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Abstract—We revisit and extend the physical interpretation
recently given to a certain identity between large–deviations
rate–functions, as well as applications of this identity torate–
distortion theory, as an instance of thermal equilibrium between
several physical systems that are brought into contact. Ournew
interpretation, of mechanical equilibrium between these systems,
is shown to have several advantages. This physical point of
view also provides a trigger to the development of certain new
alternative representations of the rate–distortion function and
channel capacity.

I. I NTRODUCTION

In [5], an identity between two forms of a certain large de-
viations rate function (RF) was established, with applications
in information theory. Inspired by a few earlier works (cf. e.g.,
[4], [8]), this identity was interpreted asthermal equilibrium
between several physical systems in contact. In particular, the
parameter that undergoes optimization of the Chernoff bound,
i.e., the Chernoff parameter, plays the role of theinverse
temperature. The corresponding RF is then identified with the
entropy of the system.

While this physical interpretation is reasonable, it turnsout
that it leaves some room for improvement, and we mention
here just two points. The first is that this interpretation is
not generalizable to RF’s of combinations of more than one
rare event, where the number of Chernoff parameters is as
the number of events. The reason is that in physics, there
is one temperature parameter only. The other point is the
following (more details will follow in Section 2): while
the log–moment generating function, pertaining to the RF,
naturally includes weighting, its physical analogue, which is
thepartition function, does not. If these weights are subjected
to optimization, they may depend on the Chernoff parameter,
i.e., on the temperature and the resulting expression can no
longer really be viewed as a partition function.

We propose to interpret the above–mentioned identity of
RF’s as mechanical equilibrium(i.e., balance between me-
chanical forces), rather than thermal equilibrium, and then
the Chernoff parameter plays the physical role of an external
force applied to the system. In this paradigm, the RF has a
natural interpretation as theHelmholtz free energy(HFE) of
the system, rather than as entropy. Accordingly, since the rate–
distortion function (RDF), and similarly, also channel capacity,
can be thought of as RF’s, they can also be interpreted as
HFE’s.

This interpretation has several advantages. First, it is con-
sistent with the analogy between the HFE in physics and the

Kullback–Leibler divergence in information theory (see, e.g.,
[1]), which plays a role as a RF when the large deviations
analysis is approached by the method of types. Second, it is
free of the limitations mentioned in the previous paragraph, as
we will later. Third, it serves as a trigger to develop certain
new representations of the RDF, and analogously, the channel
capacity.

Since the RDF can be thought of as HFE, one of the
representations of the RDF expresses it as (the minimum
achievable) mechanical work carried out by the aforemen-
tioned force, along a ‘distance’ that is measured in terms ofthe
distortion. Another representation is as an integral that involves
the minimum mean square error (MMSE) in estimating the
distortion given the source symbol, according to a certain
joint distribution. The latter representation suggests a new
route to upper and lower bounds on the RDF and channel
capacity, using the plethora of bounds on MMSE, available
from estimation theory. We have not explored these directions,
however, in the framework of this work.

An additional byproduct of the this perspective is the fol-
lowing: Given a source distribution and a distortion measure,
we can describe a physical system that emulates the rate–
distortion problem in the following manner: When no force
is applied to the system, its total length isn∆0, where n
is the number of particles in the system (and also the block
length in the rate–distortion problem), and∆0 is the distortion
corresponding to zero coding rate. If one applies to the system
a contracting force, that increases from zero to some final
valueλ, such that the length shrinks ton∆, where∆ < ∆0 is
analogous to a prescribed distortion level, then the following
two facts hold: (i) Anachievable lower boundon the total
amount of mechanical work carried out by the force in order to
shrink the system to lengthn∆, is given byW ≥ nkTRQ(∆),
wherek is Boltzmann’s constant,T is the temperature, and
RQ(∆) is the RDF w.r.t. an input distributionQ. (ii) The final
force λ is related to∆ according toλ = kTR′

Q(∆), where
R′

Q(·) is the derivative ofRQ(·). Thus,R(∆) is a fundamental
limit, not only in information theory, but also in physics.

