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Abstract—We revisit and extend the physical interpretation ~Kullback—Leibler divergence in information theory (seeg.e
recently given to a certain identity between large-deviabns [1]), which plays a role as a RF when the large deviations
rate—functions, as well as applications of this identity torate— analysis is approached by the method of types. Second, it is

distortion theory, as an instance of thermal equilibrium beween f f the limitati ti din th :
several physical systems that are brought into contact. Ounew ree of the limitations mentioned in the previous paragragsh

interpretation, of mechanical equilibrium between these gstems, We Will later. Third, it serves as a trigger to develop certai
is shown to have several advantages. This physical point of new representations of the RDF, and analogously, the channe
view also provides a trigger to the development of certain ne  capacity.

alternative representations of the rate—distortion functon and Since the RDF can be thought of as HFE, one of the
channel capacity. . . ) o

representations of the RDF expresses it as (the minimum

|. INTRODUCTION achievable) mechanical work carried out by the aforemen-

In [5], an identity between two forms of a certain large detioned force, along a ‘distance’ that is measured in terntbef
viations rate function (RF) was established, with appitws distortion. Another representation is as an integral thatlves
in information theory. Inspired by a few earlier works (cfge the minimum mean square error (MMSE) in estimating the
[4], [8]), this identity was interpreted ahermal equilibrium distortion given the source symbol, according to a certain
between several physical systems in contact. In partictidar joint distribution. The latter representation suggestseav n
parameter that undergoes optimization of the Chernoff dpurfoute to upper and lower bounds on the RDF and channel
i.e., the Chernoff parameterplays the role of theinverse capacity, using the plethora of bounds on MMSE, available
temperature The corresponding RF is then identified with thérom estimation theory. We have not explored these direstio
entropy of the system. however, in the framework of this work.

While this physical interpretation is reasonable, it tuoos An additional byproduct of the this perspective is the fol-
that it leaves some room for improvement, and we mentidowing: Given a source distribution and a distortion measur
here just two points. The first is that this interpretation iwe can describe a physical system that emulates the rate—
not generalizable to RF’s of combinations of more than ortlistortion problem in the following manner: When no force
rare event, where the number of Chernoff parameters is iasapplied to the system, its total length #s\,, wheren
the number of events. The reason is that in physics, theésethe number of particles in the system (and also the block
is one temperature parameter only. The other point is thength in the rate—distortion problem), arq is the distortion
following (more details will follow in Section 2): while corresponding to zero coding rate. If one applies to theesyst
the log—moment generating function, pertaining to the RE, contracting force, that increases from zero to some final
naturally includes weighting, its physical analogue, whis value ), such that the length shrinks t@\, whereA < Aq is
the partition function does not. If these weights are subjectednalogous to a prescribed distortion level, then the fdhow
to optimization, they may depend on the Chernoff parameténo facts hold: (i) Anachievable lower boundn the total
i.e., on the temperature and the resulting expression can aroount of mechanical work carried out by the force in order to
longer really be viewed as a partition function. shrink the system to lengthA, is given byW > nkT R (A),

We propose to interpret the above—mentioned identity wfhere k is Boltzmann’s constant]” is the temperature, and
RF’'s asmechanical equilibrium(i.e., balance between me-Rg(A) is the RDF w.r.t. an input distributio®. (ii) The final
chanical forces), rather than thermal equilibrium, andnthdorce \ is related toA according toA = kTR (A), where
the Chernoff parameter plays the physical role of an externéy, (-) is the derivative ofg(-). Thus,R(A) is a fundamental
force applied to the system. In this paradigm, the RF hasliait, not only in information theory, but also in physics.
natural interpretation as thidelmholtz free energyHFE) of

the system, rather than as entropy. Accordingly, sincedtes+ ll. PHYSICS BACKGROUND AND PRELIMINARIES

distortion function (RDF), and similarly, also channel aajby, Consider a physical system withparticles, which can be in
can be thought of as RF’s, they can also be interpreted agariety of microscopic states (‘microstates’), definedbsn-
HFE’s. binations of, e.g., positions, momenta, angular momeptass

