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Abstract—We extend Witsenhausen’s structure theorem for
real–time source coding, so as to accommodate both variable–rate
coding and causal side information at the decoder.

I. INTRODUCTION

We consider the following source coding problem. Symbols
produced by a discrete Markov source are to be encoded,
transmitted noiselessly and reproduced by a decoder which
has causal access to side information (SI) correlated to the
source. Operation is in real time, that is, the encoding of each
symbol and its reproduction by the decoder must be performed
without any delay and the distortion measure does not tolerate
delays. The decoder is assumed to be a finite state machine
with a fixed number of states. With no SI, the scenario where
the encoder is of fixed rate was investigated by Witsenhausen
[1]. It was shown that for a given decoder, in order to minimize
the distortion at each stage for a Markov source of order k,
an optimal encoder can be sought among those for which the
encoding function depends on the k last source symbols and
the decoder’s state (in contrast to the general case where its a
function of all past source symbols).

The scenario where the encoder is also a finite state ma-
chine was considered by Gaarder and Slepian in [2]. In [3],
Teneketzis considered the case where there is a noisy channel
between the encoder and decoder. In this case, unlike this work
and [1],[2], the encoder cannot track the decoder’s state. It is
shown in [3] that the optimal (fixed rate) encoder for this case
is a function of the current source symbol and the probability
mass function of the decoder’s state for the symbols sent so far.
When the time horizon and alphabets are finite, there is a finite
number of possible encoding, decoding and memory update
rules. Theoretically, a brute force search will yield the optimal
choice. However, since the number of possibilities increases
doubly exponentially in the duration of the communication
and exponentially in the alphabet size, it is not trackable even
for very short time horizons. Recently, using the results of [3],
Mahajan and Teneketzis [4], proposed a search frame that is
linear in the communication length and doubly exponential in
the alphabet size.

Real time codes are a subclass of causal codes, as defined

by Neuhoff and Gilbert [5]. In [5], entropy coding is used
on the whole sequence of reproduction symbols, introducing
arbitrarily long delays. In the real time case, entropy coding
has to be instantaneous, symbol by symbol (possibly taking
into account past transmitted symbols). It was shown in [5],
that for a discrete memoryless source (DMS), the optimal
causal encoder consists of time–sharing between no more
than two memoryless encoders. Weissman and Merhav [6],
extended [5] to the case where SI is also available at the
decoder, encoder or both. Error exponents for real time coding
with finite memory for a DMS where derived in [7].

This work extends [1] in two directions: The first direction
is from fixed–rate coding to variable–rate coding, where ac-
cordingly, the cost function is redefined so as to incorporate
both the expected distortion and the expected coding rate. The
second direction of extension is in allowing the decoder access
to causal side information. Our main result is that a structure
theorem, similar to that of Witsenhausen [1], continues to hold
in this setting as well.

As mentioned in the previous paragraph, in contrast to
[1]–[3], where fixed–rate coding was considered, and hence
the performance measure was just the expected distortion,
here, since we allow variable–rate coding, our cost function
incorporates both rate and distortion. This is done by defining
our cost function in terms of the Lagrangian

(distortion) + λ · (code length).

In [1], the proof of the structure theorem relied on two lemmas.
The proof of the extension of those lemmas to our case is more
involved than the proofs of their respective original versions
in [1]. To intuitively see why, remember that the proof of
the lemmas in [1], relied on the fact that for every decoder
state, source symbol and a given decoder, since there is a
finite number of possible encoder outputs (governed by the
fixed rate), we could choose the one minimizing the distortion.
However, in our case, such a choice might entail a large
expected coding rate, and although minimizes the distortion,
it will not minimize the overall cost function (especially for
large λ).



The remainder of the paper is organized as follows: In
Section II, we give the formal setting and notation used
throughout the paper. In Section III, we state and prove the
main result of this paper. Finally, we conclude this work in
Section IV.

