and techniques that can be borrowed

from statistical physics and ‘imported’ to certain problem areas in in-

formation theory. This is a research trend that has been very active

in the last few decades, and the hope is that by exposing the students

to the meeting points between these two disciplines, their background

and perspective may be expanded and enhanced. This paper is sub-

stantially revised and expanded relative to an earlier version posted in

arXiv (1006.1565v1 [cs.iT]).
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Introduction

This work focuses on some of the relationships and the interplay be-

tween information theory and statistical physics – a branch of physics

that deals with many–particle systems using probabilistic and statisti-

cal methods in the microscopic level.

The relationships between information theory and statistical ther-

modynamics are by no means new, and many researchers have been

exploiting them for many years. Perhaps the first relation, or analogy,

that crosses one’s mind is that in both fields there is a fundamental

notion of entropy. Actually, in information theory, the term entropy

was coined in the footsteps of the thermodynamic entropy. The ther-

modynamic entropy was first introduced by Clausius in 1850, and its

probabilistic–statistical interpretation was established by Boltzmann

in 1872. It is virtually impossible to miss the functional resemblance

between the two notions of entropy, and indeed it was recognized by

Shannon and von Neumann. The well–known anecdote on this tells

that von Neumann advised Shannon to adopt this term because it

would provide him with “... a great edge in debates because nobody

really knows what entropy is anyway.”

But the relationships between the two fields go far beyond the fact

1



2 Introduction

that both share the notion of entropy. In fact, these relationships have

many aspects. We will not cover all of them in this work, but just to

taste the flavor of their scope, we will mention just a few.

The maximum entropy (ME) principle. This is perhaps the oldest con-

cept that ties the two fields and it has attracted a great deal of at-

tention, not only of information theorists, but also that of researchers

in related fields like signal processing and image processing. The ME

principle evolves around a philosophy, or a belief, which, in a nutshell,

is the following: If in a certain problem, the observed data comes from

an unknown probability distribution, but we do have some knowledge

(that stems, e.g., from measurements) of certain moments of the under-

lying quantity/signal/random–variable, then assume that the unknown

underlying probability distribution is the one with maximum entropy

subject to (s.t.) moment constraints corresponding to this knowledge.

For example, if we know the first and the second moment, then the

ME distribution is Gaussian with matching first and second order

moments. Indeed, the Gaussian model is perhaps the most common

model for physical processes in information theory as well as in signal–

and image processing. But why maximum entropy? The answer to this

philosophical question is rooted in the second law of thermodynamics,

which asserts that in an isolated system, the entropy cannot decrease,

and hence, when the system reaches thermal equilibrium, its entropy

reaches its maximum. Of course, when it comes to problems in infor-

mation theory and other related fields, this principle becomes quite

heuristic, and so, one may question its justification, but nevertheless,

this approach has had an enormous impact on research trends through-

out the last fifty years, after being proposed by Jaynes in the late fifties

of the previous century [44],[45], and further advocated by Shore and

Johnson afterwards [109]. In the book by Cover and Thomas [13, Chap-

ter 12], there is a good exposition on this topic. We will not put much

emphasis on the ME principle in this work.

Landauer’s erasure principle. Another aspect of these relations has to

do with a theory whose underlying guiding principle is that information

is a physical entity. Specifically, Landauer’s erasure principle [62] (see

also [6]), which is based on this physical theory of information, asserts
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that every bit that one erases, increases the entropy of the universe

by k ln 2, where k is Boltzmann’s constant. The more comprehensive

picture behind Landauer’s principle, is that “any logically irreversible

manipulation of information, such as the erasure of a bit or the merging

of two computation paths, must be accompanied by a corresponding

entropy increase in non-information bearing degrees of freedom of the

information processing apparatus or its environment.” (see [6]). This

means that each lost information bit leads to the release of an amount

kT ln 2 of heat. By contrast, if no information is erased, computation

may, in principle, be achieved in a way which is thermodynamically a

reversible process, and hence requires no release of heat. This has had a

considerable impact on the study of reversible computing. Landauer’s

principle is commonly accepted as a law of physics. However, there

has also been some considerable dispute among physicists on this. This

topic is not going to be included either in this work.

Large deviations theory as a bridge between information theory and

statistical physics. Both information theory and statistical physics have

an intimate relation to large deviations theory, a branch of probability

theory which focuses on the assessment of the exponential rates of

decay of probabilities of rare events, where one of the most elementary

mathematical tools is the Legendre transform, which stands at the basis

of the Chernoff bound. This topic will be covered quite thoroughly,

mostly in Section 3.2.

Random matrix theory. How do the eigenvalues (or, more generally, the

singular values) of random matrices behave when these matrices have

very large dimensions or if they result from products of many randomly

selected matrices? This is a very active area in probability theory with

many applications, both in statistical physics and information theory,

especially in modern theories of wireless communication (e.g., MIMO

systems). This is again outside the scope of this course, but the inter-

ested reader is referred to [117] for a comprehensive introduction on

the subject.

Spin glasses and coding theory. As was first observed by Sourlas [111]

(see also [112]) and further advocated by many others, it turns out
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that many problems in channel coding theory (and also to some ex-

tent, source coding theory) can be mapped almost verbatim to parallel

problems in the field of physics of spin glasses – amorphic magnetic

materials with a high degree of disorder and very complicated physi-

cal behavior, which is customarily treated using statistical–mechanical

approaches. It has been many years that researchers have made at-

tempts to ‘import’ analysis techniques rooted in statistical physics of

spin glasses and to apply them to analogous coding problems, with

various degrees of success. This is one of main subjects of this course

and we will study it extensively, at least from some aspects.

The above list of examples is by no means exhaustive. We could

have gone much further and add many more examples of these very

fascinating meeting points between information theory and statistical

physics, but most of them will not be touched upon in this work. Many

modern analyzes concerning multiuser situations, such as MIMO chan-

nels, CDMA, etc., and more recently, also in compressed sensing, are

based on statistical–mechanical techniques. But even if we limit our-

selves to single–user communication systems, yet another very active

problem area under this category is that of codes on graphs, iterative

decoding, belief propagation, and density evolution. The main reason

for not including it in this work is that it is already very well covered in

recent textbooks, such as the one Mézard and Montanari [80] as well as

the one by Richardson and Urbanke [100]. Another comprehensive ex-

position of graphical models, with a fairly strong statistical–mechanical

flavor, was written by Wainwright and Jordan [120].

As will be seen, the physics and the information–theoretic subjects

are interlaced with each other, rather than being given in two contin-

uous, separate parts. This way, it is hoped that the relations between

information theory and statistical physics will be made more apparent.

We shall see that, not only these relations between information theory

and statistical physics are interesting academically on their own right,

but moreover, they also prove useful and beneficial in that they provide

us with new insights and mathematical tools to deal with information–

theoretic problems. These mathematical tools sometimes prove a lot

more efficient than traditional tools used in information theory, and
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they may give either simpler expressions for performance analysis, or

improved bounds, or both.

Having said that, a certain digression is in order. The reader should

not expect to see too many real breakthroughs, which are allowed ex-

clusively by statistical–mechanical methods, but could not have been

achieved otherwise. Perhaps one exception to this rule is the replica

method of statistical mechanics, which will be reviewed in this work,

but not in great depth, because of two reasons: first, it is not rigorous

(and so, any comparison to rigorous information–theoretic methods

would not be fair), and secondly, because it is already very well cov-

ered in existing textbooks, such as [80] and [87]. If one cares about

rigor, however, then there are no miracles. Everything, at the end of

the day, boils down to mathematics. The point then is which culture,

or scientific community, has developed the suitable mathematical tech-

niques and what are the new insights that they provide; in many cases,

it is the community of statistical physicists.

There are several examples of such techniques and insights, which

are emphasized rather strongly in this work. One example is the use of

integrals in the complex plane and the saddle–point method. Among

other things, this should be considered as a good substitute to the

method of types, with the bonus of lending itself to extensions that

include the countable and the continuous alphabet case (rather than

just the finite alphabet case). Another example is the analysis tech-

nique of error exponents, which stems from the random energy model

(see Chapter 6 and onward), along with its insights about phase tran-

sitions. Again, in retrospect, these analyzes are just mathematics and

therefore could have been carried out without relying on any knowl-

edge in physics. But it is nevertheless the physical point of view that

provides the trigger for its use. Moreover, there are situations (see, e.g.,

Section 7.3), where results from statistical mechanics can be used al-

most verbatim in order to obtain stronger coding theorems. The point

is then that it is not the physics itself that may be useful, it is the way

in which physicists use mathematical tools.

One of the main take–home messages, that will hopefully remain

with the reader after reading this work, is that whatever the field of

statistical mechanics has to offer to us, as information theorists, goes
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much beyond the replica method. It is believed that this message is

timely, because the vast majority of papers at the interface between

the two disciplines are about applying the replica method to some

information–theoretic problem.

The outline of the remaining part of this work is as follows: In

Chapter 2, we give some elementary background in statistical physics

and we relate fundamental thermodynamic potentials, like thermody-

namical entropy and free energy with fundamental information mea-

sures, like the Shannon entropy and the Kullback–Leibler divergence.

In Chapter 3, we explore a few aspects of physical interpretations of

some fundamental results in information theory, like non–negativity of

the Kullback–Leibler divergence, the data processing inequality, and

the elementary coding theorems of information theory. In Chapter 4,

we review some analysis tools commonly used in statistical physics,

like the Laplace integration method, the saddle point method, and the

replica method, all accompanied by examples. Chapter 5 is devoted to

a (mostly descriptive) exposition of systems with interacting particles

and phase transitions, both in physics and information theory. Chap-

ter 6 focuses on one particular model of a disordered physical system

with interacting particles – the random energy model, which is highly

relevant to the analysis of random code ensembles. Chapter 7 extends

the random energy model in several directions, all relevant to problems

in information theory. Finally, Chapter 8 contains a summary and an

outlook on the interplay between information theory and statistical

mechanics.

As with every paper published in Foundations and Trends in Com-

munications and Information Theory, the reader is, of course, assumed

to have some solid background in information theory. Concerning the

physics part, prior background in statistical mechanics does not harm,

but is not necessary. This work is intended to be self–contained as far

as the physics background goes.

In a closing note, it is emphasized again that the coverage of topics,

in this work, is by no means intended to be fully comprehensive, nor is

it aimed at providing the complete plethora of problem areas, methods

and results. The choice of topics, the approach, the flavor, and the

style are nothing but the mirror image of the author’s personal bias,
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perspective, and research interests in the field. Therefore, this work

should actually be viewed mostly as a monograph, and not quite as a

review or a tutorial paper. This is also the reason that a considerable

part of the topics, covered in this work, are taken from articles in which

the author has been involved.





2

Basic Background in Statistical Physics

In this chapter, we begin with some elementary background in statisti-

cal physics, and also relate some of the thermodynamic potentials, like

entropy and free energy, to information measures, like the entropy and

the Kullback–Leibler divergence.

2.1 What is Statistical Physics?

Statistical physics is a branch in physics which deals with systems with

a huge number of particles (or any other elementary units). For ex-

ample, Avogadro’s number, which is about 6 × 1023, is the number of

molecules in 22.4 liters of ideal gas at standard temperature and pres-

sure. Evidently, when it comes to systems with such an enormously

large number of particles, there is no hope to keep track of the physical

state (e.g., position and momentum) of each and every individual par-

ticle by means of the classical methods in physics, that is, by solving a

gigantic system of differential equations pertaining to Newton’s laws for

all particles. Moreover, even if these differential equations could have

been solved somehow (at least approximately), the information that

they would give us would be virtually useless. What we normally really

9
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want to know about our physical system boils down to a fairly short

list of macroscopic parameters, such as energy, heat, pressure, temper-

ature, volume, magnetization, and the like. In other words, while we

continue to believe in the good old laws of physics that we have known

for some time, even the classical ones, we no longer use them in the or-

dinary way that we are familiar with from elementary physics courses.

Instead, we think of the state of the system, at any given moment,

as a realization of a certain probabilistic ensemble. This is to say that

we approach the problem from a probabilistic (or a statistical) point of

view. The beauty of statistical physics is that it derives the macroscopic

theory of thermodynamics (i.e., the relationships between thermody-

namical potentials, temperature, pressure, etc.) as ensemble averages

that stem from this probabilistic microscopic theory, in the limit of an

infinite number of particles, that is, the thermodynamic limit. As we

shall see throughout this work, this thermodynamic limit is parallel

to the asymptotic regimes that we are used to in information theory,

most notably, the one pertaining to a certain ‘block length’ that goes

to infinity.

2.2 Basic Postulates and the Microcanonical Ensemble

For the sake of concreteness, let us consider the example where our

many–particle system is a gas, namely, a system with a very large

numberN of mobile particles, which are free to move in a given volume.

The microscopic state (or microstate, for short) of the system, at each

time instant t, consists, in this example, of the position vector ~ri(t)

and the momentum vector ~pi(t) of each and every particle, 1 ≤ i ≤ N .

Since each one of these is a vector of three components, the microstate

is then given by a (6N)–dimensional vector ~x(t) = {(~ri(t), ~pi(t)) : i =

1, 2, . . . , N}, whose trajectory along the time axis, in the phase space,

IR6N , is called the phase trajectory.

Let us assume that the system is closed, i.e., isolated from its en-

vironment, in the sense that no energy flows inside or out. Imagine

that the phase space IR6N is partitioned into very small hypercubes

(or cells) ∆~p×∆~r. One of the basic postulates of statistical mechanics

is the following: In the very long range, the relative amount of time
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which ~x(t) spends at each such cell converges to a certain number be-

tween 0 and 1, which can be given the meaning of the probability of this

cell. Thus, there is an underlying assumption of equivalence between

temporal averages and ensemble averages, namely, this is the postulate

of ergodicity. Considerable efforts were dedicated to the proof of the

ergodic hypothesis at least in some cases (see e.g., [88], [110] and many

references therein). As reasonable and natural as it may seem, the er-

godic hypothesis should not be taken for granted. It does not hold for

every system but only if no other conservation law holds. For example,

the ideal gas in a box (to be discussed soon), is non–ergodic, as ev-

ery particle retains its momentum (assuming perfectly elastic collisions

with the walls).

What are then the probabilities of the above–mentioned phase–

space cells? We would like to derive these probabilities from first prin-

ciples, based on as few as possible basic postulates. Our second pos-

tulate is that for an isolated system (i.e., whose energy is fixed) all

microscopic states {~x(t)} are equiprobable. The rationale behind this

postulate is twofold:

• In the absence of additional information, there is no appar-

ent reason that certain regions in phase space would have

preference relative to any others.
• This postulate is in harmony with a basic result in kinetic

theory of gases – the Liouville theorem, which we will not

touch upon in this work, but in a nutshell, it asserts that the

phase trajectories must lie along hyper-surfaces of constant

probability density.1

Before we proceed, let us slightly broaden the scope of our dis-

cussion. In a more general context, associated with our N–particle

physical system, is a certain instantaneous microstate, generically de-

noted by x = (x1, x2, . . . , xN ), where each xi, 1 ≤ i ≤ N , may it-

self be a vector of several physical quantities associated particle num-

1 This is a result of the energy conservation law along with the fact that probability mass
behaves like an incompressible fluid in the sense that whatever mass that flows into a
certain region from some direction must be equal to the outgoing flow from some other
direction. This is reflected in the so called continuity equation.
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ber i, e.g., its position, momentum, angular momentum, magnetic

moment, spin, and so on, depending on the type and the nature of

the physical system. For each possible value of x, there is a certain

Hamiltonian (i.e., energy function) that assigns to x a certain en-

ergy E(x).2 Now, let us denote by Ω(E) the density–of–states func-

tion, i.e., the volume of the shell {x : E(x) = E}, or, more precisely,

Ω(E)dE = Vol{x : E ≤ E(x) ≤ E + dE}, which will be denoted also

as Vol{x : E(x) ≈ E}, where the dependence on dE will normally be

ignored since Ω(E) is typically exponential in N and dE will have vir-

tually no effect on its exponential order as long as it is small. Then, our

above postulate concerning the ensemble of an isolated system, which

is called the microcanonincal ensemble, is that the probability density

P (x) is given by

P (x) =

{

1
Ω(E) E(x) ≈ E

0 elsewhere
(2.1)

In the discrete case, things are simpler, of course: Here, Ω(E) is the

number of microstates with E(x) = E (exactly) and P (x) is the uniform

probability mass function over this set of states. In this case, Ω(E) is

analogous to the size of a type class in information theory [16], and

P (x) is the uniform distribution over this type class.

Back to the continuous case, note that Ω(E) is, in general, not

dimensionless: In the above example of a gas, it has the physical units

of [length×momentum]3N , but we must eliminate these physical units

because very soon we are going to apply non–linear functions on Ω(E),

like the logarithmic function. To this end, we normalize this volume

by the volume of an elementary reference volume. In the gas example,

this reference volume is taken to be h3N , where h is Planck’s constant

(h ≈ 6.62× 10−34 Joules·sec). Informally, the intuition comes from the

fact that h is our best available “resolution” in the plane spanned by

each component of ~ri and the corresponding component of ~pi, owing

to the uncertainty principle in quantum mechanics, which tells that

2 For example, in the case of an ideal gas, E(x) =
PN

i=1 ‖~pi‖2/(2m), where m is the mass
of each molecule, namely, it accounts for the contribution of the kinetic energies only. In
more complicated situations, there might be additional contributions of potential energy,
which depend on the positions.
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the product of the standard deviations ∆pa · ∆ra of each component

a (a = x, y, z) is lower bounded by ~/2, where ~ = h/(2π). More

formally, this reference volume is obtained in a natural manner from

quantum statistical mechanics: by changing the integration variable ~p

to ~k by using ~p = ~~k, where ~k is the wave vector. This is a well–

known relationship pertaining to particle–wave duality. Now, having

redefined Ω(E) in units of this reference volume, which makes it then

a dimensionless quantity, the entropy is defined as

S(E) = k lnΩ(E), (2.2)

where k is Boltzmann’s constant (k ≈ 1.38 × 10−23 Joule/degree).

We will soon see what is the relationship between S(E) and the

information–theoretic entropy, on the one hand, and what is the re-

lationship between S(E) and the classical thermodynamical entropy,

due to Clausius. As it will turn out, all three are equivalent to one

another.

To get some feeling of this, it should be noted that normally, Ω(E)

behaves as an exponential function of N (at least asymptotically), and

so, S(E) is roughly linear in N . For example, if E(x) =
∑N

i=1
‖~pi‖2

2m , then

Ω(E) is the volume of a shell or surface of a (3N)–dimensional sphere

with radius
√

2mE, which is proportional to (2mE)3N/2V N , where V is

the volume, but we should divide this by N ! to account for the fact that

the particles are indistinguishable and we do not count permutations

as distinct physical states in this case.3 More precisely, one obtains:

S(E) = k ln

[

(

4πmE

3N

)3N/2

· V N

N !h3N

]

+
3

2
Nk

≈ Nk ln

[

(

4πmE

3N

)3/2

· V

Nh3

]

+
5

2
Nk. (2.3)

Assuming that E and V are both proportional to N , it is readily seen

that S(E) is also proportional to N . A physical quantity that has a

3 Since the particles are mobile and since they have no colors and no identity certificates,
there is no distinction between a state where particle no. 15 has position ~r and momentum
~p while particle no. 437 has position ~r′ and momentum ~p′ and a state where these two
particles are swapped.
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linear dependence on the size of the system N , is called an extensive

quantity. Energy, volume and entropy are then extensive quantities.

Other quantities, which are not extensive, i.e., independent of the sys-

tem size, like temperature and pressure, are called intensive.

It is interesting to point out that from the function S(E), or ac-

tually, the function S(E,V,N), one can obtain the entire information

about the relevant macroscopic physical quantities of the system, e.g.,

temperature, pressure, and so on. Specifically, the temperature T of the

system is defined according to:

1

T
=

[

∂S(E)

∂E

]

V

(2.4)

where [·]V means that the derivative is taken in constant volume. One

may wonder, at this point, what is the justification for defining tem-

perature this way. We will get back to this point a bit later, but for

now, let us see that this is indeed true at least for the ideal gas, as by

taking the derivative of (2.3) w.r.t. E, we get

∂S(E)

∂E
=

3Nk

2E
, (2.5)

but in the case of the ideal gas, one can readily derive (based on the

equation of state, PV = NkT ) a simple expression of the energy E,

which depends only on T (see, for example, [103, Sect. 20–4, pp. 353–

355]):

E =
3NkT

2
, (2.6)

which when plugged back into (2.5), gives immediately 1/T .4

Intuitively, in most situations, we expect that S(E) would be an

increasing function of E (although this is not strictly always the case),

which means T ≥ 0. But T is also expected to be increasing with E

(or equivalently, E is increasing with T , as otherwise, the heat capacity

4 In fact, the above–mentioned simple derivation leads to the relation PV = 2
3
E. Now, two

points of view are possible: The first is to accept the equation of state, PV = NkT , as an
empirical experimental fact, and then deduce the relation E = 3

2
NkT from NkT = PV =

2E/3. The second point of view is to define temperature as T = 2E/(3Nk) = 2ǫ/(3k)
(i.e., as a measure of the average kinetic energy ǫ of each particle) and then deduce the
equation of state from PV = 2E/3.
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dE/dT < 0). Thus, 1/T should decrease with E, which means that the

increase of S in E slows down as E grows. In other words, we expect

S(E) to be a concave function of E. In the above example, indeed,

S(E) is logarithmic in E and E = 3NkT/2, as we have seen.

How can we convince ourselves, in mathematical terms, that under

“conceivable conditions”, S(E) is a concave function? We know that

the Shannon entropy is also a concave functional of the probability

distribution. Is this related? The answer may be given by a simple

superadditivity argument: As both E and S are extensive quantities,

let us define E = Nǫ and

s(ǫ) = lim
N→∞

S(Nǫ)

N
, (2.7)

i.e., the per–particle entropy as a function of the per–particle energy,

where we assume that the limit exists (see, e.g., [108]). Consider the

case where the Hamiltonian is additive, i.e.,

E(x) =
N
∑

i=1

E(xi) (2.8)

just like in the above example where E(x) =
∑N

i=1
‖~pi‖2

2m . Then, the

inequality

Ω(N1ǫ1 +N2ǫ2) ≥ Ω(N1ǫ1) · Ω(N2ǫ2), (2.9)

expresses the simple fact that if our system is partitioned into two parts,

one with N1 particles, and the other with N2 = N − N1 particles,

then every combination of individual microstates with energies N1ǫ1
and N2ǫ2 corresponds to a combined microstate with a total energy of

N1ǫ1 +N2ǫ2 (but there are more ways to split this total energy between

the two parts). Thus,

k ln Ω(N1ǫ1 +N2ǫ2)

N1 +N2
≥ k ln Ω(N1ǫ1)

N1 +N2
+
k ln Ω(N2ǫ2)

N1 +N2

=
N1

N1 +N2
· k ln Ω(N1ǫ1)

N1
+

N2

N1 +N2
· k ln Ω(N2ǫ2)

N2
. (2.10)
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and so, by taking N1 and N2 to ∞, with N1/(N1 + N2) → λ ∈ (0, 1),

we get:

s(λǫ1 + (1 − λ)ǫ2) ≥ λs(ǫ1) + (1 − λ)s(ǫ2), (2.11)

which establishes the concavity of s(·) at least in the case of an addi-

tive Hamiltonian, which means that the entropy of mixing two systems

of particles is greater than the total entropy before they are mixed

(the second law). A similar proof can be generalized to the case where

E(x) includes also a limited degree of interactions (short range interac-

tions), e.g., E(x) =
∑N

i=1 E(xi, xi+1), but this requires somewhat more

caution. In general, however, concavity may no longer hold when there

are long range interactions, e.g., where some terms of E(x) depend on

a linear subset of particles. Simple examples can be found in [116].

Example – Schottky defects. In a certain crystal, the atoms are located

in a lattice, and at any positive temperature there may be defects,

where some of the atoms are dislocated (see Fig. 2.1). Assuming that

defects are sparse enough, such that around each dislocated atom all

neighbors are in place, the activation energy, ǫ0, required for dislocation

is fixed. Denoting the total number of atoms by N and the number of

defected ones by n, the total energy is then E = nǫ0, and so,

Ω(E) =

(

N

n

)

=
N !

n!(N − n)!
, (2.12)

or, equivalently,

S(E) = k ln Ω(E) = k ln

[

N !

n!(N − n)!

]

≈ k[N lnN − n lnn− (N − n) ln(N − n)] (2.13)

where in the last passage we have used the Sterling approximation.

Thus,5

1

T
=
∂S

∂E
=

dS

dn
· dn

dE
=

1

ǫ0
· k ln

N − n

n
, (2.14)

5 Here and in the sequel, the reader might wonder about the meaning of taking derivatives
of, and with respect to, integer valued variables, like the number of dislocated particles, n.
To this end, imagine an approximation where n is interpolated to be a continuous valued
variable.
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which gives the number of defects as

n =
N

exp(ǫ0/kT ) + 1
. (2.15)

At T = 0, there are no defects, but their number increases gradually

Fig. 2.1 Schottky defects in a crystal lattice.

with T , approximately according to exp(−ǫ0/kT ). Note that from a

slightly more information–theoretic point of view,

S(E) = k ln

(

N

n

)

≈ kNh2

( n

N

)

= kNh2

(

E

Nǫ0

)

= kNh2

(

ǫ

ǫ0

)

, (2.16)

where

h2(x)
∆
= −x lnx− (1 − x) ln(1 − x).

Thus, the thermodynamical entropy is intimately related to the Shan-

non entropy. We will see shortly that this is no coincidence. Note also

that s(ǫ) = kh2(ǫ/ǫ0) is indeed concave in this example. �

What happens if we have two independent systems with total energy

E, which lie in equilibrium with each other? What is the temperature T

and how does the energy split between them? The number of combined

microstates where system no. 1 has energy E1 and system no. 2 has
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energy E2 = E −E1 is Ω1(E1) ·Ω2(E −E1). If the combined system is

isolated, then the probability of such a combined microstate is propor-

tional to Ω1(E1) ·Ω2(E −E1). Keeping in mind that normally, Ω1 and

Ω2 are exponential in N , then for large N , this product is dominated

by the value of E1 for which it is maximum, or equivalently, the sum of

logarithms, S1(E1) + S2(E −E1), is maximum, i.e., it is a maximum

entropy situation, which is the second law of thermodynamics.

This maximum is normally achieved at the value of E1 for which the

derivative vanishes, i.e.,

S′
1(E1) − S′

2(E − E1) = 0 (2.17)

or

S′
1(E1) − S′

2(E2) = 0 (2.18)

which means
1

T1
≡ S′

1(E1) = S′
2(E2) ≡

1

T2
. (2.19)

Thus, in equilibrium, which is the maximum entropy situation, the

energy splits in a way that temperatures are the same.

At this point, we are ready to justify why S′(E) is equal to 1/T in

general, as was promised earlier. Although it is natural to expect that

equality between S′
1(E1) and S′

2(E2), in thermal equilibrium, is related

equality between T1 and T2, this does not automatically mean that

the derivative of each entropy is given by one over its temperature.

On the face of it, for the purpose of this implication, this derivative

could have been equal any one–to–one function of temperature f(T ).

To see why f(T ) = 1/T indeed, imagine that we have a system with an

entropy function S0(E) and that we let it interact thermally with an

ideal gas whose entropy function, which we shall denote now by Sg(E),

is given as in eq. (2.3). Now, at equilibrium S′
0(E0) = S′

g(Eg), but as

we have seen already, S′
g(Eg) = 1/Tg, where Tg is the temperature of

the ideal gas. But in thermal equilibrium the temperatures equalize,

i.e., Tg = T0, where T0 is the temperature of the system of interest. It

then follows eventually that S′
0(E0) = 1/T0, which now means that in

equilibrium, the derivative of entropy of the system of interest is equal

to the reciprocal of its temperature in general, and not only for the

ideal gas! At this point, the fact that our system has interacted and
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equilibrated with an ideal gas is not important anymore and it does not

limit the generality this statement. In simple words, our system does

not ‘care’ what kind system it has interacted with, whether ideal gas

or any other. This follows from a fundamental principle in thermody-

namics, called the zero–th law, which states that thermal equilibrium

has a transitive property: If system A is in equilibrium with system B

and system B is in equilibrium with system C, then A is in equilibrium

with C.

So we have seen that ∂S/∂E = 1/T , or equivalently, dS = dE/T .

But in the absence of any mechanical work applied to the system (fixed

volume), dE = dQ, where Q is the heat intake. Thus, dS = dQ/T . But

this is exactly the definition of the classical thermodynamical entropy

due to Clausius. Thus, at least for the case where no mechanical work

is involved, we have demonstrated the equivalence of the two notions

of entropy, the statistical notion due to Boltzmann S = k ln Ω, and

the thermodynamical entropy due to Clausius, S =
∫

dQ/T . The more

general proof, that allows mechanical work, has to take into account

also partial derivative of S w.r.t. volume, which is related to pressure.

We will not delve into this any further, but the line of thought is very

similar.

2.3 The Canonical Ensemble

So far we have assumed that our system is isolated, and therefore has

a strictly fixed energy E. Let us now relax this assumption and assume

that our system is free to exchange energy with its large environment

(heat bath) and that the total energy of the heat bath E0 is by far

larger than the typical energy of the system. The combined system,

composed of our original system plus the heat bath, is now an isolated

system at temperature T .

Similarly as before, since the combined system is isolated, it is gov-

erned by the microcanonical ensemble. The only difference is that now

we assume that one of the systems (the heat bath) is very large com-

pared to the other (our test system). This means that if our small sys-

tem is in microstate x (for whatever definition of the microstate vector)

with energy E(x), then the heat bath must have energy E0 − E(x) to
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complement the total energy to E0. The number of ways that the heat

bath may have energy E0 −E(x) is ΩB(E0 −E(x)), where ΩB(·) is the

density–of–states function pertaining to the heat bath. In other words,

the number of microstates of the combined system for which the small

subsystem is in microstate x is ΩB(E0 − E(x)). Since the combined

system is governed by the microcanonical ensemble, the probability of

this is proportional to ΩB(E0 − E(x)). More precisely:

P (x) =
ΩB(E0 − E(x))

∑

x′ ΩB(E0 − E(x′))
. (2.20)

Let us focus on the numerator for now, and normalize the result at the

end. Then,

P (x) ∝ ΩB(E0 − E(x))

= exp{SB(E0 − E(x))/k}

≈ exp

{

SB(E0)

k
− 1

k

∂SB(E)

∂E

∣

∣

∣

∣

E=E0

· E(x)

}

= exp

{

SB(E0)

k
− 1

kT
· E(x)

}

∝ exp{−E(x)/(kT )}. (2.21)

It is customary to work with the so called inverse temperature:

β =
1

kT
(2.22)

and so,

P (x) ∝ e−βE(x). (2.23)

Thus, all that remains to do is to normalize, and we then obtain the

Boltzmann–Gibbs (B–G) distribution, or the canonical ensemble, which

describes the underlying probability law in equilibrium:

P (x) =
exp{−βE(x)}

Z(β)
(2.24)

where Z(β) is the normalization factor:

Z(β) =
∑

x

exp{−βE(x)} (2.25)
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in the discrete case, or

Z(β) =

∫

dx exp{−βE(x)} (2.26)

in the continuous case.

This is one of the most fundamental results in statistical mechanics,

which was obtained solely from the energy conservation law and the

postulate that in an isolated system the distribution is uniform. The

function Z(β) is called the partition function, and as we shall see, its

meaning is by far deeper than just being a normalization constant.

Interestingly, a great deal of the macroscopic physical quantities, like

the internal energy, the free energy, the entropy, the heat capacity, the

pressure, etc., can be obtained from the partition function. This is in

analogy to the fact that in the microcanonical ensemble, S(E) (or, more

generally, S(E,V,N)) was pivotal to the derivation of all macroscopic

physical quantities of interest.

The B–G distribution tells us then that the system “prefers” to

visit its low energy states more than the high energy states, and what

counts is only energy differences, not absolute energies: If we add to

all states a fixed amount of energy E0, this will result in an extra

factor of e−βE0 both in the numerator and in the denominator of the

B–G distribution, which will, of course, cancel out. Another obvious

observation is that when the Hamiltonian is additive, that is, E(x) =
∑N

i=1 E(xi), the various particles are statistically independent: Additive

Hamiltonians correspond to non–interacting particles. In other words,

the {xi}’s behave as if they were drawn from a memoryless source.

By the law of large numbers 1
N

∑N
i=1 E(xi) will tend (almost surely) to

ǫ = E{E(Xi)}. Nonetheless, this is different from the microcanonical

ensemble where 1
N

∑N
i=1 E(xi) was held strictly at the value of ǫ. The

parallelism to well known concepts in information theory is quite clear:

The microcanonical ensemble is parallel to the uniform distribution

over a type class and the canonical ensemble is parallel to a memoryless

system (source or channel).

The two ensembles are asymptotically equivalent as far as expec-

tations go. They continue to be such even in cases of interactions, as

long as these are short range. It is instructive to point out that the
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B–G distribution could have been obtained also in a different manner,

owing to the maximum–entropy principle that we mentioned in the In-

troduction. Specifically, consider the following optimization problem:

max H(X)

s.t. 〈E(X)〉 = E (2.27)

where here and throughout the sequel, the operator 〈·〉 designates ex-

pectation. This notation, which is customary in the physics literature,

will be used interchangeably with the notation E{·}, which is more

common in other scientific communities. By formalizing the equivalent

Lagrange problem, where β now plays the role of a Lagrange multiplier:

max

{

H(X) + β

[

E −
∑

x

P (x)E(x)

]}

, (2.28)

or equivalently,

min

{

∑

x

P (x)E(x) − H(X)

β

}

(2.29)

one readily verifies that the solution to this problem is the B-G distri-

bution where the choice of β controls the average energy E. In many

physical systems, the Hamiltonian is a quadratic (or “harmonic”) func-

tion, e.g., 1
2mv

2, 1
2kx

2, 1
2CV

2, 1
2LI

2, 1
2Iω

2, etc., in which case the re-

sulting B–G distribution turns out to be Gaussian. This is at least part

of the explanation why the Gaussian distribution is so frequently en-

countered in Nature. Indeed, the Gaussian density is well known (see,

e.g., [13, p. 411, Example 12.2.1]) to maximize the differential entropy

subject to a second order moment constraint, which is equivalent to

our average energy constraint.

2.4 Properties of the Partition Function and the Free Energy

Let us now examine more closely the partition function and make a few

observations about its basic properties. For simplicity, we shall assume

that x is discrete. First, let’s look at the limits: Obviously, Z(0) is equal

to the size of the entire set of microstates, which is also
∑

E Ω(E), This
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is the high temperature limit, where all microstates are equiprobable.

At the other extreme, we have:

lim
β→∞

lnZ(β)

β
= −min

x
E(x)

∆
= −EGS (2.30)

which describes the situation where the system is frozen to the abso-

lute zero. Only states with minimum energy – the ground–state energy,

prevail.

Another important property of Z(β), or more precisely, of lnZ(β),

is that it is a cumulant generating function: By taking derivatives of

lnZ(β), we can obtain cumulants of E(X). For the first cumulant, we

have

E{E(X)} ≡ 〈E(X)〉 =

∑

x E(x)e−βE(x)

∑

x e
−βE(x)

= −d lnZ(β)

dβ
. (2.31)

Similarly, it is easy to show that

Var{E(X)} = 〈E2(X)〉 − 〈E(X)〉2 =
d2 lnZ(β)

dβ2
. (2.32)

This in turn implies that

d2 lnZ(β)

dβ2
≥ 0, (2.33)

which means that lnZ(β) must always be a convex function. Note also

that

d2 lnZ(β)

dβ2
= −d〈E(X)〉

dβ

= −d〈E(X)〉
dT

· dT

dβ

= kT 2C(T ) (2.34)

where C(T ) = d〈E(X)〉/dT is the heat capacity (at constant volume).

Thus, the convexity of lnZ(β) is intimately related to the physical fact

that the heat capacity of the system is positive.

Next, we look at the function Z(β) slightly differently. Instead of

summing the terms {e−βE(x)} over all states individually, we sum them
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by energy levels, in a collective manner, similarly as in the method of

types [16]. This amounts to:

Z(β) =
∑

x

e−βE(x)

=
∑

E

Ω(E)e−βE

≈
∑

ǫ

eNs(ǫ)/k · e−βNǫ

=
∑

ǫ

exp{−Nβ[ǫ− Ts(ǫ)]}

·
= max

ǫ
exp{−Nβ[ǫ− Ts(ǫ)]}

= exp{−Nβmin
ǫ

[ǫ− Ts(ǫ)]}
∆
= exp{−Nβ[ǫ∗ − Ts(ǫ∗)]}
∆
= e−βF , (2.35)

where here and throughout the sequel, the notation
·
= means

asymptotic equivalence in the exponential scale. More precisely,

aN
·
= bN for two positive sequences {aN} and {bN}, means that

limN→∞ ln(aN/bN ) = 0.

The quantity f
∆
= ǫ − Ts(ǫ) is the (per–particle) free energy. Simi-

larly, the entire free energy, F , is defined as

F = E − TS = − lnZ(β)

β
. (2.36)

The physical meaning of the free energy, or more precisely, the differ-

ence between two free energies F1 and F2, is the minimum amount of

work that it takes to transfer the system from equilibrium state 1 to an-

other equilibrium state 2 in an isothermal (fixed temperature) process.

This minimum is achieved when the process is reversible, i.e., so slow

that the system is always almost in equilibrium. Equivalently, −∆F

is the maximum amount energy in the system, that is free and useful

for performing work (i.e., not dissipated as heat) in fixed temperature.

Again, this maximum is attained by a reversible process.

To demonstrate this point, let us consider the case where E(x) in-

cludes a term of a potential energy that is given by the (scalar) product
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of a certain external force and the conjugate physical variable at which

this force is exerted (e.g., pressure times volume, gravitational force

times height, moment times angle, magnetic field times magnetic mo-

ment, electric field times charge, etc.), i.e.,

E(x) = E0(x) − λ · L(x) (2.37)

where λ is the force and L(x) is the conjugate physical variable, which

depends on (some coordinates of) the microstate. The partition func-

tion then depends on both β and λ and hence will be denoted Z(β, λ).

It is easy to see (similarly as before) that lnZ(β, λ) is convex in λ for

fixed β. Also,

〈L(X)〉 = kT · ∂ lnZ(β, λ)

∂λ
. (2.38)

The free energy is given by6

F = E − TS

= −kT lnZ + λ 〈L(X)〉

= kT

(

λ · ∂ lnZ

∂λ
− lnZ

)

. (2.39)

Now, let F1 and F2 be the equilibrium free energies pertaining to two

values of λ, denoted λ1 and λ2. Then,

F2 − F1 =

∫ λ2

λ1

dλ · ∂F
∂λ

= kT ·
∫ λ2

λ1

dλ · λ · ∂
2 lnZ

∂λ2

=

∫ λ2

λ1

dλ · λ · ∂ 〈L(X)〉
∂λ

6 At this point, there is a distinction between the Helmholtz free energy and the Gibbs free

energy. The former is defined as F = E − TS in general, as mentioned earlier. The latter
is defined as G = E − TS − λL = −kT lnZ, where L is shorthand notation for 〈L(X)〉.
The physical significance of the Gibbs free energy is similar to that of the Helmholtz free
energy, except that it refers to the total work of all other external forces in the system
(if there are any), except the work contributed by the force λ. The passage to the Gibbs
ensemble, which replaces a fixed value of L(x) (say, constant volume of a gas) by the
control of the conjugate external force λ, (say, pressure in the example of a gas) can be
carried out by another Legendre transform (see, e.g., [60, Sect. 1.14]).
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=

∫ 〈L(X)〉λ2

〈L(X)〉λ1

λ · d 〈L(X)〉 (2.40)

The product λ · d 〈L(X)〉 designates an infinitesimal amount of (aver-

age) work performed by the force λ on a small change in the average

of the conjugate variable 〈L(X)〉, where the expectation is taken w.r.t.

the actual value of λ. Thus, the last integral expresses the total work

along a slow process of changing the force λ in small steps and letting

the system adapt and equilibrate after this small change every time.

On the other hand, it is easy to show (using the convexity of lnZ in λ),

that if λ varies in large steps, the resulting amount of work will always

be larger.

Returning to the definition of f , we see that the value ǫ∗ of ǫ that

minimizes f , dominates the partition function and hence captures most

of the probability. As N grows without bound, the energy probabil-

ity distribution becomes sharper and sharper around Nǫ∗. Thus, we

see that equilibrium in the canonical ensemble amounts to minimum

free energy. This extends the second law of thermodynamics from the

microcanonical ensemble of isolated systems, whose equilibrium obeys

the maximum entropy principle. The maximum entropy principle is

replaced, more generally, by the minimum free energy principle. Note

that the Lagrange minimization problem that we formalized before,

i.e.,

min

{

∑

x

P (x)E(x) − H(X)

β

}

, (2.41)

is nothing but minimization of the free energy, provided that we identify

H with the physical entropy S (to be done soon) and the Lagrange

multiplier 1/β with kT . Thus, the B–G distribution minimizes the free

energy for a given temperature.

We have not yet seen this explicitly, but there were already hints

(and terminology suggests) that the thermodynamical entropy S(E) is

intimately related to the Shannon entropy H(X). We will also see it

shortly in a more formal manner. But what is the information–theoretic

analogue of the (Helmholtz) free energy?

Here is a preliminary guess based on a very rough consideration:

The last chain of equalities in eq. (2.35) reminds us what happens when
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we use the method of types and sum over probabilities type–by–type

in information–theoretic problems: The exponentials exp{−βE(x)} are

analogous (up to a normalization factor) to probabilities, which in the

memoryless case, are given by P (x) = exp{−N [Ĥ +D(P̂‖P )]}, where

Ĥ is the empirical entropy pertaining to x and P̂ is the empirical dis-

tribution. Each such probability is weighted by the size of the type

class, which as is known from the method of types, is exponentially

eNĤ , and whose physical analogue is Ω(E) = eNs(ǫ)/k. The product

gives exp{−ND(P̂‖P )} in information theory and exp{−Nβf} in sta-

tistical physics. This suggests that perhaps the free energy has some

analogy with the divergence. We will see shortly a more rigorous argu-

ment that relates the Helmholtz free energy and the divergence. The

Gibbs free energy can also be related to an informational divergence.