This interpretation has several advantages. First, it i$ coetc., of alln particles. For each such microstate of the system,
sistent with the analogy between the HFE in physics and thdich we shall designate by a vector= (z4,...,z,), there



is an associated energy, given by an Hamiltonian (ener¢see [1]), thenD(Q||P) = B(Fg — Fp), where Fp and Fg
function), £(x). One of the most fundamental results irare, respectively, the HFE’s pertaining 0 and Q. The RF
statistical physics is that in thermal equilibrium, the lpability pertaining to an event is given by the minimum divergence
of a microstatex is given by theBoltzmann—GibbgBG) under the constraints corresponding to this event, and ®, i

distribution equivalent to minimum free energy, i.e., thermal equilibmi
e TPE® 1y by the second law.
(@) = Zn(B) (1) Consider next a system as before, except that now the

Hamiltonian is shifted by a quantity proportional a paragnet
where § = 1/(kT), T being temperaturel being Boltz- ) je. &(x,y) =& (x)— -3, vi, where we have changed
mann’s constant, and, () is the partition function given he notation of the (original) Hamiltonian & (z), and where
by Z,(8) = Y e P™®. The partition function is a key 1,1 are some additional variables of the microstate. These
quantity from which many macroscopic physical quantiti€ge\y variables may either be dependent or independent of
can be derived, for example, the HFE 4s51n Z,(3), the the original microstate variablegr;} The parameten is an
average internal energy (i.e., the expectatiod @) wherex  external control parameter, i.e.gaiving forcethat acts on the
drawn is according (1)) is given by the negative derivative @ystem via{y;}.

In Z,,(3), etc. One way to obtain eq. (1), is as the maximum consider the partition  function Zn(B, ) -
entropy distribution under an energy constraint, whegays S g € PE@=A vl The Gibbs free energ{GFE) per

the role of a Lagrange multiplier that controls this energy. Earticle is defined ag?,, (5, )) = _%len Zn(ﬁ,)\) and the

Under certain assumptions on the Hamiltonian, the fo isymptotic GFE per particle i€(3, \) = lim G(B, \)
lowing relations are well-known to hold (see, €.9., [3M7] 15" find the relation between between the HFE

Defining the per—particle entropg,(E), associated with per— and the GFE, let Q(E,Y) ~ ¢"S(EY) denote

particle energyE = () /n, aslimy o[ Q(E)]/n, (PIO- the' number of  microstates {(z,y)} for which

vided that the limit exists), wher€(E) is the number of S &) = nE and Y,y = Y. Then defining

microstates{x} with energy level£(x) = nFE, then as Zz(ﬁ YS = Yz v ’ ;} e—ﬁso(wﬂ the n’ormalized
n I s : Yi=n 1

in the method of types, one can evaluatg(3) defined g .
above, asZ,(3) — ZEQ(E)eiﬁE which is of the expo- HFE, F.(8,Y) = —kT'In Z,(3,Y’), and the corresponding

nential order ofexp{n maxg[S(E)— BE]}. Defining¢(8) = asymptotic normalized HFEF(5,Y") = hmTHOO F"(ﬁ.’ Y).’ ]
lim,, In Z.(8) " and the HFE per—particle 48(3) — _els) Wf have V(see [6] for the detailed derlvat!on).
. on : B e AnGn(BA) = exp{nf - maxy [\Y — F(B,Y)}, where =

we obtain the Legendre transform (LT? reIa‘uojs(ﬁ_) .~ denotes asymptotic equivalence in the exponential scéiis. T

maxg[S(F) — BE], where hereE = E(3) is the maximizer . k o

of [S(E) — BE]. For a giveng, the BG distribution has results in the LT relation(f, ) = miny [F(5, ) — AY].

a sharp peak (for Iarga)gat E(é). Assuming thatS(-) is Assuming thatF'(3,Y) is convex i_n Y,_the inverse LT is

concave (as is normally the case), the above LT relation cgrgﬁ’y) = max[G(8, ) + AY], which yields (cf. [6]):

be inverted toS(E) = ming>o[BE+¢(5)], and both relations  F(3,Y) = kT -max[sY—

can be identified with the thermodynamical definition of the 3

HFE asF = E — TS. In the latter relation, the minimizing 1 _ S0

B8 = B(E) (the inverse function ofZ(3)) is the equilibrium Jim o (Ze PEl®) e Zlyl)

inverse temperature associated with The second law of .Y

thermodynamics asserts that in an isolated system (whieb dovhere we changed the optimization variabléo s = g for

not exchange energy with its environment), the entropy otinrfixed /3. Sinces is proportional to), and \ designates force,

decrease, and hence in equilibrium, it reaches its maximuwe will refer to s also as ‘force’. We will get back to eq. (2)

