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Abstract—We derive a simple general parametric representa- scheme, or from random coding with respect to (w.r.t.) an
tion of the rate—distortion function of a memoryless sourcewhere  grbitrary random coding distribution, etc. One well known

both the rate and the distortion are given by integrals whose ; ; ;
integrands include the minimum mean square error (MMSE) of example is the Gaussian upper bound, which upper bounds

the distortion A = d(X,Y’) based on the source symbolX, the rate—distortion function of an arbltrz_;\ry m_emorylessrcz—
with respect to a certain joint distribution of these two random Mean) source w.r.t. the squared error distortion measutbey

variables. At first glance, these relations may seem somewha rate—distortion function of the Gaussian source with theesa
similar to the I-MMSE relations due to Guo, Shamai and Verd( second moment. If the origina| source has memory, then the
but they are, in fact, quite different. The new relations amag same principle generalizes with the corresponding Gamssia

rate, distortion, and MMSE are discussed from several aspés, havina th t lation functi thenaili
and more importantly, it is demonstrated that they can someimes ~ SOUC€ having (heé same autocorreiation function as the aiig

be rather useful for obtaining non—trivial upper and lower Source [1, Section 4.6].
bounds on the rate—distortion function, as well as for detemining In this paper, we focus on a simple general parametric
the exact asymptotic behavior for very low and for very large representation of the rate—distortion function which sgém
dlstortlllon. Analogous MMSE relations hold for channel capaity set the stage for the derivation of a rather wide family of
as well. . .
S _ both upper bounds and lower bounds on the rate—distortion
Index Terms—Rate—distortion function, Legendre transform, fynction. In this parametric representation, both the @ate
estimation, minimum mean square error. the distortion are given by integrals whose integrandsuide!
the minimum mean square error (MMSE) of the distortion
|. INTRODUCTION based on the source symbol, with respect to a certain joint
. distribution of these two random variables. More concsetel
I T has been well known for many years that the derivation @f ey 3 memoryless source designated by a random variable
the rate—distortion funcﬂ_on of a given source and dlsﬂmr_n (RV) X, governed by a probability functidm(z), a reproduc-
measure, does not lend itself to closed form expressiogs, variableY’, governed by a probability functiop(y), and

even in the memoryless case, except for a few V_ery,SimpAedistortion measuré(z, y), the rate and the distortion can be
examples [1],[2],[3],[5]. This has triggered the derieatiof represented parametrically via a real parameter|[0, o) as
some upper and lower bounds, both for memoryless SOUIGERows: ’

and for sources with memory.

One of the most important lower bounds on the rate— D,
distortion function, which is applicable for differencesttir-
tion measures (i.e., distortion functions that depend aair th
two arguments only through the difference between them),
is the Shannon lower bound in its different forms, e.g., the
discrete Shannon lower bound, the continuous Shannon lovA9d
bound, and the vector Shannon lower bound. This family of
bounds is especially useful for semi-norm—based distortio Rq(Ds)
measures [5, Section 4.8]. The Wyner-Ziv lower bound [14] oo
for a source with memory is a convenient bound, which = R¢(Dw) —/ ds-s-mmse(AlX), (2)
is based on the rate—distortion function of the memoryless ®
source formed from the product measure pertaining to thénere Dy is the distortion pertaining to parameter valse
single—letter marginal distribution of the original soerand R,(Ds) is the rate—distortion function w.r.t. reproduction dis-
it may be combined elegantly with the Shannon lower bounttibution ¢, computed aD,, A = d(X,Y’), and mmsgA|X)
The autoregressive lower bound asserts that the ratetitsto is the MMSE of estimating\ based onX, where the joint
function of an autoregressive source is lower bounded by theobability function of (X, A) is induced by the following
rate—distortion function of its innovation process, whish joint probability function of(X,Y"):
again, a memoryless source.

Do—/ ds - mmse(A|X)
0

= Dy +/OO ds - mmse(A|X) Q)

/ ds- §-mmse(A|X)
0

aly)e 0

Upper bounds are conceptually easier to derive, as they may  p(z,y) = p(z) - ws(ylz) = p(z) - - ©)
result from the performance analysis of a concrete coding 2(s)
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where Z,(s) is a normalization constant, given byvariable,z is a specific realization ok, andX is the alphabet
[ dyg(y)e~**=¥) in the continuous case, 9, q(y)e~**>¥) in which X andz take on values. This alphabet may be finite,
in the discrete case. ‘ countably infinite, or a continuum, like the real lifi¢ or an
At first glance, eq. (2) looks somewhat similar to the lnterval[a,b] C TR.
MMSE relation of [6], which relates the mutual information Sources and channels will be denoted generically by the
between the input and the output of an additive white Ganssikatter p, or ¢, which will designate also their corresponding
noise (AWGN) channel and the MMSE of estimating therobability functions, i.e., a probability density furmti (pdf)
channel input based on the noisy channel output. As wethe continuous case, or a probability mass function (pmf)
discuss later on, however, eq. (2) is actually very difféerefn the discrete case. Information—theoretic quantitieéie |
from the I-MMSE relation in many respects. In this contexgntropies and mutual informations, will be denoted accuydi
it is important to emphasize that a relation analogous to (&) the usual conventions of the information theory literatu
applies also to channel capacity, as will be discussed in teg., H(X), I(X;Y), and so on. If a RV is continuous—
sequel. valued, then its differential entropy and conditional ei#éntial
The relations (1) and (2) have actually already been raisedentropy will be denoted withh instead of H, i.e., h(X)
a companion paper [9] (see also [10] for a conference veysiois the conditional differential entropy ok, h(X|Y) is the
Their derivation there was triggered and inspired by cartatonditional differential entropy oX givenY’, and so on. The
analogies between the rate—distortion problem and statist expectation operator will be denoted, as usual Bjy}.
mechanics, which were the main theme of that work. However,Given a source RVX, governed by a probability func-
the significance and the usefulness of these rate—digtertition p(z), « € X, a reproduction RVY, governed by a
MMSE relations were not explored in [9] and [10]. probability functiong(y), ¥ € Y, and a distortion measure
It is the purpose of the present work to study these ré-: X x Y — IR™, we define the rate—distortion function of
lations more closely and to demonstrate their utility, whicX w.r.t. distortion measurd and reproduction distribution
is, as said before, in deriving upper and lower bounds. Tiaé A
underlying idea is that bounds oR,(D) (and sometimes Ry(D) =minI(X;Y), (4)
also onR(D) = min, R,(D)) may be obtained via relatively