II. PHYSICS BACKGROUND AND PRELIMINARIES

Consider a physical system withn particles, which can be in
a variety of microscopic states (‘microstates’), defined bycom-
binations of, e.g., positions, momenta, angular momenta, spins,
etc., of alln particles. For each such microstate of the system,
which we shall designate by a vectorx = (x1, . . . , xn), there



is an associated energy, given by an Hamiltonian (energy
function), E(x). One of the most fundamental results in
statistical physics is that in thermal equilibrium, the probability
of a microstatex is given by theBoltzmann–Gibbs(BG)
distribution

P (x) =
e−βE(x)

Zn(β)
(1)

where β = 1/(kT ), T being temperature,k being Boltz-
mann’s constant, andZn(β) is the partition function, given
by Zn(β) =

∑

x e−βE(x). The partition function is a key
quantity from which many macroscopic physical quantities
can be derived, for example, the HFE is− 1

β lnZn(β), the
average internal energy (i.e., the expectation ofE(x) wherex

drawn is according (1)) is given by the negative derivative of
lnZn(β), etc. One way to obtain eq. (1), is as the maximum
entropy distribution under an energy constraint, whereβ plays
the role of a Lagrange multiplier that controls this energy.

Under certain assumptions on the Hamiltonian, the fol-
lowing relations are well–known to hold (see, e.g., [3],[7]):
Defining the per–particle entropy,S(E), associated with per–
particle energyE = E(x)/n, as limn→∞[ln Ω(E)]/n, (pro-
vided that the limit exists), whereΩ(E) is the number of
microstates{x} with energy levelE(x) = nE, then as
in the method of types, one can evaluateZn(β) defined
above, asZn(β) =

∑

E Ω(E)e−βE which is of the expo-
nential order ofexp{n maxE [S(E)−βE]}. Definingφ(β) =

limn→∞
lnZn(β)

n , and the HFE per–particle asF (β) = −φ(β)
β ,

we obtain the Legendre transform (LT) relationφ(β) =
maxE [S(E) − βE], where hereE = E(β) is the maximizer
of [S(E) − βE]. For a givenβ, the BG distribution has
a sharp peak (for largen) at E(β). Assuming thatS(·) is
concave (as is normally the case), the above LT relation can
be inverted toS(E) = minβ≥0[βE+φ(β)], and both relations
can be identified with the thermodynamical definition of the
HFE asF = E − TS. In the latter relation, the minimizing
β = β(E) (the inverse function ofE(β)) is the equilibrium
inverse temperature associated withE. The second law of
thermodynamics asserts that in an isolated system (which does
not exchange energy with its environment), the entropy cannot
decrease, and hence in equilibrium, it reaches its maximum.
When the system is allowed to exchange heat with the envi-
ronment, this maximum entropy principle is replaced by the
minimum free energyprinciple: The HFE cannot increase, and
it reaches its minimum in equilibrium.

When the Hamiltonian is additive, i.e.,E(x) =
∑

i E(xi),
thenP (x) has a product form, and then the above mentioned
physical quantities per particle can be extracted fromn = 1.
In this case, the LT fromφ(β) to S(E), is similar to the LT
that defines the RF pertaining to the probability of the event
∑n

i=1 E(xi) ≤ nE, thus the parameter of the Chernoff bound
plays the role of inverse temperature in the corresponding
physical system.

Another look at this correspondence between RF’s and
thermal equilibrium is this: IfP is the above mentioned BG
distribution andQ is an arbitrary distribution onx, then

(see [1]), thenD(Q‖P ) = β(FQ − FP ), whereFP and FQ

are, respectively, the HFE’s pertaining toP and Q. The RF
pertaining to an event is given by the minimum divergence
under the constraints corresponding to this event, and so, it is
equivalent to minimum free energy, i.e., thermal equilibrium
by the second law.

Consider next a system as before, except that now the
Hamiltonian is shifted by a quantity proportional a parameter
λ, i.e.,E(x, y) = E0(x)−λ·

∑n
i=1 yi, where we have changed

the notation of the (original) Hamiltonian toE0(x), and where
{yi} are some additional variables of the microstate. These
new variables may either be dependent or independent of
the original microstate variables{xi} The parameterλ is an
external control parameter, i.e., adriving forcethat acts on the
system via{yi}.