II. PRELIMINARIES

We begin with notation conventions. Capital letters rep-
resent scalar random variables (RV), specific realizations of
them are denoted by the corresponding lower case letters
and their alphabet – by calligraphic letters. For i < j (i,
j positive integers), xj

i will denote the vector (xi, . . . , xj),
where for i = 1 the subscript will be omitted. We consider
a k-th order Markov source, producing a random sequence
X1, X2, ..., XT , Xt ∈ X , t = 1, 2, . . . , T . The cardinality
of X , as well as other alphabets in the sequel, is finite. The
SI sequence, W1,W2, ...,WT , Wt ∈ W , is generated by a
discrete memoryless channel (DMC), fed by X1, X2, . . . , XT :

P (W1, . . . ,WT |X1, . . . XT ) =
T∏

t=1

P (Wt|Xt). (1)

The probability mass function of X1, P (X1)
and the transition probabilities, denoted by
P (X2|X1),P (X3|X2),...,P (Xt|Xt−1

t−k), t = k+1, k+2, . . . , T
are known. A variable length encoder is a sequence of
functions {ft}Tt=1. At stage t, an encoder ft : X t → Yt

calculates Yt = ft(Xt) and noiselessly transmits an entropy
coded codeword of Yt. Yt ⊆ Y is the alphabet used at stage
t. Unlike the fixed rate regime in [1],[3], where log2 |Yt|
(rounded up) was the rate of the code of stage t, here the
size of the codebook will be one of the outcomes of the
optimization.

The encoder structure is not confined a–priori, and it is not
even limited to be deterministic: at each time instant t, Yt

may be given by an arbitrary (possibly stochastic) function of
Xt. The decoder, however, is assumed, similarly as in [1] and
[3], to be a finite–memory device, defined as follows: At each
stage, t, the decoder updates its current state (or memory)
and outputs a reproduction symbol X̂t. We assume that the
decoder’s state can be divided into two parts. Zw

t ∈ Zw is
updated by:

Zw
1 = rw

1 (W1, Y1)
Zw

t = rw
t (Wt, Yt, Z

w
t−1), t = 2, 3, . . . , T (2)

and Zy
t ∈ Zy is updated by

Zy
1 = ry

1(Y1)
Zy

t = ry
t (Yt, Z

y
t−1), t = 2, 3, . . . , T (3)

Both parts depend on the received compressed data Yt. How-
ever, since Zy

t does not depend on the SI and the transmission
is noiseless, it can be tracked by the encoder. The reproduc-
tion symbols are produced by a sequence of functions {gt},
gt : Y ×W ×Zw ×Zy → X̂ as follows

X̂1 = g1(W1, Y1)

X̂t = gt(Wt, Yt, Z
w
t−1, Z

y
t−1), t = 2, 3, . . . , T (4)

Since at the beginning of stage t, Zy
t−1 is known to both

encoder and decoder, the entropy coder at every stage needs
to encode the random variable Yt given Zy

t−1. We define At

to be the set of all uniquely decodable codes for Yt, i.e all
possible length functions l : Yt → Z+ that satisfy Kraft’s
inequality:

At =

l(·) :
∑
y∈Yt

2−l(y) ≤ 1

 (5)

The average codeword length of stage t will be given by:

L(Yt|Zy
t−1)

4
=
∑

z∈Zy

P (z) min
l(·)∈At

∑
y∈Yt

P (y|z)l(y)

 . (6)

L(Yt|zy
t−1) will denote the optimal average codeword length

at stage t, for a specific decoder state, zy
t−1. L(Yt|zy

t−1) is
obtained by designing a Huffman code for the probability
distribution P (·|zy

t−1). The model is depicted in Figure 1.
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Fig. 1: System model

We are given a sequence of distortion measures {ρt}Tt=1,
ρt : X ×X̂ → IR+. At each stage, the cost function is a linear
combination of the average distortion and codeword length
L(Yt|Zy

t−1), i.e.

D(t)
4
= E

{
ρt(Xt, X̂t)

}
+ λL(Yt|Zy

t−1). (7)

where λ is a fixed parameter that controls the tradeoff between
rate and distortion. Our goal is to minimize the cumulative cost

D
4
=

T∑
t=1

D(t). (8)

A specific choice of the memory update functions
{ry

t },{rw
t } reproduction functions {gt} and encoders {ft}

along with their resulting cost D is called a design. We say that
design A with cumulative cost DA outperforms design B, with
cumulative cost DB , if DA ≤ DB . We say that the encoder
has memory order k if Yt is produced using the decoder’s state
that is tracked by the encoder and the last k source symbols,
i.e Yt = ft(Xt

t−k+1, Z
y
t−1).