S|mple_ bounds on the MMSI_E & based onX. These boun_ds (y]z), = € X, y € Y} that satisfyE{d(X,Y)} < D and
can either be simple technical bounds on the expression ug (y[X)} = q( ) for all y € V. Clearly, the rate—distortion

the MMSE itself, or bounds that stem from pure esﬂmaﬂor&gnctlon R(D), is given by R(D) = inf, R,(D). We wil

theoretic considerations. For example, upper bounds ma

derived by analyzing the MMSE of a certain sub- optlmurﬁlso use the notationt = d(X,Y). Obviously, sinceX and

estimator, e.g., a linear estimator, which is easy to amalyZ &€ RV'S, then so igd.

Lower bounds can be taken from the available plethora of

lower bounds offered by estimation theory, e.g., the Cramelll. MMSE RELATIONS: BASIC RESULT AND DISCUSSION

Rao lower bound. Throughout this section, our definitions will assume that
Indeed, an important part of this work is a section dboth X and) are finite alphabets. Extensions to continuous

examples, where it is demonstrated how to use the proposadighabets will be obtained by a limit of fine quantizations,

relations and derive explicit bounds from them. In one ofthe with summations eventually being replaced by integrations

examples, we derive two sets of upper and lower bounds,Referring to the notation defined in Section Il, for a given

one for a certain range of low distortions and the other, f@ositive reals, define the conditional probability function

high distortion values. At both edge-points of the interval A gqly)e=sd@w)

where X ~ p and the minimum is across all channels

of distortion values of interest, the corresponding uppet a ws(ylx) (5)
lower bound asymptotically approach the limiting valuehwit Zs(s)

the same leading term, and so, they sandwich the exadhere

asymptotic behavior of the rate—distortion function, bath Zo(s) 2 qly)e @) (6)
the low distortion limit and in the high distortion limit. yey

The outline of this paper is as follows. In Section Il, weynd the joint pmf
establish notation conventions. In Section I, we formall
present the main result, prove it, and discuss its signifiean ps(,y) = p(x)ws(y|z). (7)
from the above—mentioned aspects. In Section IV, we prov'ﬁ%rther let
a few examples that demonstrate the usefulness of the MM

relations. Finally, in Section V, we summarize and conclude mmsg(A|X) = EJ{[A-E{AX}]}
= EJ{[d(X,Y) - E{d(X,Y)|X}]*X8)
Il. NOTATION CONVENTIONS where E.{-} is the expectation operator w.rftp, (z, )}, and

Throughout this paper, RV’s will be denoted by capitafi€finingy(z) as the conditional expectatidi, {d(z, Y)|X =
letters, their sample values will be denoted by the respectiz} W.r.t. {w;(ylz)}, E{d(X,Y)[X} is defined as)(X).
lower case letters, and their alphabets will be denoted by th Our main result, in this section, is the following (the proof
respective calligraphic letters. For examplg, is a random appears in the Appendix):



Theorem 1:The functionR,(D) can be represented parashould only be considered as an auxiliary joint distribatio
metrically via the parameter € [0, o) as follows: that defines mmséA | X).
(@) The distortion is obtained by
s Using Theorem 1 for Bounds aR, (D)
D, = Dy —/ ds - mmse(A|X)
0 As was briefly explained in the Introduction (and will also
Do, +/°o ds - mmse (A[X) (9) be demonstrated in the next section), Theorem 1 may set
s the stage for the derivation of upper and lower bounds to
R,(D) for a general reproduction distributiopy and hence
Dy = Zp(x)q(y)d(x,y) (10) also for the rate—distortion functioR(D) when the optimum
z,Yy

where

¢ is happened to be known or is easily derivable (e.g., from
symmetry and convexity considerations).
and The basic underlying idea is that bounds By D) may be
Doo = Zp(x) myin d(z,y). (11) induced from bounds on mmge\| X) across the integration
x ‘ interval. The bounds on the MMSE may either be derived from
(b) The rate is given by purely technical considerations, upon analyzing the esgiom
Ry(Ds) of the MMSE directly, or by using estimation—theoretic ol
A In the latter case, lower bounds may be obtained from funda-
/ ds-5-mmse(A|X) mental lower bounds to the MMSE, like the Bayesian Cramér—
0 Rao bound, or more advanced lower bounds available from the
_ X estimation theory literature, for example, the Weiss—\8&im
= Ry(Dec) _/S ds-5- mmsg(AlX). (12) bound [12],[13], whenever applicable. Upper bounds may be

In the remaining part of this section, we discuss th@Ptained by analyzing the mean square error (MSE) of a

significance and the implications of Theorem 1 from severSPeCific (sub-optimum) estimator, which is relatively easy
aspects. analyze, or more generally by analyzing the performance of

the best estimator within a certain limited class of estorgt
like the class of linear estimators of the ‘observatiofy or a
certain fixed function ofX.