More formally, let us define

φ(β) = lim
N→∞

lnZ(β)

N
(2.42)

and, in order to avoid dragging the constant k, let us define

Σ(ǫ) = lim
N→∞

ln Ω(Nǫ)

N
=
s(ǫ)

k
. (2.43)

Then, the chain of equalities (2.35), written slightly differently, gives

φ(β) = lim
N→∞

lnZ(β)

N

= lim
N→∞

1

N
ln

{

∑

ǫ

eN [Σ(ǫ)−βǫ]
}

= max
ǫ

[Σ(ǫ) − βǫ].

Thus, φ(β) is (a certain variant of) the Legendre transform7 of Σ(ǫ).

As Σ(ǫ) is (normally) a concave function, then it can readily be shown

that the inverse transform is:

Σ(ǫ) = min
β

[βǫ+ φ(β)]. (2.44)

7 More precisely, the 1D Legendre transform of a real function f(x) is defined as g(y) =
supx[xy−f(x)]. If f is convex, it can readily be shown that: (i) The inverse transform has
the very same form, i.e., f(x) = supy [xy − g(y)], and (ii) The derivatives f ′(x) and g′(y)
are inverses of each other.
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The achiever, ǫ∗(β), of φ(β) in the forward transform is obtained by

equating the derivative to zero, i.e., it is the solution to the equation

β = Σ′(ǫ), (2.45)

where Σ′(E) is the derivative of Σ(E). In other words, ǫ∗(β) the inverse

function of Σ′(·). By the same token, the achiever, β∗(ǫ), of Σ(ǫ) in the

backward transform is obtained by equating the other derivative to

zero, i.e., it is the solution to the equation

ǫ = −φ′(β) (2.46)

or in other words, the inverse function of −φ′(·).
This establishes a relationship between the typical per–particle energy

ǫ and the inverse temperature β that gives rise to ǫ (cf. the Lagrange

interpretation above, where we said that β controls the average energy).

Now, observe that whenever β and ǫ are related as explained above, we

have:

Σ(ǫ) = βǫ+ φ(β) = φ(β) − β · φ′(β). (2.47)

On the other hand, if we look at the Shannon entropy pertaining to

the B–G distribution, we get:

H̄(X) = lim
N→∞

1

N
E

{

ln
Z(β)

e−βE(X)

}

= lim
N→∞

[

lnZ(β)

N
+
βE{E(X)}

N

]

= φ(β) − β · φ′(β).

which is exactly the same expression as in (2.47), and so, Σ(ǫ) and

H̄ are identical whenever β and ǫ are related accordingly. The former,

as we recall, we defined as the normalized logarithm of the number of

microstates with per–particle energy ǫ. Thus, we have learned that the

number of such microstates is exponentially eNH̄ , a result that is well

known from the method of types [16], where combinatorial arguments

for finite–alphabet sequences are used. Here we obtained the same re-

sult from substantially different considerations, which are applicable in

situations far more general than those of finite alphabets (continuous
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alphabets included). Another look at this relation is the following:

1 ≥
∑

x: E(x)≈Nǫ
P (x) =

∑

x: E(x)≈Nǫ

exp{−β∑i E(xi)}
ZN (β)

·
=

∑

x: E(x)≈Nǫ
exp{−βNǫ−Nφ(β)}

= Ω(Nǫ) · exp{−N [βǫ+ φ(β)]} (2.48)

which means that

Ω(Nǫ) ≤ exp{N [βǫ+ φ(β)]} (2.49)

for all β, and so,

Ω(Nǫ) ≤ exp{N min
β

[βǫ+ φ(β)]} = eNΣ(ǫ) = eNH̄ . (2.50)

A compatible lower bound is obtained by observing that the minimizing

β gives rise to 〈E(X1)〉 = ǫ, which makes the event {x : E(x) ≈ Nǫ}
a high–probability event, by the weak law of large numbers. A good

reference for further study, and from a more general perspective, is the

article by Hall [38]. See also [30].

Note also that eq. (2.47), which we will rewrite, with a slight abuse

of notation as

φ(β) − βφ′(β) = Σ(β) (2.51)

can be viewed as a first order differential equation in φ(β), whose so-

lution is easily found to be

φ(β) = −βǫGS + β ·
∫ ∞

β

dβ̂Σ(β̂)

β̂2
, (2.52)

where ǫGS = limN→∞EGS/N . Equivalently,

Z(β)
·
= exp

{

−βEGS +Nβ ·
∫ ∞

β

dβ̂Σ(β̂)

β̂2

}

, (2.53)

namely, the partition function at a certain temperature can be ex-

pressed as a functional of the entropy pertaining to all temperatures
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lower than that temperature. Changing the integration variable from

β to T , this readily gives the relation

F = EGS −
∫ T

0
S(T ′)dT ′. (2.54)

Since F = E − ST , we have

E = EGS + ST −
∫ T

0
S(T ′)dT ′ = EGS +

∫ S

0
T (S′)dS′, (2.55)

where the second term amounts to the heat Q that accumulates in the

system, as the temperature is raised from 0 to T . This is a special case

of the first law of thermodynamics. The more general form takes into

account also possible work performed on (or by) the system.

Having established the identity between the Shannon–theoretic en-

tropy and the thermodynamical entropy, we now move on, as promised,

to the free energy and seek its information–theoretic counterpart. More

precisely, we will look at the difference between the free energies of two

different probability distributions, one of which is the B–G distribu-

tion. Consider first, the following chain of equalities concerning the

B–G distribution:

P (x) =
exp{−βE(x)}

Z(β)

= exp{− lnZ(β) − βE(x)}
= exp{β[F (β) − E(x)]}. (2.56)

Consider next another probability distribution Q, different in general

from P , and hence corresponding to non–equilibrium. Let us now look

at the divergence:

D(Q‖P ) =
∑

x

Q(x) ln
Q(x)

P (x)

= −HQ −
∑

x

Q(x) lnP (x)

= −HQ − β
∑

x

Q(x)[FP − E(x)]

= −HQ − βFP + β〈E〉Q
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= β(FQ − FP )

or equivalently,

FQ = FP + kT ·D(Q‖P ). (2.57)

Thus, the free energy difference is indeed related to the the divergence.

For a given temperature, the free energy away from equilibrium is

always larger than the free energy at equilibrium. Since the system

“wants” to minimize the free energy, it eventually converges to the B–

G distribution. More details on these relations can be found in [2] and

[94].

There is room for criticism, however, about the last derivation: the

thermodynamical entropy of the system is known to be given by the

Shannon (or, more precisely, the Gibbs) entropy expression only in

equilibrium, whereas for non–equilibrium, it is not clear whether it

continues to be valid. In fact, there is dispute among physicists on how

to define the entropy in non–equilibrium situations, and there are many

variations on the theme (see, for example, [7],[14],[40]). Nonetheless, we

will accept this derivation of the relation between the divergence and

the free energy difference for our purposes.

Another interesting relation between the divergence and physical

quantities is that the divergence is proportional to the dissipated work

(=average work minus free–energy difference) between two equilibrium

states at the same temperature but corresponding to two different val-

ues of some external control parameter (see, e.g., [56]). We will elabo-

rate on this in Subsection 3.3.

Let us now summarize the main properties of the partition function

that we have seen thus far:

(1) Z(β) is a continuous function. Z(0) = |X n| and

limβ→∞
lnZ(β)
β = −EGS.

(2) Generating cumulants: 〈E(X)〉 = −d lnZ/dβ, Var{E(X)} =

d2 lnZ/dβ2, which implies convexity of lnZ, and hence also

of φ(β).

(3) φ and Σ are a Legendre–transform pair. Σ is concave.

(4) Σ(ǫ) coincides with the Shannon entropy of the B-G distri-

bution.
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(5) FQ = FP + kT ·D(Q‖P ).

Comment: Consider Z(β) for an imaginary temperature β = jω,

where j =
√
−1, and define z(E) as the inverse Fourier transform

of Z(jω). It can readily be seen that z(E) = Ω(E) is the density of

states, i.e., for E1 < E2, the number of states with energy between E1

and E2 is given by
∫ E2

E1
z(E)dE. Thus, Z(·) can be related to energy

enumeration in two different ways: one is by the Legendre transform of

lnZ(β) for real β, and the other is by the inverse Fourier transform of

Z(β) for imaginary β. It should be kept in mind, however, that while

the latter relation holds for every system size N , the former is true

only in the thermodynamic limit, as mentioned. This double connec-

tion between Z(β) and Ω(E) is no coincidence, as we shall see later

in Chapter 4. The reader might wonder about the usefulness and the

meaning of complex temperature. It turns out to be a very useful tool

in examining the analyticity of the partition function (as a complex

function of the complex temperature) in the vicinity of the real axis,

which is related to phase transitions. This is the basis for the Yang–Lee

theory [63],[125].

Example – A two level system. Similarly to the earlier example of Schot-

tky defects, which was previously given in the context of the micro-

canonical ensemble, consider now a system of N independent particles,

each having two possible states: state 0 of zero energy and state 1,

whose energy is ǫ0, i.e., E(x) = ǫ0x, x ∈ {0, 1}. The xi’s are indepen-

dent, each having a marginal:

P (x) =
e−βǫ0x

1 + e−βǫ0
x ∈ {0, 1}. (2.58)

In this case,

φ(β) = ln(1 + e−βǫ0) (2.59)

and

Σ(ǫ) = min
β≥0

[βǫ+ ln(1 + e−βǫ0)]. (2.60)

To find β∗(ǫ), we take the derivative and equate to zero:

ǫ− ǫ0e
−βǫ0

1 + e−βǫ0
= 0 (2.61)
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which gives

β∗(ǫ) =
ln(ǫ/ǫ0 − 1)

ǫ0
. (2.62)

On substituting this back into the above expression of Σ(ǫ), we get:

Σ(ǫ) =
ǫ

ǫ0
ln

(

ǫ

ǫ0
− 1

)

+ ln

[

1 + exp

{

− ln

(

ǫ

ǫ0
− 1

)}]

, (2.63)

which after a short algebraic manipulation, becomes

Σ(ǫ) = h2

(

ǫ

ǫ0

)

, (2.64)

just like in the Schottky example. In the other direction:

φ(β) = max
ǫ

[

h2

(

ǫ

ǫ0

)

− βǫ

]

, (2.65)

whose achiever ǫ∗(β) solves the zero–derivative equation:

1

ǫ0
ln

[

1 − ǫ/ǫ0
ǫ/ǫ0

]

= β (2.66)

or equivalently,

ǫ∗(β) =
ǫ0

1 + e−βǫ0
, (2.67)

which is exactly the inverse function of β∗(ǫ) above, and which when

plugged back into the expression of φ(β), indeed gives

φ(β) = ln(1 + e−βǫ0). � (2.68)

Comment: A very similar model (and hence with similar results) per-

tains to non–interacting spins (magnetic moments), where the only

difference is that x ∈ {−1,+1} rather than x ∈ {0, 1}. Here, the mean-

ing of the parameter ǫ0 becomes that of a magnetic field, which is

more customarily denoted by B (or H), and which is either parallel

or anti-parallel to that of the spin, and so the potential energy (in the

appropriate physical units), ~B · ~x, is either Bx or −Bx. Thus,

P (x) =
eβBx

2 cosh(βB)
; Z(β) = 2 cosh(βB). (2.69)
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The net magnetization per–spin is defined as

m
∆
=

〈

1

N

N
∑

i=1

Xi

〉

= 〈X1〉 =
∂φ

∂(βB)
= tanh(βB). (2.70)

This is the paramagnetic characteristic of the magnetization as a func-

tion of the magnetic field: As B → ±∞, the magnetization m → ±1

accordingly. When the magnetic field is removed (B = 0), the magne-

tization vanishes too. We will get back to this model and its extensions

in Chapter 5. �

2.5 The Energy Equipartition Theorem

It turns out that in the case of a quadratic Hamiltonian, E(x) = 1
2αx

2,

which means that x is Gaussian, the average per–particle energy, is

always given by 1/(2β) = kT/2, independently of α. If we have N such

quadratic terms, then of course, we end up with NkT/2. In the case

of the ideal gas, we have three such terms (one for each dimension)

per particle, thus a total of 3N terms, and so, E = 3NkT/2, which

is exactly the expression we obtained also from the microcanonical

ensemble in eq. (2.6). In fact, we observe that in the canonical ensemble,

whenever we have an Hamiltonian of the form α
2x

2
i plus some arbitrary

terms that do not depend on xi, then xi is Gaussian (with variance

kT/α) and independent of the other variables, i.e., p(xi) ∝ e−αx
2
i /(2kT ).

Hence it contributes an amount of
〈

1

2
αX2

i

〉

=
1

2
α · kT

α
=
kT

2
(2.71)

to the total average energy, independently of α. It is more precise to

refer to this xi as a degree of freedom rather than a particle. This is be-

cause in the three–dimensional world, the kinetic energy, for example,

is given by p2
x/(2m) + p2

y/(2m) + p2
z/(2m), that is, each particle con-

tributes three additive quadratic terms rather than one (just like three

independent one–dimensional particles) and so, it contributes 3kT/2.

This principle is called the the energy equipartition theorem. In Subsec-

tion 3.2, we will see that it is quite intimately related to rate–distortion

theory for quadratic distortion measures.
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Below is a direct derivation of the equipartition theorem:

〈

1

2
aX2

〉

=

∫∞
−∞ dx(αx2/2)e−βαx

2/2

∫∞
−∞ dxe−βαx2/2)

= − ∂

∂β
ln

[
∫ ∞

−∞
dxe−βαx

2/2

]

= − ∂

∂β
ln

[

1√
β

∫ ∞

−∞
d(
√

βx)e−α(
√
βx)2/2

]

= − ∂

∂β
ln

[

1√
β

∫ ∞

−∞
due−αu

2/2

]

=
1

2

d lnβ

dβ
=

1

2β
=
kT

2
.

Note that although we could have used closed–form expressions for

both the numerator and the denominator of the first line, we have

deliberately taken a somewhat different route in the second line, where

we have presented it as the derivative of the denominator of the first

line. Also, rather than calculating the Gaussian integral explicitly, we

only figured out how it scales with β, because this is the only thing

that matters after taking the derivative relative to β. The reason for

using this trick of bypassing the need to calculate integrals, is that it

can easily be extended in two directions at least:

1. Let x ∈ IRN and let E(x) = 1
2xTAx, where A is a N × N positive

definite matrix. This corresponds to a physical system with a quadratic

Hamiltonian, which includes also interactions between pairs (e.g., Har-

monic oscillators or springs, which are coupled because they are tied

to one another). It turns out that here, regardless of A, we get:

〈E(X)〉 =

〈

1

2
XTAX

〉

= N · kT
2
. (2.72)

2. Back to the case of a scalar x, but suppose now a more general

power–law Hamiltonian, E(x) = α|x|θ. In this case, we get

〈E(X)〉 =
〈

α|X|θ
〉

=
kT

θ
. (2.73)

Moreover, if limx→±∞ xe−βE(x) = 0 for all β > 0, and we denote E ′(x)
∆
=
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dE(x)/dx, then

〈X · E ′(X)〉 = kT. (2.74)

It is easy to see that the earlier power–law result is obtained as a special

case of this, as E ′(x) = αθ|x|θ−1sgn(x) in this case.

Example – Ideal gas with gravitation [13, p. 424, Exercise 12.18]: Let

E(x) =
p2
x + p2

y + p2
z

2m
+mgz. (2.75)

The average kinetic energy of each particle is 3kT/2, as said before.

The contribution of the average potential energy is kT (one degree of

freedom with θ = 1). Thus, the total is 5kT/2, where 60% come from

kinetic energy and 40% come from potential energy, universally, that

is, independent of T , m, and g. �

2.6 The Grand–Canonical Ensemble

A brief summary of what we have done thus far, is the following: we

started with the microcanonical ensemble, which was very restrictive

in the sense that the energy was held strictly fixed to the value of E,

the number of particles was held strictly fixed to the value of N , and

at least in the example of a gas, the volume was also held strictly fixed

to a certain value V . In the passage from the microcanonical ensemble

to the canonical one, we slightly relaxed the first of these parameters,

E: Rather than insisting on a fixed value of E, we allowed energy to

be exchanged back and forth with the environment, and thereby to

slightly fluctuate (for large N) around a certain average value, which

was controlled by temperature, or equivalently, by the choice of β. This

was done while keeping in mind that the total energy of both system

and heat bath must be kept fixed, by the law of energy conservation,

which allowed us to look at the combined system as an isolated one,

thus obeying the microcanonical ensemble. We then had a one–to–one

correspondence between the extensive quantity E and the intensive

variable β, that adjusted its average value. But the other extensive

variables, like N and V were still kept strictly fixed.

It turns out, that we can continue in this spirit, and ‘relax’ also

either one of the other variablesN or V (but not both at the same time),
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allowing it to fluctuate around a typical average value, and controlling

it by a corresponding intensive variable. Like E, both N and V are also

subjected to conservation laws when the combined system is considered.

Each one of these relaxations, leads to a new ensemble in addition to

the microcanonical and the canonical ensembles that we have already

seen. In the case where it is the variable N that is allowed to be flexible,

this ensemble is called the grand–canonical ensemble. In the case where

it is the variable V , this a certain instance of the Gibbs ensemble, that

was mentioned earlier in a footnote. There are, of course, additional

ensembles based on this principle, depending on the kind of the physical

system. We will describe here, in some level of detail, only the grand–

canonical ensemble.

The fundamental idea is essentially the very same as the one we

used to derive the canonical ensemble: Let us get back to our (relatively

small) subsystem, which is in contact with a heat bath, and this time,

let us allow this subsystem to exchange with the heat bath, not only

energy, but also matter, i.e., particles. The heat bath consists of a huge

reservoir of energy and particles. The total energy is E0 and the total

number of particles is N0. Suppose that we can calculate the density of

states of the heat bath as function of both its energy E′ and amount

of particles N ′, call it ΩB(E′,N ′). A microstate is now a combination

(x, N), where N is the (variable) number of particles in our subsystem

and x is as before for a given N . From the same considerations as

before, whenever our subsystem is in state (x,N), the heat bath can

be in any one of ΩB(E0 − E(x),N0 −N) microstates of its own. Thus,

owing to the microcanonical ensemble,

P (x, N) ∝ ΩB(E0 − E(x),N0 −N)

= exp{SB(E0 − E(x),N0 −N)/k}

≈ exp

{

SB(E0,N0)

k
− 1

k

∂SB
∂E

· E(x) − 1

k

∂SB
∂N

·N
}

∝ exp

{

−E(x)

kT
+
µN

kT

}

(2.76)

where we have now defined the chemical potential µ (of the heat bath)
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as:

µ
∆
= −T · ∂SB(E′,N ′)

∂N ′

∣

∣

∣

∣

E′=E0,N ′=N0

. (2.77)

Thus, we now have the grand–canonical distribution:

P (x,N) =
eβ[µN−E(x)]

Ξ(β, µ)
, (2.78)

where the denominator is called the grand partition function:

Ξ(β, µ)
∆
=

∞
∑

N=0

eβµN
∑

x

e−βE(x) ∆
=

∞
∑

N=0

eβµNZN (β). (2.79)

It is sometimes convenient to change variables and to define z = eβµ

(which is called the fugacity) and then, define

Ξ̃(β, z) =

∞
∑

N=0

zNZN (β). (2.80)

This notation emphasizes the fact that for a given β, Ξ̃(z) is actually

the z–transform of the sequence ZN . A natural way to think about

P (x, N) is as P (N) ·P (x|N), where P (N) is proportional to zNZN (β)

and P (x|N) corresponds to the canonical ensemble as before.

Using the grand partition function, it is now easy to obtain moments

of the random variable N . For example, the first moment is:

〈N〉 =

∑

N Nz
NZN (β)

∑

N z
NZN (β)

= z · ∂ ln Ξ̃(β, z)

∂z
. (2.81)

Thus, we have replaced the fixed number of particles N by a random

number of particles, which concentrates around an average controlled

by the parameter µ, or equivalently, z. The dominant value of N is

the one that maximizes the product zNZN (β), or equivalently, βµN +

lnZN (β). Thus, ln Ξ̃ is related to lnZN by another kind of a Legendre

transform.

When two systems, with total energy E0 and a total number of

particles N0, are brought into contact, allowing both energy and mat-

ter exchange, then the dominant combined states are those for which

Ω1(E1, N1)·Ω2(E0−E1,N0−N1), or equivalently, S1(E1,N1)+S2(E0−
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E1, N0 −N1), is maximum. By equating to zero the partial derivatives

w.r.t. both E1 and N1, we find that in equilibrium both the temper-

atures T1 and T2 are the same and the chemical potentials µ1 and µ2

are the same.

Finally, it should be pointed out that beyond the obvious physical

significance of the grand–canonical ensemble, sometimes it proves useful

to work with it from the reason of pure mathematical convenience. This

is shown in the following example.

Example – Quantum Statistics. Consider an ensemble of indistinguish-

able particles, each one of which may be in a certain quantum state

labeled by 1, 2, . . . , r, . . .. Associated with quantum state number r,

there is an energy ǫr. Thus, if there are Nr particles in each state r, the

total energy is
∑

rNrǫr, and so, the canonical partition function is:

ZN (β) =
∑

N :
P

r Nr=N

exp{−β
∑

r

Nrǫr}, (2.82)

where N denotes the set of occupation numbers (N1,N2, . . .). The con-

straint
∑

rNr = N , which accounts for the fact that the total number

of particles must be N , causes considerable difficulties in the calcu-

lation. However, if we pass to the grand–canonical ensemble, things

become extremely easy:

Ξ̃(β, z) =
∑

N≥0

zN
∑

N :
P

r Nr=N

exp{−β
∑

r

Nrǫr}

=
∑

N1≥0

∑

N2≥0

. . . z
P

r Nr exp{−β
∑

r

Nrǫr}

=
∑

N1≥0

∑

N2≥0

. . .
∏

r≥1

zNr exp{−βNrǫr}

=
∏

r≥1

∑

Nr≥0

[ze−βǫr ]Nr (2.83)

In the case where Nr is unlimited (Bose–Einstein particles, or Bosons),

each factor indexed by r is clearly a geometric series, resulting in

Ξ̃(β, z) =
∏

r

[1/(1 − ze−βǫr)]. (2.84)
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In the case where no quantum state can be populated by more than

one particle, owing to Pauli’s exclusion principle (Fermi–Dirac parti-

cles, or Fermions), each factor in the product contains two terms only,

pertaining to Nr = 0, 1, and the result is

Ξ̃(β, z) =
∏

r

(1 + ze−βǫr). (2.85)

In both cases, this is fairly simple. Having computed Ξ̃(β, z), we can

in principle, return to ZN (β) by applying the inverse z–transform. We

will get back to this point in Chapter 4.



3

Physical Interpretations of Information Measures

In this chapter, we make use of the elementary background that was es-

tablished in previous chapter, and we draw certain analogies between

statistical physics and information theory, most notably, with Shan-

non theory. These analogies set the stage for physical interpretations

of information measures and their properties, as well as fundamental

coding theorems. As we shall see, these physical interpretations often

prove useful in gaining new insights and perspectives, which may be

beneficial for deriving new analysis tools.

In the first section, we begin from a simple correspondence be-

tween the maximum entropy principle and optimum assignment of

probabilities of messages with given durations, or equivalently, opti-

mum duration assignment for given message probabilities. In the sec-

ond section, we use large deviations theory (most notably, the Leg-

endre transform) to bridge between information theory and statistical

mechanics. This will provide statistical–mechanical interpretations of

the rate–distortion function and channel capacity. In this context, the

statistical–mechanical perspective will be shown to yield a parametric

representation of the rate–distortion function (and channel capacity) as

an integral of the minimum mean square error (MMSE) of the distor-

41
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tion given the source symbol, which can be used for deriving bounds. In

the third and the fourth sections, we discuss relationships between the

second law of thermodynamics and the data processing theorem of in-

formation theory, from two completely different aspects. Finally, in the

last section, we provide a relationship between the Fisher information

and a generalized notion of temperature.

3.1 Statistical Physics of Optimum Message Distributions

To warm up, we begin with a very simple paradigm, studied by Reiss

[96] and Reiss and Huang [98]. The analogy and the parallelism to

the basic concepts of statistical mechanics, that were introduced in the

previous chapter, will be quite evident from the choice of the notation,

which is deliberately chosen to correspond to that of analogous physical

quantities.

Consider a continuous–time communication system that includes a

noiseless channel, with capacity

C = lim
E→∞

logM(E)

E
, (3.1)

where M(E) is the number of distinct messages that can be transmit-

ted over a time interval of E seconds. The channel is fed by the output

of an encoder, which in turn is fed by an information source. Over a du-

ration of E seconds, L source symbols are conveyed, so that the average

transmission time per symbol is σ = E/L seconds per symbol. In the

absence of any constraints on the structure of the encoded messages,

M(E) = rL = rE/σ, where r is the channel input–output alphabet size.

Thus, C = (log r)/σ bits per second.

Consider now the thermodynamic limit of L → ∞. Suppose that

the L symbols of duration E form N words, where by ‘word’, we mean

a certain variable–length string of channel symbols. The average trans-

mission time per word is then ǫ = E/N . Suppose further that the

channel code defines a certain set of word transmission times: Word

number i takes ǫi seconds to transmit. What is the optimum allocation

of word probabilities {Pi} that would support full utilization of the

channel capacity? Equivalently, given the probabilities {Pi}, what are

the optimum transmission times {ǫi}? For simplicity, we will assume
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that {ǫi} are all distinct. Suppose that each word appears Ni times

in the entire message. Denoting N = (N1,N2, . . .), Pi = Ni/N , and

P = (P1, P2, . . .), the total number of messages pertaining to a given

N is

Ω(N ) =
N !

∏

iNi!

·
= exp{N ·H(P )} (3.2)

where H(P ) is the Shannon entropy pertaining to the probability dis-

tribution P . Now,

M(E) =
∑

N :
P

i Niǫi=E

Ω(N). (3.3)

This sum is dominated by the maximum term, namely, the maximum–

entropy assignment of relative frequencies

Pi =
e−βǫi

Z(β)
(3.4)

where β > 0 is a Lagrange multiplier chosen such that
∑

i Piǫi = ǫ,

which gives

ǫi = − ln[PiZ(β)]

β
. (3.5)

For β = 1, this is similar to the classical result that the optimum mes-

sage length assignment in variable–length lossless data compression is

according to the negative logarithm of the probability. For other values

of β, this corresponds to the tilting required for optimum variable–

length coding in the large deviations regime, when the minimization of

the buffer overflow probability is required, see, e.g., [42],[46],[66],[124]

and references therein.

Suppose now that {ǫi} are kept fixed and consider a small pertur-

bation in Pi, denoted dPi. Then

dǫ =
∑

i

ǫidPi

= − 1

β

∑

i

(dPi) lnPi

=
1

kβ
d

(

−k
∑

i

Pi lnPi

)
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∆
= Tds, (3.6)

where we have defined T = 1/(kβ) and s = −k∑i Pi lnPi. The free

energy per particle is given by

f = ǫ− Ts = −kT lnZ, (3.7)

which is related to the redundancy of the code, as both the free en-

ergy and the redundancy are characterized by the Kullback–Leibler

divergence.

In [96], there is also an extension of this setting to the case where

N is not fixed, with correspondence to the grand—canonical ensemble.

However, we will not include it here.

3.2 Large Deviations and Physics of Coding Theorems

Deeper perspectives are offered via the large–deviations point of view.

As said in the Introduction, large deviations theory, the branch of prob-

ability theory that deals with exponential decay rates of probabilities of

rare events, has strong relations to information theory, which can easily

be seen from the viewpoint of the method of types and Sanov’s theorem.

On the other hand, large deviations theory has also a strong connec-

tion to statistical mechanics, as we are going to see shortly. Therefore,

one of the links between information theory and statistical mechanics

goes via rate functions of large deviations theory, or more concretely,

Legendre transforms. This topic is based on [67].

Let us begin with a very simple question: We have a set of i.i.d.

random variables X1,X2, . . . and a certain real function E(x). How fast

does the probability of the event
∑N

i=1 E(Xi) ≤ NE0 decay as N grows

without bound, assuming that E0 < 〈E(X)〉? One way to handle this

problem, at least in the finite alphabet case, is the method of types.

Another method is the Chernoff bound: Denoting the indicator function

of an event by I(·), we have

Pr

{

N
∑

i=1

E(Xi) ≤ NE0

}

= EI
{

N
∑

i=1

E(Xi) ≤ NE0

}
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≤ E exp

{

β

[

NE0 −
N
∑

i=1

E(Xi)

]}

= eβNE0E exp

{

−β
N
∑

i=1

E(Xi)

}

= eβNE0E

{

N
∏

i=1

exp{−βE(Xi)}
}

= eβNE0 [E exp{−βE(X1)}]N

= exp {N [βE0 + ln E exp{−βE(X1)}]}

As this bound applies for every β ≥ 0, the tightest bound of this family

is obtained by minimizing the r.h.s. over β, which yields the exponential

rate function:

Σ(E0) = min
β≥0

[βE0 + φ(β)], (3.8)

where

φ(β) = lnZ(β) (3.9)

and

Z(β) = Ee−βE(X) =
∑

x

p(x)e−βE(x). (3.10)

This is, obviously, very similar to the relation between the entropy

function and the partition function, which we have seen in the previous

chapter. Note that Z(β) here differs from the partition function that we

have encountered thus far only slightly: the Boltzmann exponentials are

weighed by {p(x)} which are independent of β. But this is not a crucial

difference: one can imagine a physical system where each microstate x is

actually a representative of a bunch of more refined microstates {x′},
whose number is proportional to p(x) and which all have the same

energy as x, that is, E(x′) = E(x). In the domain of the more refined

system, Z(β) is (up to a constant) a non–weighted sum of exponentials,

as it should be. More precisely, if p(x) is (or can be approximated by) a

rational number M(x)/M , where M is independent of x, then imagine

that each x gives rise to M(x) microstates {x′} with the same energy
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as x, so that

Z(β) =
1

M

∑

x

M(x)e−βE(x) =
1

M

∑

x′

e−βE(x′), (3.11)

and we are back to an ordinary, non–weighted partition function, up

to the constant 1/M , which is absolutely immaterial.

We observe that the exponential rate function is given by the Leg-

endre transform of the log–moment generating function. The Chernoff

parameter β to be optimized plays the role of the equilibrium temper-

ature pertaining to energy E0.

Consider next what happens when p(x) is itself a B–G distribution

with Hamiltonian E(x) at a certain inverse temperature β1, that is

p(x) =
e−β1E(x)

ζ(β1)
(3.12)

with

ζ(β1)
∆
=
∑

x

e−β1E(x). (3.13)

In this case, we have

Z(β) =
∑

x

p(x)e−βE(x) =

∑

x e
−(β1+β)E(x)

ζ(β1)
=
ζ(β1 + β)

ζ(β1)
. (3.14)

Thus,

Σ(E0) = min
β≥0

[βE0 + ln ζ(β1 + β)] − ln ζ(β1)

= min
β≥0

[(β + β1)E0 + ln ζ(β1 + β)] − ln ζ(β1) − β1E0

= min
β≥β1

[βE0 + ln ζ(β)] − ln ζ(β1) − β1E0

= min
β≥β1

[βE0 + ln ζ(β)] − [ln ζ(β1) + β1E1] + β1(E1 − E0)

where E1 is the energy corresponding to β1, i.e., E1 is such that

σ(E1)
∆
= min

β≥0
[βE1 + ln ζ(β)] (3.15)

is achieved by β = β1. Thus, the second bracketed term of the right–

most side of the last chain is exactly σ(E1), as defined. If we now
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assume that E0 < E1, which is reasonable, because E1 is the average

of E(X) under β1, and we are assuming that we are dealing with a

rare event where E0 < 〈E(X)〉. In this case, the achiever β0 of σ(E0)

must be larger than β1 anyway, and so, the first bracketed term on the

right–most side of the last chain agrees with σ(E0). We have obtained

then that the exponential decay rate (the rate function) is given by

I = −Σ(E0) = σ(E1) − σ(E0) − β1(E1 − E0). (3.16)

Note that I ≥ 0, due to the fact that σ(·) is concave. It has a simple

graphical interpretation as the height difference, as seen at the point

E = E0, between the tangent to the curve σ(E) at E = E1 and the

function σ(E) itself (see Fig. 3.1).

EE0 E1

slope β1

σ(E)

σ(E1)

σ(E0)

I

Fig. 3.1 Graphical interpretation of the large deviations rate function I .

Another point of view is the following:

I = β1

[(

E0 −
σ(E0)

β1

)

−
(

E1 −
σ(E1)

β1

)]

= β1(F0 − F1)

= D(Pβ0‖Pβ1)

= min{D(Q‖Pβ1) : EQE(X) ≤ E0} (3.17)

where the last line (which is easy to obtain) is exactly what we would

have obtained using the method of types. This means that the domi-

nant instance of the large deviations event under discussion pertains to
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thermal equilibrium (minimum free energy) complying with the con-

straint(s) dictated by this event. This will also be the motive of the

forthcoming results.

Let us now see how this discussion relates to very fundamental

information measures, like the rate–distortion function and channel

capacity. To this end, let us first slightly extend the above Chernoff

bound. Assume that in addition to the random variables X1, . . . ,XN ,

there is also a deterministic sequence of the same length, y1, . . . , yN ,

where each yi takes on values in a finite alphabet Y. Suppose also

that the asymptotic regime is such that as N grows without bound,

the relative frequencies { 1
N

∑N
i=1 1{yi = y}}y∈Y converge to certain

probabilities {q(y)}y∈Y . Furthermore, the Xi’s are still independent,

but they are no longer necessarily identically distributed: each one of

them is governed by p(xi|yi), that is, p(x|y) =
∏N
i=1 p(xi|yi). Now, the

question is how does the exponential rate function behave if we look at

the event
N
∑

i=1

E(Xi, yi) ≤ NE0 (3.18)

where E(x, y) is a given ‘Hamiltonian’. The natural questions that now

arise are: what is the motivation for this question and where do we

encounter such a problem?

The answer is that there are many examples (see [67]), but here are

two very classical ones, where rate functions of large deviations events

are directly related to very important information measures. In both

examples, the distributions p(·|y) are actually the same for all y ∈ Y
(namely, {Xi} are again i.i.d.).

Rate–distortion coding. Consider the good old problem of lossy com-

pression with a randomly selected code. Let y = (y1, . . . , yN ) be a given

source sequence, typical to Q = {q(y), y ∈ Y} (non–typical sequences

are not important). Now, let us randomly select eNR codebook vec-

tors {X(i)} according to p(x) =
∏N
i=1 p(xi). Here is how the direct

part of the source coding theorem essentially works: We first ask our-

selves what is the probability that a single randomly selected codeword

X = (X1, . . . ,XN ) would happen to fall at distance less than or equal
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to ND from y, i.e., what is the exponential rate of the probability of

the event
∑N

i=1 d(Xi, yi) ≤ ND? The answer is that it is exponentially

about e−NR(D), and this the reason why we need slightly more than

the reciprocal of this number, namely, e+NR(D) times to repeat this

‘experiment’ in order to see at least one ‘success’, which means being

able to encode y within distortion D. So this is clearly an instance of

the above problem, where E = d and E0 = D.

Channel coding. In complete duality, consider the classical channel cod-

ing problem, for a discrete memoryless channel (DMC), using a ran-

domly selected code. Again, we have a code of size eNR, where each

codeword is chosen independently according to p(x) =
∏N
i=1 p(xi). Let

y the channel output vector, which is (with very high probability),

typical to Q = {q(y), y ∈ Y}, where q(y) =
∑

x p(x)W (y|x), W being

the single–letter transition probability matrix of the DMC. Consider a

(capacity–achieving) threshold decoder which selects the unique code-

word that obeys

N
∑

i=1

[− lnW (yi|Xi)] ≤ N [H(Y |X) + ǫ] ǫ > 0 (3.19)

and declares an error whenever no such codeword exists or when there

is more than one such codeword. Now, in the classical proof of the direct

part of the channel coding problem, we first ask ourselves: what is the

probability that an independently selected codeword (and hence not the

one transmitted) X will pass this threshold? The answer turns out to

be exponentially e−NC , and hence we can randomly select up to slightly

less than the reciprocal of this number, namely, e+NC codewords, before

we start to see incorrect codewords that pass the threshold. Again, this

is clearly an instance of our problem with E(x, y) = − lnW (y|x) and

E0 = H(Y |X) + ǫ.

Equipped with these two motivating examples, let us get back to the

generic problem we formalized. Once this has been done, we shall re-

turn to the examples. There are (at least) two different ways to address

the problem using Chernoff bounds, and they lead to two seemingly dif-

ferent expressions, but since the Chernoff bounding technique gives the

correct exponential behavior, these two expressions must agree. This
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identity between the two expressions will have a physical interpretation,

as we shall see.

The first approach is a direct extension of the previous derivation:

Pr

{

N
∑

i=1

E(Xi, yi) ≤ nE0

}

= EI
{

N
∑

i=1

E(Xi, yi) ≤ nE0

}

≤ E exp

{

β

[

NE0 −
N
∑

i=1

E(Xi, yi)

]}

= eNβE0
∏

y∈Y
Ey exp







−β
∑

i:yi=y

E(Xi, y)







= eβNE0
∏

y∈Y
[Ey exp{−βE(X, y)}]N(y)

= exp







N



βE0 +
∑

y∈Y
q(y) ln

∑

x∈X
p(x|y) exp{−βE(x, y)}











where Ey{·} denotes expectation w.r.t. p(·|y) and N(y) is the number

of occurrences of yi = y in (y1, . . . , yn). The resulting rate function is

given by

Σ(E0) = min
β≥0



βE0 +
∑

y∈Y
q(y) lnZy(β)



 (3.20)

where

Zy(β)
∆
=
∑

x∈X
p(x|y) exp{−βE(x, y)}. (3.21)

In the rate–distortion example, this tells us that

R(D) = −min
β≥0



βD +
∑

y∈Y
q(y) ln

(

∑

x∈X
p(x)e−βd(x,y)

)



 . (3.22)

This is a well–known parametric representation of R(D), which can be

obtained via a different route (see [36, p. 90, Corollary 4.2.3]), where
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the minimizing β is known to have the graphical interpretation of the

negative local slope (i.e., the derivative) of the curve of R(D). In the

case of channel capacity, we obtain in a similar manner:

C = −min
β≥0



βH(Y |X) +
∑

y∈Y
q(y) ln

(

∑

x∈X
p(x)e−β[− lnW (y|x)]

)





= −min
β≥0



βH(Y |X) +
∑

y∈Y
q(y) ln

(

∑

x∈X
p(x)W β(y|x)

)



 .

Here, it is easy to see that the minimizing β is always β∗ = 1.

The other route is to handle each y ∈ Y separately: First, observe

that
N
∑

i=1

E(Xi, yi) =
∑

y∈Y

∑

i: yi=y

E(Xi, y), (3.23)

where now, in each partial sum over {i : yi = y}, we have i.i.d. random

variables. The event
∑N

i=1 E(Xi, yi) ≤ NE0 can then be thought of as

the union of all intersections

⋂

y∈Y







∑

i: yi=y

E(Xi, y) ≤ N(y)Ey







(3.24)

where the union is over all “possible partial energy allocations” {Ey}
which satisfy

∑

y q(y)Ey ≤ E0. Note that at least when {Xi} take

values on a finite alphabet, each partial sum
∑

i: yi=y
E(Xi, y) can take

only a polynomial number of values in N(y), and so, it is sufficient

to ‘sample’ the space of {Ey} by polynomially many vectors in order

to cover all possible instances of the event under discussion (see more

details in the paper). Thus,

Pr

{

N
∑

i=1

E(Xi, yi) ≤ NE0

}

= Pr
⋃

{Ey :
P

y q(y)Ey≤E0}

⋂

y∈Y







∑

i: yi=y

E(Xi, y) ≤ N(y)Ey
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·
= max

{Ey:
P

y q(y)Ey≤E0}

∏

y∈Y
Pr







∑

i: yi=y

E(Xi, y) ≤ N(y)Ey







·
= max

{Ey:
P

y q(y)Ey≤E0}

∏

y∈Y
exp

{

N(y) min
βy≥0

[βyEy + lnZy(β)]

}

= exp







N · max
{Ey :

P

y q(y)Ey≤E0}

∑

y∈Y
q(y)Σy(Ey)







where we have defined

Σy(Ey)
∆
= min

βy≥0
[βyEy + lnZy(βy)] . (3.25)

We therefore arrived at an alternative expression of the rate function,

which is

max
{Ey :

P

y q(y)Ey≤E0}

∑

y∈Y
q(y)Σy(Ey). (3.26)

Since the two expressions must agree, we obtain following identity:

Σ(E0) = max
{Ey :

P

y q(y)Ey≤E0}

∑

y∈Y
q(y)Σy(Ey). (3.27)

A few comments are now in order:

1. In [67], there is also a direct proof of this identity, without relying

on Chernoff bound considerations.

2. This identity accounts for a certain generalized concavity property

of the entropy function. Had all the Σy(·)’s been the same function,

then this would have been the ordinary concavity property. The

interesting point here is that it continues to hold for different Σy(·)’s
too.