Consider the partition function Z̃n(β, λ) =
∑

x,y e−β[E0(x)−λ
P

i
yi]. The Gibbs free energy(GFE) per

particle is defined asGn(β, λ) = − 1
nkT ln Z̃n(β, λ) and the

asymptotic GFE per particle isG(β, λ) = limn→∞ Gn(β, λ).
To find the relation between between the HFE
and the GFE, let Ω(E, Y ) ∼ enS(E,Y ) denote
the number of microstates {(x, y)} for which
∑

i E0(xi) = nE and
∑

i yi = nY . Then, defining
Zn(β, Y ) =

∑

{(x,y):
P

i
yi=nY } e−βE0(x), the normalized

HFE, Fn(β, Y ) = − 1
nkT lnZn(β, Y ), and the corresponding

asymptotic normalized HFE,F (β, Y ) = limn→∞ Fn(β, Y ),
we have (see [6] for the detailed derivation):
e−βnGn(β,λ) ·

= exp{nβ · maxY [λY − F (β, Y )}, where
·
=

denotes asymptotic equivalence in the exponential scale. This
results in the LT relationG(β, λ) = minY [F (β, Y ) − λY ].
Assuming thatF (β, Y ) is convex in Y , the inverse LT is
F (β, Y ) = maxλ[G(β, λ) + λY ], which yields (cf. [6]):

F (β, Y ) = kT · max
s

[sY −

lim
n→∞

1

n
ln





∑

x,y

e−βE0(x) · es
P

i
yi







 (2)

where we changed the optimization variableλ to s = βλ for
fixed β. Sinces is proportional toλ, andλ designates force,
we will refer to s also as ‘force’. We will get back to eq. (2)
soon.

We now proceed to provide a brief summary of [5]. As
mentioned, the LT relationS(E) = minβ≥0[βE + φ(β)] is
similar to the RF of the event{

∑

i E(xi) ≤ nE} for i.i.d.
RV’s {xi}, governed by a given distributionP . The difference
is that in the latter,ln

∑

x P (x)e−βE(x), that undergoes the
LT, contains weighting by the probabilities{P (x)}, unlike
the log–partitionln

∑

x e−βE(x), which does not. In [5] it was
proposed to interpret{P (x)} as being proportional to a factor
of the multiplicity of states{x} having the sameE(x), i.e., as
the degeneracy.

When considering applications of large deviations theory
to information theory, one can view the RDF (and channel
capacity) as the RF of the event{

∑n
i=1 d(xi, x̂i) ≤ n∆},

where x = (x1, . . . , xn) is a given typical source sequence



and {x̂i} are i.i.d. RV’s drawn by a certain random coding
distributionQ. As was observed in [5], there are two ways to
express the large deviations RF of this event, which is also the
RDF, RQ(∆), for the givenQ: The first is by considering all
distortion variables{d(xi, x̂i)} together, on the same footing,
resulting in the expression

I(∆) = −min
β≥0

[

β∆ +
∑

x

P (x) ln
∑

x̂

Q(x̂)e−βd(x,x̂)

]

.

The second way is to separate the distortion contributions,
{∆x}, allocated to the various source letters{x}, which results
in

I(∆) = −max
∑

x

P (x) min
βx≥0

[

β∆x + ln
∑

x̂

Q(x̂)e−βxd(x,x̂)

]

where the maximum is subject to the constraint
∑

x P (x)∆x ≤ ∆. The identity between these two expressions
means that the outer maximum in the second expression is
achieved when{∆x} are such that the minimizing{βx}
are all the same, namely, thermal equilibrium between all
subsystems indexed byx. Once again,{Q(x̂)} can be
interpreted as degeneracy, which is fine as long asQ is
fixed. However, the real RDF isR(∆) = minQ RQ(∆), and
the optimumQ may depend onβ. Thus, Q can no longer
be given the meaning of degeneracy, which in physics, has
nothing to do with temperature.

Another limitation of interpretingβ as temperature, is that
it does not extend to two or more rare events. For instance,
the RDFRQ(∆1, ∆2), w.r.t. two simultaneous distortion con-
straints, with distortion measuresd1 andd2, is given by

RQ(∆1, ∆2) = − min
β1≥0

min
β2≥0

[

β1∆1 + β2∆2 +
∑

x∈X

P (x)×

ln

(

∑

x̂

Q(x̂)e−β1d1(x,x̂)−β2d2(x,x̂)

)]

. (3)

But this does not have any apparent physical interpretation
because there is only one temperature in physics.