When the system is allowed to exchange heat with the engbon.

ronment, this maximum entropy principle is replaced by the We now proceed to provide a brief summary of [5]. As

minimum free energgrinciple: The HFE cannot increase, andnentioned, the LT relatior5(E) = ming>o[8E + ¢(3)] is

it reaches its minimum in equilibrium. similar to the RF of the even{)", £(x;) < nE} for i.i.d.
When the Hamiltonian is additive, i.e(x) = >, £(x;), RV’s {z;}, governed by a given distributioR. The difference

then P(x) has a product form, and then the above mentionési that in the latteriny" P(z)e=%¢(®), that undergoes the

physical quantities per particle can be extracted frors 1. LT, contains weighting by the probabilitiegP(z)}, unlike

In this case, the LT fromy(3) to S(E), is similar to the LT the log—partitionin 3" e~%¢(*), which does not. In [5] it was

that defines the RF pertaining to the probability of the eveptoposed to interprefP(x)} as being proportional to a factor

Soi, E(x;) < nE, thus the parameter of the Chernoff boundf the multiplicity of states{z} having the samé(z), i.e., as

plays the role of inverse temperature in the correspondinige degeneracy

physical system. When considering applications of large deviations theory
Another look at this correspondence between RF's amad information theory, one can view the RDF (and channel

thermal equilibrium is this: IfP is the above mentioned BG capacity) as the RF of the evefd ! | d(x;,&;) < nA},

distribution and@ is an arbitrary distribution onz, then wherex = (z4,...,2,) iS a given typical source sequence

)




and {Z;} are i.i.d. RV’'s drawn by a certain random codingvhich in the case wher¢y;} are i.i.d. P(y) = ], P(v:)),

distribution Q. As was observed in [5], there are two ways tils down tomax, [Sy —In Y p(y)esy}_ Fixing the tem-
express the large deviations RF of this event, which is deo tperatureT to someT, — l/EJk/BO), takingy = x and
RDF, Rg(A), for the given@: The first is by considering all So(x) = Ely) = —kToIn Py), we readily see thaf (Y)
distorf[ion_variables{d(:ci,_:Ei)} together, on the same foming’coincides with F(do,Y) up to the factor ofkT,, which
resulting in the expression is immaterial. We observe then that the RF has a natural
R interpretation as the HFE (in units &fl,) of a system with
BA + Z P(x) hlz Q(f)eﬁd(z’z)] : Hamiltonian&y(y) = —kT, In P(y) and temperaturéy,.
z z As said, the Chernoff parametarhas the meaning of a
The second way is to separate the distortion contributiongtiving force that acts on the displacement varialdlgs . For
{A.}, allocated to the various source lett¢rs;, which results  example, in the i.i.d. case, the foreerequired to shift the
in expectation of each),; (and hence also oi >, yi) towardsY’,
] which is the solution to the equatidn = % Iny: P(ye™
[(A) = —max > P(x) min | AA, + Iy Q(@)eﬁ’”d(z’z)] or equivalentlyy = 3 P(y)-ye/[Y, P(y)-¢*]. The LT
x = & relation between the log—partition function aigt”) induces
where the maximum is subject to the constraird one—to—one mapping betweknands which is defined by
> P(x)A; < A. The identity between these two expressiorthe above equation.
means that the outer maximum in the second expression iSfTo emphasize this dependency, we henceforth denote the
achieved when{A.} are such that the minimizind3,} value of Y, corresponding to a gives, by (y),, which
are all the same, namely, thermal equilibrium between aymbolizes the fact that it is the expectafioof eachy;,
subsystems indexed by. Once again,{Q(Z)} can be denoted generically by, w.r.t. the probability distribution
interpreted as degeneracy, which is fine as long(ads P, = {P,(y)}, whereP,(y) = P(y)es¥/[3.,, P(y/)e’¥ ], i.e.,
fixed. However, the real RDF i&(A) = ming Ro(A), and  (y) =37, P(y)-ye /[, P(y)-e*¥] = 5-In > P(y)e™r.
the optimum@ may depend orns. Thus, @ can no longer On substituting (y), instead of Y in the expression of
be given the meaning of degeneracy, which in physics, hﬁ@y), we the RF as a function of, i.e., f(s) = sy, —