3. The l.h.s. of this identity is defined by minimization over one param-

eter only – the inverse temperature β. On the other hand, on the r.h.s.

we have a separate inverse temperature for every y, because each Σy(·)
is defined as a separate minimization problem with its own βy. Stated

differently, the l.h.s. is the minimum of a sum, whereas in the r.h.s.,
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for given {Ey}, we have the sum of minima. When do these two things

agree? The answer is that it happens if all minimizers {β∗y} happen to

be the same. But β∗y depends on Ey. So what happens is that the {Ey}
(of the outer maximization problem) are such that the β∗y would all be

the same, and would agree also with the β∗ of Σ(E0). To see why this

is true, consider the following chain of inequalities:

max
{Ey:

P

y q(y)Ey≤E0}

∑

y

q(y)Σy(Ey)

= max
{Ey:

P

y q(y)Ey≤E0}

∑

y

q(y)min
βy

[βyEy + lnZy(βy)]

≤ max
{Ey:

P

y q(y)Ey≤E0}

∑

y

q(y)[β∗Ey + lnZy(β
∗)]

≤ max
{Ey:

P

y q(y)Ey≤E0}
[β∗E0 +

∑

y

q(y) lnZy(β
∗)]

= β∗E0 +
∑

y

q(y) lnZy(β
∗)

= Σ(E0), (3.28)

where β∗ achieves Σ(E0), the last inequality is because
∑

y q(y)Ey ≤
E0, and the last equality is because the bracketed expression no longer

depends on {Ey}. Both inequalities become equalities if {Ey} are al-

located such that: (i)
∑

y q(y)Ey = E0 and (ii) β∗y(Ey) = β∗ for all y.

Since the β’s have the meaning of inverse temperatures, what we have

here is thermal equilibrium: Consider a set of |Y| subsystems, each

one of N(y) particles and Hamiltonian E(x, y), indexed by y. If all these

subsystems are thermally separated, each one with energy Ey, then the

total entropy per particle is
∑

y q(y)Σy(Ey). The above identity tells

us then what happens when all these systems are brought into ther-

mal contact with one another: The total energy per particle E0 is split

among the different subsystems in a way that all temperatures become

the same – thermal equilibrium. It follows then that the dominant in-

stance of the large deviations event is the one where the contributions

of each y, to the partial sum of energies, would correspond to equi-

librium. In the rate–distortion example, this characterizes how much

distortion each source symbol contributes typically.
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Let us now focus more closely on the rate–distortion function:

R(D) = −min
β≥0



βD +
∑

y∈Y
q(y) ln

(

∑

x∈X
p(x)e−βd(x,y)

)



 . (3.29)

As said, the Chernoff parameter β has the meaning of inverse tem-

perature. The inverse temperature β required to ‘tune’ the expected

distortion (internal energy) to D, is the solution to the equation

D = − ∂

∂β

∑

y

q(y) ln

[

∑

x

p(x)e−βd(x,y)
]

(3.30)

or equivalently,

D =
∑

y

q(y) ·
∑

x p(x)d(x, y)e
−βd(x,y)

∑

x p(x) · e−βd(x,y)
. (3.31)

The Legendre transform relation between the log–partition function

and R(D) induces a one–to–one mapping between D and β which

is defined by the above equation. To emphasize this dependency, we

henceforth denote the value of D, corresponding to a given β, by Dβ.

This expected distortion is defined w.r.t. the probability distribution:

Pβ(x, y) = q(y) · Pβ(x|y) = q(y) · p(x)e−βd(x,y)
∑

x′ p(x
′)e−βd(x′,y)

. (3.32)

On substituting Dβ instead of D in the expression of R(D), we have

−R(Dβ) = βDβ +
∑

y

q(y) ln

[

∑

x

p(x)e−βd(x,y)
]

. (3.33)

Note that R(Dβ) can be represented in an integral form as follows:

R(Dβ) = −
∫ β

0
dβ̂ ·

(

Dβ̂ + β̂ ·
dDβ̂

dβ̂
−Dβ̂

)

= −
∫ Dβ

D0

β̂ · dDβ̂, (3.34)

where D0 =
∑

x,y p(x)q(y)d(x, y) is the value of D corresponding to

β = 0, and for which R(D) = 0, This is exactly analogous to the
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thermodynamic equation S =
∫

dQ/T (following from 1/T = dS/dQ),

that builds up the entropy from the cumulative heat. Note that the

last equation, in its differential form, reads dR(Dβ) = −βdDβ, or β =

−R′(Dβ), which means that β is indeed the negative local slope of the

rate–distortion curve R(D). Returning to the integration variable β̂,

we have:

R(Dβ) = −
∫ β

0
dβ̂ · β̂ ·

dDβ̂

dβ̂

=
∑

y

q(y)

∫ β

0
dβ̂ · β̂ · Varβ̂{d(X, y)|Y = y}

=

∫ β

0
dβ̂ · β̂ · mmseβ̂{d(X,Y )|Y }

where Varβ̂{d(X, y)|Y = y} is the conditional variance of d(X, y)

given Y = y, whose expectation is the minimum mean square error

(MMSE) of d(X,Y ) based on Y , with (X,Y ) being distributed ac-

cording to Pβ̂(x, y). In this representation, the expected conditional

variance, which is the minimum mean square error plays a role that is

intimately related to the heat capacity of the analogous physical system

(cf. eq. (2.34). In a similar manner, the distortion (which is analogous

to the internal energy) is given by

Dβ = D0 −
∫ β

0
dβ̂ · mmseβ̂{d(X,Y )|Y }. (3.35)

We have therefore introduced an integral representation for R(D) based

on the MMSE in estimating the distortion variable d(X,Y ) based on

Y . It should be kept in mind that in the above representation, q(y)

is kept fixed and it is the optimum output distribution corresponding

to D = Dβ, not to the distortion levels pertaining to values of the

integration β̂. Alternatively, q can be any fixed output distribution,

not necessarily the optimum distribution, and then the above integrals

correspond to Rq(Dβ) and Dβ, where Rq(D) is the minimum of I(X;Y )

subject to the distortion constraint and the additional constraint that

the output distribution is q.

More often than not, an exact closed–form expression of R(D) is

hard to obtain, and one must resort to bounds. The MMSE represen-
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tation opens the door to the derivation of families of upper and lower

bounds on Rq(D), which are based on upper and lower bounds on the

MMSE, offered by the plethora of bounds available in estimation the-

ory. This line of thought was exemplified and further developed in [72],

where it was demonstrated that MMSE–based bounds may sometimes

be significantly tighter than traditional bounds, like the Shannon lower

bound. This demonstrates the point that the physical point of view

may inspire a new perspective that leads to new results.

A few words about the high–resolution regime are in order. The

partition function of each y is

Zy(β) =
∑

x

p(x)e−βd(x,y), (3.36)

or, in the continuous case,

Zy(β) =

∫

IR
dxp(x)e−βd(x,y). (3.37)

Consider the Lθ distortion measure d(x, y) = |x − y|θ, where θ > 0

and consider a uniform random coding distribution over the interval

[−A,A], supposing that it is the optimal (or close to optimal) one.

Suppose further that we wish to work at a very small distortion level

D (high resolution), which means a large value of β. Then,

Zy(β) =
1

2A

∫ +A

−A
dxe−β|x−y|

θ

≈ 1

2A

∫ +∞

−∞
dxe−β|x−y|

θ

=
1

2A

∫ +∞

−∞
dxe−β|x|

θ
(3.38)

Thus, returning to the expression of R(D), let us minimize over β by

writing the zero–derivative equation, which yields:

D = − ∂

∂β
ln

[

1

2A

∫ +∞

−∞
dxe−β|x|

θ

]

(3.39)

but this is exactly the calculation of the (generalized) equipartition

theorem, which gives 1/(βθ) = kT/θ. Now, we already said that β =
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−R′(D), and so, 1/β = −D′(R). It follows then that the functionD(R),

at this high res. limit, obeys a simple differential equation:

D(R) = −D
′(R)

θ
(3.40)

whose solution is

D(R) = D0e
−θR. (3.41)

In the case where θ = 2 (quadratic distortion), we obtain that D(R) is

proportional to e−2R, which is a well–known result in high resolution

quantization theory. For the Gaussian source, this is true for all R.

We have interpreted the Legendre representation of the rate–

distortion function (3.22) in the spirit of the Legendre relation between

the log–partition function and the entropy of a physical system, where

the parameter β plays the role of inverse temperature. An alternative

physical interpretation was given in [71],[72], in the spirit of the dis-

cussion around eqs. (2.38)–(2.40), where the temperature was assumed

fixed, the notation of β was changed to another symbol, say λ, with an

interpretation of a generalized force acting on the system (e.g., pres-

sure or magnetic field), and the distortion variable was the conjugate

physical quantity influenced by this force (e.g., volume in the case of

pressure, or magnetization in the case of a magnetic field). In this case,

the minimizing λ means the equal force that each one of the various

subsystems is applying on the others when they are brought into con-

tact and they equilibrate (e.g., equal pressures between two volumes of

a gas separated by piston which is free to move). In this case, Rq(D) is

interpreted as the free energy of the system, and the MMSE formulas

are intimately related to the fluctuation–dissipation theorem (see, e.g.,

[5, Chap. 6], [39, Sect. 5.7], [59, part 2], [61, Chap. XII], [80, Sect. 2.3],

[95, Chap. 15],[104, Chap. 10]) an important result statistical mechan-

ics, which establishes a relationship between the linear response of a

system to a small perturbation from equilibrium, and the equilibrium

fluctuations of this system.

More concretely, it was shown in [71] and [75], that given a source

distribution and a distortion measure, we can describe (at least concep-

tually) a concrete physical system1 that emulates the rate–distortion

1 In particular, this system consists of a long chain of particles, e.g., a polymer.
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problem in the following manner (see Fig. 3.2): When no force is ap-

plied to the system, its total length is nD0, where n is the number of

particles in the system (and also the block length in the rate–distortion

problem), and D0 is as defined above. If one applies to the system a

contracting force, that increases from zero to some final value λ, such

that the length of the system shrinks to nD, where D < D0 is analo-

gous to a prescribed distortion level, then the following two facts hold

true: (i) An achievable lower bound on the total amount of mechani-

cal work that must be carried out by the contracting force in order to

shrink the system to length nD, is given by

W ≥ nkTRq(D). (3.42)

(ii) The final force λ is related to D according to

λ = kTR′
q(D), (3.43)

whereR′
q(·) is the derivative of Rq(·). Thus, the rate–distortion function

plays the role of a fundamental limit, not only in information theory,

but in a certain way, in physics as well.

3.3 Gibbs’ Inequality and the Second Law

Another aspect of the physical interpretation of information measures is

associated with the following question: While the laws of physics draw

the boundaries between the possible and the impossible in Nature,

the coding theorems of information theory, or more precisely, their

converses, draw the boundaries between the possible and the impossible

in coded communication systems and data processing. Are there any

relationships between these two facts?

We next demonstrate that there are some indications that the an-

swer to this question is affirmative. In particular, we shall see that there

is an intimate relationship between the second law of thermodynamics

and the data processing theorem (DPT), asserting that if X → U → V

is a Markov chain, then I(X;U) ≥ I(X;V ). The reason for focusing

our attention on the DPT is that it is actually the most fundamental

inequality that supports most (if not all) proofs of converse theorems

in information theory. Here are just a few points that make this quite

clear.
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nD λ = kTR′
q(D)

W = nkTRq(D)

nD0

Fig. 3.2 Emulation of the rate–distortion function by a physical system.

Lossy/lossless source coding: Consider a source vector UN =

(U1, . . . UN ) compressed into a bit-stream Xn = (X1, . . . ,Xn) from

which the decoder generates a reproduction V N = (V1, . . . , VN ) with

distortion
∑N

i=1 E{d(Ui, Vi)} ≤ ND. Then, by the DPT,

I(UN ;V N ) ≤ I(Xn;Xn) = H(Xn), (3.44)

where I(UN ;V N ) is further lower bounded by NR(D) and H(Xn) ≤
n, which together lead to the converse to the lossy data compression

theorem, asserting that the compression ratio n/N cannot be less than

R(D). The case of lossless compression is obtained as a special case

where D = 0.

Channel coding under bit error probability: Let UN = (U1, . . . UN ) be

drawn from the binary symmetric source (BSS), designating M = 2N

equiprobable messages of length N . The encoder maps UN into a chan-

nel input vector Xn, which in turn, is sent across the channel. The

receiver observes Y n, a noisy version of Xn, and decodes the message
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as V N . Let

Pb =
1

N

N
∑

i=1

Pr{Vi 6= Ui} (3.45)

designate the bit error probability. Then, by the DPT, I(UN ;V N ) ≤
I(Xn;Y n), where I(Xn;Y n) is further upper bounded by nC, C being

the channel capacity, and

I(UN ;V N ) = H(UN ) −H(UN |V N )

≥ N −
N
∑

i=1

H(Ui|Vi)

≥ N −
∑

i

h2(Pr{Vi 6= Ui})

≥ N [1 − h2(Pb)]. (3.46)

Thus, for Pb to vanish, the coding rate, N/n should not exceed C.

Channel coding under block error probability – Fano’s inequality: Same

as in the previous item, except that the error performance is the block

error probability PB = Pr{V N 6= UN}. This, time H(UN |V N ), which

is identical to H(UN , E|V N ), with E ≡ I{V N 6= UN}, is decomposed

as H(E|V N ) +H(UN |V N , E), where the first term is upper bounded

by 1 and the second term is upper bounded by PB log(2N −1) < NPB ,

owing to the fact that the maximum of H(UN |V N , E = 1) is obtained

when UN is distributed uniformly over all V N 6= UN . Putting these

facts all together, we obtain Fano’s inequality PB ≥ 1 − 1/n − C/R,

where R = N/n is the coding rate. Thus, the DPT directly supports

Fano’s inequality, which in turn is the main tool for proving converses to

channel coding theorems in a large variety of communication situations,

including network configurations.

Joint source–channel coding and the separation principle: In a joint

source–channel situation, where the source vector UN is mapped to a

channel input vector Xn and the channel output vector Y n is decoded

into a reconstruction V N , the DPT gives rise to the chain of inequalities

NR(D) ≤ I(UN ;V N ) ≤ I(Xn;Y n) ≤ nC, (3.47)
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which is the converse to the joint source–channel coding theorem, whose

direct part can be achieved by separate source- and channel coding.

Items 1 and 2 above are special cases of this.

Conditioning reduces entropy: Perhaps even more often than the term

“data processing theorem” can be found as part of a proof of a converse

theorem, one encounters an equivalent of this theorem under the slogan

“conditioning reduces entropy”. This in turn is part of virtually every

converse proof in the literature. Indeed, if (X,U, V ) is a triple of random

variables, then this statement means that H(X|V ) ≥ H(X|U, V ). If, in

addition, X → U → V is a Markov chain, then H(X|U, V ) = H(X|U),

and so, H(X|V ) ≥ H(X|U), which in turn is equivalent to the more

customary form of the DPT, I(X;U) ≥ I(X;V ), obtained by sub-

tracting H(X) from both sides of the entropy inequality. In fact, as

we shall see shortly, it is this entropy inequality that lends itself more

naturally to a physical interpretation. Moreover, we can think of the

conditioning–reduces–entropy inequality as another form of the DPT

even in the absence of the aforementioned Markov condition, because

X → (U, V ) → V is always a Markov chain.

Turning now to the physics point of view, consider a system which

may have two possible Hamiltonians – E0(x) and E1(x). Let Zi(β),

denote the partition function pertaining to Ei(·), that is

Zi(β) =
∑

x

e−βEi(x), i = 0, 1. (3.48)

The Gibbs’ inequality asserts that

lnZ1(β) ≥ lnZ0(β) + β〈E0(X) − E1(X)〉0 (3.49)

where 〈·〉0 denotes averaging w.r.t. P0 – the canonical distribution per-

taining the Hamiltonian E0(·). Equivalently, this inequality can be pre-

sented as follows:

〈E1(X) − E0(X)〉0 ≥
[

− lnZ1(β)

β

]

−
[

− lnZ0(β)

β

]

≡ F1 − F0, (3.50)

where Fi is the free energy pertaining to the canonical ensemble of Ei,
i = 0, 1.
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This inequality is easily proved by defining an Hamiltonian

Eλ(x) = (1 − λ)E0(x) + λE1(x) = E0(x) + λ[E1(x) − E0(x)] (3.51)

and using the convexity of the corresponding log–partition function

w.r.t. λ. Specifically, let us define the partition function:

Zλ(β) =
∑

x

e−βEλ(x). (3.52)

Now, since Eλ(x) is affine in λ, then it is easy to see that d2 lnZλ/dλ
2 ≥

0 (for the same reason that d2 lnZ(β)/dβ2 ≥ 0, as was shown earlier)

and so lnZλ(β) is convex in λ for fixed β. It follows then that the curve

of the function lnZλ(β), as a function of λ, must lie above the straight

line that is tangent to this curve at λ = 0 (see Fig. 3.3), that is, the

graph corresponding to the affine function

lnZ0(β) + λ ·
[

∂ lnZλ(β)

∂λ

]

λ=0

.

In particular, setting λ = 1, we get:

straight line − tangent at
λ = 0.

λ

lnZλ(β)

1

Fig. 3.3 The function lnZλ(β) is convex in λ and hence lies above its tangent at the
origin.
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lnZ1(λ) ≥ lnZ0(β) +
∂ lnZλ(β)

∂λ

∣

∣

∣

∣

λ=0

, (3.53)

and the second term is:

∂ lnZλ(β)

∂λ

∣

∣

∣

∣

λ=0

=
β
∑

x[E0(x) − E1(x)]e−βE0(x)

∑

x e
−βE0(x)

∆
= β 〈E0(X) − E1(X)〉0 , (3.54)

Thus, we have obtained

ln

[

∑

x

e−βE1(x)

]

≥ ln

[

∑

x

e−βE0(x)

]

+ β 〈E0(X) − E1(X)〉0 , (3.55)

and the proof is complete. In fact, the difference between the l.h.s.

and the r.h.s. is exactly D(P0‖P1), where Pi is the B–G distribution

pertaining to Ei(·), i = 0, 1.

We now offer a possible physical interpretation to the Gibbs’ in-

equality: Imagine that a system with Hamiltonian E0(x) is in equilib-

rium for all t < 0, but then, at time t = 0, the Hamiltonian changes

abruptly from the E0(x) to E1(x) (e.g., by suddenly applying a force on

the system), which means that if the system is found at state x at time

t = 0, additional energy of W = E1(x) − E0(x) is suddenly ‘injected’

into the system. This additional energy can be thought of as work per-

formed on the system, or as supplementary potential energy. Since this

passage between E0 and E1 is abrupt, the average of W should be taken

w.r.t. P0, as the state x does not change instantaneously. This average

is exactly what we have at the left–hand side eq. (3.50). The Gibbs

inequality tells us then that this average work is at least as large as

∆F = F1 −F0, the increase in free energy.2 The difference 〈W 〉0 −∆F

is due to the irreversible nature of the abrupt energy injection, and this

irreversibility means an increase of the total entropy of the system and

its environment, and so, the Gibbs’ inequality is, in fact, a version of

the second law of thermodynamics. This excess work beyond the free–

energy increase, 〈W 〉0−∆F , which can be thought of as the “dissipated

2 This is related to the interpretation of the free–energy difference ∆F = F1 − F0 as being
the maximum amount of work in an isothermal process.
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work,” can easily shown to be equal to kT · D(P0‖P1), where P0 and

P1 are the canonical distributions pertaining to E0 and E1, respectively.

Thus, the divergence is given yet another physical significance.

Now, let us see how the Gibbs’ inequality is related to the DPT.

Consider a triple of random variables (X,U ,V ) which form a Markov

chain X → U → V . The DPT asserts that I(X ;U) ≥ I(X ;V ). We

can obtain the DPT as a special case of the Gibbs inequality as follows:

For a given realization (u,v) of the random variables (U ,V ), consider

the Hamiltonians

E0(x) = − lnP (x|u) = − lnP (x|u,v) (3.56)

and

E1(x) = − lnP (x|v). (3.57)

Let us also set β = 1. Thus, for a given (u,v):

〈W 〉0 = 〈E1(X) − E0(X)〉0
=
∑

x

P (x|u,v)[lnP (x|u) − lnP (x|v)]

= H(X |V = v) −H(X|U = u) (3.58)

and after further averaging w.r.t. (U ,V ), the average work becomes

H(X|V ) −H(X|U ) = I(X ;U ) − I(X ;V ). (3.59)

Concerning the free energies, we have

Z0(β = 1) =
∑

x

exp{−1·[− lnP (x|u,v)]} =
∑

x

P (x|u,v) = 1 (3.60)

and similarly,

Z1(β = 1) =
∑

x

P (x|v) = 1 (3.61)

which means that F0 = F1 = 0, and so ∆F = 0 as well. So by the Gibbs

inequality, the average work I(X;U )−I(X;V ) cannot be smaller than

the free–energy difference, which in this case vanishes, namely,

I(X;U ) − I(X ;V ) ≥ 0, (3.62)
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which is the DPT. Note that in this case, there is a maximum degree

of irreversibility: The identity

I(X;U ) − I(X ;V ) = H(X|V ) −H(X|U ) (3.63)

means that whole work

W = I(X;U ) − I(X ;V ) (3.64)

goes for entropy increase

S1T − S0T = H(X |V ) · 1 −H(X|U) · 1, (3.65)

whereas the free energy remains unchanged, as mentioned earlier.

The difference between I(X ;U) and I(X;V ), which accounts for

the rate loss in any suboptimal coded communication system, is then

given the meaning of irreversibility and entropy production in the cor-

responding physical system. Optimum (or nearly optimum) commu-

nication systems are corresponding to reversible isothermal processes,

where the full free energy is exploited and no work is dissipated (or

no work is carried out at all, in the first place). In other words, had

there been a communication system that violated the converse to the

source/channel coding theorem, one could have created (at least con-

ceptually) a corresponding physical system that violates the second law

of thermodynamics, and this, of course, cannot be true.

For a more general physical perspective, let us consider again afore-

mentioned parametric family of Hamiltonians

Eλ(x) = E0(x) + λ[E1(x) − E0(x)] (3.66)

that interpolates linearly between E0(x) and E1(x). Here, the control

parameter λ can be considered a generalized force. The Jarzynski equal-

ity [43] (see also [92] and references therein) asserts that under certain

assumptions on the system and the environment, and given any proto-

col for a temporal change in λ, designated by {λt}, for which λt = 0

for all t < 0, and λt = 1 for all t ≥ τ (τ ≥ 0), the work W applied to

the system is a random variable that satisfies

E{e−βW } = e−β∆F . (3.67)
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By Jensen’s inequality,

E{e−βW } ≥ exp(−βE{W}), (3.68)

which then gives E{W} ≥ ∆F , for an arbitrary protocol {λt}. The

Gibbs inequality is then a special case, where λt is given by the unit

step function, but it applies regardless of the conditions listed in [92].

At the other extreme, when λt changes very slowly, corresponding to

a reversible process, W approaches determinism, and then Jensen’s

inequality becomes tight. In the limit of an arbitrarily slow process,

this yields W = ∆F , with no increase in entropy.

Returning now to the realm of information theory, the natural ques-

tions are: What is the information–theoretic analogue of Jarzynski’s

equality? Does it lead to a new generalized version of the information

inequality? In other words, if the Gibbs inequality is obtained from

Jarzynski’s equality for the special case where the protocol {λt} is the

unit step function (i.e., λt = u(t)), then what would be the generalized

information inequality corresponding to a general protocol {λt}? We

next make an attempt to answer these questions at least partially.

First, observe that for Ei(x) = − lnPi(x), i = 0, 1, and β = 1,

Jarzynski’s equality, for the case λt = u(t), holds in a straightforward

manner:

E0{e−W (X)} =
∑

x

P0(x)e
lnP1(x)−lnP0(x)

= 1 = e−∆F . (3.69)

How does this extend to a general protocol {λt}? Considering the family

of linear interpolations between these two Hamiltonians, let P0 and P1

be two probability distributions, and for λ ∈ [0, 1], define

Pλ(x) =
P 1−λ

0 (x)P λ1 (x)

Z(λ)
, (3.70)

where

Z(λ) =
∑

x

P 1−λ
0 (x)P λ1 (x). (3.71)

This is the Boltzmann distribution pertaining to the Hamiltonian

Eλ(x) = (1 − λ)[− lnP0(x)] + λ[− lnP1(x)]. (3.72)
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Now, consider an arbitrary (not necessarily monotonically increasing)

sequence of values of λ: 0 ≡ λ0, λ1, . . . , λn−1, λn ≡ 1, and let {Xi}n−1
i=0

be independent random variables, Xi ∼ Pλi , i = 0, 1, . . . , (n − 1). This

corresponds to a protocol where λt is a staircase function with jumps of

sizes (λi+1−λi), and where it is also assumed that the plateau segments

of λt are long enough to let the system equilibrate for each λi. Then,

we can easily prove a Jarzynski–like equality as follows:

E{e−W } = E

{

exp

[

n−1
∑

i=0

(λi+1 − λi) ln
P1(Xi)

P0(Xi)

]}

=
n−1
∏

i=0

Eλi

{

exp

[

(λi+1 − λi) ln
P1(Xi)

P0(Xi)

]}

=
n−1
∏

i=0

(

∑

x

Pλi(x)

[

P1(x)

P0(x)

]λi+1−λi
)

=

n−1
∏

i=0

Z(λi+1)

Z(λi)
=
Z(λn)

Z(λ0)
=
Z(1)

Z(0)
=

1

1
= 1. (3.73)

In the limit of large n, if the density of {λi} grows without bound across

the entire unit interval, we get the following information–theoretic ver-

sion of Jarzynski’s equality:

E

{

exp

[

−
∫ 1

0
dλt ln

P0(Xt)

P1(Xt)

]}

= 1, (3.74)

where, again {λt} is an arbitrary protocol, starting at λ0 = 0 and

ending at λτ = 1. Applying Jensen’s inequality to the left–hand side,

we obtain the following generalization of the information inequality for

a general protocol:

E{W} ≡
∫ 1

0
dλt · Eλt

{

ln
P0(X)

P1(X)

}

≥ 0, (3.75)

with equality in the case where λt is differentiable everywhere, which

corresponds to a reversible process. Returning to the simpler case, of

finitely many steps, this becomes

E{W} ≡
n−1
∑

i=0

(λi+1 − λi)Eλi

{

ln
P0(X)

P1(X)

}

≥ 0. (3.76)
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In this sense, the left–hand side can be thought of as a generalized

relative entropy pertaining to an arbitrary protocol.

This inequality has a direct relationship to the behavior of error

exponents of hypothesis testing and the Neyman–Pearson lemma: Let

P0 and P1 be two probability distributions of a random variable X

taking values in an alphabet X . Given an observation x ∈ X , one

would like to decide whether it emerged from P0 or P1. A decision

rule is a partition of X into two complementary regions X0 and X1,

such that whenever X ∈ Xi one decides in favor of the hypothesis that

X has emerged from Pi, i = 0, 1. Associated with any decision rule,

there are two kinds of error probabilities: P0(X1) is the probability of

deciding in favor of P1 while x has actually been generated by P0,

and P1(X0) is the opposite kind of error. The Neyman–Pearson lemma

asserts that the optimum trade-off is given by the likelihood ratio test

(LRT) X ∗
0 = (X ∗

1 )c = {x : P0(x)/P1(x) ≥ µ}, where µ is a parameter

that controls the trade-off. Assume now that instead of one observation

x, we have a vector x of n i.i.d. observations (x1, . . . , xn), emerging

either all from P0, or all from P1. In this case, the error probabilities

of the two kinds, pertaining to the LRT, P0(x)/P1(x) ≥ µ, can decay

asymptotically exponentially, provided that µ = µn is chosen to decay

exponentially with n and the asymptotic exponents,

e0 = lim
n→∞

[

− 1

n
lnP0(X ∗

1 )

]

(3.77)

and

e1 = lim
n→∞

[

− 1

n
lnP1(X ∗

0 )

]

(3.78)

can be easily found (e.g., by using the method of types) to be

ei(λ) = D(Pλ‖Pi) =
∑

x∈X
Pλ(x) ln

Pλ(x)

Pi(x)
; i = 0, 1 (3.79)

where Pλ(x) is defined as before and λ ∈ [0, 1] is determined by µ

according to the relation

lnµ = e1(λ) − e0(λ). (3.80)
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Now, the average work W is easily related to the error exponents:

E{W} =

∫ 1

0
dλt[e1(λt) − e0(λt)]. (3.81)

Thus, we see that
∫ 1

0
dλte1(λt) ≥

∫ 1

0
dλte0(λt) (3.82)

with equality in the reversible case. Indeed, the last inequality can be

also shown to hold using a direct derivation, and the equality is easily

shown to hold whenever λt is differentiable for every t ∈ [0, τ ], in which

case, it becomes:
∫ τ

0
dtλ̇te0(λt) =

∫ τ

0
dtλ̇te1(λt). (3.83)

The left– (resp. right–) hand side is simply
∫ 1
0 dλe0(λ) (resp.

∫ 1
0 dλe1(λ)) which means that the areas under the graphs of the func-

tions e0 and e1 are always the same. This, of course, also means that
∫ 1

0
dλ lnµ(λ) = 0, (3.84)

where lnµ(λ) is defined according to eq. (3.80). While these integral

relations between the error exponent functions could have been derived

without recourse to any physical considerations, it is the physical point

of view that gives the trigger to point out these relations.

It would be interesting to find additional meanings and utilities

for the generalized information inequality proposed here, as well as to

figure out whether this is a Shannon-type inequality or a non–Shannon–

type inequality [128, Chaps. 13,14]. These questions are beyond the

scope of this work, but they are currently under study.

A more detailed exposition of the results of this section, as well as

their implications, is provided in [73].

3.3.1 The Gibbs’ Inequality and the Log–Sum Inequality

We now wish to take another look at the Gibbs’ inequality, from a

completely different perspective, namely, as a tool for generating useful
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bounds on the free energy, in situations where the exact calculation is

difficult (see [54, p. 145]). As we show in this part, this inequality

is nothing but the log–sum inequality, which is used in Information

Theory, mostly for proving certain qualitative properties of information

measures, like the data processing inequality of the divergence [13, Sect.

2.7]. But this equivalence now suggests that the log–sum inequality can

perhaps be used in a similar way that it is used in physics, and then it

could yield useful bounds on certain information measures. We try to

demonstrate this point, first in physics, and then in a problem related

to information theory.

Suppose we have an Hamiltonian E(x) for which we wish to know

the partition function

Z(β) =
∑

x

e−βE(x) (3.85)

but it is hard, if not impossible, to calculate in closed–form. Suppose

further that for another, somewhat different Hamiltonian, E0(x), it is

rather easy to make calculations. The Gibbs’ inequality can be pre-

sented as a lower bound on lnZ(β) in terms of B–G statistics pertaining

to E0.

ln

[

∑

x

e−βE(x)

]

≥ ln

[

∑

x

e−βE0(x)

]

+ β 〈E0(X) − E(X)〉0 , (3.86)

The idea now is that we can obtain pretty good bounds thanks to the

fact that we may have some freedom in the choice of E0. For example,

one can define a parametric family of functions E0 and maximize the

r.h.s. w.r.t. the parameter(s) of this family, thus obtaining the tightest

lower bound within the family. Consider the following example.

Example – Non–harmonic oscillator. Consider the potential function

V (z) = Az4 (3.87)

and so

E(x) =
p2

2m
+Az4, (3.88)

where we approximate the second term by

V0(z) =

{

0 |z| ≤ L
2

+∞ |z| > L
2

(3.89)
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where L is a parameter to be optimized. Thus,

Z0 =
1

h

∫ +∞

−∞
dp

∫ +∞

−∞
dze−β[V0(z)+p2/(2m)]

=
1

h

∫ +∞

−∞
dp · e−βp2/(2m)

∫ +L/2

−L/2
dz

=

√
2πmkT

h
· L

and so, by the Gibbs inequality:

lnZ ≥ lnZ0 + β〈E0(X) − E(X)〉0

≥ lnZ0 −
1

kT
· 1

L

∫ +L/2

−L/2
dz ·Az4

≥ ln

[

L
√

2πmkT

h

]

− AL4

80kT

∆
= f(L)

To maximize f(L) we equate its derivative to zero:

0 =
df

dL
≡ 1

L
− AL3

20kT
=⇒ L∗ =

(

20kT

A

)1/4

. (3.90)

On substituting this back into the Gibbs lower bound and comparing

to the exact value of Z (which is computable in this example), we find

that Zapprox ≈ 0.91Zexact, which is fairly good, considering the fact

that the infinite potential well seems to be quite a poor approximation

to the fourth order power law potential V (z) = Az4.

As somewhat better approximation is the harmonic one:

V0(z) =
mω2

0

2
· z2 (3.91)

where now ω0 is the free parameter to be optimized. This gives

Z0 =
1

h

∫ +∞

−∞
dp

∫ +∞

−∞
dze−β[mω2

0z
2/2+p2/(2m)] =

kT

~ω0
(3.92)

and this time, we get:

lnZ ≥ ln

(

kT

~ω0

)

+
1

kT

〈

mω2
0Z

2

2
−AZ4

〉

0
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= ln

(

kT

~ω0

)

+
1

2
− 3AkT

m2ω4
0

∆
= f(ω0)

To find the maximizing f , we have

0 =
df

dω0
≡ − 1

ω0
+

12AkT

m2ω5
0

=⇒ ω∗
0 =

(12AkT )1/4√
m

. (3.93)

This time, we get Zapprox ≈ 0.95Zexact, i.e., this approximation is

even better. �

Returning from physics to information theory, let us now look at the

Gibbs inequality slightly differently. What we actually did, in different

notation, is the following: Consider the function:

Z(λ) =

n
∑

i=1

a1−λ
i bλi =

n
∑

i=1

aie
−λ ln(ai/bi), (3.94)

where {ai} and {bi} are positive reals. Since lnZ(λ) is convex (as be-

fore), we have:

ln

(

n
∑

i=1

bi

)

≡ lnZ(1)

≥ lnZ(0) + 1 · d lnZ(λ)

dλ

∣

∣

∣

∣

λ=0

= ln

(

n
∑

i=1

ai

)

+

∑n
i=1 ai ln(bi/ai)
∑n

i=1 ai

which is nothing but the log–sum inequality. Once again, the idea is to

lower bound an expression ln(
∑n

i=1 bi), which may be hard to calculate,

by the expression on the l.h.s. which is hopefully easier, and allows a

degree of freedom concerning the choice of {ai}, at least in accordance

to some structure, and depending on a limited set of parameters.

Consider, for example, a hidden Markov model (HMM), which is the

output of a DMC W (y|x) =
∏n
t=1W (yt|xt) fed by a first–order Markov

process X, governed by Q(x) =
∏n
t=1Q(xt|xt−1). The entropy rate of

the hidden Markov process {Yt} does not admit a closed–form expres-

sion, so we would like to have at least good bounds. The importance
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of such bounds is self–evident, for example, in the derivation of upper

bounds on the capacity of finite–state channels [34, Sect. 4.6]. Here, we

propose an upper bound that stems from the Gibbs’ inequality, or the

log–sum inequality.

The probability distribution of y is

P (y) =
∑

x

n
∏

t=1

[W (yt|xt)Q(xt|xt−1)]. (3.95)

This summation does not lend itself to a nice closed–form expression,

but if the t–th factor depended only on t, this would have been easy and

simple, as the sum of products would have boiled down to a product of

sums. This motivates the following use of the log–sum inequality: For

a given y, let us think of x as the index i of the log–sum inequality

and then

b(x) =

n
∏

t=1

[W (yt|xt)Q(xt|xt−1)]. (3.96)

Let us now define

a(x) =

n
∏

t=1

P0(xt, yt), (3.97)

where P0 is an arbitrary joint distribution over X ×Y, to be optimized

eventually. Thus, applying the log–sum inequality, we get:

lnP (y) = ln

(

∑

x

b(x)

)

≥ ln

(

∑

x

a(x)

)

+

∑

x a(x) ln[b(x)/a(x)]
∑

x a(x)

= ln

(

∑

x

n
∏

t=1

P0(xt, yt)

)

+
1

∑

x
∏n
t=1 P0(xt, yt)

×

∑

x

[

n
∏

t=1

P0(xt, yt)

]

· ln
[

n
∏

t=1

Q(xt|xt−1)
W (yt|xt)
P0(xt, yt)

]

(3.98)

Now, let us denote P0(y) =
∑

x∈X P0(x, y), which is the marginal of

y under P0. Then, the first term is simply
∑n

t=1 lnP0(yt). As for the
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second term, we have:
∑

x [
∏n
t=1 P0(xt, yt)] · ln[

∏n
t=1[Q(xt|xt−1)W (yt|xt)/P0(xt, yt)]

∑

x
∏n
t=1 P0(xt, yt)

=

n
∑

t=1

∑

x

∏n
t=1 P0(xt, yt) ln[Q(xt|xt−1)W (yt|xt)/P0(xt, yt)]

∏n
t=1 P0(yt)

=

n
∑

t=1

∏

t′ 6=t−1,t P0(yt′)
∏n
t=1 P0(yt)

·
∑

xt−1,xt

P0(xt−1, yt−1)×

P0(xt, yt) · ln
[

Q(xt|xt−1)W (yt|xt)
P0(xt, yt)

]

=
n
∑

t=1

∑

xt−1,xt

P0(xt−1, yt−1)P0(xt, yt)

P0(yt−1)P0(yt)
· ln
[

Q(xt|xt−1)W (yt|xt)
P0(xt, yt)

]

=

n
∑

t=1

∑

xt−1,xt

P0(xt−1|yt−1)P0(xt|yt) · ln
[

Q(xt|xt−1)W (yt|xt)
P0(xt, yt)

]

∆
=

n
∑

t=1

E0

{

ln

[

Q(Xt|Xt−1)W (yt|Xt)

P0(Xt, yt)

] ∣

∣

∣

∣

Yt−1 = yt−1, Yt = yt

}

where E0 denotes expectation w.r.t. the product measure of P0. Adding

now the first term of the r.h.s. of the log–sum inequality,
∑n

t=1 lnP0(yt),

we end up with the lower bound:

lnP (y) ≥
n
∑

t=1

E0

{

ln

[

Q(Xt|Xt−1)W (yt|Xt)

P0(Xt|yt)

] ∣

∣

∣

∣

Yt−1 = yt−1, Yt = yt

}

∆
=

n
∑

t=1

∆(yt−1, yt;P0). (3.99)

At this stage, we can perform the optimization over P0 for each y in-

dividually, and then derive the bound on the expectation of lnP (y) to

get a bound on the entropy. Note, however, that
∑

t ∆(yt−1, yt;P0) de-

pends on y only via its Markov statistics, i.e., the relative frequencies of

transitions y =⇒ y′ for all y, y′ ∈ Y. Thus, the optimum P0 depends on

y also via these statistics. Now, the expectation of
∑

t ∆(yt−1, yt;P0)

is dominated by the typical {y} for which these transition counts con-

verge to the respective joint probabilities of {Yt−1 = y, Yt = y}. So, it
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is expected that for large n, nothing will essentially be lost if we first

take the expectation over both sides of the log–sum inequality and only

then optimize over P0. This would yield

H(Y n) ≤ −n · max
P0

E{∆(Y0, Y1;P0)}. (3.100)

where the expectation on the r.h.s. is now under the real joint distri-

bution of two consecutive samples of {Yn}, i.e.,

P (y0, y1) =
∑

x0,x1

π(x0)Q(x1|x0)P (y0|x0)P (y1|x1), (3.101)

where π(·) is the stationary distribution of the underlying Markov pro-

cess {xt}.
We have not pursued this derivation any further from this point, to

see if it may yield upper bounds that are tighter than existing ones,

for example, the straightforward bound H(Y n) ≤ nH(Y1|Y0). This is

certainly a question that deserves further study, and if this approach

will turn out to be successful, it would be another example how the

physical point of view may be beneficial for obtaining new results in

information theory.

3.4 Boltzmann’s H–Theorem and the DPT

In the previous section, we saw a relationship between the second law

of thermodynamics and the DPT, and this relationship was associated

with the equilibrium (stationary) probability distribution at any given

time instant, namely, the B–G distribution. This is, in a certain sense,

the static point of view. In this section, we explore the relationship

between the second law and the DPT from a dynamical point of view.

As said, the B–G distribution is the stationary state distribution

over the microstates, but this only a small part of the physical picture.

What is missing is the temporal probabilistic behavior, or in other

words, the laws that underlie the evolution of the system microstate

with time. These are dictated by dynamical properties of the system,

which constitute the underlying physical laws in the microscopic level.

It is customary then to model the microstate at time t as a random

process {Xt}, where t may denote either discrete time or continuous
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time, and among the various models, one of the most common ones is

the Markov model.

In this section, we discuss a few properties of these processes as well

as the evolution of information measures associated with them, like

entropy, divergence (and more), and we shall see that these are also

intimately related to data processing inequalities. More concretely, we

shall see that the second law of the thermodynamics, this time, in its

dynamical version, or more precisely, the Boltzmann H–theorem, and

the data processing inequality, even in the most general form known, are

both special cases of a more general principle, which we shall establish

here (see also [76] for more details).

We begin with an isolated system in continuous time, which is not

necessarily assumed to have reached yet its stationary distribution per-

taining to equilibrium. Let us suppose that the state Xt may take on

values in a finite set X . For x, x′ ∈ X , let us define the state transition

rates

Wxx′ = lim
δ→0

Pr{Xt+δ = x′|Xt = x}
δ

x′ 6= x (3.102)

which means, in other words,

Pr{Xt+δ = x′|Xt = x} = Wxx′ · δ + o(δ). (3.103)

Denoting

Pt(x) = Pr{Xt = x}, (3.104)

it is easy to see that

Pt+dt(x) =
∑

x′ 6=x
Pt(x

′)Wx′xdt+ Pt(x)



1 −
∑

x′ 6=x
Wxx′dt



 , (3.105)

where the first sum describes the probabilities of all possible transitions

from other states to state x and the second term describes the prob-

ability of not leaving state x. Subtracting Pt(x) from both sides and

dividing by dt, we immediately obtain the following set of differential

equations:

dPt(x)

dt
=
∑

x′

[Pt(x
′)Wx′x − Pt(x)Wxx′ ], x ∈ X , (3.106)
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where Wxx is defined in an arbitrary manner, e.g., Wxx ≡ 0 for all

x ∈ X . In the physics terminology (see, e.g., [59],[95]), these equations

are called the master equations.3 When the process reaches stationarity,

i.e., for all x ∈ X , Pt(x) converge to some P (x) that is time–invariant,

then
∑

x′

[P (x′)Wx′x − P (x)Wxx′ ] = 0, ∀ x ∈ X . (3.107)

This situation is called global balance or steady state. When the physical

system under discussion is isolated, namely, no energy flows into the

system or out, the steady state distribution must be uniform across all

states, because all accessible states must be of the same energy and

the equilibrium probability of each state depends solely on its energy.