III. L ARGE DEVIATIONS AND FREE ENERGY

In order to give a physical interpretation to the RF as the
LT of the log–moment generating function, we use the LT
that relates the HFE to the GFE,G(β, λ) (cf. eq. (2)), rather
than the one that relates the HFE to the entropy,S(E). Thus,
the Chernoff variable would beλ (or s) rather thanβ. Also,
considering the temperature as being fixed throughout, we can
view {Q(x̂)} as part of the HamiltonianE0, which now may
depend onλ. This also allows combinations of two or more
large deviations events since one may consider a system that
is subjected to more than one force. Specifically, let us first
compare the HFE expression (2) to the RF [2] of the simple
large deviations event{

∑

i yi ≥ nY } w.r.t. some probability
distributionP :

I(Y ) = max
s

[

sY − lim
n→∞

1

n
ln

(

∑

y

P (y)es
P

i
yi

)]

which in the case where{yi} are i.i.d. (P (y) =
∏

i P (yi)),

boils down tomaxs

[

sY − ln
∑

y P (y)esy
]

. Fixing the tem-

peratureT to some T0 = 1/(kβ0), taking y ≡ x and
E0(x) ≡ E0(y) = −kT0 lnP (y), we readily see thatI(Y )
coincides with F (β0, Y ) up to the factor ofkT0, which
is immaterial. We observe then that the RF has a natural
interpretation as the HFE (in units ofkT0) of a system with
HamiltonianE0(y) = −kT0 lnP (y) and temperatureT0.

As said, the Chernoff parameters has the meaning of a
driving force that acts on the displacement variables{yi}. For
example, in the i.i.d. case, the forces required to shift the
expectation of eachyi (and hence also of1n

∑

i yi) towardsY ,
which is the solution to the equationY = ∂

∂s ln
∑

y P (y)esy

or equivalently,Y =
∑

y P (y) · yesy/[
∑

y P (y) · esy]. The LT
relation between the log–partition function andI(Y ) induces
a one–to–one mapping betweenY ands which is defined by
the above equation.

To emphasize this dependency, we henceforth denote the
value of Y , corresponding to a givens, by 〈y〉s, which
symbolizes the fact that it is the expectation1 of each yi,
denoted generically byy, w.r.t. the probability distribution
Ps = {Ps(y)}, wherePs(y) = P (y)esy/[

∑

y′ P (y′)esy′

], i.e.,
〈y〉s =

∑

y P (y) · yesy/[
∑

y P (y) · esy] = ∂
∂s ln

∑

y P (y)esy.
On substituting 〈y〉s instead of Y in the expression of
I(Y ), we the RF as a function ofs, i.e., Î(s) = s 〈y〉s −

ln
∑

y P (y)esy. As shown in [6],Î(s) can be represented as

Î(s) =
∫ 〈y〉

s

〈y〉
0

ŝ · d 〈y〉ŝ. Now observe that the integrand is
a product of the force,̂s, and an infinitesimal displacement
that it works upon, d〈y〉ŝ = 〈y〉ŝ − 〈y〉ŝ−dŝ In physical
terms, ŝ · d〈y〉ŝ is therefore an infinitesimal contribution of
the averagework (in units ofkT0) done by the forcês on the
variables{yi}. Thus,Î(s) =

∫

ŝ ·d〈y〉ŝ is the total amount of
work done by the forcês, as it increases from zero tos during
a slow process that allows the system to equilibrate after every
infinitesimally small change in̂s. In the language of physics,
this is a reversible process, or a quasi-static process. Using
the concavity ofF as a function ofs, it is easy to show that
any protocol of changinĝs from 0 to s, in a way that includes
abrupt changes in̂s, would always yield an amount of work
larger than or equal tôI(s).

For an alternative integral expression, one observes that
d〈y〉s /ds =

〈

y2
〉

s
− 〈y〉

2
s

∆
= Vars{y}, namely, the vari-

ance of y w.r.t. Ps. Thus, Î(s) =
∫ s

0
ŝ · Varŝ{y}dŝ and

〈y〉s = 〈y〉0 +
∫ s

0 Varŝ{y}dŝ. In the more general context
considered here, this is a special case of the fluctuation–
dissipation theorem in statistical physics [7, p. 32, eq. (2.44)].
We next discuss a physical example which is directly relevant
for the rate–distortion problem.