In the following section, we state and prove a structure
theorem for the system described above.



III. MAIN RESULT

The main result of this paper is the following theorem:

Theorem 1. Under the conditions described in Section II, for
any given design of the system, there exists a design with the
same decoders, whose encoders are deterministic and have
memory order k, that outperforms the original design.

Remark: We will prove this structure theorem using lemmas
regarding the structure of a two and three stage system
(T = 2, 3) and then use backwards induction as we show
in the following subsections. This is the original method used
by Witsenhausen [1]. The main difference is in the proofs of
the lemmas, which call for more caution. In [1], these lemmas
could be proved by optimizing the encoder over the distortion
function independently for each possible pair (xi, z

y
i−1). For

each such pair, Yt was chosen as the one that minimizes
the distortion ρt(Xt, gt(Yt, Z

y
t−1)). Here, even without SI,

we cant take this approach since such Yt (that minimizes
the distortion) might entail a large L(Yt|Zt−1). Moreover,
Yt|Zy

t−1, is well defined only after all stage t encoding rules
are known. Any change for a specific (xi, z

y
i−1) will affect the

PMF of Yt|Zy
t−1 (and the code length) and therefore cannot

be done independently of the other pairs.
We start by stating and proving the lemmas for the two and

three stage systems in the next two subsections. Using these
lemmas, Theorem 1 is proved in Section III-C

A. Two stage lemma

Lemma 1. For a two stage system (T = 2), any source, SI
sequence and any given design, a design different only in f2,
with f2 deterministic and having memory order of k = 1, will
outperform the original design.

Proof: Note that f1, g1, g2, r
y
1 , r

w
1 are fixed and D(1) is

unchanged by changing f2. We need to show that f2
that minimizes D(2) can be a deterministic function of
X2, Z

y
1 . For every joint probability measure over the 6–tuple

(X1, X2,W2, Y2, Z
w
1 , Z

y
1 ), D(2) is well defined and our goal

is to minimize:

D(2) = E {ρ2(X2, g2(W2, Y2, Z
w
1 , Z

y
1 ))}+ λL(Y2|Zy

1 ) (9)

with respect to the second stage encoder. Note that the expec-
tation is over (X1, X2,W2, Y2, Z

w
1 , Z

y
1 ) in the first expression

only. The second expression (which is a constant) contains
the expectation in its definition. Let us look at the 6–tuple
of RV’s (X1, X2,W2, Y2, Z

w
1 , Z

y
1 ). From the structure of the

system we know that

P (X1, X2,W2, Y2, Z
w
1 , Z

y
1 ) = P (X1)P (X2|X1)P (Y1|X1)×

P (Zy
1 |X1)P (Zw

1 |X1)P (Y2|X1, X2)P (W2|X2) (10)

Everything but the second stage encoder P (Y2|X1, X2) is
fixed. Our objective is to find

min
P (Y2|X1,X2)

E {ρ2(X2, g2(W2, Y2, Z
w
1 , Z

y
1 ))}+ λL(Y2|Zy

1 )

(11)

Note that the minimization affects L(Y2|Zy
1 ) since its inner

minimization depends on P (Y2|Zy
1 ) which in turn depends on

P (Y2|X1, X2). We rewrite the expression in (11):

min
P (Y2|X1,X2)

Eρ2(X2, g2(W2, Y2, Z
w
1 , Z

y
1 )) + λL(Y2|Zy

1 )

= min
P (Y2|X1,X2)

∑
x1,x2,w2,y2,zw

1 ,zy
1

P (x1, x2, w2, y2, z
w
1 , z

y
1 )×

{ρ2(x2, g2(w2, y2, z
w
1 , z

y
1 )) + λL(Y2|zy

1} . (12)

For any P (Y2|X1, X2) and given zy
1 , L(Y2|zy

1 ) does not
depend on x1 and obviously, ρ2(x2, g2(w2, y2, z

w
1 , z

y
1 )) is not a

function of x1. Therefore the term in brackets does not depend
on x1. Define

d′2(x2, y2, z
w
1 , z

y
1 )
4
=[∑

w2

P (w2|x2)ρ2(x2, g2(w2, y2, z
w
1 , z

y
1 ))

]
+ λL(Y2|zy

1 )

(13)

Also note that zy
1 , z

w
1 does not play a role in the optimization.