Thus, in the case of an isolated system, P (x) = 1/|X | for all x ∈
X . From quantum mechanical considerations, as well as considerations

pertaining to time reversibility in the microscopic level,4 it is customary

to assume Wxx′ = Wx′x for all pairs {x, x′}. We then observe that, not

only do
∑

x′ [P (x′)Wx′x − P (x)Wxx′ ] all vanish, but moreover, each

individual term in this sum vanishes, as

P (x′)Wx′x − P (x)Wxx′ =
1

|X | (Wx′x −Wxx′) = 0. (3.108)

This property is called detailed balance, which is stronger than global

balance, and it means equilibrium, which is stronger than steady state.

While both steady–state and equilibrium refer to situations of time–

invariant state probabilities {P (x)}, a steady–state still allows cyclic

“flows of probability.” For example, a Markov process with cyclic de-

terministic transitions 1 → 2 → 3 → 1 → 2 → 3 → · · · is in steady

state provided that the probability distribution of the initial state is

uniform (1/3, 1/3, 1/3), however, the cyclic flow among the states is in

one direction. On the other hand, in detailed balance (Wxx′ = Wx′x

3 Note that the master equations apply in discrete time too, provided that the derivative
at the l.h.s. is replaced by a simple difference, Pt+1(x) − Pt(x), and {Wxx′} are replaced
one–step state transition probabilities.

4 Consider, for example, an isolated system of moving particles of mass m and position
vectors {ri(t)}, obeying the differential equations md2ri(t)/dt

2 =
P

j 6=i F (rj(t)− ri(t)),
i = 1, 2, . . . , n, (F (rj(t) − ri(t)) being mutual interaction forces), which remain valid if
the time variable t is replaced by −t since d2ri(t)/dt

2 = d2ri(−t)/d(−t)2.
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for an isolated system), which is equilibrium, there is no net flow in

any cycle of states. All the net cyclic probability fluxes vanish, and

therefore, time reversal would not change the probability law, that is,

{X−t} has the same probability law as {Xt} (see [57, Sect. 1.2]). Thus,

equivalent names for detailed balance are reversibility and time reversal

symmetry. For example, p if {Yt} is a Bernoulli process, taking values

equiprobably in {−1,+1}, then Xt defined recursively by

Xt+1 = (Xt + Yt)modK, (3.109)

has a symmetric state–transition probability matrix W , a uniform sta-

tionary state distribution, and it satisfies detailed balance.

3.4.1 Monotonicity of Information Measures

Returning to the case where the process {Xt} pertaining to our isolated

system has not necessarily reached equilibrium, let us take a look at

the entropy of the state

H(Xt) = −
∑

x∈X
Pt(x) log Pt(x). (3.110)

The Boltzmann H–theorem (see, e.g., [5, Chap. 7], [54, Sect. 3.5], [59,

pp. 171–173] [95, pp. 624–626]) asserts that H(Xt) is monotonically

non–decreasing. It is important to stress that while this result has the

general spirit of the second law of thermodynamics, it is not quite the

same statement, because H(Xt) is not really the physical entropy of

the system outside the regime of equilibrium. The second law simply

states that if a system is thermally isolated, then for any process that

begins in equilibrium and ends in (possibly, another) equilibrium, the

entropy of the final state is never smaller than the entropy of the initial

state, but there is no statement concerning monotonic evolution of the

entropy (whatever its definition may be) along the process itself, when

the system is out of equilibrium.

To see why the H–theorem is true, we next show that detailed bal-

ance implies
dH(Xt)

dt
≥ 0, (3.111)
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where for convenience, we denote dPt(x)/dt by Ṗt(x). Now,

dH(Xt)

dt
= −

∑

x

[Ṗt(x) log Pt(x) + Ṗt(x)]

= −
∑

x

Ṗt(x) log Pt(x)

= −
∑

x

∑

x′

Wx′x[Pt(x
′) − Pt(x)] logPt(x))

= −1

2

∑

x,x′

Wx′x[Pt(x
′) − Pt(x)] logPt(x)−

1

2

∑

x,x′

Wx′x[Pt(x) − Pt(x
′)] logPt(x′)

=
1

2

∑

x,x′

Wx′x[Pt(x
′) − Pt(x)] · [logPt(x′) − log Pt(x)]

≥ 0, (3.112)

where in the second line we used the fact that
∑

x Ṗt(x) = 0, in the third

line we used detailed balance (Wxx′ = Wx′x), and the last inequality

is due to the increasing monotonicity of the logarithmic function: the

product [Pt(x
′)− Pt(x)] · [logPt(x′)− log Pt(x)] cannot be negative for

any pair (x, x′), as the two factors of this product are either both neg-

ative, both zero, or both positive. Thus, H(Xt) cannot decrease with

time. The H–theorem has a discrete–time analogue: If a finite–state

Markov process has a symmetric transition probability matrix (which

is the discrete–time counterpart of the above detailed balance prop-

erty), which means that the stationary state distribution is uniform,

then H(Xt) is a monotonically non–decreasing sequence.

A well–known paradox, in this context, is associated with the no-

tion of the arrow of time. On the one hand, we are talking about time–

reversible processes, obeying detailed balance, but on the other hand,

the increase of entropy suggests that there is asymmetry between the

two possible directions that the time axis can be exhausted, the for-

ward direction and the backward direction. If we go back in time, the

entropy would decrease. So is there an arrow of time? This paradox was

resolved, by Boltzmann himself, once he made the clear distinction be-
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tween equilibrium and non–equilibrium situations: The notion of time

reversibility is associated with equilibrium, where the process {Xt} is

stationary. On the other hand, the increase of entropy is a result that

belongs to the non–stationary regime, where the process is on its way

to stationarity and equilibrium. In the latter case, the system has been

initially prepared in a non–equilibrium situation. Of course, when the

process is stationary, H(Xt) is fixed and there is no contradiction.

So far we discussed the property of detailed balance only for an

isolated system, where the stationary state distribution is the uniform

distribution. How is the property of detailed balance defined when the

stationary distribution is non–uniform? For a general Markov process,

whose steady state–distribution is not necessarily uniform, the condi-

tion of detailed balance, which means time–reversibility [57], reads

P (x)Wxx′ = P (x′)Wx′x, (3.113)

in the continuous–time case. In the discrete–time case (where t takes on

positive integer values only), it is defined by a similar equation, except

that Wxx′ and Wx′x are replaced by the corresponding one–step state

transition probabilities, i.e.,

P (x)P (x′|x) = P (x′)P (x|x′), (3.114)

where

P (x′|x) ∆
= Pr{Xt+1 = x′|Xt = x}. (3.115)

The physical interpretation is that now our system is (a small) part of

a much larger isolated system, which obeys detailed balance w.r.t. the

uniform equilibrium distribution, as before. A well known example of

a process that obeys detailed balance in its more general form is the

M/M/1 queue with an arrival rate λ and service rate µ (λ < µ). Here,

since all states are arranged along a line, with bidirectional transitions

between neighboring states only (see Fig. 3.4), there cannot be any

cyclic probability flux. The steady–state distribution is well–known to

be geometric

P (x) =

(

1 − λ

µ

)

·
(

λ

µ

)x

, x = 0, 1, 2, . . . , (3.116)
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which indeed satisfies the detailed balance P (x)λ = P (x+1)µ for all x.

Thus, the Markov process {Xt}, designating the number of customers

in the queue at time t, is time–reversible.

λ λ λ λ

µ µ µ µ

0 1 2 3 · · ·

Fig. 3.4 State transition diagram of an M/M/1 queue.

For the sake of simplicity, from this point onward, our discussion

will focus almost exclusively on discrete–time Markov processes, but the

results to be stated, will hold for continuous–time Markov processes as

well. We will continue to denote by Pt(x) the probability of Xt = x,

except that now t will be limited to take on integer values only. The

one–step state transition probabilities will be denoted by {P (x′|x)}, as

mentioned earlier.

How does the H–theorem extend to situations where the stationary

state distribution is not uniform? In [13, p. 82], it is shown (among

other things) that the divergence,

D(Pt‖P ) =
∑

x∈X
Pt(x) log

Pt(x)

P (x)
, (3.117)

where P = {P (x), x ∈ X} is a stationary state distribution, is a mono-

tonically non–increasing function of t. Does this result have a physical

interpretation, like the H–theorem and its connotation with the sec-

ond law of thermodynamics? When it comes to non–isolated systems,

where the steady state distribution is non–uniform, the extension of

the second law of thermodynamics, replaces the principle of increase

of entropy by the principle of decrease of free energy, or equivalently,

the decrease of the difference between the free energy at time t and

the free energy in equilibrium. The information–theoretic counterpart

of this free energy difference is the divergence D(Pt‖P ), as we have
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seen earlier. Thus, the monotonic decrease of D(Pt‖P ) has a simple

physical interpretation in the spirit of of free energy decrease, which is

the natural extension of the entropy increase.5 Indeed, particularizing

this to the case where P is the uniform distribution (as in an isolated

system), then

D(Pt‖P ) = log |X | −H(Xt), (3.118)

which means that the decrease of the divergence is equivalent to the

increase of entropy, as before. However, here the result is more gen-

eral than the H–theorem from an additional aspect: It does not re-

quire detailed balance. It only requires the existence of the stationary

state distribution. Note that even in the earlier case, of an isolated

system, detailed balance, which means symmetry of the state transi-

tion probability matrix (P (x′|x) = P (x|x′)), is a stronger requirement

than uniformity of the stationary state distribution, as the latter re-

quires merely that the matrix {P (x′|x)} would be doubly stochastic,

i.e.,
∑

x P (x|x′) =
∑

x P (x′|x) = 1 for all x′ ∈ X , which is weaker than

symmetry of the matrix itself. The results shown in [13] are, in fact,

somewhat more general: Let Pt = {Pt(x)} and P ′
t = {P ′

t (x)} be two

time–varying state–distributions pertaining to the same Markov chain,

but induced by two different initial state distributions, {P0(x)} and

{P ′
0(x)}, respectively. Then D(Pt‖P ′

t) is monotonically non–increasing.

This is easily seen as follows:

D(Pt‖P ′
t ) =

∑

x

Pt(x) log
Pt(x)

P ′
t (x)

=
∑

x,x′

Pt(x)P (x′|x) log
Pt(x)P (x′|x)
P ′
t(x)P (x′|x)

=
∑

x,x′

P (Xt = x, Xt+1 = x′) log
P (Xt = x, Xt+1 = x′)
P ′(Xt = x, Xt+1 = x′)

≥ D(Pt+1‖P ′
t+1) (3.119)

where the last inequality follows from the data processing theorem

of the divergence: the divergence between two joint distributions of

5 Once again, we reiterate that a similar digression as before applies here too: The free
energy is defined only in equilibrium, thus D(Pt‖P ) is not really the free energy out of
equilibrium.
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(Xt,Xt+1) is never smaller than the divergence between corresponding

marginal distributions of Xt+1. Another interesting special case of this

result is obtained if we now take the first argument of the divergence

to the a stationary state distribution: This will mean that D(P‖Pt) is

also monotonically non–increasing.

In [57, Theorem 1.6], there is a further extension of all the above

monotonicity results, where the ordinary divergence is actually replaced

by the so called f–divergence, a generalized divergence which was in-

vented by Csiszár [15] (though the relation to the f–divergence is not

mentioned in [57]): In a nutshell, the f–divergence between two prob-

ability distributions P1 and P2 is defined similarly as the ordinary di-

vergence, D(P1‖P2) =
∑

x P1(x) [− log(P2(x)/P1(x))], except that the

negative logarithm function is replaced by a general convex function f ,

that is

Df (P1‖P2) =
∑

x

P1(x)f

(

P2(x)

P1(x)

)

, (3.120)

but throughout the sequel, we will denote the general convex function

by Q rather than f . For a pair of correlated random variables, if P1

is taken to be their joint distribution and P2 is the product of their

marginals, then Df amounts to a generalized mutual information mea-

sure, which is well known to admit a data processing inequality [15],

[131].

Returning now to [57, Theorem 1.6], if {Xt} is a Markov process

with a given state transition probability matrix {P (x′|x)}, then the

function

U(t) = DQ(P‖Pt) =
∑

x∈X
P (x) ·Q

(

Pt(x)

P (x)

)

(3.121)

is monotonically non–increasing, provided that Q is convex. More-

over, U(t) monotonically strictly decreasing if Q is strictly convex and

{Pt(x)} is not identical to {P (x)}. To see why this is true, define the

backward transition probability matrix by

P̃ (x|x′) =
P (x)P (x′|x)

P (x′)
. (3.122)
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Obviously,
∑

x

P̃ (x|x′) = 1 (3.123)

for all x′ ∈ X , and so,

Pt+1(x)

P (x)
=
∑

x′

Pt(x
′)P (x|x′)
P (x)

=
∑

x′

P̃ (x′|x)Pt(x′)
P (x′)

. (3.124)

By the convexity of Q:

U(t+ 1) =
∑

x

P (x) ·Q
(

Pt+1(x)

P (x)

)

=
∑

x

P (x) ·Q
(

∑

x′

P̃ (x′|x)Pt(x
′)

P (x′)

)

≤
∑

x

∑

x′

P (x)P̃ (x′|x) ·Q
(

Pt(x
′)

P (x′)

)

=
∑

x

∑

x′

P (x′)P (x|x′) ·Q
(

Pt(x
′)

P (x′)

)

=
∑

x′

P (x′) ·Q
(

Pt(x
′)

P (x′)

)

= U(t). (3.125)

Now, a few interesting choices of the function Q may be considered: As

proposed in [57, p. 19], for Q(u) = u lnu, we have U(t) = D(Pt‖P ), and

we are back to the aforementioned result in [13]. Another interesting

choice is Q(u) = − lnu, which gives U(t) = D(P‖Pt). Thus, the mono-

tonicity of D(P‖Pt) is also obtained as a special case.6 Yet another

choice is Q(u) = −us, where s ∈ [0, 1] is a parameter. This would yield

the increasing monotonicity of
∑

x P
1−s(x)P st (x), a ‘metric’ that plays

a role in the theory of asymptotic exponents of error probabilities per-

taining to the optimum likelihood ratio test between two probability

distributions [119, Chapter 3]. In particular, the choice s = 1/2 yields

balance between the two kinds of error and it is intimately related to

the Bhattacharyya distance. In the case of detailed balance, there is

6 We are not yet in a position to obtain the monotonicity of D(Pt‖P ′
t ) as a special case of the

monotonicity of DQ(P‖Pt). This will require a slight further extension of this information
measure, to be carried out later on.
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another physical interpretation of the approach to equilibrium and the

growth of U(t) [57, p. 20]: Returning, for a moment, to the realm of

continuous–time Markov processes, we can write the master equations

as follows:
dPt(x)

dt
=
∑

x′

1

Rxx′

[

Pt(x
′)

P (x′)
− Pt(x)

P (x)

]

(3.126)

whereRxx′ = [P (x′)Wx′x]
−1 = [P (x)Wxx′ ]

−1. Imagine now an electrical

circuit where the indices {x} designate the various nodes. Nodes x and

x′ are connected by a wire with resistance Rxx′ and every node x is

grounded via a capacitor with capacitance P (x) (see Fig. 3.5). If Pt(x)

is the charge at node x at time t, then the master equations are the

Kirchoff equations of the currents at each node in the circuit. Thus, the

way in which probability spreads across the states is analogous to the

way charge spreads across the circuit and probability fluxes are now

analogous to electrical currents. If we now choose Q(u) = 1
2u

2, then

U(t) =
1

2

∑

x

P 2
t (x)

P (x)
, (3.127)

which means that the energy stored in the capacitors dissipates as heat

in the wires until the system reaches equilibrium, where all nodes have

the same potential, Pt(x)/P (x) = 1, and hence detailed balance corre-

sponds to the situation where all individual currents vanish (not only

their algebraic sum). We have seen, in the above examples, that vari-

1
2

3 4

5
6

7

R12 R23 R34

R45

R56R67

R27
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P2

P3

P4

P5P6
P7

1 2 3 4

567

Fig. 3.5 State transition diagram of a Markov chain (left part) and the electric circuit
that emulates the dynamics of {Pt(x)} (right part).

ous choices of the function Q yield various f–divergences, or ‘metrics’,

between {P (x))} and {Pt(x)}, which are both marginal distributions

of a single symbol x.
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What about joint distributions of two or more symbols? Consider,

for example, the function

J(t) =
∑

x,x′

P (X0 = x,Xt = x′) ·Q
(

P (X0 = x)P (Xt = x′)
P (X0 = x,Xt = x′)

)

, (3.128)

where Q is convex as before. Here, by the same token, J(t) is the f–

divergence between the joint probability distribution {P (X0 = x,Xt =

x′)} and the product of marginals {P (X0 = x)P (Xt = x′)}, namely, it

is the generalized mutual information of [15] and [131], as mentioned

earlier. Now, using a similar chain of inequalities as before, we get the

non–decreasing monotonicity of J(t) as follows:

J(t) =
∑

x,x′,x′′

P (X0 = x,Xt = x′,Xt+1 = x′′)×

Q

(

P (X0 = x)P (Xt = x′)
P (X0 = x,Xt = x′)

· P (Xt+1 = x′′|Xt = x′)
P (Xt+1 = x′′|Xt = x′)

)

=
∑

x,x′′

P (X0 = x,Xt+1 = x′′)
∑

x′

P (Xt = x′|X0 = x,Xt+1 = x′′)×

Q

(

P (X0 = x)P (Xt = x′,Xt+1 = x′′)
P (X0 = x,Xt = x′,Xt+1 = x′′)

)

≤
∑

x,x′′

P (X0 = x,Xt+1 = x′′)×

Q

(

∑

x′

P (Xt = x′|X0 = x,Xt+1 = x′′)×

P (X0 = x)P (Xt = x′,Xt+1 = x′′)
P (X0 = x,Xt = x′,Xt+1 = x′′)

)

=
∑

x,x′′

P (X0 = x,Xt+1 = x′′)×

Q

(

∑

x′

P (X0 = x)P (Xt = x′,Xt+1 = x′′)
P (X0 = x,Xt+1 = x′′)

)

=
∑

x,x′′

P (X0 = x,Xt+1 = x′′) ·Q
(

P (X0 = x)P (Xt+1 = x′′)
P (X0 = x,Xt+1 = x′′)

)

= J(t+ 1). (3.129)
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This time, we assumed only the Markov property of (X0,Xt,Xt+1) (not

even homogeneity). This is, in fact, nothing but the generalized data

processing theorem of Ziv and Zakai [131].

3.4.2 A Unified Framework

In spite of the general resemblance (via the notion of the f–divergence),

the last monotonicity result, concerning J(t), and the monotonicity

of D(Pt‖P ′
t ), do not seem, at first glance, to fall in the framework

of the monotonicity of the f–divergence DQ(P‖Pt). This is because

in the latter, there is an additional dependence on a stationary state

distribution that appears neither in D(Pt‖P ′
t) nor in J(t). However,

two simple observations can put them both in the framework of the

monotonicity of DQ(P‖Pt).
The first observation is that the monotonicity of U(t) = DQ(P‖Pt)

continues to hold (with a straightforward extension of the proof) if

Pt(x) is extended to be a vector of time varying state distributions

(P 1
t (x), P 2

t (x), . . . , P kt (x)), and Q is taken to be a convex function of

k variables. Moreover, each component P it (x) does not have to be nec-

essarily a probability distribution. It can be any function µit(x) that

satisfies the recursion

µit+1(x) =
∑

x′

µit(x
′)P (x|x′), 1 ≤ i ≤ k. (3.130)

Let us then denote µt(x) = (µ1
t (x), µ

2
t (x), . . . , µ

k
t (x)) and assume that

Q is jointly convex in all its k arguments. Then the redefined function

U(t) =
∑

x∈X
P (x) ·Q

(

µt(x)

P (x)

)

=
∑

x∈X
P (x) ·Q

(

µ1
t (x)

P (x)
, . . . ,

µkt (x)

P (x)

)

(3.131)

is monotonically non–increasing with t.

The second observation is rooted in convex analysis, and it is related

to the notion of the perspective of a convex function and its convexity

property [8]. Here, a few words of background are in order. Let Q(u)

be a convex function of the vector u = (u1, . . . , uk) and let v > 0 be
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an additional variable. Then, the function

Q̃(v, u1, u2, . . . , uk)
∆
= v ·Q

(u1

v
,
u2

v
, . . . ,

uk
v

)

(3.132)

is called the perspective function of Q. A well–known property of the

perspective operation is conservation of convexity, in other words, if Q

is convex in u, then Q̃ is convex in (v,u). The proof of this fact, which

is straightforward, can be found, for example, in [8, p. 89, Subsection

3.2.6] (see also [17]) and it is brought here for the sake of completeness:

Letting λ1 and λ2 be two non–negative numbers summing to unity and

letting (v1,u1) and (v2,u2) be given, then

Q̃(λ1(v1,u1) + λ2(v2,u2))

= (λ1v1 + λ2v2) ·Q
(

λ1u1 + λ2u2

λ1v1 + λ2v2

)

= (λ1v1 + λ2v2) ·Q
(

λ1v1
λ1v1 + λ2v2

· u1

v1
+

λ2v2
λ1v1 + λ2v2

· u2

v2

)

≤ λ1v1Q

(

u1

v1

)

+ λ2v2Q

(

u2

v2

)

= λ1Q̃(v1,u1) + λ2Q̃(v2,u2). (3.133)

Putting these two observations together, we can now state the following

result:

Theorem 1. Let

V (t) =
∑

x

µ0
t (x)Q

(

µ1
t (x)

µ0
t (x)

,
µ2
t (x)

µ0
t (x)

, . . . ,
µkt (x)

µ0
t (x)

)

, (3.134)

where Q is a convex function of k variables and {µit(x)}ki=0 are arbitrary

functions that satisfy the recursion

µit+1(x) =
∑

x′

µit(x
′)P (x|x′), i = 0, 1, 2, . . . , k, (3.135)

and where µ0
t (x) is moreover strictly positive. Then, V (t) is a mono-

tonically non–increasing function of t.
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Using the above mentioned observations, the proof of Theorem 1 is

straightforward: Letting P be a stationary state distribution of {Xt},
we have:

V (t) =
∑

x

µ0
t (x)Q

(

µ1
t (x)

µ0
t (x)

,
µ2
t (x)

µ0
t (x)

, . . . ,
µkt (x)

µ0
t (x)

)

=
∑

x

P (x) · µ
0
t (x)

P (x)
Q

(

µ1
t (x)/P (x)

µ0
t (x)/P (x)

, . . . ,
µkt (x)/P (x)

µ0
t (x)/P (x)

)

=
∑

x

P (x)Q̃

(

µ0
t (x)

P (x)
,
µ1
t (x)

P (x)
, . . . ,

µkt (x)

P (x)

)

. (3.136)

Since Q̃ is the perspective of the convex function Q, then it is convex as

well, and so, the monotonicity of V (t) follows from the first observation

above. It is now readily seen that both D(Pt‖P ′
t) and J(t) are special

cases of V (t) and hence we have covered all special cases under the

umbrella of the more general information functional V (t).

In analogy to the link between J(t) and the generalized informa-

tion measure of [15] and [131], a similar link can be drawn between

V (t) and an even more general mutual information measure [129] that

also admits a data processing inequality. For a given pair of random

variables, this generalized information measure is defined by the same

expression as V (t), where µ0
t plays the role of the joint probability dis-

tribution of this pair of random variables, and µ1
t , . . . , µ

k
t are arbitrary

measures associated with this pair. This gives rise to a new look at the

generalized data processing theorem, which suggests to exploit certain

degrees of freedom that may lead to better bounds, for a given choice

of the convex function that defines the generalized mutual information.

This point is demonstrated in detail in [76].

3.5 Generalized Temperature and Fisher Information

The last information measure to be discussed in this chapter is the

Fisher information. As argued in [85], the Fisher information turns

out to be intimately related to a generalized notion of temperature,

pertaining to non–equilibrium situations. In this section, we summarize

the main derivations and findings of [85], where the main mathematical

tool is an interesting modified version of de Bruijn’s identity (see, e.g.,
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[13, Sect. 17.7]. Specifically, the ordinary version of de Bruin’s identity

relates the Fisher information to the derivative of differential entropy

of a random variable X+
√
δZ w.r.t. δ, where X and Z are independent

and Z is Gaussian. On the other hand, the modified de Bruijn identity

of [85] is more general in the sense of allowing Z to have any density

with zero mean, but less general in the sense of limiting the applicability

of the identity to the vicinity of δ = 0.

We begin by recalling the definition of temperature according to

1

T
=

(

∂S

∂E

)

V

. (3.137)

This definition corresponds to equilibrium. As we know, when the

Hamiltonian is quadratic, i.e., E(x) = α
2x

2, the Boltzmann distribu-

tion, which is the equilibrium distribution, is Gaussian:

P (x) =
1

Z(β)
exp

{

−β · α
2

n
∑

i=1

x2
i

}

(3.138)

and by the energy equipartition theorem, the average internal energy

is given by

Ē(P )
∆
=

〈

α

2

N
∑

i=1

X2
i

〉

P

=
NkT

2
. (3.139)

In Chapter 2, we also computed the entropy, which is nothing but the

entropy of a Gaussian vector S(P ) = Nk
2 ln(2πe

αβ ).

Consider now another probability density function Q(x), which

means a non–equilibrium probability law if it differs from P . Consider

now the energy and the entropy pertaining to Q:

Ē(Q) =

〈

α

2

N
∑

i=1

X2
i

〉

Q

=

∫

dxQ(x) ·
[

α

2

N
∑

i=1

x2
i

]

(3.140)

S(Q) = k · 〈− lnQ(X)〉Q = −k
∫

dxQ(x) lnQ(x), (3.141)

where again, we remind the reader that this definition of entropy may

be questionable in absence of equilibrium, as was mentioned in Chapter

2. In order to define a notion of generalized temperature, we have to

establish a notion of a derivative of S(Q) w.r.t. Ē(Q). Such a definition
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may make sense if it turns out that the ratio between the response of S

to perturbations in Q and the response of Ē to the same perturbations,

is independent of the “direction” of this perturbation, as long as it is

“small” in some reasonable sense. It turns out the de Bruijn identity,

in its modified version described above, helps us here.

Consider the perturbation of X by
√
δZ thus defining the perturbed

version of X as Xδ = X +
√
δZ, where δ > 0 is small and Z is

an arbitrary i.i.d. zero–mean random vector, not necessarily Gaussian,

whose components all have unit variance. Let Qδ denote the density of

Xδ, which is, of course, the convolution between Q and the density of

Z, scaled by
√
δ. The proposed generalized definition of temperature

is:
1

T

∆
= lim

δ→0

S(Qδ) − S(Q)

Ē(Qδ) − Ē(Q)
. (3.142)

The denominator is easy to handle since

E‖X +
√
δZ‖2 − E‖X‖2 = 2

√
δEXTZ +Nδ = Nδ (3.143)

and so, Ē(Qδ)− Ē(Q) = Nαδ/2. In view of the above, our new defini-

tion of temperature becomes:

1

T

∆
=

2k

Nα
· lim
δ→0

h(X +
√
δZ) − h(X)

δ

=
2k

Nα
· ∂h(X +

√
δZ)

∂δ

∣

∣

∣

∣

δ=0

. (3.144)

First, it is important to understand that the numerator of the middle

expression is positive (and hence so is T ) since

S(Qδ) = kh(X+
√
δZ) ≥ kh(X+

√
δZ|Z) = kh(X) = S(Q). (3.145)

In order to move forward from this point, we will need the aforemen-

tioned modified version of de Bruijn’s identity. Suppose we have a fam-

ily of pdf’s {Qθ(x)} where θ is a continuous valued parameter. The

Fisher information is defined as

J(θ) = Eθ

{

[

∂ lnQθ(X)

∂θ

]2
}

=

∫ +∞

−∞

dx

Qθ(x)

[

∂

∂θ
Qθ(x)

]2

, (3.146)
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where Eθ{·} denotes expectation w.r.t. Qθ. Consider now the spe-

cial case where θ is a shift parameter (a.k.a. location parameter), i.e.,

Qθ(x) = Q(x− θ), then

J(θ) =

∫ +∞

−∞

dx

Q(x− θ)

[

∂

∂θ
Q(x− θ)

]2

=

∫ +∞

−∞

dx

Q(x− θ)

[

∂

∂x
Q(x− θ)

]2

=

∫ +∞

−∞

dx

Q(x)

[

∂

∂x
Q(x)

]2

∆
= J (3.147)

independently of θ. As J is merely a functional of Q, we will henceforth

denote it as J(Q), with a slight abuse of notation. For the vector case,

we define the Fisher information matrix, whose elements are

Jij(Q) =

∫

IRN

dx

Q(x)

[

∂Q(x)

∂xi
· ∂Q(x)

∂xj

]

i, j = 1, . . . ,N. (3.148)

Shortly, we will relate T with the trace of this matrix.

To this end, we will need the following result, which, as described

before, is a variant of the well–known de Bruijn identity, beginning

with the scalar case: Let Q be the pdf of a scalar random variable X of

finite variance. Let Z be a zero–mean, unit variance random variable,

independent of X, and let Xδ = X +
√
δZ. Then, it is proved in [85]

that
∂h(X +

√
δZ)

∂δ

∣

∣

∣

∣

δ=0

=
J(Q)

2
. (3.149)

As explained in the introductory paragraph above, the original de

Bruijn identity allows only a Gaussian perturbation Z, but it holds

for any δ. Here, on the other hand, we allow an arbitrary density M(z)

of Z, but we insist on δ → 0. Consider the characteristic functions:

ΦX(s) =

∫ +∞

−∞
dxesxQ(x) (3.150)

and

ΦZ(s) =

∫ +∞

−∞
dzeszM(z). (3.151)
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Due to the independence

ΦXδ
(s) = ΦX(s) · Φ√

δZ(s)

= ΦX(s) · ΦZ(
√
δs)

= ΦX(s) ·
∫ +∞

−∞
dze

√
δszM(z)

= ΦX(s) ·
∞
∑

i=0

(
√
δs)i

i!
µi(M)

= ΦX(s) ·
(

1 +
δs2

2
+ · · ·

)

(3.152)

where µi(M) denotes the i–th moment pertaining to the density M ,

and where we have used the assumption that µ1(M) = 0. Applying the

inverse Fourier transform, we get:

Qδ(x) = Q(x) +
δ

2
· ∂

2Q(x)

∂x2
+ o(δ), (3.153)

and so,
∂Qδ(x)

∂δ

∣

∣

∣

∣

δ=0

=
1

2
· ∂

2Q(x)

∂x2
∼ 1

2
· ∂

2Qδ(x)

∂x2
. (3.154)

Now, let us look at the differential entropy:

h(Xδ) = −
∫ +∞

−∞
dxQδ(x) lnQδ(x). (3.155)

Taking the derivative w.r.t. δ, we get:

∂h(Xδ)

∂δ
= −

∫ +∞

−∞
dx

[

∂Qδ(x)

∂δ
+
∂Qδ(x)

∂δ
· lnQδ(x)

]

= − ∂

∂δ

∫ +∞

−∞
dxQδ(x) −

∫ +∞

−∞
dx
∂Qδ(x)

∂δ
· lnQδ(x)

= − ∂

∂δ
1 −

∫ +∞

−∞
dx
∂Qδ(x)

∂δ
· lnQδ(x)

= −
∫ +∞

−∞
dx
∂Qδ(x)

∂δ
· lnQδ(x) (3.156)

and so,

∂h(Xδ)

∂δ

∣

∣

∣

∣

δ=0

= −
∫ +∞

−∞
dx · ∂Qδ(x)

∂δ

∣

∣

∣

∣

δ=0

· lnQ(x)
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= −
∫ +∞

−∞
dx · 1

2

d2Q(x)

d2x
· lnQ(x). (3.157)

Integrating by parts, we obtain:

∂h(Xδ)

∂δ

∣

∣

∣

∣

δ=0

=

[

−1

2
· dQ(x)

dx
· lnQ(x)

]+∞

−∞
+

1

2

∫ +∞

−∞

dx

Q(x)

[

∂Q(x)

∂x

]2

. (3.158)

The first term can be shown to vanish and the second term is exactly

J(Q)/2. This completes the proof of the modified de Bruijn identity.

This result can be extended straightforwardly to the vector case,

showing that for a vector Z with i.i.d. components, all with zero mean:

∂h(X +
√
δZ)

∂δ
=

1

2

N
∑

i=1

∫

IRN

dx

Q(x)

[

∂Q(x)

∂xi

]2

=
1

2

N
∑

i=1

Jii(Q)

=
1

2
tr{J(Q)}. (3.159)

Putting all this together, we end up with the following generalized

definition of temperature:

1

T
=

k

Nα
· tr{J(Q)}. (3.160)

In the case where Q is symmetric w.r.t. all components of x, {Jii} are

all the same, call it J(Q), and then

1

T
=
k

α
· J(Q) (3.161)

or, equivalently,

T =
α

kJ(Q)
=
α

k
· CRB (3.162)

where CRB is the Cramér–Rao bound. High temperature means strong

noise and this in turn means that it is hard to estimate the mean of

X. In the Boltzmann case,

J(Q) =
1

Var{X} = αβ =
α

kT
(3.163)
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and we are back to the ordinary definition of temperature.

Another way to look at this result is as an extension of the energy

equipartition theorem: As we recall, in the ordinary case of a quadratic

Hamiltonian and in equilibrium, we have:

〈E(X)〉 =
〈α

2
X2
〉

=
kT

2
(3.164)

or
α

2
σ2 ∆

=
α

2
〈X2〉 =

kT

2
. (3.165)

In the passage to the more general case, σ2 should be replaced by

1/J(Q) = CRB. Thus, the induced generalized equipartition function,

doesn’t talk about average energy but about the CRB:

α

2
· CRB =

kT

2
. (3.166)

Now, the CRB is a lower bound to the estimation error which, in this

case, is a translation parameter. For example, let x denote the location

of a mass m tied to a spring of strength mω2
0 and equilibrium location

θ. Then,

E(x) =
mω2

0

2
(x− θ)2. (3.167)

In this case, α = mω2
0, and we get:

estimation error energy =
mω2

0

2
· E(θ̂(X) − θ)2 ≥ kT

2
(3.168)

where θ̂(X) is any unbiased estimator of θ based on a measurement of

X. This is to say that the generalized equipartition theorem talks about

the estimation error energy in the general case. Again, in the Gaussian

case, the best estimator is θ̂(x) = x and we are back to ordinary energy

and the ordinary equipartition theorem.

In a follow–up paper [86], Narayanan and Srinivasa have slightly

modified their definition of generalized temperature and applied it to

the paradigm of a system that obeys a first order stochastic differential

equation driven by white noise (Langevin dynamics). It was demon-

strated that, away from equilibrium, the corresponding Cramér–Rao

inequality can be interpreted as a statement of the second law.





4

Analysis Tools and Asymptotic Methods

4.1 Introduction

So far we have dealt mostly with relatively simple situations, where

the Hamiltonian is additive, and then the resulting B–G distribution

is i.i.d. But this is seldom the case in reality. Most models in physics,

including those that will prove relevant for information theory, as we

shall see in the sequel, are much more complicated, more difficult, but

also more interesting. More often than not, they are so complicated

and difficult, that they do not lend themselves to closed–form analysis

at all. In some cases, analysis is still possible, but it requires some

more powerful mathematical tools and techniques, which suggest at

least some asymptotic approximations. The purpose of this chapter is

to prepare these tools, before we can go on to the more challenging

settings.

Before diving into the technical material, let us first try to give the

flavor of the kind of calculations that we are now addressing. The best

way of doing this is by example. We have seen in Subsection 2.6 the

97
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example of quantum particles, whose partition function is given by

ZN (β) =
∑

n:
P

r Nr=N

exp

{

−β
∑

r

Nrǫr

}

. (4.1)

As mentioned already in Subsection 2.6, this partition function is hard

to calculate in closed form due to the constraint
∑

rNr = N . However,

we have also defined therein the grand partition function, which may

play the role of z–transform, or a generating function

Ξ(β, z) =
∑

N≥0

zNZN (β), (4.2)

and we saw that Ξ(β, z) has an easy closed–form expression

Ξ(β, z) =
∏

r

[

∑

Nr

(

ze−βǫr
)Nr

]

. (4.3)

Splendid, but how can we get back from Ξ(β, z) to ZN (β)?

The general idea is to apply the inverse z–transform:

ZN (β) =
1

2πj

∮

C

Ξ(β, z)dz

zN+1
=

1

2πj

∮

C
Ξ(β, z)e−(N+1) ln zdz, (4.4)

where z is a complex variable, j =
√
−1, and C is any clockwise closed

path encircling the origin and entirely in the region of convergence.

An exact calculation of integrals of this type might still be difficult,

in general, but often, we would be happy enough if at least we could

identify how they behave in the thermodynamic limit of large N .

Similar needs are frequently encountered in information–theoretic

problems. One example is in universal source coding (see, e.g., [13],

Chapter 13, in particular, Sect. 13.2, and references therein). Suppose

we have a family of information sources indexed by some parameter θ,

say, Bernoulli with parameter θ ∈ [0, 1], i.e.,

Pθ(x) = (1 − θ)N−nθn, (4.5)

where x ∈ {0, 1}N and n ≤ N is the number of 1’s in x. When θ is

unknown, it is customary to construct a universal code as the Shannon

code w.r.t. a certain mixture of these sources

P (x) =

∫ 1

0
dθw(θ)Pθ(x) =

∫ 1

0
dθw(θ)eNf(θ) (4.6)
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where

f(θ) = ln(1 − θ) + q ln

(

θ

1 − θ

)

; q =
n

N
. (4.7)

So here again, we need to evaluate an integral of an exponential function

of N (this time, on the real line), in order to assess the performance of

this universal code.

These are exactly the points where the first tool that we are going

to study, namely, the saddle point method (a.k.a. the steepest descent

method) enters into the picture: it gives us a way to assess how integrals

of this kind scale as exponential functions of N , for large N . More gen-

erally, the saddle point method is a tool for evaluating the exponential

order (and also the second order behavior) of an integral of the form
∫

P
g(z)eNf(z)dz P is a path in the complex plane. (4.8)

We begin with the simpler case where the integration is over the real

line (or a subset of the real line), whose corresponding asymptotic ap-

proximation method is called the Laplace method of integration. The

exposition of the material in this chapter follows, to a large extent, the

book by de Bruijn [20, Chapters 4,5], but with several modifications.

4.2 The Laplace Method

Consider first an integral of the form:

FN
∆
=

∫ +∞

−∞
eNh(x)dx, (4.9)

where the function h(·) is independent of N . How does this integral be-

have exponentially for large N? Clearly, if it was a sum, like
∑

i e
Nhi ,

rather than an integral, and the number of terms was finite and inde-

pendent of N , then the dominant term, eN maxi hi , would have dictated

the exponential behavior. This continues to be true even if the sum con-

tains infinitely many terms, provided that the tail of this series decays

sufficiently rapidly. Since the integral is a limit of sums, it is conceiv-

able to expect, at least when h(·) is “sufficiently nice”, that something

of the same spirit would happen with FN , namely, that its exponential

order would be, in analogy, eN maxh(x). In what follows, we are going
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to show this more rigorously, and as a bonus, we will also be able to

say something about the second order behavior. In the above example

of universal coding, this gives rise to redundancy analysis.

We will make the following assumptions on h:

(1) h is real and continuous.

(2) h is maximum at x = 0 and h(0) = 0 (w.l.o.g).

(3) h(x) < 0 ∀x 6= 0, and ∃b > 0, c > 0 s.t. |x| ≥ c implies

h(x) ≤ −b.
(4) The integral defining FN converges for all sufficiently large

N . Without loss of generality, let this sufficiently large N be

N = 1, i.e.,
∫ +∞
−∞ eh(x)dx <∞.

(5) The derivative h′(x) exists at a certain neighborhood of x =

0, and h′′(0) < 0. Thus, h′(0) = 0.

From these assumptions, it follows that for all δ > 0, there is a positive

number η(δ) s.t. for all |x| ≥ δ, we have h(x) ≤ −η(δ). For δ ≥ c,

this is obvious from assumption 3. If δ < c, then the maximum of

the continuous function h across the interval [δ, c] is strictly negative.

A similar argument applies to the interval [−c,−δ]. Consider first the

tails of the integral under discussion:
∫

|x|≥δ
eNh(x)dx =

∫

|x|≥δ
dxe(N−1)h(x)+h(x)

≤
∫

|x|≥δ
dxe−(N−1)η(δ)+h(x)

≤ e−(N−1)η(δ) ·
∫ +∞

−∞
eh(x)dx→ 0 (4.10)

and the convergence to zero is exponentially fast. In other words, the

tails’ contribution is vanishingly small. It remains to examine the in-

tegral from −δ to +δ, that is, the neighborhood of x = 0. In this

neighborhood, we shall use the Taylor series expansion of h. Since

h(0) = h′(0) = 0, then h(x) ≈ 1
2h

′′(0)x2. More precisely, for all ǫ > 0,

there is δ > 0 s.t.
∣

∣

∣

∣

h(x) − 1

2
h′′(0)x2

∣

∣

∣

∣

≤ ǫx2 ∀|x| ≤ δ. (4.11)
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Thus, this integral is sandwiched as follows:
∫ +δ

−δ
exp

{

N

2
(h′′(0) − ǫ)x2

}

dx ≤
∫ +δ

−δ
eNh(x)dx

≤
∫ +δ

−δ
exp

{

N

2
(h′′(0) + ǫ)x2

}

dx.