Example[3, p. 134, Problem 13]: Consider a physical system,
modeled as a one–dimensional array ofn elements (depicted
as small springs in Fig. 1), that are arranged along a straight
line. Each element may independently be in one of two states,
A or B The state of thei–th element,i = 1, 2, . . . , n, is

1In the sequel, we use〈·〉s to denote other moments ofy w.r.t. Ps as well.



labeledx̂i ∈ {A, B}. When an element is at statêx, its length
is yx̂ and its internal energy isǫx̂. A stretching forceλ > 0
(or a contracting force, ifλ < 0) is applied to one edge of
the array, whereas the other edge is fixed to a wall. What is
the expected (and most probable) total lengthL = nY of the
array at temperatureT0?

yB

L = nY

λ
yA

Fig. 1. One–dimensional array of two–state elements.

Since the elements are independent,

Z̃n(β0, λ)

=

1
∑

x̂1=0

. . .

1
∑

x̂n=0

exp

{

−β0

[

∑

i

ǫx̂i
− λ

∑

i

yx̂i

]}

= [e−β0(ǫA−λyA) + e−β0(ǫB−λyB)]n, (4)

and so, Gn(β0, λ) = −nkT0 ln[e−β0(ǫA−λyA) +
e−β0(ǫB−λyB)]. The expected length is

nY = −n ·
∂Gn(β0, λ)

∂λ

=
n[yAe−β0(ǫA−λyA) + yBe−β0(ǫB−λyB)]

e−β0(ǫA−λyA) + e−β0(ǫB−λyB)
. (5)

In terms of the foregoing discussion,s = β0λ controls the
expected length per element which is

Y = 〈y〉s =
yAe−β0ǫA+syA + yBe−β0ǫB+syB

e−β0ǫA+syA + e−β0ǫB+syB

.

The HFE per element is then

F (β0, Y ) = −kT0 ln
[

e−β0ǫA+syA + e−β0ǫB+syB

]

+ kT0sY

where s is related toY according to second to the last
equation.

Consider now two arrays as above, labeled byx ∈ {a, b},
which consist of two different types of elements. Arrayx has
n(x) elements, and as before, each element of this array may
be in one of two states,A or B. When an element of arrayx
is at statex̂, its length isyx̂|x and its internal energy isǫx̂|x.
The two arrays are connected together to form a larger system
with a total of n = n(a) + n(b) elements, and this larger
system is stretched (or shrinked) so that its edges are fixed at
two points which are at distancenY0 far apart. What is the
contribution of each individual array to the total length,nY ,
and what is the force ‘felt’ by each one of them? Denoting
pa = n(a)/n andpb = n(b)/n, the total HFE per element is
given bypaFa(β0, Ya)+pbFb(β0, Yb), where the second term
is equal topbFb(β0, (Y0−paYa)/pb), whereFa andFb are the
HFE’s per element pertaining to the two arrays, respectively,
and Ya and Yb are their normalized lengths. At equilibrium,
Ya minimizes this expression, and the minimizingYa solves
the equation:

∂Fa(β0, Y )

∂Y

∣

∣

∣

∣

Y =Ya

=
∂Fb(β0, Y )

∂Y

∣

∣

∣

∣

Y =(Y0−paYa)/pb

.

But the left–hand side isλa = kT0sa, the force felt by array
(a), and the right–hand side isλb = kT0sb, the force felt
by array (b). The last equation tells us that in mechanical
equilibrium they are equal. In other words, the equilibrium
values of Ya and Yb are adjusted such thatFa(β0, Ya) =
maxλ[Ga(β0, λ) + λYa] andFb(β0, Yb) = maxλ[Gb(β0, λ) +
λYb] would be both maximized by thesamevalue of λ (or,
equivalently,s). In the next section, we will see how this
example is directly applicable to the rate–distortion setting.