S

nothing to do with temperature. Iny" P(y)ev. As shown in [6],1(s) can be represented as

. Another limitation of interpreting? as temperature, is thatj(s) _ f<y>5 5-d(y).. Now observe that the integrand is
it does not extend to two or more rare events. For mstancae, roduc’fyg)? the forcser and an infinitesimal displacement
the RDFRg (A1, Az), w.rt. two simultaneous distortion con- P ¥ P

. A o that it works upon, dy), = (v); — (y);_4: In physical
straints, with distortion measure andd,, is given by terms, § - d(y), is therefore an infinitesimal contribution of

the averagavo?k (in units of £7o) done by the forcé on the
P11+ B2Bz + Z P(z)x variables{y; }. Thus,I(s) = [ §-d(y), is the total amount of
oeX work done by the forcg, as it increases from zero toduring

In <Z Q(@)e—ﬁldl(w@)—ﬁzdz(m)) 3 a slow process that allows the system to equilibrate afteryev

infinitesimally small change i#. In the language of physics,
. L this is areversible processor a quasi-static processusing

But this does not have any apparent physical interpretatigr), concavity ofF as a function ofs

because there is only one temperature in physics. ’

it is easy to show that
any protocol of changing from 0 to s, in a way that includes
1. L ARGE DEVIATIONS AND FREE ENERGY abrupt changes ig, would always yield an amount of work

In order to give a physical interpretation to the RF as tH@'ger than or equal td(s). _
egral expression, one observes that

LT of the log-moment generating function, we use the LT FOr an alterative int grel

that relates the HFE to the GFE)(3, ) (cf. eq. (2)), rather d(y),/ds = (y*), — (y); = Var{y}, namely, the vari-
than the one that relates the HFE to the entr¢fy7). Thus, ance ofy w.rt. P,. Thus, I(s) = [ 5 - Vars{y}ds and

the Chernoff variable would bg (or s) rather than3. Also, (y), = (), + [, Var:{y}ds. In the more general context
considering the temperature as being fixed throughout, we gzonsidered here, this is a special case of the fluctuation—
view {Q(%)} as part of the Hamiltonia#y, which now may dissipation theorem in statistical physics [7, p. 32, ecd4}.
depend on\. This also allows combinations of two or moreWe next discuss a physical example which is directly relevan
large deviations events since one may consider a system floaitthe rate—distortion problem.

is subjected to more than one force. Specifically, let us firstample[3, p. 134, Problem 13]: Consider a physical system,
compare the HFE expression (2) to the RF [2] of the simplodeled as a one—dimensional arraynoélements (depicted
large deviations event), y; > nY'} w.r.t. some probability as small springs in Fig. 1), that are arranged along a straigh
distribution P: line. Each element may independently be in one of two states,

1 sy A or B The state of thei—th element; = 1,2,...,n, is
Y — lim —1 P 822 Vi
s Jim ~In ; (y)e

&=

Fa(@r B = = iy iy

I(Y) = max

Lin the sequel, we usg), to denote other moments gfw.r.t. Ps as well.



labeledi; € {A, B}. When an element is at statgits length But the left—hand side i3, = kT}s,, the force felt by array

is yz and its internal energy is;. A stretching forcex > 0 (a), and the right-hand side i, = kTgys,, the force felt
(or a contracting force, i\ < 0) is applied to one edge of by array (b). The last equation tells us that in mechanical
the array, whereas the other edge is fixed to a wall. Whataguilibrium they are equal. In other words, the equilibrium
the expected (and most probable) total lenfite- nY” of the values ofY, and Y, are adjusted such that,(5y,Y,) =

array at temperaturg;? maxy[Gq(Bo, A) + AY,] and Fy, (5o, Y3) = maxx[Gp (8o, A) +
AY;] would be both maximized by theamevalue of A (or,

L Y4 Y5 N equivalently, s). In the next section, we will see how this
\/\/\/\MWAP\/W/\/\/\QW?— example is directly applicable to the rate—distortionisgtt

IV. RATE—DISTORTION
Fig. 1. One-dimensional array of two—state elements. ] ] ] ]
Consider now the rate—distortion problem. We are given a