Therefore,

min
P (Y2|X1,X2)

Eρ2(X2, g2(W2, Y2, Z
w
1 , Z

y
1 )) + λL(Y2|Zy

1 )

=
∑

zw
1 ,zy

1

min
P (Y2|X1,X2)

∑
x2,y2

P (x2, y2, z
w
1 , z

y
1 )d′2(x2, y2, z

w
1 , z

y
1 )

(14)

Now, given that the first stage encoder and decoder are known,
P (x2, z

w
1 , z

y
1 ) is well defined. Also, since the encoder does not

have access to the side information sequence, we have, for any
second stage encoder:

P (X2, Y2, Z
w
1 , Z

y
1 ) = P (Y2|X2, Z

y
1 )P (X2, Z

w
1 , Z

y
1 ) (15)

For a given zy
1 and any second stage encoder, L(Y2|zy

1 ) is
given by

L(Y2|zy
1 ) = min

l(y2)∈At

∑
y2

∑
x2,zw

1

P (x2, z
w
1 , z

y
1 )

P (zy
1 )

P (y2|x2, z
y
1 )l(y2)

(16)

Substituting (15)–(16) back into (14) we have

min
P (Y2|X1,X2)

Eρ2(X2, g2(W2, Y2, Z
w
1 , Z

y
1 )) + λL(Y2|Zy

1 )

=
∑

zw
1 ,zy

1

P (zw
1 , z

y
1 ) min

P (Y2|X1,X2)

{[∑
x2

P (x2, z
w
1 , z

y
1 )×

∑
y2

P (y2|x2, z
y
1 )ρ2(x2, g2(w2, y2, z

w
1 , z

y
1 ))
]

+ λmin
l∈At

∑
y′
2,x′

2

P (y′2|x′2, z
y
1 )P (x2, z

w
1 |z

y
1 )l(y′2)

}
(17)

Note that, for any P (Y2|X2, Z
y
1 ), there can be more than one

possible second stage encoder which will yield the same r.h.s
in (15) (there is at least one such encoder: P (y2|x1, x2) =
P (y2|x2, z

y
1 ) for all x1 with P (zy

1 , x1) > 0 for all x2, y2, z
y
1 ).



However, from (17), it is clear that all second stage encoders
that result in the same marginal P (Y2|X2, Z

y
1 ) will yield

the same second stage average cost D(2). Now, every pos-
sible P (Y2|X2, Z

y
1 ) has at least one possible P (Y2|X1, X2)

that leads to it. Since every P (Y2|X1, X2) results in some
P (Y2|X2, Z

y
1 ), minimizing over P (Y2|X2, Z

y
1 ) will yield the

same (optimal) cost function for the second stage. Therefore,
we have

min
P (Y2|X1,X2)

Eρ2(X2, g2(W2, Y2, Z
w
1 , Z

y
1 )) + λL(Y2|Zy

1 )

= min
P (Y2|X2,Zy

1 )
Eρ2(X2, g2(W2, Y2, Z

w
1 , Z

y
1 )) + λL(Y2|Zy

1 )

(18)

and we showed that its enough to search for second stage
encoding rules that depend only on X2, Z

y
1 and still receive the

optimal second stage cost. Now, since L(Y2|Zy
1 ) is a concave

functional of P (Y2|X2, Z
y
1 ) (see Appendix), the second stage

cost function is concave in P (Y2|X2, Z
y
1 ). This means that

the minimizing P (Y2|X2, Z
y
1 ) is one of the extreme points of

the simplex consisting of all possible P (Y2|X2, Z
y
1 ). Since the

extreme points of the simplex represent a deterministic choice
of y2 given x2, z

y
1 , this means that an optimal second stage

encoder is a deterministic function of (X2, Z
y
1 ).

B. Three stage lemma

Lemma 2. For a three stage system (T = 3), first order
Markov source and SI as described in Section II, any design
in which f3 has memory order of k = 1 will be outperformed
by a design different only in f2, where f2 in the new design
is deterministic and with memory order of k = 1.