IV. RATE–DISTORTION

Consider now the rate–distortion problem. We are given a
source sequencex = (x1, . . . , xn) to be compressed, whose
letters{xi} take on values in a finite alphabetX of size K.
We assume that the source has a given empirical distribution
P = {P (x), x ∈ X}, i.e., each letterx ∈ X appears
n(x) = nP (x) times inx. Next consider a random selection
of a reproduction codeword̂x = (x̂1, . . . , x̂n), where each
reproduction symbol̂xi is drawn i.i.d. from a distribution
Q = {Q(x̂), x̂ ∈ X̂}, where X̂ is a finite reproduction
alphabet of sizeJ . For the most part of our discussion, it
is assumed that even if the desired distortion level varies,the
random coding distributionQ is kept fixed, for the sake of
simplicity.2 It is well known that the RDF of the sourceP ,
w.r.t. a given distortion measured(x, x̂), is given by the RF
of the large deviations event{

∑n
i=1 d(xi, x̂i) ≤ n∆}.

Occasionally, we will work directly with the distortions
{d(xi, x̂i)} incurred, which will be denoted by{δi} (play-
ing the same of{yi}). Accordingly, we defineQ(δ|x) =
∑

{x̂: d(x,x̂)=δ} Q(x̂). The large deviations event under con-
sideration is{

∑n
i=1 δi ≤ n∆}, where{δi} are independent.

For eachx ∈ X , n(x) = nP (x) of these RV’s are drawn
from Q(δ|x). The RF, obtained when all{δi} are handled as
a whole, is given by

I(∆) = max
s

[

s∆ −
∑

x∈X

P (x) ln

(

∑

δ

Q(δ|x)esδ

)]

.

In analogy to the results of [5], another look is the following:
Consider

∑

i: xi=x δi, which is the total distortion contributed
by x. Clearly, the large deviations event occurs iff there
exists a distortion allocationD = {∆x, x ∈ X} with
∑

x∈X P (x)∆x ≤ ∆ such that
∑

i: xi=x δi ≤ n(x)∆x for
all x ∈ X . Thus, it can be thought of as the union (over
all distortion allocations) of the intersections (overX ) of the
independent events{

∑

i: xi=x δi ≤ n(x)∆x}. As shown in
[5], since the effective number of distortion allocations is
polynomial in n, the probability is dominated by the worst

2A word of clarification is in order. While the optimumQ depends on
s, or equivalently on∆, later, we describe certain processes along which the
distortion level varies, starting from high distortion∆0, and ending at a given
distortion∆. To make a statement concerningR(∆), we can always pick the
optimumQ for the target value∆ and keep it fixed, even when considering
the higher distortion levels. Thus, in these processes, we will ‘move’ along
the curveRQ(·), which is the RDF with an output distributionQ, rather than
R(·).



allocation, which yields

Ĩ(∆) = min
∑

x∈X

P (x)max
sx

[

sx∆x − ln

(

∑

δ

Q(δ|x)esxδ

)]

,

where the minimum is under the constraint
∑

x∈X P (x)∆x ≤

∆. We argue that̃I(∆) = I(∆) (see proof in [6]) and hence
both coincide with the RDFRQ(∆) w.r.t. Q.

The intuition behind this argument comes from interpreting
the expressions of the RF’s in the framework of the example
of stretching/contracting concatenated arrays. Here, we have
|X | = K arrays at temperatureT0, concatenated to form
one larger system with a total ofn elements. Each array is
labeled byx ∈ X and containsn(x) = nP (x) elements. Each
such element may be in one ofJ states, labeled bŷx ∈ X̂ .
The ‘length’ and the internal energy of an element of array
x at statex̂ are δx̂|x = d(x, x̂) and ǫx̂|x = −kT0 lnQ(x̂),
respectively. Upon identifying this mapping between the rate–
distortion problem and the physical example, we immediately
see that their mathematical formalisms, and hence also their
properties, are the same. Indeed, the expression ofI(∆) is the
HFE per element when the total length is shrinked ton∆. On
the other hand, the expression ofĨ(∆) describes theminimum
HFE across all partial length allocations{n(x)∆x}x∈X that
comply with a total length not exceedingn∆. But this min-
imum HFE is achieved when all individual arrays ‘feel’ the
same forcesx. Hence, the two expressions should coincide.
Comment:As noted in [5], our discussion in this section, as
well as in the next section, applies to channel capacity too,
provided thatP = {P (x)} is understood as the channel output
distribution, Q = {Q(x̂)} is the random (channel) coding
distribution, the distortion measure is taken to bed(x, x̂) =
− lnW (x|x̂), where W is the transition probability matrix
associated with the memoryless channel, and the “distortion
level” is set to∆ = −

∑

x,x̂ Q(x̂)W (x|x̂) lnW (x|x̂). In this
case, the maximizings is alwayss∗ = −1.