(4.12)

The right–most side is further upper bounded by
∫ +∞

−∞
exp

{

N

2
(h′′(0) + ǫ)x2

}

dx (4.13)

and since h′′(0) < 0, then h′′(0) + ǫ = −(|h′′(0)| − ǫ), and so, the latter

is a Gaussian integral given by
√

2π

(|h′′(0)| − ǫ)N
. (4.14)

The left–most side of eq. (4.12) is further lower bounded by
∫ +δ

−δ
exp

{

−N
2

(|h′′(0)| + ǫ)x2

}

dx

=

∫ +∞

−∞
exp

{

−N
2

(|h′′(0)| + ǫ)x2

}

dx−
∫

|x|≥δ
exp

{

−N
2

(|h′′(0)| + ǫ)x2

}

dx

=

√

2π

(|h′′(0)| + ǫ)N
− 2Q(δ

√

n(|h′′(0)| + ǫ))

≥
√

2π

(|h′′(0)| + ǫ)N
−O

(

exp

{

−N
2

(|h′′(0)| + ǫ)δ2
})

∼
√

2π

(|h′′(0)| + ǫ)N
(4.15)

where the notation AN ∼ BN means that limN→∞AN/BN = 1. Since

ǫ and hence δ can be made arbitrary small, we find that

∫ +δ

−δ
eNh(x)dx ∼

√

2π

|h′′(0)|N . (4.16)
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Finally, since the tails contribute an exponentially small term, which

is negligible compared to the contribution of O(1/
√
N) order of the

integral across [−δ,+δ], we get:

∫ +∞

−∞
eNh(x)dx ∼

√

2π

|h′′(0)|N . (4.17)

Slightly more generally, if h is maximized at an arbitrary point x =

x0 this is completely immaterial because an integral over the entire

real line is invariant under translation of the integration variable. If,

furthermore, the maximum h(x0) is not necessarily zero, we can make

it zero by decomposing h according to h(x) = h(x0) + [h(x) − h(x0)]

and moving the first term as a constant factor of eNh(x0) outside of the

integral. The result would then be

∫ +∞

−∞
eNh(x)dx ∼ eNh(x0) ·

√

2π

|h′′(x0)|N
(4.18)

Of course, the same considerations continue to apply if FN is defined

over any finite or half–infinite interval that contains the maximizer

x = 0, or more generally x = x0 as an internal point. It should be

noted, however, that if FN is defined over a finite or semi–infinite in-

terval and the maximum of h is obtained at an edge of this interval,

then the derivative of h at that point does not necessarily vanish, and

the Gaussian integration would not apply anymore. In this case, the

local behavior around the maximum would be approximated by an ex-

ponential exp{−N |h′(0)|x} or exp{−N |h′(x0)|x} instead, which gives

a somewhat different expression. However, the factor eNh(x0), which is

the most important factor, would continue to appear. Normally, this

will be the only term that will interest us, whereas the other factor,

which provides the second order behavior will not be important for

us. A further extension in the case where the maximizer is an internal

point at which the derivative vanishes, is this:

∫ +∞

−∞
g(x)eNh(x)dx ∼ g(x0)e

Nh(x0) ·
√

2π

|h′′(x0)|N
(4.19)

where g is another function that does not depend on N . This technique,

of approximating an integral of a function, which is exponential in some
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large parameter N , by neglecting the tails and approximating it by a

Gaussian integral around the maximum, is called the Laplace method

of integration.

4.3 The Saddle Point Method

We now expand the scope to integrals along paths in the complex

plane, which are also encountered and even more often than one would

expect (cf. the earlier example). As said, the extension of the Laplace

integration technique to the complex case is called the saddle–point

method or the steepest descent method, for reasons that will become

apparent shortly. Specifically, we are now interested in an integral of

the form

FN =

∫

P
eNh(z)dz or more generally FN =

∫

P
g(z)eNh(z)dz (4.20)

where z = x+ jy is a complex variable (j =
√
−1), and P is a certain

path in the complex plane, starting at some point A and ending at point

B. We will focus first on the former integral, without the factor g. We

will assume that P is fully contained in a region where h is analytic.

The first observation is that the value of the integral depends only

on A and B, and not on the details of P: Consider any alternate path P ′

from A to B such that h has no singularities in the region surrounded by

P ⋃P ′. Then, the integral of eNh(z) over the closed path P ⋃P ′ (going

from A to B via P and returning to A via P ′) vanishes, which means

that the integrals from A to B via P and via P ′ are the same. This

means that we actually have the freedom to select the integration path,

as long as we do not go too far, to the other side of some singularity

point, if there is any. This point will be important in our forthcoming

considerations.

An additional important observation has to do with yet another

basic property of analytic functions: the maximum modulus theorem,

which basically tells that the modulus of an analytic function has no

maxima. We will not prove here this theorem, but in a nutshell, the

point is this: Let

h(z) = u(z) + jv(z) = u(x, y) + jv(x, y), (4.21)
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where u and v are real functions. If h is analytic, the following rela-

tionships (a.k.a. the Cauchy–Riemann conditions)1 between the partial

derivatives of u and v must hold:

∂u

∂x
=
∂v

∂y
;

∂u

∂y
= −∂v

∂x
. (4.22)

Taking the second order partial derivative of u:

∂2u

∂x2
=

∂2v

∂x∂y
=

∂2v

∂y∂x
= −∂

2u

∂y2
(4.23)

where the first equality is due to the first Cauchy–Riemann condition

and the third equality is due to the second Cauchy–Riemann condition.

Equivalently,

∂2u

∂x2
+
∂2u

∂y2
= 0, (4.24)

which is the Laplace equation. This means, among other things, that no

point at which ∂u/∂x = ∂u/∂y = 0 can be a local maximum (or a local

minimum) of u, because if it is a local maximum in the x–direction, in

which case, ∂2u/∂x2 < 0, then ∂2u/∂y2 must be positive, which makes

it a local minimum in the y–direction, and vice versa. In other words,

every point of zero partial derivatives of u must be a saddle point. This

discussion applies now to the modulus of the integrand eNh(z) because
∣

∣

∣

∣

exp{Nh(z)}
∣

∣

∣

∣

= exp[NRe{h(z)}] = eNu(z). (4.25)

Of course, if h′(z) = 0 at some z = z0, then u′(z0) = 0 too, and then

z0 is a saddle point of |eNh(z)|. Thus, zero–derivative points of h are

saddle points.

Another way to understand the maximum modulus principle is the

following: Given a complex analytic function f(z), we argue that the

average of f over a circle always agrees with its value at the center of

this circle. Specifically, consider the circle of radius r centered at z0,

1 This is related to the fact that for the derivative f ′(z) to exist, it should be independent
of the direction at which z is perturbed, whether it is, e.g., the horizontal or the vertical
direction, i.e., f ′(z) = limδ→0[f(z + δ) − f(z)]/δ = limδ→0[f(z + jδ) − f(z)]/(jδ), where
δ goes to zero along the reals.
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i.e., z = z0 + rejθ. Then,

1

2π

∫ π

−π
f
(

z0 + rejθ
)

dθ =
1

2πj

∫ π

−π

f
(

z0 + rejθ
)

jrejθdθ

rejθ

=
1

2πj

∮

z=z0+rejθ

f
(

z0 + rejθ
)

d
(

z0 + rejθ
)

rejθ

=
1

2πj

∮

z=z0+rejθ

f(z)dz

z − z0
= f(z0). (4.26)

and so,

|f(z0)| ≤
1

2π

∫ π

−π

∣

∣

∣

∣

f
(

z0 + rejθ
)

∣

∣

∣

∣

dθ (4.27)

which means that |f(z0)| cannot be strictly larger than all |f(z)| in

any neighborhood (an arbitrary radius r) of z0. Now, apply this fact to

f(z) = eNh(z).

Equipped with this background, let us return to our integral FN .

Since we have the freedom to choose the path P, suppose that we can

find one which passes through a saddle point z0 (hence the name of the

method) and that maxz∈P |eNh(z)| is attained at z0. We expect then,

that similarly as in the Laplace method, the integral would be domi-

nated by eNh(z0). Of course, such a path would be fine only if it crosses

the saddle point z0 at a direction w.r.t. which z0 is a local maximum of

|eNh(z)|, or equivalently, of u(z). Moreover, in order to apply our earlier

results of the Laplace method, we will find it convenient to draw P such

that any point z in the vicinity of z0, where in the Taylor expansion is

(by the fact that h′(z0) = 0)

h(z) ≈ h(z0) +
1

2
h′′(z0)(z − z0)

2 (4.28)

the second term, 1
2h

′′(z0)(z − z0)
2, is purely real and negative, and

then it behaves locally as a negative parabola, just like in the Laplace

method. This means that

arg{h′′(z0)} + 2arg(z − z0) = π (4.29)

or equivalently

arg(z − z0) =
π − arg{h′′(z0)}

2

∆
= θ. (4.30)
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Namely, P should cross z0 in the direction θ. This direction is called

the axis of z0, and it can be shown to be the direction of steepest

descent from the peak at z0 (hence the name).2

So pictorially, we are going to select a path P from A to B, which

will be composed of three parts (see Fig. 4.1): The parts A → A′ and

B′ → B are quite arbitrary as they constitute the tail of the integral.

The part from A′ to B′, in the vicinity of z0, is a straight line on the

axis of z0. Now, let us decompose FN into its three parts:

axis

A′

A

B′

B

z0

Fig. 4.1 A path P from A to B, passing via z0 along the axis.

FN =

∫ A′

A
eNh(z)dz +

∫ B′

A′
eNh(z)dz +

∫ B

B′
eNh(z)dz. (4.31)

As for the first and the third terms,

∣

∣

∣

∣

(

∫ A′

A
+

∫ B

B′

)

dzeNh(z)

∣

∣

∣

∣

≤
(

∫ A′

A
+

∫ B

B′

)

dz|eNh(z)|

=

(

∫ A′

A
+

∫ B

B′

)

dzeNu(z) (4.32)

whose contribution is negligible compared to eNu(z0), just like the tails

2 Note that in the direction θ−π/2, which is perpendicular to the axis, arg[h′′(z0)(z−z0)2] =
π − π = 0, which means that h′′(z0)(z − z0)2 is real and positive (i.e., it behaves like a
positive parabola). Therefore, in this direction, z0 is a local minimum.
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in the Laplace method. As for the middle integral,

∫ B′

A′
eNh(z)dz ≈ eNh(z0)

∫ B′

A′
exp{Nh′′(z0)(z − z0)

2/2}dz. (4.33)

By changing from the complex integration variable z to the real variable

x, running from −δ to +δ, with z = z0 + xejθ (moving along the axis),

we get exactly the Gaussian integral of the Laplace method, leading to

∫ B′

A′
exp{Nh′′(z0)(z − z0)

2/2}dz = ejθ

√

2π

N |h′′(z0)|
(4.34)

where the factor ejθ is due to the change of variable (dz = ejθdx).

Thus,

FN ∼ ejθ · eNh(z0)

√

2π

N |h′′(z0)|
, (4.35)

and slightly more generally,

∫

P
g(z)eNh(z)dz ∼ ejθg(z0)e

Nh(z0)

√

2π

N |h′′(z0)|
(4.36)

The idea of integration along the axis is that along this direction, the

‘phase’ of eNh(z) is locally constant, and only the modulus varies. Had

the integration been along another direction with an imaginary com-

ponent jφ(z), the function eNh(z) would have undergone ‘modulation’,

i.e., it would have oscillated with a complex exponential eNjφ(z) of a

very high ‘frequency’ (proportional to N) and then eNu(z0) would not

have guaranteed to dictate the modulus and to dominate the integral.

Now, an important comment is in order: What happens if there is

more than one saddle point? Suppose we have two saddle points, z1
and z2. On a first thought, one may be concerned by the following con-

sideration: We can construct two paths from A to B, path P1 crossing

z1, and path P2 crossing z2. Now, if zi is the highest point along Pi
for both i = 1 and i = 2, then FN is exponentially both eNh(z1) and

eNh(z2) at the same time. If h(z1) 6= h(z2), this is a contradiction. But

the following consideration shows that this cannot happen as long as

h(z) is analytic within the region C surrounded by P1 ∪ P2. Suppose

conversely, that the scenario described above happens. Then either z1
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or z2 maximize |eNh(z)| along the closed path P1∪P2. Let us say that it

is z1. We claim that then z1 cannot be a saddle point, for the following

reason: No point in the interior of C can be higher than z1, because if

there was such a point, say, z3, then we had

max
z∈C

|eNh(z)| ≥ |eNh(z3)| > |eNh(z1)| = max
z∈P1∪P2

|eNh(z)| (4.37)

which contradicts the maximum modulus principle. This then means,

among other things, that in every neighborhood of z1, all points in C
are lower than z1, including points found in a direction perpendicular

to the direction of the axis through z1. But this contradicts the fact

that z1 is a saddle point: Had it been a saddle point, it would be a local

maximum along the axis and a local minimum along the perpendicular

direction. Since z1 was assumed a saddle point, then it cannot be the

highest point on P1, which means that it doesn’t dominate the integral.

One might now be concerned by the thought that the integral along

P1 is then dominated by an even higher contribution, which still seems

to contradict the lower exponential order of eNh(z2) attained by the

path P2. However, this is not the case. The highest point on the path

is guaranteed to dominate the integral only if it is a saddle point.

Consider, for example, the integral FN =
∫ a+j2π
a+j0 eNzdz. Along the

vertical line from a + j0 to a + j2π, the modulus (or attitude) is eNa

everywhere. If the attitude alone had been whatever counts (regardless

of whether it is a saddle point or not), the exponential order of (the

modulus of) this integral would be eNa. However, the true value of this

integral is zero! The reason for this disagreement is that there is no

saddle point along this path.

What about a path P that crosses both z1 and z2? This cannot

be a good path for the saddle point method, for the following reason:

Consider two slightly perturbed versions of P: path P1, which is very

close to P, it crosses z1, but it makes a tiny detour that bypasses z2, and

similarly path P2, passing via z2, but with a small deformation near z1.

Path P2 includes z2 as saddle point, but it is not the highest point on

the path, since P2 passes near z1, which is higher. Path P1 includes z1
as saddle point, but it cannot be the highest point on the path because

we are back to the same situation we were two paragraphs ago. Since
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both P1 and P2 are bad choices, and since they are both arbitrarily

close to P, then P cannot be good either.

To summarize: if we have multiple saddle points, we should find the

one with the lowest attitude and then we have a chance to find a path

through this saddle point (and only this one) along which this saddle

point is dominant.

Consider next a few simple examples.

Example 1 – relation between Ω(E) and Z(β) revisited. Assuming, with-

out essential loss of generality, that the ground–state energy of the

system is zero, we have seen before the relation

Z(β) =

∫ ∞

0
dEΩ(E)e−βE , (4.38)

which actually means that Z(β) is the Laplace transform of Ω(E).

Consequently, this means that Ω(E) is the inverse Laplace transform

of Z(β), i.e.,

Ω(E) =
1

2πj

∫ γ+j∞

γ−j∞
eβEZ(β)dβ, (4.39)

where the integration in the complex plane is along the vertical line

Re(β) = γ, which is chosen to the right of all singularity points of

Z(β). In the large N limit, this becomes

Ω(E)
·
=

1

2πj

∫ γ+j∞

γ−j∞
eN [βǫ+φ(β)]dβ, (4.40)

which can now be assessed using the saddle point method. The deriva-

tive of the bracketed term at the exponent vanishes at the value of

β that solves the equation φ′(β) = −ǫ, which is β∗(ǫ) ∈ IR, thus

we will choose γ = β∗(ǫ) (assuming that this is a possible choice)

and thereby let the integration path pass through this saddle point.

At β = β∗(ǫ), | exp{N [βǫ + φ(β)]}| has its maximum along the ver-

tical direction, β = β∗(ǫ) + jω, −∞ < ω < +∞ (and hence it

dominates the integral), but since it is a saddle point, it minimizes

| exp{N [βǫ + φ(β)]}| = exp{N [βǫ+ φ(β)]}, in the horizontal direction

(the real line). Thus,

Ω(E)
·
= exp{N min

β∈IR
[βǫ+ φ(β)]} = eNΣ(ǫ), (4.41)
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as we have seen in Chapter 2.

Example 2 – size of a type class. This is a question that can very easily

be answered using simple combinatorics (the method of types). Among

all binary sequences of length N , how many have n 1’s and (N − n)

0’s? Let us calculate this number, Mn, using the saddle point method

(see also [80, Sect. 4.7] for a more general calculation):

Mn =
∑

x∈{0,1}N

I
{

N
∑

i=1

xi = n

}

=

1
∑

x1=0

. . .

1
∑

xN=0

I
{

N
∑

i=1

xi = n

}

=
1
∑

x1=0

. . .
1
∑

xN=0

1

2π

∫ 2π

0
dω exp

{

jω

(

n−
N
∑

i=1

xi

)}

=

∫ 2π

0

dω

2π

1
∑

x1=0

. . .

1
∑

xN=0

exp

{

jω

(

n−
N
∑

i=1

xi

)}

=

∫ 2π

0

dω

2π
ejωn

N
∏

i=1

[

1
∑

xi=0

e−jωxi

]

=

∫ 2π

0

dω

2π
ejωn(1 + e−jω)N

=

∫ 2π

0

dω

2π
exp{N [jωα + ln(1 + e−jω)]}

=

∫ 2πj

0

dz

2πj
exp{N [zα + ln(1 + e−z)]} (4.42)

where we have denoted α = n/N and in the last step we changed the

integration variable according to z = jω. This is an integral with a

starting point A at the origin and an ending point B at 2πj. Here,

h(z) = zα + ln(1 + e−z), and the saddle point, where h′(z) = 0, is

on the real axis: z0 = ln 1−α
α , where h(z0) gives the binary entropy

of α, as expected. Thus, the integration path must be deformed to

pass through this point on the real axis, and then to approach back

the imaginary axis, so as to arrive at B. There is one caveat here,

however: The points A and B are both higher than z0: While u(z0) =
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−α ln(1−α)−(1−α) ln(1−α), at the edges we have u(A) = u(B) = ln 2.

So this is not a good saddle–point integral to work with.

Two small modifications can, however, fix the problem: The first is

to define the integration interval of ω to be [−π, π] rather than [0, 2π]

(which is, of course, legitimate), and then z would run from −jπ to

+jπ. The second is the following: Consider again the first line of the

expression of Mn above, but before doing anything else, let us multiply

the whole expression (outside the summation) by eθn (θ an arbitrary

real), whereas the summand will be multiplied by e−θ
P

i xi , which ex-

actly cancels the factor of eθn for every non–zero term of this sum. We

can now repeat exactly the same calculation as above, but this time we

get:

Mn =

∫ θ+jπ

θ−jπ

dz

2πj
exp{N [zα + ln(1 + e−z)]}, (4.43)

namely, we moved the integration path to a parallel vertical line and

shifted it by the amount of π to the south. Now, we have the freedom

to choose θ. The obvious choice is to set θ = ln 1−α
α , so that we cross

the saddle point z0. Now z0 is the highest point on the path. Moreover,

the vertical direction of the integration is also the direction of the axis

of z0 as it should be. Also, the second order factor of O(1/
√
N) of the

saddle point integration agrees with the same factor that we can see

from the Sterling approximation in the more refined formula.

A slightly different look at this example is as follows. Consider the

Schottky example and the partition function

Z(β) =
∑

x

e−βǫ0
P

i xi , (4.44)

which, on the one hand, is given by
∑N

n=0Mne
−βǫ0n, and on the other

hand, is given also by (1 + e−βǫ0)N . Thus, defining s = e−βǫ0 , we have

Z(s) =
N
∑

n=0

Mns
n, (4.45)

and so, Z(s) = (1 + s)N is the z–transform of the finite sequence

{Mn}Nn=0. Consequently, Mn is given by the inverse z–transform of
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Z(s) = (1 + s)N , i.e.,

Mn =
1

2πj

∮

(1 + s)Ns−n−1ds

=
1

2πj

∮

exp{N [ln(1 + s) − α ln s]}ds (4.46)

This time, the integration path is any closed path that surrounds the

origin, the saddle point is s0 = α/(1 − α), so we take the path to

be a circle whose radius is r = α
1−α . The rest of the calculation is

essentially the same as before, and of course, so is the result. Note that

this is actually the very same integral as before up to a change of the

integration variable from z to s, according to s = e−z, which maps the

vertical straight line between θ − πj and θ + πj onto a circle of radius

e−θ, centered at the origin. �

Example 3 – surface area of a sphere. This is largely a continuous ana-

logue of Example 2, which is given in order to show that this method,

unlike the combinatorial method of types, extends to the continuous

alphabet case. Let us compute the surface area of an N–dimensional

sphere with radius NR:

SN =

∫

IRN
dx · δ

(

NR−
N
∑

i=1

x2
i

)

= eNθR
∫

IRN
dxe−θ

P

i x
2
i · δ

(

NR−
N
∑

i=1

x2
i

)

= eNθR
∫

IRN
dxe−θ

P

i x
2
i

∫ +∞

−∞

dω

2π
ejω(NR−P

i x
2
i )

= eNθR
∫ +∞

−∞

dω

2π
ejωNR

∫

IRN
dxe−(θ+jω)

P

i x
2
i

= eNθR
∫ +∞

−∞

dω

2π
ejωNR

[∫

IR
dxe−(θ+jω)x2

]N

= eNθR
∫ +∞

−∞

dω

2π
ejωNR

(

π

θ + jω

)N/2

=
πN/2

2π

∫ +∞

−∞
dω exp

{

N

[

(θ + jω)R − 1

2
ln(θ + jω)

]}
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=
πN/2

2π

∫ θ+j∞

θ−j∞
dz exp

{

N

[

zR− 1

2
ln z

]}

. (4.47)

where δ(·) denotes the Dirac delta function. So here

h(z) = zR− 1

2
ln z (4.48)

and the integration is along an arbitrary vertical straight line

parametrized by θ. We will select this straight line to pass via the

saddle point z0 = 1
2R . Now,

h(z0) =
1

2
ln(2πeR), (4.49)

which is exactly the differential entropy of a Gaussian random variable,

as expected. �

Comment: In these examples, we have used an additional trick: when-

ever we had to deal with an problematic non–analytic function like the

δ function, we presented it as the inverse Fourier transform of a ‘nice’

function, and then changed the order of integrations and summations.

This idea will be repeated in the sequel. It is used very frequently in

physics literature.

4.4 Extended Example: Capacity of a Disordered System

To summarize the analysis tools that we have seen thus far, we provide

here an extended example of analyzing the capacity of a certain model

of a disordered magnetic material, namely, the Sherrington–Kirkpatrick

spin glass. We will elaborate more on models of this kind in the next

chapter, but for now, this is merely brought here as an extensive ex-

ercise. The derivation and the results here follow the work of Shental

and Kanter [105] (see also [21]).

For a given positive integer N , consider a set of N(N − 1)/2 i.i.d.,

zero–mean Gaussian random variables, {Jiℓ, 1 ≤ i < ℓ ≤ N} all with

variance J2/N , where J > 0 is fixed. Now form a symmetric N × N

zero–diagonal matrix from {Jiℓ}, thus extending the definition of Jij
for all pairs (i, ℓ) in the range {1, 2, . . . ,N}. The problem addressed

in [105] is the following: For a typical realization of {Jiℓ}, how many
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binary sequences s = (s1, . . . , sN ) ∈ {−1,+1}N can be found such that

the equations

si = sgn

(

∑

ℓ

Jiℓsℓ

)

, i = 1, . . . ,N, (4.50)

are all satisfied simultaneously?

In a nutshell, the motivation for this question is that in the

Sherrington–Kirkpatrick spin glass model, each such solution is a meta–

stable state, which can be used to store information. The evaluation

of the number of meta–stable states determines then the amount of

memory, or the capacity of this system.

Let M(N) denote the number of solutions of these equations in

{−1,+1}N and define the capacity of the system as

C = lim
N→∞

ln M̄(N)}
N

, (4.51)

where M̄(N) is the expectation of M(N), taken w.r.t. the randomness

of {Jiℓ} and where it is assumed that the limit exists. Note that this

is different, and in general larger, than limN→∞ 1
NE{lnM(N)}, which

captures the capacity for a typical realization of the system. These two

different definitions will be discussed later, in Subsection 5.7.

The main result of [105] is the following single–letter expression for

the capacity:

C = ln[2(1 −Q(t))] − t2

2
(4.52)

where

Q(t)
∆
=

1

2π

∫ ∞

t
du · e−u2/2 (4.53)

and t is the solution to the equation

t =
e−t

2/2

√
2π[1 −Q(t)]

. (4.54)

In fact, Shental and Kanter address a slightly more general question:

Quite obviously, the meta–stability condition is that for every i there

exists λi > 0 such that

λisi =
∑

j

Jijsj. (4.55)
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The question addressed is then the following: Given a constant K, what

is the expected number of states s for which there is λi > K for each

i such that λisi =
∑

j Jijsj? For K → −∞, one expects C → ln 2, and

for K → ∞, one expects C → 0. The case of interest is K = 0.

Turning now to the analysis, we first observe that for each such

state,
∫ ∞

K
· · ·
∫ ∞

K

N
∏

i=1

[

dλiδ

(

∑

ℓ

Jiℓsℓ − λisi

)]

= 1 (4.56)

thus

M(N) =

∫ ∞

K
· · ·
∫ ∞

K

N
∏

i=1

dλi
∑

s

〈

N
∏

i=1

δ

(

∑

ℓ

Jiℓsℓ − λisi

)〉

J

, (4.57)

where 〈·〉J denotes expectation w.r.t. the randomness of {Jiℓ}. Now,

since {Jiℓ} are N(N−1)/2 i.i.d., zero–mean Gaussian random variables

with variance J2/n, the expected number of solutions M̄(N) is given

by

M̄ (N) =

(

N

2πJ2

)N(N−1)/4 ∫

IRN(N−1)/2
dJ exp

{

− N

2J2

∑

i>ℓ

J2
iℓ

}

×

∑

s

∫ ∞

K
· · ·
∫ ∞

K
dλ ·

N
∏

i=1

δ

(

∑

ℓ

Jiℓsℓ − λisi

)

. (4.58)

The next step is to represent each Dirac function as an inverse Fourier

transform as we did earlier, i.e.,

δ(x) =
1

2π

∫ +∞

−∞
dωejωx j =

√
−1 (4.59)

and then

M̄(N) =

(

N

2πJ2

)N(N−1)/4 ∫

IRN(N−1)/2
dJ×

exp

{

− N

2J2

∑

i>ℓ

J2
iℓ

}

·
∑

s

∫ ∞

K
· · ·
∫ ∞

K
dλ×

∫

IRN

dω

(2π)N

N
∏

i=1

exp

{

jωi

(

∑

ℓ

Jiℓsℓ − λisi

)}
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=

(

N

2πJ2

)N(N−1)/4 ∫

IRN(N−1)/2
dJ
∑

s

∫ ∞

K
· · ·
∫ ∞

K
dλ×

∫

IRN

dω

(2π)N
exp

{

− N

2J2

∑

i>ℓ

J2
iℓ+

j
∑

i>ℓ

Jiℓ(ωisℓ + ωℓsi) − j
∑

i

ωisiλi

}

(4.60)

We now use the so called Hubbard–Stratonovich transform, which is

nothing but the identity
∫

IR
dxeax

2+bx ≡
√

π

a
eb

2/(4a), (4.61)

with the assignments a = n/(2J2) and b = ωisℓ + ωℓsi to obtain

M̄(N) =
∑

s

∫ ∞

K
· · ·
∫ ∞

K
dλ

∫

IRN

dω

(2π)n
×

N
∏

i=1

e−jωisiλi
∏

i>ℓ

exp{−(ωisℓ + ωℓsi)
2J2/(2N)}. (4.62)

Next observe that the summand does not actually depend on s because

each si is multiplied by an integration variable that runs over IR and

thus the sign of si may be absorbed by this integration variable anyhow.

Thus, all 2N contributions are the same as that of s = (+1, . . . ,+1):

M̄(N) = 2N
∫ ∞

K
· · ·
∫ ∞

K
dλ

∫

IRN

dω

(2π)N
×

N
∏

i=1

e−jωiλi
∏

i>ℓ

exp{−(ωi + ωℓ)
2J2/(2N)}. (4.63)

Next use the following identity:

J2

2N

∑

i>ℓ

(ωi + ωℓ)
2 = J2 (N − 1)

2N

∑

i

ω2
i +

J2

N

∑

i>ℓ

ωiωℓ, (4.64)

and so for large N ,

J2

2N

∑

i>ℓ

(ωi + ωℓ)
2 ≈ J2

2

∑

i

ω2
i +

J2

N

∑

i>ℓ

ωiωℓ
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≈ J2

2

∑

i

ω2
i +

J2

2N

(

N
∑

i=1

ωi

)2

. (4.65)

Thus

M̄(N) ≈ 2n
∫ ∞

K
· · ·
∫ ∞

K
dλ

∫

IRn

dω

(2π)n
×

n
∏

i=1

exp







−jωiλi −
J2

2

n
∑

i=1

ω2
i −

J2

2n

(

n
∑

i=1

ωi

)2






. (4.66)

We now use again the Hubbard–Stratonovich transform

ea
2 ≡

∫

IR

dt

2π
ej

√
2at−t2/2 (4.67)

and then, after changing variables λi → Jλi and Jωi → ωi, we get:

M̄(N) ≈ 1

πn
· 1√

2π

∫ ∞

K/J
· · ·
∫ ∞

K/J
dλ

∫

IR
dte−t

2/2×

n
∏

i=1

[

∫

IR
dωi exp

{

jωi

(

−λi +
t√
n

)

− 1

2

n
∑

i=1

ω2
i

}]

(4.68)

Changing the integration variable from t/
√
n to t, this becomes

M̄(N) ≈ 1

πN
· N√

2π

∫

IR
dte−Nt

2/2

[

∫ ∞

K/λ
dλ

∫

IR
dωejω(t−λ)−ω2/2

]N

=
1

πN
· N√

2π

∫

IR
dte−Nt

2/2

[

√
2π

∫ ∞

K/λ
dλe−(t−λ)2/2

]N

=
1

πN
· N√

2π

∫

IR
dte−N(t+K/J)2/2

[√
2π

∫ t

−∞
dλe−λ

2/2

]N

=
1

πN
· N√

2π

∫

IR
dte−N(t+K/J)2/2 · [2π(1 −Q(t))]N

=
N√
2π

∫

IR
dt exp

{

−N
2

(t+K/J)2 + ln[2(1 −Q(t))]

}

≈ exp

{

N · max
t

[

ln(2(1 −Q(t)) − (t+K/J)2

2

]}

(4.69)
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where in the last step, we used the saddle point method. The maximiz-

ing t zeroes out the derivative, i.e., it solves the equation

e−t
2/2

√
2π[1 −Q(t)]

= t+
K

J
(4.70)

which for K = 0, gives exactly the asserted result about the capacity.

4.5 The Replica Method

The replica method is one of the most useful tools, which originally

comes from statistical physics, but it finds its use in a variety of other

fields, with communications and information theory included (e.g., mul-

tiuser detection). As we shall see, there are many models in statistical

physics, where the partition function Z depends, among other things,

on some random parameters (to model disorder), and then Z, or lnZ,

becomes a random variable as well. Furthermore, it turns out that

more often than not, the random variable 1
N lnZ exhibits a concentra-

tion property, or in the jargon of physicists, a self–averaging property:

in the thermodynamic limit of N → ∞, it falls in the vicinity of its

expectation 1
N 〈lnZ〉, with very high probability. Therefore, the com-

putation of the per–particle free energy (and hence also many other

physical quantities), for a typical realization of these random parame-

ters, is associated with the computation of 〈lnZ〉. The problem is that

in most of the interesting cases, the exact closed form calculation of

this expectation is extremely difficult if not altogether impossible. This

is the point where the replica method enters into the picture.

Before diving into the description of the replica method, it is im-

portant to make a certain digression: This is a non–rigorous method,

and it is not quite clear (yet) what are exactly the conditions under

which it gives the correct result. Physicists tend to believe in it very

strongly, because in many situations it gives results that make sense,

agree with intuition, or make good fit to experimental results and/or

simulation results. Moreover, in many cases, predictions made by the

replica theory were confirmed by other, rigorous mathematical meth-

ods. The problem is that when there are no other means to test its

validity, there is no certainty that it is credible and reliable. In such

cases, it is believed that the correct approach would be to refer to the



4.5. The Replica Method 119

results it provides, as a certain educated guess or as a conjecture, rather

than a solid scientific truth. Indeed, some reservations concerning the

replica method have been raised in the literature [29], [118], [130]. An-

other, related method is the cavity method (see, e.g, [80, Chap. 19]),

but it will not be covered in this work.

As we shall see shortly, the problematics of the replica method is

not just that it depends on a certain interchangeability between a limit

and an integral, but more severely, that the procedure that it proposes,

is actually not even well–defined. In spite of these reservations, which

are well known, the replica method has become highly popular and

it is used extremely widely. A very partial list of (mostly relatively

recent) articles that make use of this method includes [10], [11], [37],

[41], [50], [51], [53], [58], [49],[52], [84], [83], [113],[114],[115], [107], [126],

and [127]. It is then appropriate to devote to the replica method some

attention, and so, we shall indeed present its mean ideas, in the general

level, up to a certain point. We shall not use, however, the replica

method elsewhere in this work.

Consider then the calculation of E lnZ. The problem is that Z is

a sum, and it is not easy to say something intelligent on the logarithm

of a sum of many terms, let alone the expectation of this log–sum. If,

instead, we had to deal with integer moments of Z, i.e., EZm, this

would have been much easier, because integer moments of sums, are

sums of products. The idea is therefore to seek a way to relate moments

EZm to E lnZ. This can be done if real, rather than just integer,

moments are allowed. These could be related via the simple relation

E lnZ = lim
m→0

EZm − 1

m
= lim

m→0

ln EZm

m
(4.71)

provided that the expectation operator and the limit over m can be

interchanged. But we know how to deal only with integer moments of

m. The first courageous idea of the replica method, at this point, is to

offer the following recipe: Compute EZm, for a general positive integer

m, and obtain an expression which is a function of m. Once this has

been done, forget that m is an integer, and consider it as a real variable.

Finally, use the above identity, taking the limit of m→ 0.

Beyond the technicality of interchanging the expectation operator

with the limit, which applies in most conceivable cases, there is a more
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serious concern here, and this is that the above procedure is not well–

defined, as mentioned earlier: We derive an expression f(m)
∆
= EZm,

which is originally meant for m integer only, and then ‘interpolate’ in

between integers by using the same expression, in other words, we take

the analytic continuation. Actually, the right–most side of the above

identity is f ′(0) where f ′ is the derivative of f . But there are infinitely

many functions of a continuous variable m that match given values for

integer values of m: If f(m) is such, then f̃(m) = f(m) + g(m) is good

as well, for every g that vanishes on the integers, for example, take

g(m) = A sin(πm). Nonetheless, f̃ ′(0) might be different from f ′(0),
and this is indeed the case with the example where g is sinusoidal. So

in this step of the procedure there is some weakness, but this point is

simply ignored.

After this introduction, let us now present the replica method on a

concrete example, which is essentially taken from [80, Sect. 8.1]. In this

example, Z =
∑2N

i=1 e
−βEi , where {Ei}2N

i=1 are i.i.d. random variables.

In the sequel, we will work with this model quite a lot, after we see how

it is relevant. It is called the random energy model (REM). For now,

however, this is just a technical example on which we demonstrate the

replica method. As the replica method suggests, let us first look at the

integer moments. First, what we have is:

Zm =





2N
∑

i=1

e−βEi





m

=

2N
∑

i1=1

. . .

2N
∑

im=1

exp{−β
m
∑

a=1

Eia}. (4.72)

The right–most side can be thought of as the partition function per-

taining to a new system, consisting of m independent replicas (hence

the name of the method) of the original system. Each configuration of

the new system is indexed by an m–tuple i = (i1, . . . , im), where each

ia runs from 1 to 2N , and the energy is
∑

aEia . Let us now rewrite Zm

slightly differently:

Zm =

2N
∑

i1=1

. . .

2N
∑

im=1

exp

{

−β
m
∑

a=1

Eia

}
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=
∑

i

exp







−β
m
∑

a=1

2N
∑

j=1

I(ia = j)Ej







=
∑

i

exp







−β
2N
∑

j=1

m
∑

a=1

I(ia = j)Ej







=
∑

i

2N
∏

j=1

exp

{

−β
m
∑

a=1

I(ia = j)Ej

}

Let us now further suppose that each Ej is N (0,NJ2/2), as is custom-

ary in the REM, for reasons that we shall see later on. Then, taking

expectations w.r.t. this distribution, we get:

EZm =
∑

i

E

2N
∏

j=1

exp

{

−β
m
∑

a=1

I(ia = j)Ej

}

=
∑

i

2N
∏

j=1

exp







β2NJ2

4

m
∑

a,b=1

I(ia = j)I(ib = j)







=
∑

i

exp







β2NJ2

4

m
∑

a,b=1

2N
∑

j=1

I(ia = j)I(ib = j)







=
∑

i

exp







β2NJ2

4

m
∑

a,b=1

I(ia = ib)







.

We now define an m×m binary matrix Q, called the overlap matrix,

whose entries are Qab = I(ia = ib). Note that the summand in the last

expression depends on i only via Q. Let MN (Q) denote the number

of configurations {i} whose overlap matrix is Q. We have to exhaust

all possible overlap matrices, which are all binary symmetric matrices

with 1’s on the main diagonal. Observe that the number of such ma-

trices is 2m(m−1)/2 whereas the number of configurations is 2Nm. Thus

we are dividing the exponentially large number of configurations into

a relatively small number (independent of N) of equivalence classes,

something that rings the bell of the method of types. Let us suppose,

for now, that there is some function s(Q) such that MN (Q)
·
= eNs(Q),
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and so

EZm
·
=
∑

Q

eNg(Q) (4.73)

with:

g(Q) =
β2J2

4

m
∑

a,b=1

Qab + s(Q). (4.74)

From this point onward, the strategy is to use the saddle point method.

Note that the function g(Q) is symmetric under replica permutations:

let π be a permutation operator of m objects and let Qπ be the overlap

matrix with entries Qπab = Qπ(a)π(b). Then, g(Qπ) = g(Q). This prop-

erty is called replica symmetry (RS), and this property is inherent to

the replica method. In light of this, the first natural idea that comes

to our mind is to postulate that the saddle point is symmetric too, in

other words, to assume that the saddle–point Q has 1’s on its main

diagonal and all other entries are taken to be the same (binary) value,

call it q0. Now, there are only two possibilities:

• q0 = 0 and then MN (Q) = 2N (2N − 1) · · · (2N − m + 1),

which implies that s(Q) = m ln 2, and then g(Q) = g0(Q)
∆
=

m(β2J2/4 + ln 2), thus (ln EZm)/m = β2J2/4 + ln 2, and so

is the limit as m → 0. Later on, we will compare this with

the result obtained from a more rigorous derivation.
• q0 = 1, which means that all components of i are the same,

and then MN (Q) = 2N , which means that s(Q) = ln 2 and

so, g(Q) = g1(Q)
∆
= m2β2J2/4 + ln 2.

Now, one should check which one of these saddle points is the dominant

one, depending on β and m. For m ≥ 1, the behavior is dominated by

max{g0(Q), g1(Q)}, which is g1(Q) for β ≥ βc(m)
∆
= 2

J

√

ln 2/m, and

g0(Q) otherwise. For m < 1 (which is, in fact, the relevant case form→
0), one should look at min{g0(Q), g1(Q)}, which is g0(Q) in the high–

temperature range. As it turns out, in certain regions in the β–m plane,

we must back off from the ‘belief’ that dominant configurations are

purely symmetric, and resort to the quest for dominant configurations

with a lower level of symmetry. The first step, after having exploited

the purely symmetric case above, is called one–step replica symmetry
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breaking (1RSB), and this means some partition of the set {1, 2, . . . ,m}
into two complementary subsets (say, of equal size) and postulating a

saddle point Q of the following structure:

Qab =







1 a = b

q0 a and b are in the same subset

q1 a and b are in different subsets

(4.75)

In further steps of symmetry breaking, one may split {1, 2, . . . ,m} to

a larger number of subsets or even introduce certain hierarchical struc-

tures. The replica method includes a variety of heuristic guidelines in

this context. We will not delve into them any further in the frame-

work of this monograph, but the interested reader can easily find more

details in the literature, specifically, in [80].





5

Interacting Particles and Phase Transitions

In this chapter, we introduce additional physics background pertaining

to systems with interacting particles. When the interactions among the

particles are sufficiently significant, the system exhibits a certain col-

lective behavior that, in the thermodynamic limit, may be subjected

to phase transitions, i.e., abrupt changes in the behavior and the prop-

erties of the system in the presence of a gradual change in an external

control parameter, like temperature, pressure, or magnetic field.

Analogous abrupt transitions, in the asymptotic behavior, are fa-

miliar to us also in information theory. For example, when the signal–

to–noise (SNR) of a coded communication system crosses the value for

which the capacity meets the coding rate, there is an abrupt transition

between reliable communication and unreliable communication, where

the probability of error essentially jumps between zero and one. Are

there any relationships between the phase transitions in physics and

those in information theory? It turns out that the answer is affirma-

tive to a large extent. By mapping the mathematical formalism of the

coded communication problem to that of an analogous physical system

with interacting particles, some insights on these relations can be ob-

tained. We will see later on that these insights can also be harnessed

125
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for sharper analysis tools.

5.1 Introduction – Sources of Interaction

As already mentioned in the introductory part of the previous chap-

ter, so far, we have dealt almost exclusively with systems that have

additive Hamiltonians, E(x) =
∑

i E(xi), which means that the parti-

cles are i.i.d. and there is no interaction: each particle behaves as if it

was alone in the world. In Nature, of course, this is seldom really the

case. Sometimes this is still a reasonably good approximation, but in

many other cases, the interactions are appreciably strong and cannot

be neglected. Among the different particles there could be many sorts

of mutual forces, such as mechanical, electrical, or magnetic forces, etc.