Since the elements are independent, source sequence = (z1,...,x,) to be compressed, whose
Zn(Bos V) letters{xz;} take on values in a finite alphabat of size K.
1; 0 L We assume that the source has a given empirical distribution
P = {P(z), v € X}, i.e, each letterr € X appears
= . e — 2 — A 3. T . . .
Z Z Xp{ bo lze ’ zl:y ] } n(x) = nP(x) times inx. Next consider a random selection

z1=0 Tp=0 A

_ [e—ﬁo(eA—AyA) +6_50(63_xy3)]n7 @ of a reprpduction coFieyvord: = (dfc.l,...,:%n), wh_erg egch
reproduction symboli; is drawn i.i.d. from a distribution
and so, G,(Bo,A) = —nkTyln[e~Polea—dva) 4 Q@ = {Q(&), # € X}, where X is a finite reproduction
e~Po(es=2yn)] The expected length is alphabet of sizeJ. For the most part of our discussion, it
9Gn(Bo, \) is assumed that even if the desired distortion level vattes,
ny = -n- —an random coding distributiorf) is kept fixed, for the sake of
nlyaePo(ea=Ma) L ype—Bolen—Aus)) simplicity.? It is well known that the RDF of the sourcg,

= e Boler Al 4 o Bolen2up) . (5) w.rt. a given distortion measuré(z, ), is given by the RF

In terms of the foregoing discussior,= GyA controls the
expected length per element which is

of the large deviations eved® """ | d(x;, Z;) < nA}.
Occasionally, we will work directly with the distortions
{d(z;,%;)} incurred, which will be denoted byd;} (play-

Y= (). = yae” eatsva 4 ype—Pocstsyn ing the same of{y;}). Accordingly, we defineQ(d|z) =
ol e-Pocatsya 4 e—Poemtsys > (i d(x,2)=5) @(&). The large deviations event under con-
The HFE per element is then sideration is{}_;" , 6; < nA}, where{¢;} are independent.

F(B0,Y) = —kTyIn [e-Pocatsva | o=bocs+sun] 4 LT, sy For eachz € X, n(x) = nP(z) of these RV's are drawn
(8o, ¥) oln [e e | +KTos from Q(d]x). The RF, obtained when a{ly;} are handled as
where s is related toY" according to second to the lasty whole, is given by

equation.
Consider now two arrays as above, labelediby {a,b}, o
which consist of two different types of elements. Arrayhas 1(A) = max sA — Z P(x)In ZQ(‘W)G :
zeX §

n(x) elements, and as before, each element of this array may

be in one of two states{ or B. When an element of array  |n analogy to the results of [5], another look is the follogin
is at statez, its length isy;, and its intemal energy is;|,. Consider", , _ &;, which is the total distortion contributed
The two arrays are connected together to form a larger systgfp ;. Clearly, the large deviations event occurs iff there
with a total of n = n(a) + n(b) elements, and this largerexists a distortion allocatiod = {A,, = € X} with
system is stretched (or shrinked) so that its edges are fixedya cx P(x)A, < A such thaty, 8 < n(z)A, for

; ; : . T — it ;= =
two points which are at distanceY; far apart. What is the || » ¢ x. Thus, it can be thought of as the union (over
contribution of each individual array to the total lengtt’, a| distortion allocations) of the intersections (ov&) of the
and what is the force ‘felt’ by each one of them? Denotingydependent eventsy”. 8 < n(z)A,}. As shown in

. i T;=T —

Pa = n(a)/n andp, = n(b)/n, the total HFE per element is [5] since the effective number of distortion allocatiors i
given bypa Fu (0o, Ya) +poFs (o, Ys), where the second term polynomial inn, the probability is dominated by the worst
is equal topy F (B0, (Yo —paYa)/ps), WhereF, and F, are the
HFE's per element pertaining to the two arrays, respegtivel 2 worgd of clarification is in order. While the optimur® depends on
andY, andY, are their normalized lengths. At equilibrium,s, or equivalently onA, later, we describe certain processes along which the

iimi ; ; iNimii distortion level varies, starting from high distortialy, and ending at a given
Ya mlmml.zes_ this expression, and the minimiziag solves distortion A. To make a statement concernif®{ A), we can always pick the
the equation: optimum Q for the target valueA and keep it fixed, even when considering
the higher distortion levels. Thus, in these processes, Wlemove’ along
OFa(Po. Y) = w the curveR( (), which is the RDF with an output distributioR, rather than

oY Y=Y, oY Y:(YgfpaYa)/pb. R(-).