The parametes has the geometric meaning of the negative In Theorem 1 we have deliberately prese_nted two ir_ltegral
local slope of the function, (D). This is easily seen b forms for both the rate and the distortion. A, is
taking the derivatives of (9) and (12), i.e.Rg(D,)/ds = monotonically decreasing and?,(D,) is monotonically
s-mmse(A|X) and dD, /ds = —mmse(A|X), whose ratio increasing ins, the integrals at the first lines of both eqgs. (9)

o P/ _ o ' and (12), which include relatively small values &fnaturally

S 1,(Ds) = —s. Th_|s means also that the parameieplays { nd themselves to derivation of bounds in the low-rate
the same role as in the well known parametric representit ) X ) X

tions of [1] and [5], which is to say that it can also phigh _dlstortlon) regime, Whgreas the se_cond.llnes _of these
thought of as the Lagrange multiplier of the minimizatioffduations are more suitable in low—distortion (high resoh)

of [I(X;Y) + sE{d(X,Y)}] subject to the reproduction regiop. For. example, to derive an upper boundRy(D) in
distribution constraint. the high—distortion range, one would need a lower bound on

On a related note, we point out that Theorem 1 is based BH”SQ(NX) to be used in the firs_t line _Of ©) a”?' an upper
the following representation o, (D): bound on mmsgA|X) to be substituted into the first line of
(12). If one can then derive, from the former, an upper bound
on s as a function ofD, and substitute it into the upper bound

Some General Technical Comments

Ry(D) = —min (sD+ pl@)nZ.(s)| . (13) on the rate in terms oB, then this will result in an upper
- zeX bound to R, (D). A similar kind of reasoning is applicable
which we prove in the Appendix as the first step in the proab the derivation of other types of bounds. This point will be
of Theorem 1. demonstrated mainly in Examples C and D in the next section.

It should be emphasized that the ppmfthat plays a role
in the definition ofw;(y|z) (and hence also the definition ofComparison to the I-MMSE Relations
mmse (A| X)) should be kepfixedthroughout the integration,
independently of the integration variabke since it is the In the more conceptual level, item (b) of Theorem 1 may
same pmf as in the definition d&,(D). Thus, even ifg is remind the familiar reader about well-known results due to
known to be optimum for a given target distortidn (and Guo, Shamai and Verdl [6], which are referred to as -MMSE
then it yields R(D)), the pmf ¢ must be kept unaltered relations (as well as later works that generalize thes¢ioels).
throughout the integration, in spite of the fact that foresth The similarity between eq. (12) and the I-MMSE relation (in
values ofs (which correspond to other distortion levels), théts basic form) is that in both cases a mutual information
optimum reproduction pmf might be different. In particylaris expressed as an integral whose integrand includes the
note that the marginal df, that is induced from the joint pmf MMSE of a certain random variable (or vector) given some
ps(z,y), may not necessarily agree with Thus, ps;(z,y) observation(s). However, to the best of our judgment, this i



the only similarity. corresponding integrated MMSE formula would read

In order to sharpen the comparison between the two rela- 1
tions, it is instructive to look at the special case where all Cp :/ ds - s-mmse[lnp(Y|X)|Y], 17)
random variables are Gaussian and the distortion measure 0
is quadratic: In the context of Theorem 1, considérto where mmsglnp(Y|X)|Y] is defined w.r.t. the joint pmf
be a zero-mean Gaussian RV with variarnt%, and let p(a)w* (y|z)
d(z,y) = (z — y)?. As will be seen in Example B of the qs(z,y) = q(y)vs(z)y) = q(y) - e (18)
next section, this then means that(y|x) can be described u(s)
by the additive Gaussian chann®l = aX + Z, where EQ. (17) seems to be less useful than the analogous rate—
a = 2305/(1 + 2s02) and Z is a zero-mean Gaussian Rvdistortion formulas, for a very simple reason: Since the

independent of(, and with variance? /(1+2s0?). Here, we channel is given, then once the input pmfis given too

haveA = (Y — X)2 = [Z — (1 —a)X]?. Thus, ‘EJhe integrand (which is required for the use of (17)), one can simply

of (12) includes the MMSE in estimatingZ — (1 — a)X]?> compute the mutual information, which is easier than

based on thehannel inputX. It is therefore about estimatingapplying (17). This is different from the situation in the

a certain function ofZ and X, where X is the observation at rate—distortion problem, where even if bgitandgq are given,

hand andZ is independent ofX . in order to computeR, (D) in the direct way, one still needs
This is very different from the paradigm of the I-MMSEt0 minimize the mutual information w.r.t. the channel betwe

relation: there the channel i¥ = /sniX + Z, where Z X andY. Eq. (17) is therefore presented here merely for the

is standard normal, the integration variablessr and the purpose of drawing the duality.

estimated RV isX (or equivalently,”Z) based on thehannel

output Y. Also, by comparing the two channels, it is readilyAnalogies With Statistical Mechanics

seen that the integration variable in our setting, can be

related to the integration variablsnr, of the I-MMSE relation ~ As was shown in [11] and further advocated in [8], the

according to Legendre relation (13) has a natural statistical-mecladunie

452 terpretation, whereZ, (s) plays the role of a partition function
SNr= ———F——, (14) of a system (indexed by), d(z,y) is an energy function
02(1 + 2s02) O .
v v (Hamiltonian) ands plays the role of inverse temperature

and so, the relation between the two integration variatdes(normally denoted by3 in the Physics literature). The mini-

highly non—linear. We therefore observe that the two MMSEIZING s is then the equilibrium inverse temperature what
results are fairly different. systems (each indexed hy with n(z) = np(x) particles and

Hamiltoniané, (y) = d(z,y)) are brought into thermal contact
and a total energy of D is split among them. In this case,
—R4(D) is the thermodynamical entropy of the combined