There could also be interactions that stem from quantum–mechanical

effects: As described at the end of Chapter 2, Pauli’s exclusion prin-

ciple asserts that for Fermions (e.g., electrons), no quantum state can

be populated by more than one particle. This gives rise to a certain

mutual influence between particles. Another type of interaction stems

from the fact that the particles are indistinguishable, so permutations

between them are not considered as distinct states. For example, refer-

ring again to the example of quantum statistics, at the end of Chapter

2, had the N particles been statistically independent, the resulting par-

tition function would be

ZN (β) =

[

∑

r

e−βǫr
]N

=
∑

N :
P

r Nr=N

N !
∏

rNr!
· exp

{

−β
∑

r

Nrǫr

}

(5.1)

whereas in eq. (2.82), the combinatorial factor, N !/
∏

rNr!, the dis-

tinguishes between the various permutations among the particles, is

absent. This introduces dependency, which physically means interac-

tion.1

1 Indeed, in the case of the boson gas, there is a well–known effect referred to as Bose–

Einstein condensation, which is actually a phase transition, but phase transitions can
occur only in systems of interacting particles, as will be discussed in this set of lectures.
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5.2 Models of Interacting Particles

The simplest forms of deviation from the purely additive Hamiltonian

structure are those that consists, in addition to the individual energy

terms, {E(xi)}, also terms that depend on pairs, and/or triples, and/or

even larger cliques of particles. In the case of purely pairwise interac-

tions, this means a structure like the following:

E(x) =

N
∑

i=1

E(xi) +
∑

(i,j)

ε(xi, xj) (5.2)

where the summation over pairs can be defined over all pairs i 6= j,

or over some of the pairs, according to a given rule, e.g., depending

on the distance between particle i and particle j, and according to the

geometry of the system, or according to a certain graph whose edges

connect the relevant pairs of variables (that in turn, are designated as

nodes).

For example, in a one–dimensional array (a lattice) of particles, a

customary model accounts for interactions between neighboring pairs

only, neglecting more remote ones, thus the second term above would

be
∑

i ε(xi, xi+1). A well known special case of this is that of a poly-

mer [28], or a solid with crystal lattice structure, where in the one–

dimensional version of the model, atoms are thought of as a chain of

masses connected by springs (see left part of Fig. 5.1), i.e., an array of

coupled harmonic oscillators. In this case, ε(xi, xi+1) = 1
2K(ui+1−ui)2,

where K is a constant and ui is the displacement of the i-th atom from

its equilibrium location, i.e., the potential energies of the springs. This

model has an easy analytical solution (by applying a Fourier transform

on the sequence {ui}), where by “solution”, we mean a closed–form,

computable formula for the log–partition function, at least in the ther-

modynamic limit. In higher dimensional arrays (or lattices), similar

interactions apply, there are just more neighbors to each site, from

the various directions (see right part of Fig. 5.1). In a system where

the particles are mobile and hence their locations vary and have no

geometrical structure, like in a gas, the interaction terms are also po-

tential energies pertaining to the mutual forces (see Fig. 5.2), and these

normally depend solely on the distances ‖~ri − ~rj‖. For example, in a
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Fig. 5.1 Elastic interaction forces between adjacent atoms in a one–dimensional lat-
tice (left part of the figure) and in a two–dimensional lattice (right part).

Fig. 5.2 Mobile particles and mutual forces between them.

non–ideal gas,

E(x) =
N
∑

i=1

‖~pi‖2

2m
+
∑

i6=j
V (‖~ri − ~rj‖). (5.3)

A very simple special case is that of hard spheres (Billiard balls), with-
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out any forces, where

V (‖~ri − ~rj‖) =

{ ∞ ‖~ri − ~rj‖ < 2R

0 ‖~ri − ~rj‖ ≥ 2R
(5.4)

which expresses the simple fact that balls cannot physically overlap.

This model can (and indeed is) being used to obtain bounds on sphere–

packing problems, which are very relevant to channel coding theory.

This model is not solvable in general and its solution is an open chal-

lenge. The interested reader can find more details on this line of re-

search, in several articles, such as [18], [64], [99], [97], on the physical

aspects, as well as [91] and [93] on the application to coding theory.

Yet another example of a model, or more precisely, a very large class

of models with interactions, are those of magnetic materials. These

models will closely accompany our discussions from this point onward,

because as described in the Introduction, some of them lend themselves

to mathematical formalisms that are analogous to those of coding prob-

lems, as we shall see. Few of these models are solvable, most of them

are not. For the purpose of our discussion, a magnetic material is one

for which the relevant property of each particle is its magnetic mo-

ment. The magnetic moment is a vector proportional to the angular

momentum of a revolving charged particle (like a rotating electron, or

a current loop), or the spin, and it designates the intensity of its re-

sponse to the net magnetic field that this particle ‘feels’. This magnetic

field may be the superposition of an externally applied magnetic field

and the magnetic fields generated by the neighboring spins.

Quantum mechanical considerations dictate that each spin, which

will be denoted by si, is quantized, that is, it may take only one out of

finitely many values. In the simplest case to be adopted in our study –

two values only. These will be designated by si = +1 (“spin up”) and

si = −1 (“spin down”), corresponding to the same intensity, but in two

opposite directions, one parallel to the magnetic field, and the other –

anti-parallel (see Fig. 5.3). The Hamiltonian associated with an array of

spins s = (s1, . . . , sN ) is customarily modeled (up to certain constants

that, among other things, accommodate for the physical units) with a
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Fig. 5.3 Illustration of a spin array on a square lattice.

structure like this:

E(s) = −B ·
N
∑

i=1

si −
∑

(i,j)

Jijsisj, (5.5)

where B is the externally applied magnetic field and {Jij} are the cou-

pling constants that designate the levels of interaction between spin

pairs, and they depend on properties of the magnetic material and on

the geometry of the system. The first term accounts for the contribu-

tions of potential energies of all spins due to the magnetic field, which in

general, are given by the inner product ~B ·~si, but since each ~si is either

parallel or anti-parallel to ~B, as said, these boil down to simple prod-

ucts, where only the sign of each si counts. Since P (s) is proportional

to e−βE(s), the spins ‘prefer’ to be parallel, rather than anti-parallel

to the magnetic field. The second term in the above Hamiltonian ac-

counts for the interaction energy. If Jij are all positive, they also prefer

to be parallel to one another (the probability for this is larger), which

is the case where the material is called ferromagnetic (like iron and
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nickel). If they are all negative, the material is antiferromagnetic. In

the mixed case, it is called a spin glass. In the latter, the behavior is

rather complicated, as we shall see later on.

Of course, the above model for the Hamiltonian can (and, in fact,

is being) generalized to include interactions formed also, by triples,

quadruples, or any fixed size p (that does not grow with N) of spin–

cliques. At this point, it is instructive to see the relation between spin–

array models (especially, those that involve large cliques of spins) to

linear channel codes, which was first identified by Sourlas [111],[112].

Consider a linear code defined by a set of m parity–check equations

(in GF (2)), each involving the modulo–2 sum of some subset of the

components of the codeword x. I.e., the ℓ–th parity–check equation is:

xiℓ1
⊕ xiℓ2

⊕ · · · ⊕ xℓikℓ
= 0, ℓ = 1, . . . ,m, (5.6)

where iℓj is the index of the j–th bit that takes part in the ℓ–th parity–

check equation and kℓ is the number of bits involved in that equation.

Transforming from xi ∈ {0, 1} to si ∈ {−1,+1} via si = 1 − 2xi, this

is equivalent to

siℓ1
siℓ2

· · · siℓkℓ

= 1, ℓ = 1, . . . ,m. (5.7)

The maximum a–posteriori (MAP) decoder estimates s based on the

posterior

P (s|y) =
P (s)P (y|s)

Z(y)
; Z(y) =

∑

s

P (s)P (y|s) = P (y), (5.8)

where P (s) is normally assumed uniform over the codewords (we will

elaborate on this posterior distribution function later on). Assuming,

e.g., a binary symmetric channel (BSC) or a Gaussian channel P (y|s),

the relevant distance between the codeword s = (s1, . . . , sN ) and the

channel output y = (y1, . . . , yN ) is proportional to ‖s−y‖2 = const.−
2
∑

i siyi. Thus, P (s|y) can be thought of as a B–G distribution with

Hamiltonian

E(s|y) = −J
N
∑

i=1

siyi +

m
∑

ℓ=1

φ(siℓ1
siℓ2

· · · siℓkℓ

) (5.9)
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where J is some constant (depending on the channel parameters), the

function φ(u) vanishes for u = 1 and becomes infinite for u 6= 1, and the

partition function given by the denominator of P (s|y). The first term

plays the analogous role to that of the contribution of the magnetic

field in a spin system model, where each ‘spin’ si ‘feels’ a different

magnetic field proportional to yi, and the second term accounts for the

interactions among cliques of spins. In the case of low–density parity

check (LDPC) codes, where each parity check equation involves only a

small number of bits {si}, these interaction terms amount to cliques of

relatively small sizes.2 For a general code, the second term is replaced

by φC(s), which is zero for s ∈ C and infinite otherwise.

Another aspect of this model of a coded communication system per-

tains to calculations of mutual information and capacity. The mutual

information between S and Y is, of course, given by

I(S;Y ) = H(Y ) −H(Y |S). (5.10)

The second term is easy to calculate for every additive channel – it is

simply the entropy of the additive noise. The first term is harder to

calculate:

H(Y ) = −E{lnP (Y )} = −E{lnZ(Y )}. (5.11)

Thus, we are facing a problem of calculating the free energy of a spin

system with random magnetic fields designated by the components of

Y . This is the kind of calculations we mentioned earlier in the context

of the replica method. Indeed, the replica method is used extensively

in this context.

As we shall see in the sequel, it is also customary to introduce an

inverse temperature parameter β, by defining

Pβ(s|y) =
P β(s)P β(y|s)

Z(β|y)
=
e−βE(s|y)

Z(β|y)
(5.12)

2 Error correction codes can be represented by bipartite graphs with two types of nodes:
variable nodes corresponding to the various si and function nodes corresponding to cliques.
There is an edge between variable node i and function node j if si is a member in clique
j. Of course each si may belong to more than one clique. When all cliques are of size 2,
there is no need for the function nodes, as edges between nodes i and j simply correspond
to parity check equations involving si and sj .
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where β controls the sharpness of the posterior distribution and

Z(β|y) =
∑

s

e−βE(s|y). (5.13)

The motivations of this will be discussed extensively later on.

Finally, it should be pointed out that the analogies between models

and magnetic materials and models of communications and signal pro-

cessing are not limited to the application described above. Consider,

for example, the very common signal model

y = Hs + w, (5.14)

where H is a matrix (with either deterministic or random entries) and

w is a Gaussian noise vector, with i.i.d. components, independent of s

(and H). In this case, the posterior, Pβ(s|y), is proportional to

exp

{

− β

2σ2
‖y − Hs‖2

}

, (5.15)

where the exponent (after expansion of the norm), clearly includes an

“external–field term,” proportional to yTHs, and a “pairwise spin–

spin interaction term,” proportional to sTRs, where R = HTH.

We will get back to this important class of models, as well as its

many extensions, shortly. But before that, we discuss a very important

effect that exists in some systems with strong interactions (both in

magnetic materials and in other models): the effect of phase transitions.

5.3 A Qualitative Discussion on Phase Transitions

As was mentioned in the introductory paragraph of this chapter, a

phase transition means an abrupt change in the collective behavior of a

physical system, as we change gradually one of the externally controlled

parameters, like the temperature, pressure, or magnetic field. The most

common example of a phase transition in our everyday life is the water

that we boil in the kettle when we make coffee, or when it turns into

ice as we put it in the freezer.

What exactly these phase transitions are? Before we refer to this

question, it should be noted that there are also “phase transitions”

in the behavior of communication systems: We already mentioned the
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phase transition that occurs as the SNR passes a certain limit (for which

capacity crosses the coding rate), where there is a sharp transition be-

tween reliable and unreliable communication, i.e., the error probability

(almost) ‘jumps’ from 0 to 1 or vice versa. Another example is the

phenomenon of threshold effects in highly non–linear communication

systems (e.g., FM, PPM, FPM, etc., see [123, Chap. 8]).

Are there any relationships between these phase transitions and

those of physics? We will see shortly that the answer is generally af-

firmative. In physics, phase transitions can occur only if the system

has interactions. Consider, the above example of an array of spins with

B = 0, and let us suppose that all Jij > 0 are equal, and thus will be

denoted commonly by J . Then,

P (s) =
exp

{

βJ
∑

(i,j) sisj

}

Z(β)
(5.16)

and, as mentioned earlier, this is a ferromagnetic model, where all spins

‘like’ to be in the same direction, especially when β and/or J is large.

In other words, the interactions, in this case, tend to introduce order

into the system. On the other hand, the second law talks about max-

imum entropy, which tends to increase the disorder. So there are two

conflicting effects here. Which one of them prevails?

The answer turns out to depend on temperature. Recall that in

the canonical ensemble, equilibrium is attained at the point of mini-

mum free energy f = ǫ − Ts(ǫ). Now, T plays the role of a weighting

factor for the entropy. At low temperatures, the weight of the second

term of f is small, and minimizing f is approximately equivalent to

minimizing ǫ, which is obtained by states with a high level of order,

as E(s) = −J∑(i,j) sisj, in this example. As T grows, however, the

weight of the term −Ts(ǫ) increases, and min f , becomes more and

more equivalent to max s(ǫ), which is achieved by states with a high

level of disorder (see Fig. 5.4). Thus, the order–disorder characteristics

depend primarily on temperature. It turns out that for some magnetic

systems of this kind, this transition between order and disorder may

be abrupt, in which case, we call it a phase transition. At a certain

critical temperature, called the Curie temperature, there is a sudden

transition between order and disorder. In the ordered phase, a consid-
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f

ǫ∗1 ǫ∗2

T = 0

T1 T2 > T1

T2

ǫ

Fig. 5.4 Qualitative graphs of f(ǫ) at various temperatures. The minimizing ǫ in-
creases with T .

erable fraction of the spins align in the same direction, which means

that the system is spontaneously magnetized (even without an exter-

nal magnetic field), whereas in the disordered phase, about half of the

spins are in either direction, and then the net magnetization vanishes.

This happens if the interactions, or more precisely, their dimension in

some sense, is strong enough.

What is the mathematical significance of a phase transition? If we

look at the partition function, Z(β), which is the key to all physical

quantities of interest, then for every finite N , this is simply the sum

of finitely many exponentials in β and therefore it is continuous and

differentiable infinitely many times. So what kind of abrupt changes

could there possibly be in the behavior of this function? It turns out

that while this is true for all finite N , it is no longer necessarily true if

we look at the thermodynamical limit, i.e., if we look at the behavior

of

φ(β) = lim
N→∞

lnZ(β)

N
. (5.17)

While φ(β) must be continuous for all β > 0 (since it is convex), it

need not necessarily have continuous derivatives. Thus, a phase tran-

sition, if exists, is fundamentally an asymptotic property, it may exist

in the thermodynamical limit only. While a physical system is, after

all finite, it is nevertheless well approximated by the thermodynamical

limit when it is very large. By the same token, if we look at the analogy

with a coded communication system: for any finite block–length n, the
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error probability is a smooth function of the SNR, but in the limit of

large n, it behaves like a step function that jumps between 0 and 1 at

the critical SNR. As said earlier, we shall see that the two things are

related.

Back to the physical aspects, the above discussion explains also

why a system without interactions, where all {xi} are i.i.d., cannot

have phase transitions. In this case, ZN (β) = [Z1(β)]N , and so, φ(β) =

lnZ1(β), which is always a smooth function without any irregularities.

For a phase transition to occur, the particles must behave in some

collective manner, which is the case only if interactions take place.

There is a distinction between two types of phase transitions:

• If φ(β) has a discontinuous first order derivative, then this is

called a first order phase transition.
• If φ(β) has a continuous first order derivative, but a discon-

tinuous second order derivative then this is called a second

order phase transition, or a continuous phase transition.

We can talk, of course, about phase transitions w.r.t. additional

parameters other than temperature. In the above magnetic example, if

we introduce back the magnetic field B into the picture, then Z, and

hence also φ, become functions of B too. If we then look at derivative

of

φ(β,B) = lim
N→∞

lnZ(β,B)

N

= lim
N→∞

1

N
ln





∑

s

exp







βB
N
∑

i=1

si + βJ
∑

(i,j)

sisj









 (5.18)

w.r.t. the product (βB), which multiplies the magnetization,
∑

i si, at

the exponent, this would give exactly the average magnetization per

spin

m(β,B) =

〈

1

N

N
∑

i=1

Si

〉

, (5.19)

and this quantity might not always be continuous. Indeed, as mentioned

earlier, below the Curie temperature there might be a spontaneous
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magnetization. If B ↓ 0, then this magnetization is positive, and if

B ↑ 0, it is negative, so there is a discontinuity at B = 0. We shall see

this more concretely later on.

5.4 Phase Transitions of the Rate–Distortion Function

We already mentioned that in the realm of information theory, there

are phenomena that resemble phase transitions, like threshold effects

in non–linear communication systems and the abrupt transitions from

reliable to unreliable communication. Before we describe (in the next

sections) in detail, models of interacting spins, with and without phase

transitions, we pause, in this section, to discuss yet another type of a

quite non–trivial phase transition, which occurs in the world of infor-

mation theory: a phase transition in the behavior of the rate–distortion

function. This type of a phase transition is very different from the class

of phase transitions we discussed thus far: it stems from the optimiza-

tion of the distribution of the reproduction variable, which turns out

to have a rather irregular behavior, as we shall see. The derivation and

the results, in this section, follow the paper by Rose [101]. This section

can be skipped without loss of continuity.

We have seen in Chapter 2 that the rate–distortion function of a

source P = {p(x), x ∈ X} can be expressed as

R(D) = −min
β≥0

[

βD +
∑

x

p(x) ln

(

∑

y

q(y)e−βd(x,y)
)]

(5.20)

where Q = {q(y), y ∈ Y} is the output marginal of the test channel,

which is also the one that minimizes this expression. We are now going

to take a closer look at this function in the context of the quadratic

distortion function d(x, y) = (x−y)2. As said, the optimum Q is the one

that minimizes the above expression, or equivalently, the free energy

f(Q) = − 1

β

∑

x

p(x) ln

(

∑

y

q(y)e−βd(x,y)
)

(5.21)

and in the continuous case, summations should be replaced by integrals:

f(Q) = − 1

β

∫ +∞

−∞
dxp(x) ln

(
∫ +∞

−∞
dyq(y)e−βd(x,y)

)

. (5.22)
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Consider the representation of the random variable Y as a function of

U ∼ unif[0, 1], and then, instead of optimizing Q, one should optimize

the function y(u) in:

f(y(·)) = − 1

β

∫ +∞

−∞
dxp(x) ln

(∫ 1

0
dµ(u)e−βd(x,y(u))

)

, (5.23)

where µ(·) is the Lebesgue measure (the uniform measure). A necessary

condition for optimality,3 which must hold for almost every u is:

∫ +∞

−∞
dxp(x) ·

[

e−βd(x,y(u))

∫ 1
0 dµ(u′)e−βd(x,y(u′))

]

· ∂d(x, y(u))
∂y(u)

= 0. (5.24)

Now, let us define the support of y as the set of values that y may

possibly take on. Thus, this support is a subset of the set of all points

{y0 = y(u0)} for which:

∫ +∞

−∞
dxp(x)·

[

e−βd(x,y0)
∫ 1
0 dµ(u′)e−βd(x,y(u′))

]

· ∂d(x, y(u))
∂y(u)

∣

∣

∣

∣

y(u)=y0

= 0. (5.25)

This is because y0 must be a point that is obtained as y(u) for some u.

Let us define now the posterior:

q(u|x) =
e−βd(x,y(u))

∫ 1
0 dµ(u′)e−βd(x,y(u′))

. (5.26)

Then,
∫ +∞

−∞
dxp(x)q(u|x) · ∂d(x, y(u))

∂y(u)
= 0. (5.27)

But p(x)q(u|x) is a joint distribution p(x, u), which can also be thought

of as µ(u)p(x|u). So, if we divide the last equation by µ(u), we get, for

almost all u:
∫ +∞

−∞
dxp(x|u)∂d(x, y(u))

∂y(u)
= 0. (5.28)

Now, let us see what happens in the case of the quadratic distortion,

d(x, y) = (x−y)2. Suppose that the support of Y includes some interval

3 The details are in [101], but intuitively, instead of a function y(u) of a continuous variable
u, think of a vector y whose components are indexed by u, which take on values in
some grid of [0, 1]. In other words, think of the argument of the logarithmic function as
P1

u=0 e
−βd(x,yu).
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I0 as a subset. For a given u, y(u) is nothing other than a number, and

so the optimality condition must hold for every y ∈ I0. In the case of

the quadratic distortion, this optimality criterion means
∫ +∞

−∞
dxp(x)λ(x)(x− y)e−β(x−y)2 = 0, ∀y ∈ I0 (5.29)

with

λ(x)
∆
=

1
∫ 1
0 dµ(u)e−βd(x,y(u))

=
1

∫ +∞
−∞ dyq(y)e−βd(x,y)

, (5.30)

or, equivalently,
∫ +∞

−∞
dxp(x)λ(x)

∂

∂y

[

e−β(x−y)2
]

= 0. (5.31)

Since this must hold for all y ∈ I0, then all derivatives of the l.h.s.

must vanish within I0, i.e.,
∫ +∞

−∞
dxp(x)λ(x)

∂n

∂yn

[

e−β(x−y)2
]

= 0. (5.32)

Now, considering the Hermitian polynomials

Hn(z)
∆
= eβz

2 dn

dzn
(e−βz

2
) (5.33)

this requirement means
∫ +∞

−∞
dxp(x)λ(x)Hn(x− y)e−β(x−y)2 = 0. (5.34)

In words: λ(x)p(x) is orthogonal to all Hermitian polynomials of order

≥ 1 w.r.t. the weight function e−βz
2
. Now, as is argued in the paper,

since these polynomials are complete in L2(e−βz
2
), we get

p(x)λ(x) = const. (5.35)

because H0(z) ≡ 1 is the only basis function orthogonal to all Hn(z),

n ≥ 1. This yields, after normalization:

p(x) =

√

β

π

∫ 1

0
dµ(u)e−β(x−y(u))2
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=

√

β

π

∫ +∞

−∞
dyq(y)e−β(x−y)2

= Q ⋆N
(

0,
1

2β

)

, (5.36)

where ⋆ denotes convolution. The interpretation of the last equation

is simple: the marginal of X is given by the convolution between the

marginal of Y and the zero–mean Gaussian distribution with variance

D = 1/(2β) (= kT/2 of the equipartition theorem, as we already saw

in Chapter 2). This means that X must be representable as

X = Y + Z (5.37)

where Z ∼ N
(

0, 1
2β

)

and independent of Y . As is well known, this

is exactly what happens when R(D) coincides with its Gaussian lower

bound, a.k.a. the Shannon lower bound (SLB). Here is a reminder of

this:

R(D) = h(X) − max
E(X−Y )2≤D

h(X|Y )

= h(X) − max
E(X−Y )2≤D

h(X − Y |Y )

≥ h(X) − max
E(X−Y )2≤D

h(X − Y )

= h(X) − max
EZ2≤D

h(Z) Z
∆
= X − Y

≥ h(X) − 1

2
ln(2πeD)

∆
= RS(D), (5.38)

where RS(D) designates the SLB. The conclusion then is that if the

support of Y includes an interval (no matter how small) then R(D)

coincides with RS(D). This implies that in all those cases that RS(D)

is not attained, the support of the optimum test channel output distri-

bution must be singular, i.e., it cannot contain an interval. It can be,

for example, a set of isolated points.

But we also know that whenever R(D) meets the SLB for some

D = D0, then it must also coincide with it for all D < D0. This follows
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from the following simple consideration: If X can be represented as

Y +Z, where Z ∼ N (0,D0) is independent of Y , then for everyD < D0,

we can always decompose Z as Z1+Z2, where Z1 and Z2 are both zero–

mean independent Gaussian random variables with variances D0 −D

and D, respectively. Thus,

X = Y + Z = (Y + Z1) + Z2
∆
= Y ′ + Z2 (5.39)

and we have represented X as a noisy version of Y ′ with noise vari-

ance D. Whenever X can be thought of as a mixture of Gaussians,

R(D) agrees with its SLB for all D up to the variance of the narrowest

Gaussian in this mixture. Thus, in these cases:

R(D)

{

= RS(D) D ≤ D0

> RS(D) D > D0
(5.40)

It follows then that in all these cases, the optimum output marginal

contains intervals for all D ≤ D0 and then becomes abruptly singular

as D exceeds D0.

From the viewpoint of statistical mechanics, this has the flavor of

a phase transition. Consider first an infinite temperature, i.e., β = 0,

which means unlimited distortion. In this case, the optimum output

marginal puts all its mass on one point: y = E(X), so it is definitely

singular. This remains true even if we increase β to be the inverse tem-

perature that corresponds to Dmax, the smallest distortion for which

R(D) = 0. If we further increase β, the support of Y begins to change.

In the next step it can include two points, then three points, etc. Then,

if there is D0 below which the SLB is met, then the support of Y

abruptly becomes one that contains one interval at least. This point is

also demonstrated numerically in [101].

5.5 The One–Dimensional Ising Model

As promised, we now return to models of interacting spins. The most

familiar one is the one–dimensional Ising model, according to which

E(s) = −B
N
∑

i=1

si − J

N
∑

i=1

sisi+1 (5.41)
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with the periodic boundary condition sN+1 = s1. Thus,

Z(β,B) =
∑

s

exp

{

βB

N
∑

i=1

si + βJ

N
∑

i=1

sisi+1

}

=
∑

s

exp

{

h
N
∑

i=1

si +K
N
∑

i=1

sisi+1

}

h
∆
= βB, K

∆
= βJ

=
∑

s

exp

{

h

2

N
∑

i=1

(si + si+1) +K

N
∑

i=1

sisi+1

}

. (5.42)

Consider now the 2×2 matrix P whose entries are exp{h2 (s+s′)+Kss′},
s, s ∈ {−1,+1}, i.e.,

P =

(

eK+h e−K

e−K eK−h

)

. (5.43)

Also, si = +1 will be represented by the column vector σi = (1, 0)T

and si = −1 will be represented by σi = (0, 1)T . Thus,

Z(β,B) =
∑

σ1

· · ·
∑

σN

(σT1 Pσ2) · (σT2 Pσ2) · · · (σTNPσ1)

=
∑

σ1

σT1 P

(

∑

σ2

σ2σ
T
2

)

P

(

∑

σ3

σ3σ
T
3

)

P · · · P
(

∑

σN

σnσ
T
N

)

Pσ1

=
∑

σ1

σT1 P · I · P · I · · · I · Pσ1

=
∑

σ1

σT1 P
Nσ1

= tr{PN}
= λN1 + λN2 (5.44)

where λ1 and λ2 are the eigenvalues of P , which are

λ1,2 = eK cosh(h) ±
√

e−2K + e2K sinh2(h). (5.45)

Letting λ1 denote the larger (the dominant) eigenvalue, i.e.,

λ1 = eK cosh(h) +

√

e−2K + e2K sinh2(h), (5.46)
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then clearly,

φ(h,K) = lim
N→∞

lnZ

N
= lnλ1. (5.47)

The average magnetization is

M(h,K) =

〈

N
∑

i=1

Si

〉

=

∑

s(
∑N

i=1 si) exp{h∑N
i=1 si +K

∑N
i=1 sisi+1}

∑

s exp{h∑N
i=1 si +K

∑N
i=1 sisi+1}

=
∂ lnZ(h,K)

∂h
(5.48)

and so, the per–spin magnetization is:

m(h,K)
∆
= lim

N→∞
M(h,K)

N
=
∂φ(h,K)

∂h
=

sinh(h)
√

e−4K + sinh2(h)
(5.49)

or, returning to the original parametrization:

m(β,B) =
sinh(βB)

√

e−4βJ + sinh2(βB)
. (5.50)

For β > 0 and B > 0 this is a smooth function, and so, there is are

no phase transitions and no spontaneous magnetization at any finite

temperature.4 However, at the absolute zero (β → ∞), we get

lim
B↓0

lim
β→∞

m(β,B) = +1; lim
B↑0

lim
β→∞

m(β,B) = −1, (5.51)

thus m is discontinuous w.r.t. B at β → ∞, which means that there is

a phase transition at T = 0. In other words, the Curie temperature is

Tc = 0.

We see then that one–dimensional Ising model is easy to handle, but

it is not very interesting in the sense that there is actually no phase

transition. The extension to the two–dimensional Ising model on the

square lattice is surprisingly more difficult, but it is still solvable, albeit

4 Note, in particular, that for J = 0 (i.i.d. spins) we get paramagnetic characteristics
m(β,B) = tanh(βB), in agreement with the result pointed out in the example of two–level
systems, in one of our earlier discussions.
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without a magnetic field. It was first solved in 1944 by Onsager [89], who

has shown that it exhibits a phase transition with Curie temperature

given by

Tc =
2J

k ln(
√

2 + 1)
. (5.52)

For lattice dimension larger than two, the problem is still open.

It turns out then that whatever counts for the existence of phase

transitions, is not only the intensity of the interactions (designated

by the magnitude of J), but more importantly, the “dimensionality”

of the structure of the pairwise interactions. If we denote by nℓ the

number of ℓ–th order neighbors of every given site, namely, the number

of sites that can be reached within ℓ steps from the given site, then

whatever counts is how fast does the sequence {nℓ} grow, or more

precisely, what is the value of d
∆
= limℓ→∞ 1

ℓ lnnℓ, which is exactly the

ordinary dimensionality for hyper-cubic lattices. Loosely speaking, this

dimension must be sufficiently large for a phase transition to exist.

To demonstrate this point, we next discuss an extreme case of a

model where this dimensionality is actually infinite. In this model “ev-

erybody is a neighbor of everybody else” and to the same extent, so

it definitely has the highest connectivity possible. This is not quite

a physically realistic model, but the nice thing about it is that it is

easy to solve and that it exhibits a phase transition that is fairly sim-

ilar to those that exist in real systems. It is also intimately related to

a very popular approximation method in statistical mechanics, called

the mean field approximation. Hence it is sometimes called the mean

field model. It is also known as the Curie–Weiss model or the infinite

range model.

Finally, we should comment that there are other “infinite–

dimensional” Ising models, like the one defined on the Bethe lattice

(an infinite tree without a root and without leaves), which is also eas-

ily solvable (by recursion) and it also exhibits phase transitions [4], but

we will not discuss it here.
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5.6 The Curie–Weiss Model

According to the Curie–Weiss (C–W) model,

E(s) = −B
N
∑

i=1

si −
J

2N

∑

i6=j
sisj. (5.53)

Here, all pairs {(si, sj)} communicate to the same extent, and without

any geometry. The 1/N factor here is responsible for keeping the energy

of the system extensive (linear in N), as the number of interaction

terms is quadratic in N . The factor 1/2 compensates for the fact that

the summation over i 6= j counts each pair twice. The first observation

is the trivial fact that
(

∑

i

si

)2

=
∑

i

s2i +
∑

i6=j
sisj = N +

∑

i6=j
sisj (5.54)

where the second equality holds since s2i ≡ 1. It follows then, that our

Hamiltonian is, up to a(n immaterial) constant, equivalent to

E(s) = −B
N
∑

i=1

si −
J

2N

(

N
∑

i=1

si

)2

= −N



B ·
(

1

N

N
∑

i=1

si

)

+
J

2

(

1

N

N
∑

i=1

si

)2


 , (5.55)

thus E(s) depends on s only via the magnetization m(s) = 1
N

∑

i si.

This fact makes the C–W model very easy to handle similarly as in the

method of types:

ZN (β,B) =
∑

s

exp

{

Nβ

[

B ·m(s) +
J

2
m2(s)

]}

=
+1
∑

m=−1

Ω(m) · eNβ(Bm+Jm2/2)

·
=

+1
∑

m=−1

eNh2((1+m)/2) · eNβ(Bm+Jm2/2)
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·
= exp

{

N · max
|m|≤1

[

h2

(

1 +m

2

)

+ βBm+
βm2J

2

]}

(5.56)

and so,

φ(β,B) = max
|m|≤1

[

h2

(

1 +m

2

)

+ βBm+
βm2J

2

]

. (5.57)

The maximum is found by equating the derivative to zero, i.e.,

0 =
1

2
ln

(

1 −m

1 +m

)

+ βB + βJm ≡ − tanh−1(m) + βB + βJm (5.58)

or equivalently, the maximizing (and hence the dominant) m is a solu-

tion m∗ to the equation5

m = tanh(βB + βJm).

Consider first the case B = 0, where the equation boils down to

m = tanh(βJm). (5.59)

It is instructive to look at this equation graphically. Referring to Fig.

5.5, we have to make a distinction between two cases: If βJ < 1, namely,

T > Tc
∆
= J/k, the slope of the function y = tanh(βJm) at the origin,

βJ , is smaller than the slope of the linear function y = m, which is 1,

thus these two graphs intersect only at the origin. It is easy to check

that in this case, the second derivative of

ψ(m)
∆
= h2

(

1 +m

2

)

+
βJm2

2
(5.60)

at m = 0 is negative, and therefore it is indeed the maximum (see Fig.

5.6, left part). Thus, the dominant magnetization is m∗ = 0, which

means disorder and hence no spontaneous magnetization for T > Tc.

On the other hand, when βJ > 1, which means temperatures lower

than Tc, the initial slope of the tanh function is larger than that of

the linear function, but since the tanh function cannot take values

outside the interval (−1,+1), the two functions must intersect also at

5 Once again, for J = 0, we are back to non–interacting spins and then this equation gives
the paramagnetic behavior m = tanh(βB).
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m

y = m

y = tanh(βJm)

y = tanh(βJm)

+m0

−m0

y = m

m

Fig. 5.5 Graphical solutions of equation m = tanh(βJm): The left part corresponds
to the case βJ < 1, where there is one solution only, m∗ = 0. The right part
corresponds to the case βJ > 1, where in addition to the zero solution, there are
two non–zero solutions m∗ = ±m0.

two additional, symmetric, non–zero points, which we denote by +m0

and −m0 (see Fig. 5.5, right part). In this case, it can readily be shown

that the second derivative of ψ(m) is positive at the origin (i.e., there

is a local minimum at m = 0) and negative at m = ±m0, which means

that there are maxima at these two points (see Fig. 5.6, right part).

Thus, the dominant magnetizations are ±m0, each capturing about

half of the probability.

m

ψ(m)

+m0−m0
m

ψ(m)

Fig. 5.6 The function ψ(m) = h2((1 + m)/2) + βJm2/2 has a unique maximum at
m = 0 when βJ < 1 (left graph) and two local maxima at ±m0, in addition to a
local minimum at m = 0, when βJ > 1 (right graph).

Consider now the case βJ > 1, where the magnetic field B is

brought back into the picture. This will break the symmetry of the

right graph of Fig. 5.6 and the corresponding graphs of ψ(m) would

be as in Fig. 5.7, where now the higher local maximum (which is also
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the global one) is at m0(B) whose sign is as that of B. But as B → 0,

m0(B) → m0 of Fig. 5.6. Thus, we see the spontaneous magnetiza-

ψ(m)

m
−m0(B)

m

ψ(m)

+m0(B)

Fig. 5.7 The case βJ > 1 with a magnetic field B. The left graph corresponds to
B < 0 and the right graph – to B > 0.

−1

+1

m(β,B)

B

T > Tc

T = Tc

T < Tc

−m0

+m0

Fig. 5.8 Magnetization vs. magnetic field: For T < Tc there is spontaneous mag-
netization: limB↓0m(β,B) = +m0 and limB↑0m(β,B) = −m0, and so there is a
discontinuity at B = 0.

tion here. Even after removing the magnetic field, the system remains

magnetized to the level of m0, depending on the direction (the sign) of

B before its removal. Obviously, the magnetization m(β,B) has a dis-

continuity at B = 0 for T < Tc, which is a first order phase transition
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w.r.t. B (see Fig. 5.8). We note that the point T = Tc is the boundary

between the region of existence and the region of non–existence of a

phase transition w.r.t. B. Such a point is called a critical point. The

phase transition w.r.t. β is of the second order.

Finally, we should mention here an alternative technique that can

be used to analyze this model, which is based on the Hubbard–

Stratonovich transform and the saddle point method. Specifically, we

have the following chain of equalities:

Z(h,K) =
∑

s

exp







h
N
∑

i=1

si +
K

2N

(

N
∑

i=1

si

)2






h
∆
= βB, K

∆
= βJ

=
∑

s

exp

{

h

N
∑

i=1

si

}

· exp







K

2N

(

N
∑

i=1

si

)2






=
∑

s

exp

{

h

N
∑

i=1

si

}

·
√

N

2πK

∫

IR
dz exp

{

−Nz
2

2K
+ z ·

N
∑

i=1

si

}

=

√

N

2πK

∫

IR
dze−Nz

2/(2K)
∑

s

exp

{

(h+ z)
N
∑

i=1

si

}

=

√

N

2πK

∫

IR
dze−Nz

2/(2K)

[

1
∑

s=−1

e(h+z)s

]N

=

√

N

2πK

∫

IR
dze−Nz

2/(2K)[2 cosh(h+ z)]N

= 2N ·
√

N

2πK

∫

IR
dz exp{N [ln cosh(h+ z) − z2/(2K)]}

(5.61)

Using the the saddle point method (or the Laplace method), this inte-

gral is dominated by the maximum of the function in the square brack-

ets at the exponent of the integrand, or equivalently, the minimum of

the function

γ(z) =
z2

2K
− ln cosh(h+ z). (5.62)

by equating its derivative to zero, we get the very same equation as m =

tanh(βB + βJm) by setting z = βJm. The function γ(z) is different
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from the function ψ that we maximized earlier, but the extremum is

the same. This function is called the Landau free energy.

5.7 Spin Glasses and Random Code Ensembles

So far we discussed only models where the non–zero coupling coeffi-

cients, J = {Jij} are equal, thus they are either all positive (ferromag-

netic models) or all negative (antiferromagnetic models). As mentioned

earlier, there are also models where the signs of these coefficients are

mixed, which are called spin glass models.

Spin glass models have a much more complicated and more inter-

esting behavior than ferromagnets, because there might be metastable

states due to the fact that not necessarily all spin pairs {(si, sj)} can

be in their preferred mutual polarization. It might be the case that

some of these pairs are “frustrated.” In order to model situations of

amorphism and disorder in such systems, it is customary to model the

coupling coefficients as random variables.

Some models allow, in addition to the random coupling coefficients,

also random local fields, i.e., the term −B∑i si in the Hamiltonian, is

replaced by −∑iBisi, where {Bi} are random variables, similarly as

in the representation of P (s|y) pertaining to a coded communication

system, as discussed earlier, where {yi} play the role of local mag-

netic fields. The difference, however, is that here the {Bi} are normally

assumed i.i.d., whereas in the communication system model P (y) ex-

hibits memory (even if the channel is memoryless) due to memory in

P (s). Another difference is that in the physics model, the distribution

of {Bi} is assumed to be independent of temperature, whereas in cod-

ing, if we introduce a temperature parameter by exponentiating (i.e.,

Pβ(s|y) ∝ P β(s)P β(y|s)), the induced marginal of y will depend on

β.

In the following discussion, let us refer to the case where only the

coupling coefficients J are random variables (similar things can be said

in the more general case, discussed in the last paragraph). This model

with random parameters means that there are now two levels of ran-

domness:

• Randomness of the coupling coefficients J .
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• Randomness of the spin configuration s given J , according

to the Boltzmann distribution, i.e.,

P (s|J) =
exp

{

β
[

B
∑N

i=1 si +
∑

(i,j) Jijsisj

]}

Z(β,B|J)
. (5.63)

However, these two sets of random variables have a rather different

stature. The underlying setting is normally such that J is considered

to be randomly drawn once and for all, and then remain fixed, whereas

s keeps varying all the time (according to the dynamics of the system).

At any rate, the time scale along which s varies is much smaller than

that of J . Another difference is that J is normally not assumed to de-

pend on temperature, whereas s, of course, does. In the terminology of

physicists, s is considered an annealed random variable, whereas J is

considered a quenched random variable. Accordingly, there is a corre-

sponding distinction between annealed averages and quenched averages.

Actually, there is (or, more precisely, should be) a parallel distinc-

tion when we consider ensembles of randomly chosen codes in Informa-

tion Theory. When we talk about random coding, we normally think of

the randomly chosen code as being drawn once and for all, we do not

reselect it after each transmission (unless there are security reasons to

do so), and so, a random code should be thought of us a quenched en-

tity, whereas the source(s) and channel(s) are more naturally thought

of as annealed entities. Nonetheless, this is not what we usually do

in Information Theory. We normally take double expectations of some

performance measure w.r.t. both source/channel and the randomness

of the code, on the same footing.6 We will elaborate on this point later

on.

Returning to spin glass models, let is see what is exactly the dif-

ference between the quenched averaging and the annealed one. If we

examine, for instance, the free energy, or the log–partition function,

lnZ(β|J), this is now a random variable, of course, because it de-

pends on the random J . If we denote by 〈·〉J the expectation w.r.t.

the randomness of J , then quenched averaging means 〈lnZ(β|J)〉J
(with the motivation of the self–averaging property of the random

6 There are few exceptions to this rule, like the work of Barg and Forney [3].
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variable lnZ(β|J) in many cases), whereas annealed averaging means

ln〈Z(β|J)〉J . Normally, the relevant average is the quenched one, but

it is typically also much harder to calculate (and it is customary to

apply the replica method then). Clearly, the annealed average is never

smaller than the quenched one because of Jensen’s inequality, but they

sometimes coincide at high temperatures. The difference between them

is that in quenched averaging, the dominant realizations of J are the

typical ones, whereas in annealed averaging, this is not necessarily the

case. This follows from the following sketchy consideration. As for the

annealed average, we have:

〈Z(β|J〉 =
∑

J

P (J)Z(β|J)

≈
∑

α

Pr{J : Z(β|J)
·
= eNα} · eNα

≈
∑

α

e−NE(α) · eNα (assuming exponential probabilities)

·
= eN maxα[α−E(α)] (5.64)

which means that the annealed average is dominated by realizations of

the system with

lnZ(β|J)

N
≈ α∗ ∆

= arg max
α

[α− E(α)], (5.65)

which may differ from the typical value of α, which is

α = φ(β) ≡ lim
N→∞

1

N
〈lnZ(β|J)〉 . (5.66)

On the other hand, when it comes to quenched averaging, the random

variable lnZ(β|J) behaves linearly in N , and concentrates strongly

around the typical value Nφ(β), whereas other values are weighted by

(exponentially) decaying probabilities.

In the coded communication setting, there is a strong parallelism.