Proof: The first stage encoder and decoder, and therefore
the first stage cost, are fixed. We optimize the second stage
encoder given a decoder and a memory update function.
The minimum cost of the last two stages is given by the
minimization of:

D(2) +D(3) = E {ρ2(X2, g2(W2, Y2, Z
w
1 , Z

y
1 ))

+λL(Y2|Zy
1 ) + ρ3(X3, g3(W3, Y3, Z

w
2 , Z

y
2 ))

+λL(Y3|Zy
2 )} (19)

with respect to P (Y2|X1, X2).
Since we know the second stage decoder and the third stage
encoder/decoder pair

P (X3,W3, Y3, Z
w
2 , Z

y
2 |X2,W2, Y2, Z

w
1 , Z

y
1 ) (20)

is well defined regardless of the second stage encoder. There-
fore we can calculate the conditional expectation of the third
stage cost given X2,W2, Y2, Z

w
1 , Z

y
1 .

d3(x2, w2, y2, z
w
1 , z

y
1 )
4
=∑

x3,w3,zw
2 ,zy

2

P (x3, w3, z
w
2 , z

y
2 |x2, w2, y2, z

w
1 , z

y
1 )×

{ρ3(x3, g3(w3, y3, z
w
2 , z

y
2 )) + λL(Y3|zy

2 )} (21)

Here, when we wrote P (X3|X2), we used the fact that the
source is Markov. This, alongside the requirement that the

third stage encoder has memory order of k = 1, ensures that
d3(x2, w2, y2, z

w
1 , z

y
1 ) is not a function of x1. We rewrite (19):

D(2) +D(3) = min
P (Y2|X1,X2)

∑
x1,x2,y2,zw

1 ,zy
1

P (x1, x2, y2, z
w
1 , z

y
1 )

× {ρ2(x2, g2(w2, y2, z
w
1 , z

y
1 )) + λL(Y2|zy

1 )
+d3(x2, w2, y2, z

w
1 , z

y
1 )} (22)

Let

ρ′2(x2, y2, z
w
1 , z

y
1 ) = ρ2(x2, g2(w2, y2, z

w
1 , z

y
1 ))

+ d3(x2, w2, y2, z
w
1 , z

y
1 ). (23)

Substituting this into (22) and using the fact that, as in the
two stage lemma case, given x2, z

w
1 , z

y
1 , the term in brackets

in (22) is not a function of x1 we have

D(2) +D(3) = min
P (Y2|X1,X2)

∑
x2,y2,zw

1 ,zy
1

P (x2, y2, z
w
1 , z

y
1 )×

{ρ′2(x2, y2, z
w
1 , z

y
1 ) + λL(Y2|zy

1 )} (24)

Note the similarity of the last expression to (12). Although
here we have a different distortion measure, both here and in
(12) the distortion measures are functions on x2, y2, z

w
1 , z

y
1 .

Therefore, the same steps we used to prove the two stage
lemma after (12), can be used here and the three stage lemma
will be proven.

Remark: From looking back at the definition of
d3(x2, w2, y2, z

w
1 , z

y
1 ) in (21), it is clear that the three

stage lemma will continue to hold if the third stage encoder
would have memory order of k = 2, since the resulting
conditional expectation in (21) still would not be a function
of x1. However, this is not needed in the proof of Theorem 1.

C. Proof of Theorem 1
With the two and three stage lemmas, we can prove Theo-

rem 1 by using the method of [1], used for fixed rate encoding.
We will prove Theorem 1 for a first order Markov source.
The extension to a k-th order Markov source is straight
forward by repacking k source symbols each time into a
new super symbol in a “sliding window” manner: X̂t =
(Xt, Xt+1, . . . , Xt+k−1). The SI is produced from these super
symbols. The resulting source (with super symbols) is a first
order Markov source for which the proof we give here can be
applied. An encoder with memory order k = 1 with the super
symbols has memory order k with the original source.

We need one last auxiliary lemma before we can prove
Theorem 1.

Lemma 3. For any source statistics, SI and any design,
one can replace the last encoder, fT , with a deterministic
encoder having memory order k = 1 and the new design will
outperform the original design.

Proof: Let X
′

1 = XT−1,W
′

1 = WT−1. We now have a two
stage system with source symbols (X

′

1, XT ) and SI (W
′

1,WT ).
Now, by the the two stage lemma, the second stage encoder
in the new two stage system. has memory order k = 1 for any
first stage encoding and decoding rules.