Eq. (13) can be understood conveniently as an achieva@/eStem and the MMSE, which isitl /ds, is intimately related

N . : the heat capacity of the system.
rate using a simple random coding argument (see Appendlxci.An alternative. thouah similar. interpretation was diven i
The coding rate R should be (slightly larger than) the Ve, ugn simiiar, | P lon was given |

large deviations rate function of the probability of the mtve [9]’[101’. where the pare_lmetes was |_nterpreted as being
(" d(z:,Y;) < nD}, where (z ) is a typical proportional to a generalized force acting on the systein,(e.
i=1 iy L4 = ’ 1y:--ydn

source sequence an@i,...,Y,) are drawn iid. fromg. pressure or magnetic field), and the distortion variabléhes t

As is well known, a similar random coding argument appliecsonlegate physical quantity influenced by this force (e.g.,

to channel coding (see also [8]): Channel capacity can %olume in the case of pressure, or magnetization in the case

obtained as the large deviations rate function of the eveoﬁa magnetic field). In this case, the minimiziagmeans

n : the equal force that each one of the various subsystems is
;{)EE)E}( i(e)éﬁey%g t?/ é)i(];é\llvtr:per(eXn Ow(yl’X )’ g?g 'Zrz\mainindel applying on the others when they are brought into contact and
y IR n .U,

: : : . : they equilibrate (e.g., equal pressures between two vadurhe
Zci?]fslgg tt(:) abg;\(/inyl)nth?zz(é)ﬁ;)t??j(ljrg;?ogeﬁzafhuere a gas separated by piston which is free to move). In this case,

channel transition probabilities) and = H (Y| X). Thus, the —Ry(D) is interpreted as the free energy of the system, and
. the MMSE formulas are intimately related to the fluctuation—
analogue of (13) is

dissipation theorem in statistical mechanics.
More concretely, it was shown in [9] that given a source
C, = —min |sH(Y|X) + Z q(y)In Z,(s) (15) distribution and a distortion measure, we can describeset|
520 conceptually) a concrete physical system that emulates the
rate—distortion problem in the following manner: When no

Analogous MMSE Formula for Channel Capacity

yeyY

where force is applied to the system, its total lengthni®,, where
7 _ s 16) " is the number of particles in the system (and also the block
o() g;{p(x)w () (16) length in the rate—distortion problem), ard, is as defined

above. If one applies to the system a contracting force, that
and the minimizings is alwayss* = 1. Consequently, the increases from zero to some final valiesuch that the length



of the system shrinks te D, whereD < Dy is analogous to and
a prescribed distortion level, then the following two fabtsd

true: (i) An achievable lower boundn the total amount of R(D) = /S Lsd‘?
mechanical work that must be carried out by the contracting o (I+e*)?
force in order to shrink the system to lengilD, is given by = In2+ s _ In(1 + €°)
1+4e
W > nkTR,(D), (19) s
— 2 h (_>
wherek is Boltzmann’s constant arifl is the temperature. (ii) L+e®

The final force is related toD according toA = kTR, (D), = In2 - hy(D), (24)
where R;(-) is the derivative of R,(:). Thus, the rate— _ )

distortion function plays the role of a fundamental limigtn Wherehs(u) = —ulnu—(1-u)In(1—wu)is the binary entropy
only in Information Theory, but in Physics as well. function.

IV. EXAMPLES - . . .
B. Quadratic distortion and Gaussian Reproduction

In this section, we provide a few examples for the use _ _
of Theorem 1. The first two examples are simple and well Another classic example concerns a general source with
known, and their purpose is just to demonstrate how to uge = E{X?} < oo, the quadratic distortioni(z,y) =
this theorem in order to calculate rate—distortion fursio (¢ — ). and a Gaussian reproduction distribution, namely,
The third example is aimed to demonstrate how Theoretfw) iS the pdf of a zero-mean Gaussian RV with variance
1 can be useful as a new method to evaluate the behavior = o> — D, for a gvenD < o;. In this case, it well
of a certain rate—distortion function (which is apparentyt known thatR (D) = éln% (even without assuming that the
straightforward to derive otherwise) at both the low ditor sourceX is Gaussian). We now demonstrate how this result
(a.k.a. high resolution) regime and the high distortionimesy is obtained from the MMSE formula of Theoren? 1.
Specifically, we first derive, for this example, upper anddow  First, observe that sincg(y) is the pdf pertaining to
bounds onR(D), which are applicable in certain ranges\/(0,02 — D), then
of high—distortion. These bounds have the same asymptotic
behavior asD tends to its maximum possible value, and so, qy)esw=—=)°
they sandwich the exact high—distortion asymptotic besravi ws(Yle) = —3 dy'q(y )e—s(v'—)?
of the true rate—distortion function. A similar analysis in -
then carried out in the low distortion range, and again, thg easily found to correspond to the Gaussian additive ablann
two bounds have the same limiting behavior in the very low