allocation, which yields by:

$:0; —In <Z Q(5|$)6525>‘| 7 A = <5>S = ;P(I) . |:<6>0|z +A ds - Var§1{5}:|
é

where the minimum is under the constralit, _ . P(z)A, < = Ao+t /0 ds - mmses). ()

A. We argue that (A) = I(A) (see proof in [6]) and hence nq an example, consider the binary symmetric source (BSS)

both 09'”‘5!0,'6 with Fhe RPFRQ(A) wrt Q. i . and the Hamming distortion measure. The optim@ns also
The intuition behind this argument comes from mterpretmgymmetrio Herd is a binary RV with Pfs = 1|z} = e%/(1+

the expressions of the RF’s in the framework of the exampée) independent of-. Thus, the MMSE estimator af is § —

of stretching/contracting concatenated arrays. Here, s h ¢*/(1 + ¢*), regardless of, and so the resulting MMSE is

|X| = K arrays at temperaturé),, concatenated to form easily found to be mmse) = /(1 + ¢*)2. Accordingly,
one larger system with a total of elements. Each array is  _1 + [FeSds/(1+€%)? = e /(1+ €*) and

: _ 2 0
labeled byr € X and contains:(z) = nP(x) elements. Each

I(A) = min Z P(x) max

such element may be in one df states, labeled by < X. R(A) = /s §e§di§ 2o se® In(1 + e*)
The ‘length’ and the internal energy of an element of array o (1+e%)? 1+es

r at stated are 6z, = d(z,%) and ez, = —kToInQ(2), = In2— hy(A). (8)
respectively. Upon identifying this mapping between the-ra hese relations can be generalized: Let — t(z, &)

distortion problem and the physical example, we immedyate, e a given function and let{d). denote the expec-
see that their mathematical formalisms, and hence also ﬂ}eo\ltion of i(z,i) wrt the distiibution P(x,d) =
properties, are the same. Indeed, the expressidiidf is the P(z)Q(:&)eSd(mﬁf)/[ZA Q(;@’)esd(rvfc’)_ This chasrac:[erizes the
HFE per element when the total length is shrinked:t®. On expected (and typicamli value df S #(x;, &), whered —
the other hand, the expressiongfA) describes theninimum # 22i=1U\Ti, Ti)s

. . (Z1,...,25) continues to be the codeword that encodes
HFE across all partial length aIIocatlo_r{a(x)Az}me.X th_at from a rate—distortion code designed and operated with the
comply with a total length not exceedingA. But this min-

i 3
imum HFE is achieved when all individual arrays ‘feel’ themetrlc d-> Then,

same forces,. Hence, the two expressions should coincide. ), = (), +/ ds - Z P(z) - Covy|, {6, 6},
Comment:As noted in [5], our discussion in this section, as 0 ceX
well as in the next section, applies to channel capacity tQQnare Coy.{0,0} is the covariance between

d!stribut?on,Q = .{Q@)} is the raqdom (channel) COdingQ(j)esd(m,i)/[zi/Q(jjl)esd(m,i/)]’ for fixed z. This is
dlstrlbuuorj, the d|stort|c_)n Mmeasure 1S taken to ‘,H_@’w) = an integral form of a more general version of the fluctuation—
—InW(z|%), where W is the transition probability matrix dissipation theorem, mentioned above.
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Where_ me_‘S(%) is the minimum mean Squa_-re_d error (MMSE) 3As examples, consider the case wheris another distortion measure —
in estimatingd based onr, when they are jointly distributed although the codebook is designed and operated relatideits performance
according to P, (507 5) _ P(I)Ps (5|a:), with Ps§5|50) being can also be judged relative to If ¢(x, ) depends ori: only, it may serve

. - 5 , 5 . as a transmission power functidfi(£) (in joint source—channel coding) or
defined asP(0|z) = Q(d|z)e**/[> 25 Q(d'[z)e* ]. The dis- it can be the length functiori(¢) (in bits) of lossless compression for the

tortion, (9),, which we also denote b\, can be representedindividual reproduction symbols.