The main theorem is proven by backward induction. First
apply the last lemma to any design to conclude that an optimal
fT has memory order k = 1. Now assume that the last m
encoders (i.e fT−m+1, ..., fT ) have memory order k = 1. We
will show that the encoder at time T−m also has this structure
and continue backwards until t = 2. The first encoder, trivially,
has memory order k = 1. To prove the induction step, define

X̂1 = (X1, X2, ..., XT−m−1)

Ŵ1 = (W1,W2, ...,WT−m−1)

Ŷ1 = (Y1, Y2, ..., YT−m−1)

Ẑw
1 = r̂w

1 (Ŷ1, Ŵ1)

Ẑy
1 = r̂y

1(Ŷ1)

X̂2 = XT−m

Ŵ2 = WT−m

Ŷ2 = YT−m

Ẑw
2 = rw

T−m(WT−m, YT−m, Z
w
T−m−1)

Ẑy
2 = ry

T−m(YT−m, Z
w
T−m−1)

X̂3 = (XT−m+1, XT−m+2, ..., XT )

Ŵ3 = (WT−m+1,WT−m+2, ...,WT )

Ŷ3 = (YT−m+1, YT−m+2, ..., YT ) (25)

where

r̂y
1(Ŷ1) = ry

T−m−1(YT−m−1, r
y
T−m−2(. . . r

y
2(Y2, r

y
1Y1)) . . .)

(26)

and r̂w
1 (Ŷ1, Ŵ1) is defined likewise. In words, Ẑw

1 , Ẑ
y
1

are the states of the decoder after T − m − 1 stages.
Using this new notation, the encoder that produces Ŷ3 has
memory order of k = 1, since its a function of X̂3, Ẑ

y
2

(since, by assumption, the last m encoders in the original
notation are of memory order of k = 1). The source is
Markov since X̂3 is independent of X̂1 given X̂2 (since the
original source is Markov). Now, by the three stage lemma,
Ŷ2 = YT−m = fT−m(X̂2, Ẑ

y
1 ) = fT−m(XT−m, Z

y
T−m−1).

Thus, the induction step is proved.

IV. CONCLUSIONS

We showed that the results of [1] can be extended to both
include variable rate coding and SI at the decoder. Following
the same steps we used, this result can be further extended to
the case the decoder has SI with some lookahead (i.e at time
t it sees W t+l

t where l is the lookahead). The results of [1]
and some of the results in [3] are obtained in the special case
of λ = 0, i.e the instantaneous rate is not taken into account
in the cost function if we set Yt to be the encoder output
alphabet size at stage t of [1].

APPENDIX

This appendix show that L(Y2|Zy
1 ) is concave in

P (Y2|X2, Z
y
1 ). Let

P (Y2|X2, Z
y
1 ) = αP1(Y2|X2, Z

y
1 ) + (1− α)P2(Y2|X2, Z

y
1 )

for some 0 ≤ α ≤ 1. Focusing on the inner minimization of
the definition of L(Y2|Zy

1 ) (see (6)) we have

min
l(·)∈A2

{ ∑
y2∈Y

P (y2|zy
1 )l(y2)

}
= min

l(·)∈A2

{ ∑
y2∈Y

∑
x2∈X

[αP1(y2|x2, z
y
1 )

+ (1− α)P2(y2|x2, z
y
1 )]P (x2|zy

1 )l(y2)
}

≥ α min
l(·)∈A2

{ ∑
y2∈Y

∑
x2∈X

P1(y2|x2, z
y
1 )P (x2|zy

1 )l(y2)
}

+ (1− α) min
l(·)∈A2

{ ∑
y2∈Y

∑
x2∈X

P2(y2|x2, z
y
1 )P (x2|zy

1 )l(y2)
}

(27)

Let LP (Y2|Zy
1 ), LP1(Y2|Zy

1 ), LP2(Y2|Zy
1 ) denote the length

function calculated with P (Y2|X2, Z
y
1 ), P1(Y2|X2, Z

y
1 ),

P2(Y2|X2, Z
y
1 ) respectively. Substituting this into the defini-

tion of L(Y2|Zy
1 ) we have:

LP (Y2|Zy
1 ) ≥ αLP1(Y2|Zy

1 ) + (1− α)LP2(Y2|Zy
1 ) (28)
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