(25)

distortion limit. In the fourth and last example, we show how B 2s(02 — D) X4 7 (26)
Theorem 1 can easily be used to evaluate the high—resolution - 1+2s(02 - D)
behavior of the rate distortion function for a general power _ . . _
law distortion measure of the fora(x,y) = |z — y|". where Z is a zero-mean Gaussian RV with variangg =
(62 — D)/[1 + 2s(02 — D)], and Z is uncorrelated withX.
A. Binary Symmetric Source and Hamming Distortion Now,
Perhaps the simplest example is that of the binary symmetrigan. = (v — X)?
source (BSS) and the Hamming distortion measure. In this 25(c2 — D) X 2
case, the optimum is also symmetric. HerA = d(X,Y) is = |Y - — - X - 5
a binary RV with 1+ 2s(c2 — D) 1+2s(c2 - D)
. = (Z-aX)?
PHA = 1|X —a} = 7 i _ (20) = 2°-2aX7+a2X? 27)
e S
independently ofc. Thus, the MMSE estimator of(X,Y) wherea = 1/[1 + 2s(¢2 — D)]. Thus, the MMSE estimator
based onX is . of A given X is obtained by
Aet (21) A
I+es A = E{A|X}
regardless ofX', and so the resulting MMSE (which is simply = E{ZQ|X} —20XE{Z|X}+ oa2X?
the variance in this case) is easily found to be = E{Z?) — 2aXE{Z} + a*X?
—Ss _ 2 2y 2
mmsg(A|X)=67752. (22) = B{Z}+a’X
(I+e9) = o2 +a*X? (28)
Accordingly,
1 e—4%ds oS 2We are not arguing here that this is the simplest way to caleut, (D)

s _
_ / _ (23) in this example, the purpose is merely to demonstrate hovorEne 1 can be
o ( used.



which yields

mmse{A|X}
E{(A-2)%)

E{(0? +®X? - 7% + 20X Z — a*X?)?}
2cr;1 + 4042032505
2(03 — D)? d03(0} — D)
1+ 2s(c2-D))> [1+2s(c2—D)]3
Now, in our case,Dy = o2 + 0, = 202 — D, and so, for

s=1/(2D), we get

(29)

D, Dy —/ ds - mmse(A|X)
0

202 — D —
1/2D ds
2 )2
2o D)/O 1+ 2502 — D)2
1/2D ds
40%(c2 — D
202D [ e

20320—D+

D)[

(03 —

1 ]I/QD
+

1+2s(02— D) |,
1 1/2D

2

Hiroeror),

which, after some straightforward algebra, gives= D. l.e.,
s and D are indeed related by = 1/(2D), or D = 1/(2s).
Finally,

(30)

g

R,(D) /S ds-§-mmse(A|X)

0
o pp [
r 0 [1+425(c2 — D))?

1/2D 5ds
46%(62 — D
200 [ e

% {In[1 + 2s(c2 — D)]+

+

1 1/2D
1+ 2502 —D)}O +
o2 1 _
02— D |2[1 + 25(02 — D)2

1 1/2D
1+ 2s(02 — D)}0

which yields, after a simple algebraic manipulatiét,(D) =

(31)

1 gL
3 In D

C. Quadratic Distortion and Binary Reproduction

In this example, we again assume the quadratic distortion
measure, but now, instead of Gaussian reproduction code-

words, we impose binary reproductione {—a, +a}, where
a is a given constarit.Clearly, if the pdf of the sourc& is
symmetric about the origin, then the best output distrdouti

3The derivation, in this example, can be extended to apply tslarger
finite reproduction alphabets.

is also symmetric, i.e.g(+a) q(—a) 1/2. Thus,
R,(D) = R(D) for every D, given this choice ofg. The
channelw, (y|x) is now given by

e—s(y—m)2 erwy

T2 cosh(2asz)’

Note that in this case, the minimum possible distortion (ob-
tained fors — o) is given by D, = E{[X — asgnX)]?}.
Thus, the rate—distortion function is actually defined ofaly

D > D,. The maximum distortion of interest i®,
o2 + a?, pertaining to the choice = 0, where X andY are
independent. To the best of our knowledge, there is no closed
form expression forR(D) in this example. The parametric
representation oD and R(D;), both as functions of, does

not seem to lend itself to an explicit formula &f(D). The
reason is that

ws(y|r) = (32)

e—s(z—a)? + e—s(z+a)?

02 +a® - 2E{XY}
02 +a® - 2E{X - E{Y|X}}

02 4+ a® — 2aE{X tanh(2asX)}

(33)

and there is no apparent closed—form expressiorediunction
of D, which can be substituted into the expressiomRdD;).

Consider the MMSE estimator ak = (Y — X)? = X2 +
a? - 2XY:

A E{(Y - X)}|X}
X2 +a®> - 2XE{Y|X}

X? 4 a? — 20X tanh(2asX). (34)

The MMSE is then

mmseg(A|X) E{[2X (Y — atanh(2asX)))*}

4a*[0? — E{X?tanh®(2asX)}](35)
We first use this expression to obtain upper and lower bounds
on R(D) which are asymptotically exact in the range of high

distortion levels (smalk). Subsequently, we do the same for
the range of low distortion (largs).

High Distortion. Consider first the high distortion regime. For
smalls, we can safely upper boundnh?(2asX) by (2asX)?
and get

mmse(A|X) > 4ad*(0? — 4a*s’E{X"})

= 4a*0? —16a*pis® (36)

wherep? a E{X*}. This results in the following lower bound
to R(D;):
[ as
0

JR
0

A
2a%02%s% — 4a’plst = r(s).

R(Dy) -§-mmse(A|X)

-5[4a%0? — 164" pl5?)

37)

To get a lower bound td,, we need an upper bound to the
MMSE. An obvious upper bound (which is tight for sma)l



is given by4a?02, which yields: trigonometrically and it is relatively simple (see, e.d., p- 9]):