V. I NTEGRAL REPRESENTATIONS

In view of the above observations, it is interesting to
represent the RDF as mechanical work carried out on the
distortion variable along a reversible process, as well as in
terms of the integrated variance of the distortion:

RQ(∆) ==
∑

x∈X

P (x) ·

∫ s

0

dŝ · ŝ · Varŝ|x{δ}, (6)

wheres is related to∆ via
∑

x∈X P (x) 〈δ〉s|x = ∆ and where
〈δ〉s|x =

∑

δ δQ(δ|x)esδ/[
∑

δ Q(δ|x)esδ] and Vars|x{δ} =
〈

δ2
〉

s|x
− 〈δ〉

2
s|x. The integrated variance formula above can

also be represented asRQ(∆) =
∫ s

0
dŝ · ŝ ·

∑

x∈X P (x) ·
Varŝ|x{δ}, which is equivalent toRQ(∆) =

∫ s

0 dŝ·ŝ·mmse(ŝ),
where mmse(s) is the minimum mean squared error (MMSE)
in estimatingδ based onx, when they are jointly distributed
according toPs(x, δ) = P (x)Ps(δ|x), with Ps(δ|x) being
defined asPs(δ|x) = Q(δ|x)esδ/[

∑

δ′ Q(δ′|x)esδ′

]. The dis-
tortion, 〈δ〉s, which we also denote by∆, can be represented

by:

∆ ≡ 〈δ〉s =
∑

x∈X

P (x) ·

[

〈δ〉0|x +

∫ s

0

dŝ · Varŝ|x{δ}

]

= ∆0 +

∫ s

0

dŝ · mmse(ŝ). (7)

As an example, consider the binary symmetric source (BSS)
and the Hamming distortion measure. The optimumQ is also
symmetric. Hereδ is a binary RV with Pr{δ = 1|x} = es/(1+
es) independent ofx. Thus, the MMSE estimator ofδ is δ̂ =
es/(1 + es), regardless ofx, and so the resulting MMSE is
easily found to be mmse(s) = es/(1 + es)2. Accordingly,
∆ = 1

2 +
∫ s

0 eŝdŝ/(1 + eŝ)2 = es/(1 + es) and

R(∆) =

∫ s

0

ŝeŝdŝ

(1 + eŝ)2
= ln 2 +

ses

1 + es
− ln(1 + es)

= ln 2 − h2(∆). (8)

These relations can be generalized: Letθ = t(x, x̂)
be a given function and let〈θ〉s denote the expec-
tation of t(x, x̂) w.r.t. the distribution Ps(x, x̂) =
P (x)Q(x̂)esd(x,x̂)/[

∑

x̂′ Q(x̂′)esd(x,x̂′). This characterizes the
expected (and typical) value of1n

∑n
i=1 t(xi, x̂i), wherex̂ =

(x̂1, . . . , x̂n) continues to be the codeword that encodesx

from a rate–distortion code designed and operated with the
metric d.3 Then,

〈θ〉s = 〈θ〉0 +

∫ s

0

dŝ ·
∑

x∈X

P (x) · Covs|x{θ, δ},

where Covs|x{θ, δ} is the covariance between
θ = t(x, x̂) and δ = d(x, x̂) w.r.t. Qs(x̂|x) =
Q(x̂)esd(x,x̂)/[

∑

x̂′ Q(x̂′)esd(x,x̂′)], for fixed x. This is
an integral form of a more general version of the fluctuation–
dissipation theorem, mentioned above.
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3As examples, consider the case wheret is another distortion measure –
although the codebook is designed and operated relative tod, its performance
can also be judged relative tot. If t(x, x̂) depends on̂x only, it may serve
as a transmission power functionΠ(x̂) (in joint source–channel coding) or
it can be the length functionℓ(x̂) (in bits) of lossless compression for the
individual reproduction symbols.