Here, there is a distinction between the exponent of the average error

probability, ln EPe(C) (annealed) and the average exponent of the error

probability E lnPe(C) (quenched), where Pe(C) is the error probability

of a randomly selected code C. Very similar things can be said here too.
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The literature on spin glasses includes many models for the ran-

domness of the coupling coefficients. We end this part by listing just a

few.

• The Edwards–Anderson (E–A) model, where {Jij} are non–

zero for nearest–neighbor pairs only (e.g., j = i ± 1 in one–

dimensional model). According to this model, these Jij ’s are

i.i.d. random variables, which are normally modeled to have

a zero–mean Gaussian pdf, or binary symmetric with levels

±J0. It is customary to work with a zero–mean distribution

if we have a pure spin glass in mind. If the mean is nonzero,

the model has either a ferromagnetic or an anti-ferromagnetic

bias, according to the sign of the mean.
• The Sherrington–Kirkpatrick (S–K) model, which is similar

to the E–A model, except that the support of {Jij} is ex-

tended to include all N(N−1)/2 pairs, and not only nearest–

neighbor pairs. This can be thought of as a stochastic version

of the C–W model in the sense that here too, there is no ge-

ometry, and every spin ‘talks’ to every other spin to the same

extent, but here the coefficients are random, as said.
• The p–spin model, which is similar to the S–K model, but

now the interaction term consists, not only of pairs, but also

triples, quadruples, and so on, up to cliques of size p, i.e.,

products si1si2 · · · sip , where (i1, . . . , ip) exhaust all possible

subsets of p spins out of N . Each such term has a Gaussian

coefficient Ji1,...,ip with an appropriate variance.

Considering the p–spin model, it turns out that if we look at the ex-

treme case of p → ∞ (taken after the thermodynamic limit N → ∞),

the resulting behavior turns out to be extremely erratic: all energy lev-

els {E(s)}s∈{−1,+1}N become i.i.d. Gaussian random variables. This is,

of course, a toy model, which has very little to do with reality (if any),

but it is surprisingly interesting and easy to work with. It is called

the random energy model (REM). We have already mentioned it as an

example on which we demonstrated the replica method. We are next

going to discuss it extensively because it turns out to be very relevant

for random coding models.





6

The Random Energy Model and Random Coding

In this chapter, we first focus on the REM and its properties, and then

relate it to random code ensembles. The first two sections are inspired

by the exposition in [80, Chapters 5 and 6], but with a slightly different

flavor and somewhat more detail.

6.1 REM Without a Magnetic Field

The REM was proposed by Derrida in the early eighties of the previous

century in a series of papers [22], [23], [24]. As mentioned at the end of

the previous chapter, the REM is inspired by the limit p → ∞ in the

p–spin model. More specifically, Derrida showed that the correlations

between the random energies of two configurations, s and s′, in the

p–spin model are given by

(

1

N

N
∑

i=1

sis
′
i

)p

, (6.1)

and since | 1
N

∑N
i=1 sis

′
i| < 1, these correlations vanish as p → ∞. This

has motivated Derrida to propose a model according to which the con-

figurational energies {E(s)}, in the absence of a magnetic field, are sim-
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ply i.i.d. zero–mean Gaussian random variables with a variance that

grows linearly with N (again, for reasons of extensivity). More con-

cretely, this variance is taken to be NJ2/2, where J is a constant pa-

rameter. This means that we actually forget that the spin array has any

structure of the kind that we have seen before, and we simply randomly

draw an independent Gaussian random variable E(s) ∼ N (0,NJ2/2)

(other distributions are also possible) for every configuration s. Thus,

the partition function Z(β) =
∑

s e
−βE(s) is a random variable as well,

of course.

This is a toy model that does not describe faithfully any realistic

physical system, but we will devote to it some considerable time, for

several reasons:

• It is simple and easy to analyze.
• In spite of its simplicity, it is rich enough to exhibit phase

transitions, and therefore it is interesting.
• Most importantly, it will prove very relevant to the analogy

with coded communication systems with randomly selected

codes.

As we shall see quite shortly, there is an intimate relationship between

phase transitions of the REM and phase transitions in the behavior

of coded communication systems, most notably, transitions between

reliable and unreliable communication, but others as well.

What is the basic idea that stands behind the analysis of the REM?

As said,

Z(β) =
∑

s

e−βE(s) (6.2)

where E(s) ∼ N (0, NJ2/2) are i.i.d. Consider the density of states

Ω(E), which is now a random variable: Ω(E)dE is the number of con-

figurations {s} whose randomly selected energy E(s) happens to fall

between E and E + dE, and of course,

Z(β) =

∫ +∞

−∞
dEΩ(E)e−βE . (6.3)

How does the random variable Ω(E)dE behave like? First, observe that,
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ignoring non–exponential factors:

Pr{E ≤ E(s) ≤ E + dE} ≈ f(E)dE
·
= e−E

2/(NJ2)dE, (6.4)

and so,

〈Ω(E)dE〉 ·
= 2N · e−E2/(NJ2) = exp

{

N

[

ln 2 −
(

E

NJ

)2
]}

. (6.5)

We have reached the pivotal point behind the analysis of the REM,

which is based on a fundamental principle that goes far beyond the

analysis of the first moment of Ω(E)dE. In fact, this principle is fre-

quently used in random coding arguments in information theory: Sup-

pose that we have eNA (A > 0, independent of N) independent events

{Ei}, each one with probability Pr{Ei} = e−NB (B > 0, independent of

N). What is the probability that at least one of the Ei’s would occur?

Intuitively, we expect that in order to see at least one or a few successes,

the number of experiments should be at least about 1/Pr{Ei} = eNB . If

A > B then this is the case. On the other hand, for A < B, the number

of trials is probably insufficient for seeing even one success. Indeed, a

more rigorous argument gives:

Pr







eNA
⋃

i=1

Ei







= 1 − Pr







eNA
⋂

i=1

Eci







= 1 −
(

1 − e−NB
)eNA

= 1 −
[

eln(1−e−NB)
]eNA

= 1 − exp{eNA ln(1 − e−NB)}
≈ 1 − exp{−eNAe−NB}
= 1 − exp{−eN(A−B)}

→
{

1 A > B

0 A < B
(6.6)

Now, to another question: For A > B, how many of the Ei’s would

occur in a typical realization of this set of experiments? The number

ΩN of ‘successes’ is given by
∑eNA

i=1 I{Ei}, namely, it is the sum of eNA
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i.i.d. binary random variables whose expectation is E{ΩN} = eN(A−B).

Therefore, its probability distribution concentrates very rapidly around

its mean. In fact, the events {ΩN ≥ eN(A−B+ǫ)} (ǫ > 0, independent of

N) and {ΩN ≤ eN(A−B−ǫ)} are large deviations events whose probabil-

ities decay exponentially in the number of experiments, eNA, and hence

double–exponentially in N .1 Thus, for A > B, the number of successes

is “almost deterministically” about eN(A−B).

Now, back to the REM: For E whose absolute value is less than

E0
∆
= NJ

√
ln 2 (6.7)

the exponential increase rate, A = ln 2, of the number 2N = eN ln 2 of

configurations (which is the number of independent trials in randomly

drawing energies {E(s)}) is faster than the exponential decay rate of

the probability, e−N [E/(nJ)]2) = e−N(ǫ/J)2 (i.e., B = (ǫ/J)2) that E(s)

would happen to fall around E. In other words, the number of these

trials is way larger than the reciprocal of this probability and in view

of the earlier discussion, the probability that

Ω(E)dE =
∑

s

I{E ≤ E(s) ≤ E + dE}. (6.8)

would deviate from its mean, which is exponentially exp{N [ln 2 −
(E/(NJ))2]}, by a multiplicative factor that falls out of the interval

[e−Nǫ, e+Nǫ], decays double–exponentially with N . In other words, we

argue that for −E0 < E < +E0, the event

e−Nǫ · exp

{

N

[

ln 2 −
(

E

NJ

)2
]}

≤ Ω(E)dE

≤ e+Nǫ · exp

{

N

[

ln 2 −
(

E

NJ

)2
]}

happens with probability that tends to unity in a double–exponential

rate. As discussed, −E0 < E < +E0 is exactly the condition for the

expression in the square brackets at the exponent [ln 2 − ( E
NJ )2] to be

positive, thus Ω(E)dE is exponentially large. On the other hand, if

1 This will be shown rigorously later on.



6.1. REM Without a Magnetic Field 159

|E| > E0, the number of trials 2N is way smaller than the reciprocal

of the probability of falling around E, and so, most of the chances are

that we will see no configurations at all with energy about E. In other

words, for these large values of |E|, Ω(E) = 0 for typical realizations

of the REM. It follows then that for such a typical realization,

Z(β) ≈
∫ +E0

−E0

〈dE · Ω(E)〉 e−βE

·
=

∫ +E0

−E0

dE · exp

{

N

[

ln 2 −
(

E

NJ

)2
]}

· e−βE

=

∫ +E0

−E0

dE · exp

{

N

[

ln 2 −
(

E

NJ

)2

− β ·
(

E

N

)

]}

= N ·
∫ +ǫ0

−ǫ0
dǫ · exp

{

N

[

ln 2 −
( ǫ

J

)2
− βǫ

]}

·
= exp

{

N · max
|ǫ|≤ǫ0

[

ln 2 −
( ǫ

J

)2
− βǫ

]}

, (6.9)

where we have defined ǫ = E/N and ǫ0 = E0/N , and where in the last

step we have used Laplace integration. The maximization problem at

the exponent is very simple: it is that of a quadratic function across

an interval. The solution is of either one of two types, depending on

whether the maximum is attained at a zero–derivative internal point

in (−ǫ0,+ǫ0) or at an edge-point. The choice between the two depends

on β. Specifically, we obtain the following:

φ(β) = lim
N→∞

lnZ(β)

N
=

{

ln 2 + β2J2

4 β ≤ βc
βJ

√
ln 2 β > βc

(6.10)

where βc = 2
J

√
ln 2. This dichotomy between two types of behav-

ior means a phase transition. The function φ(β) changes its behavior

abruptly at β = βc, from being quadratic in β to being linear in β

(see also Fig. 6.1, right part). The function φ is continuous (as always),

and so is its first derivative, but the second derivative is not. Thus, it

is a second order phase transition. Note that in the quadratic range,

this expression is precisely the same as we got using the replica method,

when we hypothesized that the dominant configuration is fully symmet-

ric and is given by Q = Im×m. Thus, the replica symmetric solution
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indeed gives the correct result in the high temperature regime, but the

low temperature regime seems to require symmetry breaking. What is

Σ(ǫ)

+ǫ0−ǫ0 ǫ

Σ(ǫ) = ln 2 −
“

ǫ
J

”2

φ(β) = βJ
√

ln 2

φ(β) = ln 2 + β2J2

4

φ(β)

β

βc

Fig. 6.1 The entropy function and the normalized log–partition function of the REM.

the significance of each one of these phases? Let us begin with the sec-

ond line of the above expression of φ(β), which is φ(β) = βJ
√

ln 2 ≡ βǫ0
for β > βc. What is the meaning of linear dependency of φ in β? Recall

that the entropy Σ is given by

Σ(β) = φ(β) − β · φ′(β), (6.11)

which in the case where φ is linear, simply vanishes. Zero entropy means

that the partition function is dominated by a subexponential number of

ground–state configurations (with per–particle energy about ǫ0), just

like when it is frozen (see also Fig. 6.1, left part: Σ(−ǫ0) = 0). For this

reason, we refer to this phase as the frozen phase or the glassy phase.2 In

the high–temperature range, on the other hand, the entropy is strictly

positive and the dominant per–particle energy level is ǫ∗ = −1
2βJ

2,

which is the point of zero–derivative of the function [ln 2− (ǫ/J)2−βǫ].
Here the partition is dominated by exponentially many configurations

whose energy is E∗ = nǫ∗ = −N
2 βJ

2. As we shall see later on, in this

range, the behavior of the system is essentially paramagnetic (like in a

system of i.i.d. spins), and so it is called the paramagnetic phase.

2 In this phase, the system behaves like a glass: on the one hand, it is frozen (so it consoli-
dates), but on the other hand, it remains disordered and amorphous, like a liquid.



6.2. Random Code Ensembles and the REM 161

We therefore observe that the type of phase transition here is dif-

ferent from the Curie–Weiss model. Here, there is is no spontaneous

magnetization transition, but rather on a glass transition. In fact, we

will not see here a spontaneous magnetization even when a magnetic

field is applied (see Sect. 7.1).

From φ(β), one can go ahead and calculate other physical quantities,

but we will not do this now. As a final note in this context, it should

be emphasized that since the calculation of Z was carried out for the

typical realizations of the quenched random variables {E(s)}, we have

actually calculated the quenched average of limN→∞(lnZ)/N . As for

the annealed average, we have

lim
N→∞

ln〈Z(β)〉
N

= lim
N→∞

1

N
ln

[∫

IR
〈Ω(E)dǫ〉e−βNǫ

]

= lim
N→∞

1

N
ln

[
∫

IR
exp

{

N

[

ln 2 −
( ǫ

J

)2
− βǫ

]}]

= max
ǫ∈IR

[

ln 2 −
( ǫ

J

)2
− βǫ

]

= ln 2 +
β2J2

4
, (6.12)

which is the paramagnetic expression, without any phase transition

since the maximization over ǫ is not constrained. This demonstrates the

point that the annealed approximation is fine for high temperatures,

but probably not for low temperatures, and it may fail to detect phase

transitions.

6.2 Random Code Ensembles and the REM

Let us now see how does the REM relate to random code ensembles.

This relationship was first observed in [82], but it is presented more

comprehensively in [80]. The discussion in this section is based on [80],

as well as on [69], but with more emphasis on the error exponent anal-

ysis technique that stems from this relation to the REM, which will be

outlined in Section 6.3. Other relevant references, in this context, are

[3] and [33].

Consider a discrete memoryless channel (DMC), defined by the con-
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ditional probability distribution

P (y|x) =
n
∏

i=1

p(yi|xi), (6.13)

where the input n–vector x = (x1, . . . , xn) belongs to a codebook C =

{x1,x2, . . . ,xM}, M = enR, with uniform priors, and where R is the

coding rate in nats per channel use. The induced posterior, for x ∈ C,

is then:

P (x|y) =
P (y|x)

∑

x′∈C P (y|x′)

=
e− ln[1/P (y|x)]

∑

x′∈C e
− ln[1/P (y|x′)]

. (6.14)

Here, the second line is deliberately written in a form that resembles

the Boltzmann distribution, which naturally suggests to consider, more

generally, the posterior distribution parametrized by β, that is

Pβ(x|y) =
P β(y|x)

∑

x′∈C P
β(y|x′)

=
e−β ln[1/P (y|x)]

∑

x′∈C e
−β ln[1/P (y|x′)]

∆
=
e−β ln[1/P (y|x)]

Z(β|y)
(6.15)

There are a few motivations for introducing the temperature parameter:

• It allows a degree of freedom in case there is some uncertainty

regarding the channel noise level (small β corresponds to high

noise level).
• It is inspired by the ideas behind simulated annealing tech-

niques: by sampling from Pβ while gradually increasing β

(cooling the system), the minima of the energy function

(ground states) can be found.
• By applying symbol-wise maximum a-posteriori (MAP)

decoding, i.e., decoding the ℓ–th symbol of x as

arg maxa Pβ(xℓ = a|y), where

Pβ(xℓ = a|y) =
∑

x∈C: xℓ=a

Pβ(x|y), (6.16)
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we obtain a family of finite–temperature decoders (originally

proposed by Ruján [102]) parametrized by β, where β =

1 corresponds to minimum symbol error probability (with

respect to the real underlying channel P (y|x)) and β → ∞
corresponds to minimum block error probability.

• This is one of our main motivations: the corresponding parti-

tion function, Z(β|y), namely, the sum of (conditional) prob-

abilities raised to some power β, is an expression frequently

encountered in Rényi information measures as well as in the

analysis of random coding exponents using Gallager’s tech-

niques. Since the partition function plays a key role in statis-

tical mechanics, as many physical quantities can be derived

from it, then it is natural to ask if it can also be used to

gain some insights regarding the behavior of random codes

at various temperatures and coding rates.

For the sake of simplicity, let us suppose further now that we are

dealing with the binary symmetric channel (BSC) with crossover prob-

ability p, and so,

P (y|x) = pd(x,y)(1 − p)n−d(x,y) = (1 − p)ne−Jd(x,y), (6.17)

where J = ln 1−p
p and d(x,y) is the Hamming distance. Thus, the

partition function can be presented as follows:

Z(β|y) = (1 − p)βn
∑

x∈C
e−βJd(x,y). (6.18)

Now consider the fact that the codebook C is selected at random:

Every codeword is randomly chosen independently of all other code-

words. At this point, the analogy to the REM, and hence also its rel-

evance, become apparent: If each codeword is selected independently,

then the ‘energies’ {Jd(x,y)} pertaining to the partition function

Z(β|y) = (1 − p)βn
∑

x∈C
e−βJd(x,y), (6.19)

(or, in the case of a more general channel, the energies {− ln[1/P (y|x)]}
pertaining to the partition function Z(β|y) =

∑

x∈C e
−β ln[1/P (y|x)]),
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are i.i.d. random variables for all codewords in C, with the exception of

the codeword x0 that was actually transmitted and generated y.3 Since

we have seen phase transitions in the REM, it is conceivable to expect

them also in the statistical physics of the random code ensemble, and

indeed we will see them shortly.

Further, we assume that each symbol of each codeword is drawn by

fair coin tossing, i.e., independently and with equal probabilities for ‘0’

and ‘1’. As said, we have to distinguish now between the contribution

of the correct codeword x0, which is

Zc(β|y)
∆
= (1 − p)βne−Jd(x0,y) (6.20)

and the contribution of all other (incorrect) codewords:

Ze(β|y)
∆
= (1 − p)βn

∑

x∈C\{x0}
e−Jd(x,y). (6.21)

Concerning the former, things are very simple: Typically, the channel

flips about np bits out the n transmissions, which means that with

high probability, d(x0,y) is about np, and so Zc(β|y) is expected to

take values around (1 − p)βne−βJnp. The more complicated and more

interesting question is how does Ze(β|y) behave, and here the treatment

will be very similar to that of the REM.

Given y, define Ωy(d) as the number of incorrect codewords whose

Hamming distance from y is exactly d. Thus,

Ze(β|y) = (1 − p)βn
n
∑

d=0

Ωy(d) · e−βJd. (6.22)

Just like in the REM, here too the enumerator Ωy(d) is the sum of an

exponential number, enR, of binary i.i.d. random variables:

Ωy(d) =
∑

x∈C\{x0}
I{d(x,y) = d}. (6.23)

According to the method of types, the probability of a single ‘success’

{d(X ,y) = nδ} is given by

Pr{d(X ,y) = nδ} ·
=
enh2(δ)

2n
= exp{−n[ln 2 − h2(δ)]}. (6.24)

3 This one is still independent, but it has a different distribution, and hence will be handled
separately.
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Thus, as in the REM, we have an exponential number of trials,

enR, each one with an exponentially decaying probability of success,

e−n[ln 2−h2(δ)]. We already know how does this experiment behave: It

depends which exponent is faster. If R > ln 2− h2(δ), we will typically

see about exp{n[R+ h2(δ) − ln 2]} codewords at distance d = nδ from

y. Otherwise, we see none. So the critical value of δ is the solution to

the equation

R+ h2(δ) − ln 2 = 0. (6.25)

There are two solutions to this equation, which are symmetric about

1/2. The smaller one is called the Gilbert–Varshamov (G–V) distance4

and it will be denoted by δGV (R) (see Fig. 6.2). The other solution

is, of course, δ = 1 − δGV (R). Thus, the condition R > ln 2 − h2(δ) is

δ0.5δGV (R)

ln 2 −R

ln 2

1

Fig. 6.2 The Gilbert–Varshamov distance as the smaller solution to the equation
R+ h2(δ) − ln 2 = 0.

equivalent to δGV (R) < δ < 1 − δGV (R), and so, for a typical code in

the ensemble:

Ze(β|y) ≈ (1 − p)βn
1−δGV (R)
∑

δ=δGV (R)

exp{n[R+ h2(δ) − ln 2]} · e−βJnδ

= (1 − p)βnen(R−ln 2) ·
1−δGV (R)
∑

δ=δGV (R)

exp{n[h2(δ) − βJδ]}

4 The G–V distance was originally defined and used in coding theory for the BSC.
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= (1 − p)βnen(R−ln 2)×

exp

{

n · max
δGV (R)≤δ≤1−δGV (R)

[h2(δ) − βJδ]

}

. (6.26)

Now, similarly as in the REM, we have to maximize a certain function

within a limited interval. And again, there are two phases, correspond-

ing to whether the maximizer falls at an edge–point (glassy phase) or

at an internal point with zero derivative (paramagnetic phase). It is

easy to show that in the paramagnetic phase, the maximum is attained

at

δ∗ = pβ
∆
=

pβ

pβ + (1 − p)β
(6.27)

and then

φ(β) = R− ln 2 + ln[pβ + (1 − p)β]. (6.28)

In the glassy phase, δ∗ = δGV (R) and then

φ(β) = β[δGV (R) ln p+ (1 − δGV (R)) ln(1 − p)], (6.29)

which is again, linear in β and hence corresponds to zero entropy. The

boundary between the two phases occurs when β is such that δGV (R) =

pβ, which is equivalent to

β = βc(R)
∆
=

ln[(1 − δGV (R))/δGV (R)]

ln[(1 − p)/p]
. (6.30)

Thus, β < βc(R) is the paramagnetic phase of Ze and β > βc(R) is its

glassy phase.

But now we should remember that Ze is only part of the partition

function and it is now the time to put the contribution of Zc back

into the picture. Checking the dominant contribution of Z = Ze + Zc
as a function of β and R, we can draw a phase diagram, where we

find that there are actually three phases, two contributed by Ze, as

we have already seen (paramagnetic and glassy), plus a third phase

– contributed by Zc, namely, the ordered or the ferromagnetic phase,

where Zc dominates (cf. Fig. 6.3), which means reliable communication,

as the correct codeword x0 dominates the partition function and hence

the posterior distribution. The boundaries of the ferromagnetic phase

designate phase transitions from reliable to unreliable decoding.
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T = 1/β
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T = Tc(R)

T = T0(R)

C

Fig. 6.3 Phase diagram of the finite–temperature MAP decoder.

Both the glassy phase and the paramagnetic phase correspond to

unreliable communication. What is the essential difference between

them? As in the REM, the difference is that in the glassy phase, Z is

dominated by a subexponential number of codewords at the ‘ground–

state energy’, namely, that minimum seen distance of nδGV (R), whereas

in the paramagnetic phase, the dominant contribution comes from an

exponential number of codewords at distance npβ. In the glassy phase,

there is seemingly a smaller degree of uncertainty since H(X|Y ) that

is induced from the finite–temperature posterior has zero entropy. But

this is fictitious since the main support of the posterior belongs to in-

correct codewords. This is to say that we may have the illusion that we

know quite a lot about the transmitted codeword, but what we know

is wrong! This is like an event of an undetected error. In both glassy

and paramagnetic phases, above capacity, the ranking of the correct

codeword, in the list of decreasing Pβ(x|y), is about en(R−C).

6.3 Random Coding Exponents

It turns out that these findings are relevant to ensemble performance

analysis of codes. This is because many of the bounds on code perfor-

mance include summations of P β(y|x) (for some β), which are exactly

the partition functions that we worked with in the derivations of the

previous subsection. These considerations can sometimes even help to
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get tighter bounds. We will first demonstrate this point in the context

of the analysis of the probability of correct decoding above capacity.

We begin with the following well known expression of the probability

of correct decoding:

Pc =
1

M

∑

y

max
x∈C

P (y|x)

= lim
β→∞

1

M

∑

y

[

∑

x∈C
P β(y|x)

]1/β

(6.31)

The expression in the square brackets is readily identified with the

partition function, and we note that the combination ofR > C and β →
∞ takes us deep into the glassy phase. Taking the ensemble average,

we get:

P̄c = lim
β→∞

1

M

∑

y

E







[

∑

x∈C
P β(y|x)

]1/β






. (6.32)

At this point, the traditional approach would be to insert the expec-

tation into the square brackets by applying Jensen’s inequality (for

β > 1), which would give us an upper bound. Instead, our previous

treatment of random code ensembles as a REM–like model can give us

a hand on exponentially tight evaluation of the last expression, with

Jensen’s inequality being avoided. Consider the following chain:

E







[

∑

x∈C
P β(y|x)

]1/β






= (1 − p)nE







[

n
∑

d=0

Ωy(d)e−βJd
]1/β







·
= (1 − p)nE

{

[

max
0≤d≤n

Ωy(d)e−βJd
]1/β

}

= (1 − p)nE

{

max
0≤d≤n

[Ωy(d)]1/β · e−Jd
}

·
= (1 − p)nE

{

n
∑

d=0

[Ωy(d)]1/β · e−Jd
}

= (1 − p)n
n
∑

d=0

E
{

[Ωy(d)]1/β
}

· e−Jd



6.3. Random Coding Exponents 169

·
= (1 − p)n max

0≤d≤n
E
{

[Ωy(d)]1/β
}

· e−Jd

Thus, it boils down to the calculation of (non–integer) moments of

Ωy(d). At this point, we adopt the main ideas of the treatment of the

REM, distinguishing between the values of δ below the G–V distance,

and those that are above it. Before we actually assess the moments

of Ωy(d), we take a closer look at the asymptotic behavior of these

random variables. This will also rigorize our earlier discussion on the

Gaussian REM.

For two numbers a and b in [0, 1], let us define the binary divergence

as

D(a‖b) = a ln
a

b
+ (1 − a) ln

1 − a

1 − b
. (6.33)

Using the inequality

ln(1 + x) = − ln

(

1 − x

1 + x

)

≥ x

1 + x
,

we get the following lower bound to D(a‖b):

D(a‖b) = a ln
a

b
+ (1 − a) ln

1 − a

1 − b

= a ln
a

b
+ (1 − a) ln

(

1 +
b− a

1 − b

)

≥ a ln
a

b
+ (1 − a) · (b− a)/(1 − b)

1 + (b− a)/(1 − b)

= a ln
a

b
+ b− a

> a
(

ln
a

b
− 1
)

Now, as mentioned earlier, Ωy(d) is the sum of enR i.i.d. binary random

variables, i.e., Bernoulli random variables with parameter e−n[ln 2−h2(δ)].

Consider the event Ωy(d) ≥ enA, A ≥ 0, which means that the relative

frequency of ‘successes’ exceeds enA

enR = e−n(R−A). Then this is a large

deviations event if e−n(R−A) > e−n[ln 2−h2(δ)], that is,

A > R+ h2(δ) − ln 2. (6.34)
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Using the Chernoff bound,5 one can easily show that

Pr{Ωy(d) ≥ enA} ≤ exp{−enRD(e−n(R−A)‖e−n[ln 2−h2(δ)])}. (6.35)

Now, by applying the above lower bound to the binary divergence, we

can further upper bound the last expression as

Pr{Ωy(d) ≥ enA} ≤ exp{−enR · e−n(R−A)×
(n[ln 2 −R− h2(δ) +A] − 1)}
= exp{−enA · (n[ln 2 −R− h2(δ) +A] − 1)}

Now, suppose first that δGV (R) < δ < 1 − δGV (R), and take A =

R+ h2(δ) − ln 2 + ǫ, where ǫ > 0 may not necessarily be small. In this

case, the term in the square brackets is ǫ, which means that the right–

most side decays doubly–exponentially rapidly. Thus, for δGV (R) < δ <

1− δGV (R), the probability that Ωy(d) exceeds E{Ωy(d)} · enǫ decays

double–exponentially fast with n. One can show in a similar manner6

that Pr{Ωy(d) < E{Ωy(d)}·e−nǫ} decays in a double exponential rate

as well. Finally, consider the case where δ < δGV (R) or δ > 1−δGV (R),

and let A = 0. This is also a large deviations event, and hence the above

bound continues to be valid. Here, by setting A = 0, we get an ordinary

exponential decay:

Pr{Ωy(d) ≥ 1}
·
≤ e−n[ln 2−R−h2(δ)]. (6.36)

After having prepared these results, let us get back to the evaluation

of the moments of Ωy(d). Once again, we separate between the two

ranges of δ. For δ < δGV (R) or δ > 1− δGV (R), we have the following:

E{[Ωy(d)]1/β} ·
= 01/β · Pr{Ωy(d) = 0} + en·0/β · Pr{1 ≤ Ωy(d) ≤ enǫ}
+ double–exponentially small terms
·
= en·0/β · Pr{Ωy(d) ≥ 1}
·
= e−n[ln 2−R−h2(δ)] (6.37)

5 We emphasize the use of the Chernoff bound, as opposed to the method of types, since
the method of types would introduce the factor of the number of type classes, which is in
this case (enR + 1).

6 This requires a slightly different lower bound to the binary divergence.
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Thus, in this range, E{[Ωy(d)]1/β} ·
= e−n[ln 2−R−h2(δ)] independently

of β. On the other hand in the range δGV (R) < δ < 1 − δGV (R),

E{[Ωy(d)]1/β} ·
= (en[R+h2(δ)−ln 2])1/β×
Pr{en[R+h2(δ)−ln 2−ǫ] ≤ Ωy(d) ≤ en[R+h2(δ)−ln 2+ǫ]}+
+ double–exponentially small terms
·
= en[R+h2(δ)−ln 2]/β (6.38)

since the probability Pr{en[R+h2(δ)−ln 2−ǫ] ≤ Ωy(d) ≤ en[R+h2(δ)−ln 2+ǫ]}
tends to unity double–exponentially rapidly. So to summarize, we have

shown that the moment of Ωy(d) undergoes a phase transition, as it

behaves as follows:

E{[Ωy(d)]1/β} ·
=

{

en[R+h2(δ)−ln 2] δ < δGV (R) or δ > 1 − δGV (R)

en[R+h2(δ)−ln 2]/β δGV (R) < δ < 1 − δGV (R)

Finally, on substituting these moments back into the expression of

P̄c, and taking the limit β → ∞, we eventually get:

lim
β→∞

E







[

∑

x∈C
P β(y|x)

]1/β






·
= e−nFg (6.39)

where Fg is the free energy of the glassy phase, i.e.,

Fg = δGV (R) ln
1

p
+ (1 − δGV (R)) ln

1

1 − p
(6.40)

and so, we obtain a very simple relation between the exponent of P̄c
and the free energy of the glassy phase:

P̄c
·
=

1

M

∑

y

e−nFg

= exp{n(ln 2 −R− Fg)}
= exp{n[ln 2 −R+ δGV (R) ln p+ (1 − δGV (R)) ln(1 − p)]}
= exp{n[h2(δGV (R)) + δGV (R) ln p+ (1 − δGV (R)) ln(1 − p)]}
= e−nD(δGV (R)‖p) (6.41)

The last expression has an intuitive interpretation. It answers the fol-

lowing question: what is the probability that the channel would flip less
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than nδGV (R) bits although p > δGV (R)? This is exactly the relevant

question for correct decoding in the glassy phase, because in that phase,

there is a “belt” of codewords “surrounding” y at radius nδGV (R) –

these are the codewords that dominate the partition function in the

glassy phase and there are no codewords closer to y. The event of

correct decoding happens if the channel flips less than nδGV (R) bits

and then x0 is closer to y more than all belt–codewords. Thus, x0 is

decoded correctly.

One can also derive an upper bound on the error probability at

R < C. The partition function Z(β|y) plays a role there too according

to Gallager’s classical bounds. We will not delve now into it, but we

only comment that in that case, the calculation is performed in the

paramagnetic regime rather than the glassy regime that we have seen

in the calculation of P̄c. The basic technique, however, is essentially the

same.

We will now demonstrate the usefulness of this technique of assess-

ing moments of distance enumerators in a certain problem of decoding

with an erasure option. Consider the BSC with a crossover probability

p < 1/2, which is unknown and one employs a universal detector that

operates according to the following decision rule: Select the message m

if
e−nβĥ(xm⊕y)

∑

m′ 6=m e
−nβĥ(xm′⊕y)

≥ enT (6.42)

where β > 0 is an inverse temperature parameter and ĥ(x ⊕ y) is the

binary entropy pertaining to the relative number of 1’s in the vector

resulting from bit–by–bit XOR of x and y, namely, the binary entropy

function computed at the normalized Hamming distance between x

and y. If no message m satisfies (6.42), then an erasure is declared.

We have no optimality claims regarding this decision rule, but ar-

guably, it is a reasonable decision rule (and hence there is motivation

to analyze its performance): It is a universal version of the optimum

decision rule:

Decide m if
P (y|xm)

∑

m′ 6=m P (y|xm′)
≥ enT and erase otherwise. (6.43)

The minimization of ĥ(xm ⊕ y) among all code-vectors {xm}, namely,
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the minimum conditional entropy decoder is a well–known universal

decoding rule in the ordinary decoding regime, without erasures, which

in the simple case of the BSC, is equivalent to the maximum mutual

information (MMI) decoder [16] and to the generalized likelihood ratio

test (GLRT) decoder, which jointly maximizes the likelihood over both

the message and the unknown parameter.

Here, we adapt the minimum conditional entropy decoder to the

structure proposed by the optimum decoder with erasures, where the

(unknown) likelihood of each codeword xm is basically replaced by

its maximum e−nĥ(xm⊕y), but with an additional degree of freedom

of scaling the exponent by β. The parameter β controls the relative

importance of the codeword with the second highest score. For example,

when β → ∞,7 only the first and the second highest scores count in

the decision, whereas if β → 0, the differences between the scores of all

codewords are washed out.

To demonstrate the advantage of the proposed analysis technique,

we will now apply it in comparison to the traditional approach of using

Jensen’s inequality and supplementing an additional parameter ρ in the

bound so as to monitor the loss of tightness due to the use of Jensen’s

inequality (see also [78]). Let us analyze the probability of the event

E1 that the transmitted codeword xm does not satisfy (6.42). We then

have the following chain of inequalities, where the first few steps are

common to the two analysis methods to be compared:

Pr{E1} =
1

M

M
∑

m=1

∑

y

P (y|xm) · 1
{

enT
∑

m′ 6=m e
−nβĥ(xm′⊕y)

e−nβĥ(xm⊕y)
≥ 1

}

≤ 1

M

M
∑

m=1

∑

y

P (y|xm) ·
[

enT
∑

m′ 6=m e
−nβĥ(xm′⊕y)

e−nβĥ(xm⊕y)

]s

=
ensT

M

M
∑

m=1

∑

y

P (y|xm) · enβsĥ(xm⊕y)×




∑

m′ 6=m
e−nβĥ(xm′⊕y)





s

. (6.44)

7 As β varies it is plausible to let T scale linearly with β.
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Considering now the ensemble of codewords drawn independently by

fair coin tossing, we have:

Pr{E1} ≤ ensT
∑

y

E
{

P (y|X1) · exp[nβsĥ(X1 ⊕ y)]
}

×

E

{[

∑

m>1

exp[−nβĥ(Xm ⊕ y)]

]s}

∆
= ensT

∑

y

A(y) ·B(y) (6.45)

The computation of A(y) is as follows: Denoting the Hamming weight

of a binary sequence z by w(z), we have:

A(y) =
∑

x

2−n(1 − p)n ·
(

p

1 − p

)w(x⊕y)

exp[nβsĥ(x ⊕ y)]

=

(

1 − p

2

)n
∑

z

exp

[

n

(

w(z) ln
p

1 − p
+ βsĥ(z)

)]

·
=

(

1 − p

2

)n
∑

δ

enh(δ) · exp

[

n

(

βsh(δ) − δ ln
1 − p

p

)]

·
=

(

1 − p

2

)n

exp

[

nmax
δ

(

(1 + βs)h(δ) − δ ln
1 − p

p

)]

.

It is readily seen by ordinary optimization that

max
δ

[

(1 + βs)h(δ) − δ ln
1 − p

p

]

= (1 + βs) ln
[

p1/(1+βs) + (1 − p)1/(1+βs)
]

− ln(1 − p) (6.46)

and so upon substituting back into the the bound on Pr{E1}, we get:

Pr{E1} ≤ exp [n (sT + (1 + βs)×
ln
[

p1/(1+βs) + (1 − p)1/(1+βs)
]

− ln 2
)]

·
∑

y

B(y). (6.47)

It remains then to assess the exponential order of B(y) and this will

now be done in two different ways. The first is Forney’s way [32] of
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using Jensen’s inequality and introducing the additional parameter ρ,

i.e.,

B(y) = E











[

∑

m>1

exp[−nβĥ(Xm ⊕ y)

]s/ρ




ρ




≤ E

{(

∑

m>1

exp[−nβsĥ(Xm ⊕ y)/ρ]

)ρ}

0 ≤ s/ρ ≤ 1

≤ enρR
(

E
{

exp[−nβsĥ(Xm ⊕ y)/ρ]
})ρ

, ρ ≤ 1 (6.48)

where in the second line we have used the following inequality8 for

non–negative {ai} and θ ∈ [0, 1]:

(

∑

i

ai

)θ

≤
∑

i

aθi . (6.49)

Now,

E
{

exp[−nβsĥ(Xm ⊕ y)/ρ]
}

= 2−n
∑

z

exp[−nβsĥ(z)/ρ]

·
= 2−n

∑

δ

enh(δ) · e−nβsh(δ)/ρ

= exp[n([1 − βs/ρ]+ − 1) ln 2],

where [u]+
∆
= max{u, 0}. Thus, we get

B(y) ≤ exp(n[ρ(R− ln 2) + [ρ− βs]+]), (6.50)

which when substituted back into the bound on Pr{E1}, yields an ex-

ponential rate of

Ẽ1(R,T ) = max
0≤s≤ρ≤1

{(ρ− [ρ− βs]+) ln 2−

8 To see why this is true, think of pi = ai/(
P

i ai) as probabilities, and then pθ
i ≥ pi, which

implies
P

i p
θ
i ≥ P

i pi = 1. The idea behind the introduction of the new parameter ρ is
to monitor the possible loss of exponential tightness due to the use of Jensen’s inequality.
If ρ = 1, there is no loss at all due to Jensen, but there is maximum loss in the second
line of the chain. If ρ = s, it is the other way around. Hopefully, after optimization over
ρ, the overall loss in tightness is minimized.
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−(1 + βs) ln
[

p1/(1+βs) + (1 − p)1/(1+βs)
]

− ρR− sT
}

.

On the other hand, estimating B(y) by the new method, we have:

B(y) = E

{[

∑

m>1

exp[−nβĥ(Xm ⊕ y)]

]s}

= E

{[

∑

δ

Ωy(nδ) exp[−nβh(δ)]
]s}

·
=
∑

δ

E{Ωs
y(nδ)} · exp(−nβsh(δ))

·
=
∑

δ∈Gc
R

en[R+h(δ)−ln 2] · exp[−nβsh(δ)]+

∑

δ∈GR

ens[R+h(δ)−ln 2] · exp[−nβsh(δ)]

∆
= U + V, (6.51)

where GR = {δ : δGV (R) ≤ δ ≤ 1 − δGV (R)}. Now, U is dominated

by the term δ = 0 if βs > 1 and δ = δGV (R) if βs < 1. It is then

easy to see that U
·
= exp[−n(ln 2 −R)(1 − [1 − βs]+)]. Similarly, V is

dominated by the term δ = 1/2 if β < 1 and δ = δGV (R) if β ≥ 1.

Thus, V
·
= exp[−ns(β[ln 2 −R] −R[1 − β]+)]. Therefore, defining

φ(R,β, s) = min{(ln 2−R)(1− [1− βs]+), s(β[ln 2−R]−R[1− β]+)},

the resulting exponent is

Ê1(R,T ) = max
s≥0

{φ(R,β, s) − (1 + βs)×

ln
[

p1/(1+βs) + (1 − p)1/(1+βs)
]

− sT
}

. (6.52)

Numerical comparisons show that while there are many quadru-

ples (p, β,R, T ) for which the two exponents coincide, there are also

situations where Ê1(R,T ) exceeds Ẽ1(R,T ). To demonstrate these sit-

uations, consider the values p = 0.1, β = 0.5, T = 0.001, and let R

vary in steps of 0.01. Table 1 summarizes numerical values of both ex-

ponents, where the optimizations over ρ and s were conducted by an

exhaustive search with a step size of 0.005 in each parameter. In the
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R = 0.00 R = 0.01 R = 0.02 R = 0.03 R = 0.04

Ẽ1(R,T ) 0.1390 0.1290 0.1190 0.1090 0.0990

Ê1(R,T ) 0.2211 0.2027 0.1838 0.1642 0.1441

Table 6.1 Numerical values of Ẽ1(R, T ) and Ê1(R, T ) as functions of R for p = 0.1, β = 0.5,
and T = 0.001.

case of Ê1(R,T ), where s ≥ 0 is not limited to the interval [0, 1] (since

Jensen’s inequality is not used), the numerical search over s was limited

to the interval [0, 5].9

As can be seen (see also Fig. 6.4), the numerical values of the ex-

ponent Ê1(R,T ) are considerably larger than those of Ẽ1(R,T ) in this

example, which means that the analysis technique proposed here, not

only simplifies exponential error bounds, but sometimes leads also to

significantly tighter bounds.

There are other examples where these techniques are used in more

involved situations, and in some of them they yield better performance

bounds compared to traditional methods. These includes analysis of

error exponents for interference channels [31], broadcast channels [55],

and exact expressions for error exponents for decoding with erasures

[106].

Beside error exponents, these techniques were used successfully in

problems of signal estimation [79] and parameter estimation [77], where

threshold effects in the estimation problems were induced by phase

transitions in the analogous physical systems.

9 It is interesting to note that for some values of R, the optimum value s∗ of the parameter
s was indeed larger than 1. For example, at rate R = 0, we have s∗ = 2 in the above
search resolution.
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Fig. 6.4 Graphs of Ê1(R, T ) (solid line) and Ẽ1(R, T ) (dashed line) as functions of R for
p = 0.1, T = 0.001 and β = 0.5.