s Specifically, the cubic equatios¥ + As+ B = 0 has solutions
D, = Dy —/ ds - mmse(A|X) of the forms = mcos 6, wherem = 2,/—A/3 and#@ is any
. solution to the equationos(36) = 32 . In other words, the
> Dy — / ds - (4a%02) three solutions to the above cubic equation gre- m cos 6;,
0 where
= Dog—4a‘0ys (38) 1 B 2m(i — 1
f; = = cos 3B —|—M, 1=1,2,3, (45)
or 3 Am 3
Dy — Dy
2 e (39) with cos~!(t) being defined as the unique solution to the
N equationcos « = t in the rangex € [0, 7]. In our case,
Consider now the rangec [0, 0../(2ap?)], which is the range )
wherer(s) is monotonically increasing as a function afin A= — 305 ’ - 3(Do — D)’ (46)
this range, a lower bound om would yield a lower bound 4a?pj 16a*p3
onr(s), and hence a lower bound (D). Specifically, for and so, the relevant solution far(i.e., the one that tends to
s € [0,0./(2ap?)], we get zero asD — D), which is§~1(D), is given by
R(Ds) = r(s) §~1(D)
DO_DS Oy 1 1 3pi(D—D0) 4
= < 10202 > = o O [5 (7@03 ) + ﬂ
(Do — Dy)*  pg(Do — Dy)* o 1/(/m 3p2(Dg — D) 4
- . (40 = 2= (I gipt (2P0 ) Sl
8@20'% 640/40? ( ) = ap% COS |:3 (2 + sin ( 4@0’% )) + 3 :|
In other words, we obtain the lower bound or . [1 . 4 (3p2(Dg— D)
, | s b ) = W Sin g sin 44&0_3 ) (47)
Dy —D — z b
R(D)Z( 02 2) _pz( 04 8 ) éRL(D) (41) 1 . . . .
8a‘oy 64a*of where sin~'(¢) is defined as the unique solution to the

for the range of distortiond) € [Dy — 2a0?/p2, Dy). It is equationsin @ = ¢ in the rangex € [—7/2,7/2]. This yields
obvious that, at least in some range of high distortion kvef® upper bound

this bound is better than the Shannon lower bound, 4 9 3
1 R(D) < 2? sin’ F sin~! <W)]
Rs(D) = h(X) — 5 In(2meD), (42) N Pq a3

where h(X) is the differential entropy ofX. This can be . . 5 )

seen right away from the fact thdts(D) vanishes atD = for the range of distortion®) € [Dy — 4ac;; /(3p7), Dol.

(2me)~1e2MX) < o2, whereas the bound?; (D) of (41) For very smalls, since the upper and the lower bound to
o the MMSE asymptotically coincide (namely, mm&a|X) ~

vanishes atD, = o2 + a2, which is strictly larger. 5 o o
By applying the above—mentioned upper bound to tHE 7). then both Ry (D) and R.(D) exhibit the same

MMSE in the rate equation, and the lower bound to the MMsRehavior nearD = Do, and hence so does the true rate—
— in the distortion equation, we can also get an upper bouflfftortion function, (D), which is

to R(D) in the high—distortion range, in a similar manner. (Dg — D)?
Specifically, R(D) » — 55— (49)
R(D,) < /S ds - 3(4a202) = 2a%02s? (43) O stated more rigorously,
0 R(D) 1
and DDy (Do — D)2 8a202’ (50)
Ds < Dy —/ ds(4a’0? — 16a"pts?) Note that the high—distortion behavior éf(D) depends on
0

the pdf of X only via its second order moment. On the
= Do —4a%02s+ Ea4pi33 EY (s).  (44) other hand, the upper and lower bounds;(D) and R (D),
3 depend only o2 and the fourth order momeng;.

Considering again the rangee [0,0./(2ap?)], whered(s) In Fig. 1, we display the upper bourd®y; (D) (solid curve)
is monotonically decreasing, the inverse function'(D) is and the lower boundz, (D) (dashed curve) for the choice
monotonically decreasing as well, and so an upper bound @h = a? = 1 (henceDy = 02 + a® = 2) and p? = 3, which
R(D) will be obtained by substituting=!(D) instead ofs is suitable for the Gaussian source. The range of displayed
in the bound on the rate, i.eR(D) < 2a?02[6~1(D)]?. distortions,[1.25,2], is part of the range where both bounds
To obtain an explicit expression fof—!(D), we need to are valid in this numerical example. As can be seen, the
solve a cubic equation i and select the relevant solutionfunctions Ry (D) and Ry (D) are very close throughout the
among the three. Fortunately, since this cubic equation hagerval [1.7,2], which is a fairly wide range of distortion
no quadratic term, the expression of the solution can bedoulevels. The corresponding Shannon lower bound, in this,case



which is Rg(D) = max{0, 1 In &}, vanishes for allD > 1 We then obtain
and hence also in the range displayed in the graph. ) +o0
mmse(A|X) = 2ad%0 Z On / x2e~ (OHdans)lzlgy,

0.14

29 55
8a Z 9+4ans (55)

Thus,
R(Ds)
= R(D) —/ ds-§-mmse(AlX)

- > ds-s
— 1-8a20S ¢ | —5
Sa Z ¢ /S (0 + 4ans)3

0 0
T2 g [9+4ans © 2(0 4 dans)? | (56)

Thus far, our derivation has been exact. We now make an
approximation that applies for largeby neglecting the terms
proportional to(# + 4ans)~2 and by neglecting compared

to 4ans in the denominators of /(6 + 4ans). This results in

the approximation

0.1r

0.06

0.041

0 [e’e]
12 13 14 15 16 17 18 19 2 ~ A 0 ¢n

D)~ R(Dg)=1— — —. 57

R(D:) # R(D:) S1— g% " (57)

Fig. 1. The upper boun&; (D) (solid curve) and the lower bounBy, (D)
(dashed curve) in the high—distortion regime &} = a2 = 1 and p% = 3. A _
The Shannon lower bound vanishes in this distortion range. Let us denote’” = éia ZOO O Then,R(Ds) =1 - C/s.

n=1 n3

Applying a similar calculation toDy, = D, + f:o ds -
Low Distortion.We now consider the small distortion regimemmse,s(A|X), yields, in a similar manner, the approximation

wheres is very large. Define the function C
Dy~ D, 2 Do, ot 5 (58)
1—u\?
fu) = <1 . u> u€l0,1) (51) It is easy now to expressas a function ofD and substitute
into the rate equation to obtain

and consider the Taylor series expansionf¢&) aroundu =
0, which, for the sake of convenience, will be represented as
o Finally, it remains to determine the coefficiedis, } and then
uw)=1- Z(bnu" (52) the constantC. The coefficients can easily be obtained by
using the identity(1 + u)~' = >0 (=1)"u™ (u € [0, 1)),
which yields, after simple algebra,, = 4n(—1)"*!. Thus,

R(D) ~1—+/2C(D - Do). (59)

The coefficients{¢,,} will be determined explicitly in the

sequel. Now, clearlytanh?(2asz) = f(e~*e*l#l), and so we 0=yt %
have ¢= 2a r; n? T 24a’ (60)
mmse (A|X) and we have obtained a precise characterizatio®@) in
— 442 [Ui _ E{XQf(exp{—4as|X|})}] the high—resolution regime:
=~ _ . 1-R(D) r [0
_ 2 2 2 _ 4ans| X | _ _ . s
= 4a [am E {X (1 ;(bne )H Jim JD—D— Va2l =3 \/ o (61)
i dans By applying a somewhat more refined analysis, one obtains
= 1a®Y 6. {X2e 4 |X\}_ (53) (similarly as in the above derivation in the high distortion
n=1

regime) upper and lower bounds B(D,) and D, this time,

To continue from this point, we will have to leX assume @s polynomials inl/s. These again lend themselves to the

a certain pdf. For convenience, let us seléttto have the derivation of upper and lower bounds di(D), which are
Laplacian pdf with parametet, i.e., applicable in certain intervals of low distortion. Spedfig,

the resulting upper bound is

0
plw) = e, (54) R(D)<1-/2C(D—Dx)+Ci(D—Dy), (62)



whereC; = 2L S (’173:“, and it is valid in the range and so

1
R, (D, K+ -Ins
6C(D — Do) o(Ds) r

>1- , (63) 1 1
2 cos [% sin~? <2C“/76(DCD°°)) + %} K+ - In (TDS) (70)

and it applies to the rangb € [Do., Do + C/(12C%)]. Both whereK is an integration constant. We have therefore obtained
bounds have the same leading term in asymptotic behavi$y@t in the high—resolution limit, the rate—distortion &tion
which supports eq. (61). The details of this derivation aiI-t. ¢ behaves according to

omitted since they are very similar to those of the high— L1
distortion analysis. R,(D) =K' — - InD. (71)

with K/ = K — (Inr)/r. While this simple derivation does

D. High Resolution for a General"” Distortion Measure . . .
not determine yet the constait’, it does provide the correct

Consider the case where the distortion measure is given Qy, .o ~teristics of the dependenceldf(D) upon D for small
the L™ metric, d(z,y) = |z — y|” for some fixedr > 0. Let

' 4 D. For the case of quadratic distortion, where= 2, one
the reproduction symbols be selected independently at)m‘ndeasily identifies the familiar factor af/2 in front of the log—
according to the uniform pdf

distortion term.

() = 4yl <A (64) The exact constanfX (or K’') can be determined by
)= 0 elsewhere returning to the original expression &f,(D) as the Legendre
Then transform of the log—moment generating function of theatist
e sly—=|” tion (eq. (13), and setting these= 1/(rD) as the minimizing
ws(ylz) = erA dy’ - e—slv el (65) 5 for the givenD. The resulting expression turns out to be
—_A :
and so K'=In [—TA ] — 1ln(er). (72)
+A r—sly—z|" F(l/’l’) r
too fiAdy-|x—y|e Y
D, = / dxp(x) - A -
—o0 J 4 dy - emsly==l V. CONCLUSION
+oo P +A N i i i —
_ _/ dep(z) - 2 In / dy - e~<Iv-2I" {66) _In t_h|s paper, we derived relations k_Jetwe_en t_he rate
oo Os A distortion functionR,(D) and the MMSE in estimating the

distortion given the source symbol. These relations haes be
discussed from several aspects, and it was demonstrated how
they can be used to obtain upper and lower boundBgiD),

as well as the exact asymptotic behavior in very high and very
low distortion.

The bounds derived in our examples were induced from
purely mathematical bounds on the expression of the MMSE
directly. We have not explored, however, examples of bounds
on R,(D) that stem from estimation—theoretic bounds on

Now, in the high-resolution limit, where is very large, the
integrande—*1¥—*|" decays very rapidly ag takes values away
from z, and so, for everyr € (—A,+A) (which for large
enoughA, is the dominant interval for the outer integral ove
p(z)dzx), the boundaries;-A and + A, of the inner integral
can be extended te-oo and +oco within a negligible error
term (whose derivative w.r.k is negligible too). Having done
this, the inner integral no longer depends snwhich also
means that the outer integration ovebecomes superfluous.

This results in the MMSE, as was described in Section Ill. In future work,
! uits 1 e it would be interesting to explore the usefulness of such
D. — _2 In / dy - e—syT:| bounds as well. Another interesting direction for furthesriv
* 0s  |J_oo would be to make an attempt to extend our results to rate—
o I Foo Ve ir distortion functions pertaining to more involved settingsch
= —Znl|sVr d(s!/my)e sl . . . S ;
Js . - as successive refinement coding, and situations that ieclud
P - oo side information.
= —gln s_l/T/_oo dt-e_tlr}
9 ) APPENDIX
= ——In(s7¥")
ds Proof of Theorem 1.
_ 1 (67) Consider a random selection of a codebookidf = e
rs codewords, where the various codewords are drawn indepen-
Thus, dently, and each codeword” = (Y3,...,Y,,), is drawn
mmse (A[X) = _dp, i7 (68) according to the product measu@(y) = [[;_, q(y:). Let
ds rs? x = (z1,...,2,) be a typical source vector, i.e., the number
which yields of times each symbok € X appears inz is (very close
dR,(Dy) to) np(x). We now ask what is the probability of the event

1
—q =5 mmse(AlX) = — (69) {3, d(z;,Y;) < nD}? As this is a large deviations event
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wheneverD < > p(x)q(y)d(z,y), this probability must Consequently, according to eq. (75), we have established th
decay exponentially with some rate functiéy(D) > 0, i.e., relatior?