7

Extensions of the REM

In this chapter, we introduce a few extensions of the REM. The first

extension, discussed in Section 7.1, incorporates an external magnetic

field. In the realm of coded communication, the analogue of a magnetic

field turns out to be related to possible non–uniformity in the prob-

ability distribution of the input messages, namely, it corresponds to

joint source–channel coding. In Section 7.2, we discuss the generalized

REM (GREM), which introduces correlations between the energies of

the various configurations in an hierarchical structure. This will help

us to gain some insights on the behavior certain structures of hierarchi-

cal codes. It should be pointed out that the GREM was extended and

studied in probability theory under the name of “Ruelle probability

cascades,” first by Ruelle and then by Bolthausen and Sznitman (see,

e.g., [1] and references therein). Finally, in Section 7.3, this hierarchical

structure of the GREM will be pushed to the extreme of the largest

possible depth, leading to another customary model of disordered sys-

tem, called directed polymer in a random medium (DPRM), which has

an intimate relation to tree coding. The DPRM was already used earlier

in other information–theoretic studies, such as [81, Appendix B].

179
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7.1 REM Under Magnetic Field and Source–Channel Coding

We begin with the physics background of extending the analysis of the

REM so as to include an external magnetic field.

7.1.1 Magnetic Properties of the REM

Earlier, we studied the REM in the absence of an external magnetic

field. The Gaussian randomly drawn energies that we discussed were a

caricature of the interaction energies in the p–spin glass model for an

extremely large level of disorder, in the absence of a magnetic field.

As said, we now expand the analysis of the REM so as to incorporate

also an external magnetic field B. This will turn out to be relevant to

a more general communication setting, namely, that of joint source–

channel coding, where as we shall see, the possible skewedness of the

probability distribution of the source (when it is not symmetric) plays

a role that is analogous to that of a magnetic field.

The Hamiltonian in the presence of the magnetic field is

E(s) = −B
N
∑

i=1

si + EI(s) (7.1)

where EI(s) stands for the interaction energy, previously modeled to

be N (0, 1
2nJ

2) according to the REM. Thus, the partition function is

now

Z(β,B) =
∑

s

e−βE(s)

=
∑

s

e−βEI (s)+βB
PN

i=1 si

=
∑

s

e−βEI (s)+nβBm(s)

=
∑

m





∑

s: m(s)=m

e−βEI (s)



 · e+NβBm

∆
=
∑

m

Z0(β,m) · e+NβBm (7.2)
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where we have introduced the notation m(s) = 1
N

∑

i si and where

Z0(β,m) is defined to be the expression in the square brackets in the

second to the last line.1 Now, observe that Z0(β,m) is just like the

partition function of the REM without magnetic field, except that it

has a smaller number of configurations – only those with magnetiza-

tion m, namely, about exp{Nh2((1 +m)/2)} configurations. Thus, the

analysis of Z0(β,m) is precisely the same as in the REM except that

every occurrence of the term ln 2 should be replaced by h2((1 +m)/2).

Accordingly,

Z0(β,m)
·
= eNψ(β,m) (7.3)

with

ψ(β,m) = max
|ǫ|≤J

√
h2((1+m)/2)

[

h2

(

1 +m

2

)

−
( ǫ

J

)2
− βǫ

]

=







h2

(

1+m
2

)

+ β2J2

4 β ≤ βm
∆
= 2

J

√

h2

(

1+m
2

)

βJ
√

h2

(

1+m
2

)

β > βm

and from the above relation between Z and Z0, we readily have the

Legendre relation

φ(β,B) = max
m

[ψ(β,m) + βmB]. (7.4)

For small β (high temperature), the maximizing (dominant) m is at-

tained with zero–derivative:

∂

∂m

[

h2

(

1 +m

2

)

+
β2J2

4
+ βmB

]

= 0 (7.5)

that is
1

2
ln

1 −m

1 +m
+ βB = 0 (7.6)

which yields

m∗ = mp(β,B)
∆
= tanh(βB) (7.7)

1 Note that the relation between Z0(β,m) to Z(β,B) is similar to the relation between Ω(E)
of the microcanonical ensemble to Z(β) of the canonical one (a Legendre relation in the
log domain): we are replacing the fixed magnetization m, which is an extensive quantity,
by an intensive variable B that controls its average.
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which is exactly the paramagnetic characteristic of magnetization vs.

magnetic field (like that of i.i.d. spins), hence the name “paramagnetic

phase.” Thus, on substituting m∗ = tanh(βB) back into the expression

of φ, we get:

φ(β,B) = h2

(

1 + tanh(βB)

2

)

+
β2J2

4
+ βB tanh(βB). (7.8)

This solution is valid as long as the condition

β ≤ βm∗ =
2

J

√

h2

(

1 + tanh(βB)

2

)

(7.9)

holds, or equivalently, the condition

β2J2

4
≤ h2

(

1 + tanh(βB)

2

)

. (7.10)

Now, let us denote by βc(B) the solution β to the equation:

β2J2

4
= h2

(

1 + tanh(βB)

2

)

. (7.11)

As can be seen from the graphical illustration (Fig. 7.1), βc(B) is a

decreasing function and hence Tc(B)
∆
= 1/βc(B) is increasing. Thus,

the phase transition temperature is increasing with |B| (see Fig. 7.2).

Below β = βc(B), we are in the glassy phase, where φ is given by:

φ(β,B) = max
m

[

βJ

√

h2

(

1 +m

2

)

+ βmB

]

= β · max
m

[

J

√

h2

(

1 +m

2

)

+mB

]

(7.12)

thus, the maximizing m does not depend on β, only on B. On the

other hand, it should be the same solution that we get on the boundary

β = βc(B), and so, it must be:

m∗ = mg(B)
∆
= tanh(Bβc(B)). (7.13)

Thus, in summary

φ(β,B) =











h2

(

1+mp(β,B)
2

)

+ β2J2

4 + βBmp(β,B) β ≤ βc(B)

βJ

√

h2

(

1+mg(B)
2

)

+ βBmg(B) β > βc(B)
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ln 2

β

y = β2J2

4

B = 0

βc(0)βc(B2) βc(B1)

y = h2

“

1+tanh(βB1)
2

”

B2 > B1

y = h2

“

1+tanh(βB2)
2

”

Fig. 7.1 Graphical presentation of the solution βc(B) to the equation 1
4
β2J2 =

h2((1 + tanh(βB))/2) for various values of B.

paramagnetic

glassy

B

T

Tc(0) = J

2
√

ln 2

Fig. 7.2 Phase diagram in the B–T plane.

In both phases B → 0 implies m∗ → 0, therefore the REM does not

exhibit spontaneous magnetization, only a glass transition, as described

in the previous chapter.

Finally, we mention an important parameter in the physics of mag-

netic materials – the weak–field magnetic susceptibility, which is defined
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as χ
∆
= ∂m∗

∂B |B=0. It can readily be shown that in the REM case

χ =

{

1
T T ≥ Tc(0)

1
Tc(0)

T < Tc(0)
(7.14)

The graphical illustration of this function is depicted in Fig. 7.3. The

1/T behavior for high temperature is known as Curie’s law. As we heat

a magnetic material up, it becomes more and more difficult to magne-

tize. The fact that here χ has an upper limit of 1/Tc(0) follows from

the random interactions between spins, which make the magnetization

more difficult too.

χ

1
Tc(0)

Tc(0)
T

Fig. 7.3 Magnetic susceptibility vs. temperature for a typical realization of the REM.

7.1.2 Relation to Joint Source–Channel Coding

We now relate these derivations to the behavior of joint source–channel

coding systems. This subsection is a summary of the derivations and

the results of [68].

Consider again our coded communication system with a few slight

modifications (cf. Fig. 7.4). Instead of having enR equiprobable mes-

sages for channel coding, we are now in a joint source–channel coding

scenario, where the message probabilities are skewed by the source

probability distribution, which may not be symmetric. In particular,

we consider the following: Suppose we have a vector s ∈ {−1,+1}N
emitted from a binary memoryless source with symbol probabilities



7.1. REM Under Magnetic Field and Source–Channel Coding 185

q = Pr{Si = +1} = 1 − Pr{Si = −1}. The channel is still a BSC

with crossover p. For every N–tuple emitted by the source, the chan-

nel conveys n channel binary symbols, which are the components of a

codeword x ∈ {0, 1}n, such that the ratio θ = n/N , the bandwidth ex-

pansion factor, remains fixed. The mapping from s to x is the encoder.

As before, we shall concern ourselves with random codes, namely, for

every s ∈ {−1,+1}N , we randomly select an independent code-vector

x(s) ∈ {0, 1}n by fair coin tossing, as before. Thus, we randomly select

2N code-vectors, each one of length n = Nθ. As in the case of pure

encoder decoder
ŝy

P (y|x)
x(s)s

Fig. 7.4 Block diagram of joint source–channel communication system.

channel coding, we consider the finite–temperature posterior:

Pβ(s|y) =
[P (s)P (y|x(s))]β

Z(β|y)
(7.15)

with

Z(β|y) =
∑

s

[P (s)P (y|x(s))]β , (7.16)

corresponding to the finite–temperature decoder:

ŝi = arg max
s=±1

∑

s: si=s

[P (s)P (y|x(s))]β . (7.17)

Once again, we separate the contributions of

Zc(β|y) = [P (s0)P (y|x(s0))]
β , (7.18)

s0 being the true source message, and

Ze(β|y) =
∑

s 6=s0

[P (s)P (y|x(s))]β . (7.19)

As we shall see quite shortly, Ze behaves like the REM in a magnetic

field given by

B =
1

2
ln

q

1 − q
. (7.20)
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Accordingly, we will henceforth denote Ze(β) also by Ze(β,B), to em-

phasize the analogy to the REM in a magnetic field.

To see that Ze(β,B) behaves like the REM in a magnetic field,

consider the following: first, denote by N1(s) the number of +1’s in s,

so that the magnetization,

m(s)
∆
=

1

N

[

N
∑

i=1

1{si = +1} −
N
∑

i=1

1{si = −1}
]

, (7.21)

pertaining to spin configuration s, is given by

m(s) =
2N1(s)

N
− 1. (7.22)

Equivalently,

N1(s) =
N [1 +m(s)]

2
, (7.23)

and then

P (s) = qN1(s)(1 − q)N−N1(s)

= (1 − q)N
(

q

1 − q

)N(1+m(s))/2

= [q(1 − q)]N/2
(

q

1 − q

)Nm(s))/2

= [q(1 − q)]N/2eNm(s)B (7.24)

where B is defined as above. By the same token, for the binary sym-

metric channel we have:

P (y|x) = pdH(x,y)(1 − p)n−dH(x,y) = (1 − p)ne−JdH(x,y) (7.25)

where J = ln 1−p
p and dH(x,y) is the Hamming distance, as defined

earlier. Thus,

Ze(β,B) = [q(1 − q)]Nβ/2×
∑

m





∑

x(s): m(s)=m

e−β ln[1/P (y|x(s))]



 eNβmB

= [q(1 − q)]βN/2(1 − p)nβ×
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∑

m





∑

x(s): m(s)=m

e−βJdH(x(s),y)



 eβNmB

∆
= [q(1 − q)]Nβ/2(1 − p)nβ

∑

m

Z0(β,m|y)eβNmB (7.26)

The resemblance to the REM in a magnetic field is now self–evident.

In analogy to the above analysis of the REM, Z0(β,m) here behaves

like in the REM without a magnetic field, namely, it contains expo-

nentially eNh((1+m)/2) = enh((1+m)/2)/θ terms, with the random energy

levels of the REM being replaced now by random Hamming distances

{dH(x(s),y)} that are induced by the random selection of the code

{x(s)}. Using the same considerations as with the REM in channel

coding, we now get:

ψ(β,m)
∆
= lim

n→∞
lnZ0(β,m|y)

n

= max
δm≤δ≤1−δm

[

1

θ
h2

(

1 +m

2

)

+ h2(δ) − ln 2 − βJδ

]

=

{

1
θh2

(

1+m
2

)

+ h2(pβ) − ln 2 − βJpβ pβ ≥ δm
−βJδm pβ < δm

(7.27)

where we have defined

δm
∆
= δGV

(

1

θ
h2

(

1 +m

2

))

(7.28)

and where again,

pβ =
pβ

pβ + (1 − p)β
. (7.29)

The condition pβ ≥ δm is equivalent to

β ≤ β0(m)
∆
=

1

J
ln

1 − δm
δm

. (7.30)

Finally, back to the full partition function:

φ(β,B) = lim
n→∞

1

N
ln

[

∑

m

Z0(β,m|y)eNβBm

]

= max
m

[θψ(β,m) + βmB]. (7.31)
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For small enough β, the dominant m is the one that maximizes

h2

(

1 +m

2

)

+ βmB,

which is again the paramagnetic magnetization

m∗ = mp(β,B) = tanh(βB). (7.32)

Thus, in high decoding temperatures, the source vectors {s} that dom-

inate the posterior Pβ(s|y) behave like a paramagnet under a magnetic

field defined by the prior B = 1
2 ln q

1−q . In the glassy regime, similarly

as before, we get:

m∗ = mg(B)
∆
= tanh(Bβc(B)) (7.33)

where this time, βc(B), the glassy–paramagnetic boundary, is defined

as the solution to the equation

ln 2 − h2(pβ) =
1

θ
h2

(

1 + tanh(βB)

2

)

. (7.34)

The full details are in [68]. Taking now into account also Zc, we get a

phase diagram as depicted in Fig. 7.5. Here,

B0
∆
=

1

2
ln

q∗

1 − q∗
(7.35)

where q∗ is the solution to the equation

h2(q) = θ[ln 2 − h2(p)], (7.36)

namely, it is the boundary between reliable and unreliable communi-

cation.

7.2 Generalized REM (GREM) and Hierarchical Coding

In the mid–eighties of the previous century, Derrida extended the REM

to the generalized REM (GREM) [25], [26], which has an hierarchical

tree structure to accommodate possible correlations between energy

levels of various configurations (and hence is somewhat closer to re-

ality). It turns out to have direct relevance to performance analysis
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paramagnetic   phase

ferromagnetic phaseferromagnetic phase
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T = Tpf (B) T = Tpf (B)

T = Tpg(B)

−B0 +B0

Fig. 7.5 Phase diagram of joint source–channel communication system.

of codes with a parallel hierarchical structure. Hierarchical structured

codes are frequently encountered in many contexts, e.g., tree codes,

multi–stage codes for progressive coding and successive refinement,

codes for the degraded broadcast channel, codes with a binning struc-

ture (like in G–P and W–Z coding and coding for the wiretap channel),

and so on. The material in this subsection is based on [70].

We begin from the physics of the GREM. For simplicity, we limit

ourselves to two stages, but the discussion and the results extend to

any fixed, finite number of stages. The GREM is defined by a few pa-

rameters: (i) a number 0 < R1 < ln 2 and R2 = ln 2−R1. (ii) a number

0 < a1 < 1 and a2 = 1 − a1. Given these parameters, we now parti-

tion the set of 2N configurations into eNR1 groups, each having eNR2

configurations.2 The easiest way to describe it is with a tree (see Fig.

7.6), each leaf of which represents one spin configuration. Now, for each

branch in this tree, we randomly draw an independent random vari-

able, which will be referred to as an energy component: First, for every

branch outgoing from the root, we randomly draw ǫi ∼ N (0, a1NJ
2/2),

1 ≤ i ≤ eNR1 . Then, for each branch 1 ≤ j ≤ eNR2 , emanating from

node no. i, 1 ≤ i ≤ eNR1 , we randomly draw ǫi,j ∼ N (0, a2NJ
2/2).

2 Later, we will see that in the analogy to hierarchical codes, R1 and R2 will have the
meaning of coding rates at two stages of a two–stage code.
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Finally, we define the energy associated with each configuration, or

equivalently, each leaf indexed by (i, j), as Ei,j = ǫi+ǫi,j, 1 ≤ i ≤ eNR1 ,

1 ≤ j ≤ eNR2 .

ǫM1

ǫ2,M2

ǫ2ǫ1

ǫM1,1

R1 + R2 = ln2

a1 + a2 = 1

ǫi ∼ N (0, NJ2a1/2)

ǫi,j ∼ N (0, NJ2a2/2)

Ei,j = ǫi + ǫi,j

ǫM1,M2

M2 = eNR2 leaves M2 = eNR2 leaves

M1 = eNR1branches

ǫ1,1 ǫ1,M2 ǫ2,1

M2 = eNR2 leaves

Fig. 7.6 The GREM with K = 2 stages.

Obviously, the marginal pdf of each Ei,j is N (0,NJ2/2), just like

in the ordinary REM. However, unlike in the ordinary REM, here the

configurational energies {Ei,j} are correlated: Every two leaves with a

common parent node i have an energy component ǫi in common and

hence their total energies are correlated.

An extension of the GREM to K stages is parametrized by
∑K

ℓ=1Rℓ = ln 2 and
∑K

ℓ=1 aℓ = 1, where one first divides the entirety of

2n configurations into eNR1 groups, then each such group is subdivided

into enR2 subgroups, and so on. For each branch of generation no. ℓ, an

independent energy component is drawn according to N (0, aℓNJ
2/2)

and the total energy pertaining to each configuration, or a leaf, is the

sum of energy components along the path from the root to that leaf. An

extreme case of the GREM is where K = N , which is referred to as the

directed polymer on a tree or a directed polymer in a random medium.

We will it later in Subsection 7.3, although it has a different asymp-

totic regime than the GREM, because in the GREM, K is assumed

fixed while N grows without bound in the thermodynamic limit.

Returning back to the case of K = 2 stages, the analysis of the

GREM is conceptually a simple extension of that of the REM: First,
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we ask ourselves what is the typical number of branches emanating

from the root whose first–generation energy component, ǫi, is about ǫ?

The answer is very similar to that of the REM: Since we have eNR1

independent trials of an experiment for which the probability of a single

success is exponentially e−ǫ
2/(NJ2a1), then for a typical realization:

Ω1(ǫ) ≈
{

0 |ǫ| > NJ
√
a1R1

exp
{

N
[

R1 − 1
a1

(

ǫ
NJ

)2
]}

|ǫ| < NJ
√
a1R1

(7.37)

Next, we ask ourselves what is the typical number Ω2(E) of config-

urations with total energy about E? Obviously, each such configura-

tion should have a first–generation energy component ǫ and second–

generation energy component E − ǫ, for some ǫ. Thus,

Ω2(ǫ) ≈
∫ +NJ

√
a1R1

−NJ
√
a1R1

dǫΩ1(ǫ)·exp

{

N

[

R2 −
1

a2

(

E − ǫ

NJ

)2
]}

. (7.38)

It is important to understand here the following point: Here, we no

longer zero–out the factor

exp

{

N

[

R2 −
1

a2

(

E − ǫ

NJ

)2
]}

(7.39)

when the expression in the square brackets at the exponent becomes

negative, as we did in the first stage and in the REM. The reason is

simple: Given ǫ, we are conducting Ω1(ǫ) · eNR1 independent trials of

an experiment whose success rate is

exp

{

−N
a2

(

E − ǫ

NJ

)2
}

. (7.40)

Thus, whatever counts is whether the entire integrand has a positive

exponent or not.

Consider next the entropy. The entropy behaves as follows:

Σ(E) = lim
N→∞

ln Ω2(E)

N
=

{

Σ0(E) Σ0(E) ≥ 0

−∞ Σ0(E) < 0
(7.41)

where Σ0(E) is the exponential rate of the above integral, which after

applying the Laplace method, is shown to be:

Σ0(E) = max
|ǫ|≤+NJ

√
a1R1

[

R1 −
1

a1

( ǫ

NJ

)2
+R2 −

1

a2

(

E − ǫ

NJ

)2
]

.
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How does the function Σ(E) behave?

It turns out that to answer this question, we will have to distin-

guish between two cases: (i) R1/a1 < R2/a2 and (ii) R1/a1 ≥ R2/a2.
3

First, observe that Σ0(E) is an even function, i.e., it depends on E

only via |E|, and it is monotonically non–increasing in |E|. Solving the

optimization problem pertaining to Σ0, we readily find:

Σ0(E) =

{

ln 2 −
(

E
NJ

)2 |E| ≤ E1

R2 − 1
a2

(

E
NJ −√

a1R1

)2 |E| > E1

where E1
∆
= NJ

√

R1/a1. This is a phase transition due to the fact that

the maximizing ǫ becomes an edge-point of its allowed interval. Imagine

now that we gradually increase |E| from zero upward. Now the question

is what is encountered first: The energy level Ê, where Σ(E) jumps to

−∞, or E1 where this phase transition happens? In other words, is

Ê < E1 or Ê > E1? In the former case, the phase transition at E1 will

not be apparent because Σ(E) jumps to −∞ before, and that’s it. In

this case, according to the first line of Σ0(E), ln 2− (E/NJ)2 vanishes

at Ê = NJ
√

ln 2 and we get:

Σ(E) =

{

ln 2 −
(

E
NJ

)2 |E| ≤ Ê

−∞ |E| > Ê
(7.42)

exactly like in the ordinary REM. It follows then that in this case,

φ(β) which is the Legendre transform of Σ(E) will also be like in the

ordinary REM, that is:

φ(β) =

{

ln 2 + β2J2

4 β ≤ β0
∆
= 2

J

√
ln 2

βJ
√

ln 2 β > β0

(7.43)

As said, the condition for this is:

NJ
√

ln 2 ≡ Ê ≤ E1 ≡ NJ

√

R1

a1
(7.44)

or, equivalently,
R1

a1
≥ ln 2. (7.45)

3 Accordingly, in coding, this will mean a distinction between two cases of the relative coding
rates at the two stages.
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On the other hand, in the opposite case, Ê > E1, the phase transition

at E1 is apparent, and so, there are now two phase transitions:

Σ(E) =











ln 2 −
(

E
NJ

)2 |E| ≤ E1

R2 − 1
a2

(

E
NJ −√

a1R1

)2
E1 < |E| ≤ Ê

−∞ |E| > Ê

(7.46)

and accordingly:

φ(β) =















ln 2 + β2J2

4 β ≤ β1
∆
= 2

J

√

R1
a1

βJ
√
a1R1 +R2 + a2β2J2

4 β1 ≤ β < β2
∆
= 2

J

√

R2
a2

βJ(
√
a1R1 +

√
a2R2) β ≥ β2

(7.47)

The first line is a purely paramagnetic phase. In the second line, the

first–generation branches are glassy (there is a subexponential number

of dominant ones) but the second–generation is still paramagnetic. In

the third line, both generations are glassy, i.e., a subexponential number

of dominant first–level branches, each followed by a subexponential

number of second–level ones, thus a total of a subexponential number

of dominant configurations overall.

Now, there is a small technical question: what is it that guarantees

that β1 < β2 whenever R1/a1 < ln 2? We now argue that these two

inequalities are, in fact, equivalent. In [12], the following inequality is

proved for two positive vectors (a1, . . . , ak) and (b1, . . . , bk):

min
i

ai
bi

≤
∑k

i=1 ai
∑k

i=1 bi
≤ max

i

ai
bi
. (7.48)

Thus,

min
i∈{1,2}

Ri
ai

≤ R1 +R2

a1 + a2
≤ max

i∈{1,2}
Ri
ai
, (7.49)

but in the middle expression the numerator is R1 +R2 = ln 2 and the

denominator is a1 + a2 = 1, thus it is exactly ln 2. In other words, ln 2

is always in between R1/a1 and R2/a2. So R1/a1 < ln 2 iff R1/a1 <

R2/a2, which is the case where β1 < β2. To summarize our findings

thus far, we have the following:
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Case A: R1/a1 < R2/a2 – two phase transitions:

φ(β) =











ln 2 + β2J2

4 β ≤ β1

βJ
√
a1R1 +R2 + a2β2J2

4 β1 ≤ β < β2

βJ(
√
a1R1 +

√
a2R2) β ≥ β2

(7.50)

Case B: R1/a1 ≥ R2/a2 – one phase transition, like in the REM:

φ(β) =

{

ln 2 + β2J2

4 β ≤ β0

βJ
√

ln 2 β > β0
(7.51)

We now move on to our coding problem, this time, it is about source

coding with a fidelity criterion. For simplicity, we assume a binary sym-

metric source (BSS) and the Hamming distortion measure. Consider

the following hierarchical structure of a code: Given a block length n,

we break it into two segments of lengths n1 and n2 = n − n1. For

the first segment, we randomly select (by fair coin tossing) a codebook

Ĉ = {x̂i, 1 ≤ i ≤ en1R1}. For the second segment, we do the follow-

ing: For each 1 ≤ i ≤ en1R1 , we randomly select (again, by fair coin

tossing) a codebook C̃i = {x̃i,j, 1 ≤ j ≤ en2R2}. Now, given a source

vector x ∈ {0, 1}n, segmentized as (x′,x′′), the encoder seeks a pair

(i, j), 1 ≤ i ≤ en1R1 , 1 ≤ j ≤ en2R2 , such that d(x′, x̂i) + d(x′′, x̃i,j)
is minimum, and then transmits i using n1R1 nats and j – using n2R2

nats, thus a total of (n1R1 + n2R2) nats, which means an average rate

of R = λR1 + (1− λ)R2 nats per symbol, where λ = n1/n. Now, there

are a few questions that naturally arise:

What is the motivation for codes of this structure? The decoder has a

reduced delay. It can decode the first n1 symbols after having received

the first n1R1 nats, and does not have to wait until the entire trans-

mission of length (n1R1 +n2R2) has been received. Extending this idea

to K even segments of length n/K, the decoding delay is reduced from

n to n/K. In the limit of K = n, in which case it is a tree code, the

decoder is actually delayless.

What is the relation to the GREM? The hierarchical structure of the

code is that of a tree, exactly like the GREM. The role of the energy

components at each branch is now played by the segmental distortions
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d(x′, x̂i) and d(x′′, x̃i,j). The parameters R1 and R2 here are similar to

those of the GREM.

Given an overall rate R, suppose we have the freedom to choose λ, R1

and R2, such that R = λR1 + (1 − λ)R2, are some choice better than

others in some sense? This is exactly what we are going to figure out

next.

As for the performance criterion, here, we choose to examine perfor-

mance in terms of the characteristic function of the overall distortion,

E[exp{−s · distortion}].

This is, of course, a much more informative figure of merit than the av-

erage distortion, because in principle, it gives information on the entire

probability distribution of the distortion. In particular, it generates all

the moments of the distortion by taking derivatives at s = 0, and it is

useful in deriving Chernoff bounds on probabilities of large deviations

events concerning the distortion. More formally, we make the following

definitions: Given a code C (any block code, not necessarily of the class

we defined), and a source vector x, we define

∆(x) = min
x̂∈C

d(x, x̂), (7.52)

and we will be interested in the exponential rate of

Ψ(s)
∆
= E{exp[−s∆(X)]}. (7.53)

This quantity can be easily related to the “partition function”:

Z(β|x)
∆
=
∑

x̂∈C
e−βd(x,x̂). (7.54)

In particular,

E{exp[−s∆(X)]} = lim
θ→∞

E
{

[Z(s · θ|X)]1/θ
}

. (7.55)

Thus, to analyze the characteristic function of the distortion, we have

to assess (non-integer) moments of the partition function.

Let us first see what happens with ordinary random block codes,

without any structure. This calculation is very similar the one we did
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earlier in the context of channel coding:

E
{

[Z(s · θ|X)]1/θ
}

= E















∑

x̂∈C
e−sθd(x,x̂)





1/θ










= E







[

n
∑

d=0

Ω(d)e−sθd
]1/θ







·
=

n
∑

d=0

E
{

[Ω(d)]1/θ
}

· e−sd (7.56)

where, as we have already shown in the previous chapter that

E
{

[Ω(d)]1/θ
} ·

=

{

en[R+h2(δ)−ln 2] δ ≤ δGV (R) or δ ≥ 1 − δGV (R)

en[R+h2(δ)−ln 2]/θ δGV (R) ≤ δ ≤ 1 − δGV (R)

Note that δGV (R) is exactly the distortion–rate function of the BSS

w.r.t. the Hamming distortion. By substituting the expression of

E{[Ω(d)]1/θ} back into that of E{[Z(s ·θ|X)]1/θ} and carrying out the

maximization pertaining to the dominant contribution, we eventually

obtain:

Ψ(s)
·
= e−nu(s,R) (7.57)

where

u(s,R) = ln 2 −R− max
δ≤δGV (R)

[h2(δ) − sδ]

=

{

sδGV (R) s ≤ sR
v(s,R) s > sR

(7.58)

with

sR
∆
= ln

[

1 − δGV (R)

δGV (R)

]

(7.59)

and

v(s,R)
∆
= ln 2 −R+ s− ln(1 + es). (7.60)

The function u(s,R) is depicted qualitatively in Fig. 7.7.

Let us now move on to the hierarchical codes. The analogy

with the GREM is fairly clear. Given x, there are about Ω1(δ1)
·
=

en1[R1+h2(δ1)−ln 2] first–segment codewords {x̂i} in Ĉ at distance n1δ1
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sR
s

slope δ(R)

ln 2 − R

u(s,R)

Fig. 7.7 Qualitative graph of the function u(s,R) as a function of s for fixed R.

from the first segment x′ of x, provided that R1 +h2(δ1)− ln 2 > 0 and

Ω1(δ1) = 0 otherwise. For each such first–segment codeword, there are

about en2[R2+h2(δ2)−ln 2] second–segment codewords {x̃i,j} at distance

n2δ2 from the second segment x′′ of x. Therefore, for δ = λδ1+(1−λ)δ2,

Ω2(δ) =

1−δGV (R1)
∑

δ1=δGV (R1)

en1[R1+h2(δ1)−ln 2] · en2[R2+h2((δ−λδ1)/(1−λ))−ln 2]

·
= exp

{

n · max
δ1∈[δGV (R1),1−δGV (R1)]

×
[

R+ λh2(δ1) + (1 − λ)h2

(

δ − λδ1
1 − λ

)]}

(7.61)

In analogy to the analysis of the GREM, here too, there is a distinction

between two cases: R1 ≥ R ≥ R2 and R1 < R < R2. In the first case,

the behavior is just like in the REM:

Σ(δ) =

{

R+ h2(δ) − ln 2 δ ∈ [δGV (R), 1 − δGV (R)]

−∞ elsewhere
(7.62)

and then, of course, φ(β) = −u(β,R) behaves exactly like that of a

general random code, in spite of the hierarchical structure. In the other

case, we have two phase transitions:

φ(β,R) =







−v(β,R) β < β(R1)

−λβδGV (R1) − (1 − λ)v(β,R2) β(R1) < β < β(R2)

−β[λδGV (R1) + (1 − λ)δGV (R2)] β > β(R2)
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The last line is the purely glassy phase and this is the relevant phase

because of the limit θ → 0 that we take in order to calculate Ψ(s).

Note that at this phase the slope is λδGV (R1) + (1− λ)δGV (R2) which

means that code behaves as if the two segments were coded separately,

which is worse that δGV (R) due to convexity arguments. Let us see this

more concretely on the characteristic function: This time, it will prove

convenient to define Ω(d1, d2) as an enumerator of codewords whose

distance is d1 at the first segment and d2 – on the second one. Now,

E
{

Z1/θ(s · θ)
}

= E















n
∑

d1=0

n
∑

d2=0

Ω(d1, d2) · e−sθ(d1+d2)





1/θ










·
=

n
∑

d1=0

n
∑

d2=0

E
{

Ω1/θ(d1, d2)
}

· e−s(d1+d2). (7.63)

Here, we should distinguish between four types of terms depending

on whether or not δ1 ∈ [δGV (R1), 1 − δGV (R1)] and whether or not

δ2 ∈ [δGV (R2), 1 − δGV (R2)]. In each one of these combinations, the

behavior is different (the details are in [70]). The final results are as

follows:

For R1 < R2,

lim
n→∞

[

− 1

n
ln E exp{−s∆(X)}

]

= λu(s,R1) + (1 − λ)u(s,R2) (7.64)

which means the behavior of two independent, decoupled codes for the

two segments, which is bad, of course.

For R1 ≥ R2,

lim
n→∞

[

− 1

n
ln E exp{−s∆(X)}

]

= u(s,R) ∀s ≤ s0 (7.65)

where s0 is some positive constant. This means that the code behaves

like an unstructured code (with delay) for all s up to a certain s0
and the reduced decoding delay is obtained for free. Note that the

domain of small s is relevant for moments of the distortion. For R1 =

R2, s0 is unlimited. Thus, the conclusion is that if we must work at

different rates, it is better to use the higher rate first. A more elaborate

discussion can be found in [70].
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7.3 Directed Polymers in a Random Medium and Tree Codes

Finally, we discuss a related model that we mentioned earlier, which

can be thought of as an extreme case of the GREM withK = N . This is

the directed polymer in a random medium (DPRM): Consider a Cayley

tree, namely, a full balanced tree with branching ratio d and depth n

(cf. Fig. 7.8, where d = 2 and N = 3). Let us index the branches by a

pair of integers (i, j), where 1 ≤ i ≤ N describes the generation (with

i = 1 corresponding to the d branches that emanate from the root), and

0 ≤ j ≤ di−1 enumerates the branches of the i–th generation, say, from

left to right (again, see Fig. 7.8). For each branch (i, j), 1 ≤ j ≤ di,

1 ≤ i ≤ N , we randomly draw an independent random variable εi,j
according to a fixed probability function q(ε) (i.e., a probability mass

function in the discrete case, or probability density function in the

continuous case). As explained earlier, the asymptotic regime here is

different from that of the GREM: In the GREM we had a fixed number

of stages K that did not grow with N and exponentially many branches

emanating from each internal node. Here, we have K = N and a fixed

number d of branches outgoing from each note.

30 1 2 4 65 7

0 1

0 1 2 3

Fig. 7.8 A Cayley tree with branching factor d = 2 and depth N = 3.



200 Extensions of the REM

A walk w, from the root of the tree to one of its leaves, is described

by a finite sequence {(i, ji)}Ni=1, where 0 ≤ j1 ≤ d− 1 and dji ≤ ji+1 ≤
dji+ d− 1, i = 1, 2, . . . , (N − 1).4 For a given realization of the random

variables {εi,j : i = 1, 2, . . . ,N, j = 0, 1, . . . , di − 1}, we define the

Hamiltonian associated with w as E(w) =
∑N

i=1 εi,ji , and then the

partition function as:

ZN (β) =
∑

w

exp{−βE(w)}. (7.66)

It turns out that this model is exactly solvable (in many ways) and one

can show (see e.g., [9]) that it admits a glassy phase transition:

φ(β) = lim
N→∞

lnZN (β)

n
=

{

φ0(β) β < βc
φ0(βc) β ≥ βc

almost surely (7.67)

where

φ0(β)
∆
=

ln[d · Ee−βρ(ǫ)]
β

(7.68)

and βc is the value of β that minimizes φ0(β).

In analogy to the hierarchical codes inspired by the GREM, con-

sider now an ensemble of tree codes for encoding source n–tuples,

x = (x1, . . . , xn), which is defined as follows: Given a coding rate R

(in nats/source–symbol), which is assumed to be the natural logarithm

of some positive integer d, and given a probability distribution on the

reproduction alphabet, q = {q(y), y ∈ Y}, let us draw d = eR in-

dependent copies of Y under q, and denote them by Y1, Y2, . . . , Yd.

We shall refer to the randomly chosen set, C1 = {Y1, Y2, . . . , Yd},
as our ‘codebook’ for the first source symbol, X1. Next, for each

1 ≤ j1 ≤ d, we randomly select another such codebook under q,

C2,j1 = {Yj1,1, Yj1,2, . . . , Yj1,d}, for the second symbol, X2. Then, for

each 1 ≤ j1 ≤ d and 1 ≤ j2 ≤ d, we again draw under q yet another

codebook C3,j1,j2 = {Yj1,j2,1, Yj1,j2,2, . . . , Yj1,j2,d}, for X3, and so on. In

general, for each t ≤ n, we randomly draw dt−1 codebooks under q,

which are indexed by (j1, j2, . . . , jt−1), 1 ≤ jk ≤ d, 1 ≤ k ≤ t− 1.

Once the above described random code selection process is com-

plete, the resulting set of codebooks {C1, Ct,j1,...,jt−1, 2 ≤ t ≤ n, 1 ≤

4 In fact, for a given N , the number jN alone dictates the entire walk.
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jk ≤ d, 1 ≤ k ≤ t − 1} is revealed to both the encoder and decoder,

and the encoding–decoding system works as follows:

• Encoding: Given a source n–tuple Xn, find a vector of in-

dices (j∗1 , j
∗
2 , . . . , j

∗
n) that minimizes the overall distortion

∑n
t=1 ρ(Xt, Yj1,...,jt). Represent each component j∗t (based on

j∗t−1) by R = ln d nats (that is, log2 d bits), thus a total of

nR nats.
• Decoding: At each time t (1 ≤ t ≤ n), after having decoded

(j∗1 , . . . , j
∗
t ), output the reproduction symbol Yj∗1 ,...,j∗t .

In order to analyze the rate–distortion performance of this ensemble

of codes, we now make the following assumption:

The random coding distribution q is such that the distribution of the

random variable ρ(x, Y ) is the same for all x ∈ X .

It turns out that this assumption is fulfilled quite often – it is the

case whenever the random coding distribution together with distortion

function exhibit a sufficiently high degree of symmetry. For example,

if q is the uniform distribution over Y and the rows of the distortion

matrix {ρ(x, y)} are permutations of each other, which is in turn the

case, for example, when X = Y is a group and ρ(x, y) = γ(x − y) is

a difference distortion function w.r.t. the group difference operation.

Somewhat more generally, this assumption still holds when the differ-

ent rows of the distortion matrix are formed by permutations of each

other subject to the following rule: ρ(x, y) can be swapped with ρ(x, y′)
provided that q(y′) = q(y).

For a given x and a given realization of the set of codebooks, define

the partition function in analogy to that of the DPRM:

Zn(β) =
∑

w

exp{−β
n
∑

t=1

ρ(xt, Yj1,...,jt)}, (7.69)

where the summation extends over all dn possible walks, w =

(j1, . . . , jn), along the Cayley tree. Clearly, considering our symme-

try assumption, this falls exactly under the umbrella of the DPRM,

with the distortions {ρ(xt, Yj1,...,jt)} playing the role of the branch en-

ergies {εi.j}. Therefore, 1
nβ lnZn(β) converges almost surely, as n grows
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without bound, to φ(β), now defined as

φ(β) =

{

φ0(β) β ≤ βc
φ0(βc) β > βc

(7.70)

where now

φ0(β)
∆
=

ln[d · E{e−βρ(x,Y )}]
β

=
ln[eR · E{e−βρ(x,Y )}]

β

=
R+ ln[E{e−βρ(x,Y )}]

β
,

Thus, for every (x1, x2, . . .), the distortion is given by

lim sup
n→∞

1

n

n
∑

t=1

ρ(xt, Yj∗1 ,...,j∗t )
∆
= lim sup

n→∞

1

n
min
w

[

n
∑

t=1

ρ(xt, Yj1,...,jt)

]

= lim sup
n→∞

lim sup
ℓ→∞

[

− lnZn(βℓ)

nβℓ

]

≤ lim sup
ℓ→∞

lim sup
n→∞

[

− lnZn(βℓ)

nβℓ

]

a.s.
= − lim inf

ℓ→∞
φ(βℓ)

= −φ0(βc)

= max
β≥0

[

− ln[E{e−βρ(x,Y )}] +R

β

]

= D(R),

where: (i) {βℓ}ℓ≥1 is an arbitrary sequence tending to infinity, (ii) the

almost–sure equality in the above mentioned paper, and (iii) the jus-

tification of the inequality can be found in [74]. The last equation is

easily obtained (see [74]) by inverting the function R(D) in its Legendre

representation

R(D) = −min
β≥0

min
q







βD +
∑

x∈X
p(x) ln





∑

y∈Y
q(y)e−βρ(x,y)











. (7.71)
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Thus, the ensemble of tree codes achieves R(D) almost surely.

This strengthens well known coding theorems for tree codes, which

make assertions on the achievability of D(R) in expectation only

[19],[27],[35],[47],[48].





8

Summary and Outlook

In this monograph, we have focused on relationships and analogies

between general principles, as well as mathematical formalisms, that

are common to both information theory and statistical physics. The

emphasis was not merely on the analogies themselves, which may be

interesting on their own right, but more importantly, also on new in-

sights and analysis tools that the physical perspectives may contribute

to problems in information theory.

We have seen quite a few examples for these insights and tools

along the paper. To name a few: (i) The physical point of view on the

rate–distortion function in Section 3.2, has lead to the MMSE repre-

sentation, which sets the stage for the derivation of new bounds. (ii)

Gibbs’ inequality, which is used in physics to obtain bounds on free

energies of complicated systems, may be used in information theory as

well, and we have seen the example of the HMM (Subsection 3.3.1).

(iii) The dynamical version of the second law was shown to be related

to the generalized data processing theorems of Ziv and Zakai and to

lead to an even more general data processing theorem (Section 3.4).

(iv) The REM and its extensions has been proved useful to inspire a

new alternative analysis technique for the derivation of error exponents
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in ensembles of channel codes, characteristic functions of distortion in

source coding, and more (Chapters 6 and 7). It appears then that what-

ever the field of statistical mechanics can offer to us, in terms of ideas

and tools, goes beyond the application of the replica method, which

has been the main tool borrowed from statistical mechanics until now,

in order to analyze the performance of large communication systems.1

We have made an attempt to explore a fairly wide spectrum of

aspects of the parallelism and the analogy between the two fields, but as

we emphasized already in the Introduction, this is merely a very small

fraction of the many existing meeting points between them, and there

was no attempt to provide a full comprehensive coverage. This was just

a drop in the ocean. It is strongly believed that many additional ideas,

insights and analysis tools in physics are still waiting to find their ways

to penetrate into the world of information theory and to help us develop

new concepts and techniques for facing the many existing challenges in

our field.

It is also believed that the reverse direction, of generating a flow of

ideas from information theory to physics, should be at least as fascinat-

ing and fruitful. This direction, however, may naturally belong more

to the courtyard of physicists with background in information theory

than to that of information theorists with background in physics. In-

deed, quite many physicists have been active on this front. At the time

of writing these lines, however, the author of this paper has not been

involved in this line of work, at least not yet.

1 Of course, other statistical–mechanical tools have also been used, and this includes the
cavity method, the Bethe–Peierls approximation, series expansions, duality, and others,
but still, the replica method has been, by far, the most popular tool that is borrowed from
statistical mechanics.
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