H . (73) Ry(D) = —min |sD+ Y p(r)nZy(s)| . (76)

: 1 -
I,(D) = lim l—ﬁlnPr{Zd(xi,Yi)gnD >0 =

=t As this minimization problem is a convex probletn £, (s)
The functionl, (D) can be determined in two ways. The firsis convex ins), the minimizings for a given D is obtained

is by the method of types [3], which easily yields by taking the derivative of the r.h.s., which leads to
. olnZ,
1,(D) = min[I(X;Y") + D(¢'[| )], (74) D= =Y pla) HTU
zeX 5
where theY’ is an auxiliary random variable governed d —sd(z,y)
by ¢'(y) = Y ,cxp(@)w(ylz) and the minimum is over = > p) 2yey 1) (x’%)sz(m ) (77)
all conditional pmf's {w(y|z)} that satisfy the inequality zeX 2yey ay)e Y

Y eex P(T) Xoyey wlylr)d(z,y) < D. The second method This equation yields the distortion levé! for a given value
is based on large deviations theory [4] (see also [8]), whif the minimizings in eq. (76). Let us then denote

yields —sd
d(zx,y)e 54 =)
D, = Z p(z) - Zyg Q(y()](;)ey)sd(z-,y) . (78)
I,(D) = —min |[sD + Z p(z)In Z.(s)| . (75) TEX vey
520 cex This notation obviously means that
We first argue thaf,(D) = R, (D). The inequalityl,(D) < Ry(Dy) = —sDy = Y p(x)In Zy(s). (79)
R,(D) is obvious, asR,(D) is obtained by confining the z€X
minimization over the channels in (74) so as to comply withaking the derivative of (78), we readily obtain
the additional constraint th@mexp(x)w(ym = q(y) fc_>r dD, 0 [2,ey q(y)d(z,y)es1@w)
all y € Y. The reversed inequalityl,(D) > Ry(D), is g = Z p(x)a— i)
obtained by the following coding argument: On the one hand, ~° zeX 5 2yey y)e ’
a trivial extension of the converse to the rate—distortioding Zyey q(y)d*(z, y)esH@y)
theorem [2, p. 317], shows thak,(D) is a lower bound = - p) TP —
to the rate—distortion performance of any code that sasisfie T€X yey
LS PHY; =y} = q(y) for all y € V.4 On the other > ey a(y)d(z, y)e=sd@) 2
hand, we next show thdt (D) is an achievable rate for codes : i)
in this class. 2yey a(e '
_ Consider the the rgndom coding mechanism de_scribed in the - _ Z p(z) - Var,{d(z,Y)|X = z}
first paragraph of this proof, witlk = I,(D) + ¢, with e > 0 Jopgd
being arbitrarily small. Since the probability that for angie = —mmse(AlX), (80)

randomly drawn codeword, Py " | d(z;,Y;) < nD} is of . ,
the exponential order of "+, then the random selectionWhere Var{d(z,Y)|.X = z} is the variance ofi(x,Y) w.rt.
of a codebook of sizee™ll«(P)+el constitutes enll«(P)+<]  the conditional pmf{ws(y[x)}. The last line follows from

independent trials of an experiment whose probability ¢f€ fact the expectation of Vafd(X,Y)|X} w.rt. {p(z)}
success is of the exponential orderof*s(?). Using standard 1S €xactly the MMSE ofd(X,Y’) based onX. The integral
random coding arguments, the probability that at least offyMs Of this equation are then precisely as in part (a) of the
codeword, in that codebook, would fall within distang® theorem with the corresponding integration constantsalfsin

from the given typicalz becomes overwhelmingly large asdifferentiating both sides of eq. (79), we get

n — oo. Since this randomly selected codebook satisfies also dR(Ds) = dDs 5 S i) - Oln Z,(s)
L5t PH{Y; = y} — q(y) in probability (asn — oo) for ds N ds * p(@ s
n reX
all y € Y (by the weak law of large numbers), thép(D) D
is an achievable rate within the class of codes that satisfy = 57 >+ D, + D,
L3, PHY: =y} — q(y) for all i. dp.
Thus, I,(D) > R4(D), which together with the reversed = T8 s
inequality proved above, yields the equallty D) = R, (D). — s-mmse(A|X), 81)

4To see why this is true, consider the functions(y), v, k € I (each of which when integrated back, yields part (b) of the theorem.

which is defined as equal one fgr= k and zero otherwise) 43| distortion ~ This completes the proof of Theorem 1.

measures, indexed by € ), and consider the rate—distortion function w.r.t.

the usual distortion constraint and thg| additional “distortion constraints”  °Eq. (76) appears also in [5, p. 90, Corollary 4.2.3], with anptetely
E{6,(Y)} < q(k) for all £ € Y, which, when satisfied, they all must bedifferent proof, for the special case whegeminimizes both sides of the
achieved with equality (since they must sum to unity). The—distortion equation (and hence it refers ®(D)). However, the extension of that proof to
function w.r.t. thesd)| + 1 constraints, which is exactly?z,(D), is easily a generig is not apparent to be straightforward because here the riziaiion
shown (using the standard method) to be jointly convexirand g. over the channels is limited by the reproduction distributconstraint.
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