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Abstract— We provide a simple physical interpretation, in the
context of the second law of thermodynamics, to the information
inequality (a.k.a. the Gibbs’ inequality, which is also equivalent
to the log–sum inequality), asserting that the relative entropy
between two probability distributions cannot be negative. Since
this inequality stands at the basis of the data processing theorem
(DPT), and the DPT in turn is at the heart of most, if not all,
proofs of converse theorems in Shannon theory, it is observed
that conceptually, the roots of fundamental limits of Information
Theory can actually be attributed to the laws of physics, in
particular, the second law of thermodynamics, and indirectely,
also the law of energy conservation. By the same token, in the
other direction: one can view the second law as stemming from
information–theoretic principles.

Index Terms— Gibbs’ inequality, data processing theorem,
entropy, second law of thermodynamics, divergence, relative
entropy, mutual information.

I. INTRODUCTION

While the laws of physics draw the boundaries between the
possible and the impossible in Nature, the coding theorems of
Information Theory, or more precisely, their converse parts,
draw the boundaries between the possible and the impossible
in the design and performance of coded communication sys-
tems and in data processing. A natural question that may arise,
in view of these two facts, is whether there is any relationship
between them. It is the purpose of this work to touch upon this
question and to make an attempt to provide at least a partial
answer.

Perhaps the most fundamental inequality in Information
Theory is the so called information inequality (cf. e.g., [1,
Theorem 2.6.3, p. 28]), which asserts that the relative entropy
(a.k.a. the Kullback–Leibler divergence) between two proba-
bility distributions over the same alphabet P = {P (x), x ∈
X} and Q = {Q(x), x ∈ X},

D(P‖Q) =
∑
x∈X

P (x) log
P (x)
Q(x)

,

can never be negative, and a similar fact applies to probability
density functions with the summation across X being replaced
by integration.

The log–sum inequality (LSI) [1, Theorem 2.7.1, p. 31],
which asserts that for two sets of non–negative numbers,
(a1, a2, . . . , an) and (b1, b2, . . . , bn):

n∑
i=1

ai log
ai

bi
≥

(
n∑

i=1

ai

)
log
(∑n

i=1 ai∑n
i=1 bi

)
,

is completely equivalent1 to the information inequality, al-
though proved in [1] in a rather different manner.

Yet another name for the same inequality, which is more fre-
quently encountered in the jargon of physicists, is the Gibbs’
inequality: When the information inequality is applied to two
probability distributions of the Boltzmann form (cf. Section
IV below), it yields an interesting inequality concerning their
corresponding free energies (cf. e.g., [2, Section 5.6, pp. 143–
146]), which serves as a useful tool for obtaining good bounds
on the free energy of a complex system, when its exact value
is difficult to calculate.

In this work, we provide a simple physical interpretation
to this inequality of the the free energies, and thereby also
to the information inequality, or the log–sum inequality. This
physical interpretation is directly related to the second law
of thermodynamics, which asserts that the entropy of an
isolated physical system cannot decrease: According to this
interpretation, the divergence between two probability distri-
butions is proportional to the energy dissipated in the system
when it undergoes an irreversible process, and hence converts
this energy loss into entropy production, or heat. Thus, the
non–negativity of the relative entropy is related to the non–
negativity of this entropy change, which is, as said, the second
law of thermodynamics.

Since the mutual information can be thought of as an
instance of the relative entropy, and so can the difference
between two mutual informations defined along a Markov
chain, then the data processing theorem (DPT) can, of course,
also be given the very same physical interpretation. Consid-
ering the fact that the DPT is pivotal to most, if not all,
converse theorems in Information Theory, this means that,
in fact, the fundamental limits of Information Theory can,
at least conceptually, be attributed to the laws of physics,
in particular, to the second law of thermodynamics:2 The
rate loss in any suboptimal coded communication system, is
given the meaning of irreversibility and entropy production
in a corresponding physical system. Optimum (or nearly opti-
mum) communication systems are corresponding to reversible
processes (or lack of any process at all) with no entropy

1The information inequality is obtained from the LSI when
(a1, a2, . . . , an) and (b1, b2, . . . , bn) both sum to unity, and conversely,
the LSI is obtained from the information inequality, by applying the latter to
the probability distributions Pi = ai/

P
j aj and Qi = bi/

P
j bj .

2Another law of physics that plays a role here, at least indirectly, is the
law of energy conservation, because our derivations are all based on the
Boltzmann–Gibbs distribution of equilibrium statistical mechanics, and this
distribution, in turn, is derived on the basis of the energy conservation law.



production. Stated in somewhat different words, had there
been a communication system that violated a fundamental
limit (e.g., beating the entropy, or channel capacity), then in
principle, one could have constructed a physical system that
violates the second law, and vice versa.

The outline of the remaining part of the paper is as fol-
lows. In Section II, we give some basic back background in
statistical physics. Section III reviews the role of the DPT
in many of the converse theorems in the Shannon theory. In
Section III, we offer a physical interpretation to the Gibbs’
inequality and show how it applies to the DPT in two different
scenarios. Finally, in Section IV, we discuss relationships
between reversible processes in physics and error exponents
of classical Neyman–Pearson hypothesis testing.

II. PHYSICS BACKGROUND

Consider a physical system with n particles, which at any
time instant, can be found in any one out of a variety of
microscopic states (or micorstates, for short). The microstate
is defined by the full physical information about all n particles,
e.g., the positions, momenta, angular momenta, spins, etc.,
depending on the type of the physical system. In particular,
a microstate is designated by x = (x1, x2, . . . , xn), where
each xi may itself be a vector, consisting of all the relevant
physical state variables (such as the above) for particle number
i at a given time instant. Associated with every microstate x,
there is an energy function, a.k.a. the Hamiltonian, E(x). For
example, in the case of the ideal gas, xi = (pi, ri), where
pi and ri, both three dimensional vectors, are the momentum
and the position of particle number i, respectively, and

E(x) =
n∑

i=1

[
‖pi‖2

2m
+ mgzi

]
, (1)

where m is the mass of each particle, g is the gravitation
constant, and zi is the height – one of the components of ri.

One of the most fundamental results in statistical physics
(based on the law of energy conservation and the postulate
that all microstates of the same energy are equiprobable)
asserts that, when a system lies in thermal equilibrium with the
environment (heat bath), the probability of finding the system
at state x is given by the Boltzmann–Gibbs distribution

P (x) =
e−βE(x)

Z(β)
(2)

where β = 1/(kT ), k being Boltzmann’s constant and T being
temperature, and Z(β) is the normalization constant, called the
partition function, which is given by

Z(β) =
∑
x

e−βE(x), or Z(β) =
∫

dx e−βE(x), (3)

depending on whether x is discrete or continuous. The par-
tition function is a key quantity from which many important
macroscopic physical quantities can be derived. For example,
the average internal energy w.r.t. (2) is

E = E{E(X)} = −d lnZ(β)
dβ

, (4)

the entropy (in units of k) pertaining to (2) is

Σ(β)
4
=

S(β)
k

= −E{lnP (X)} = ln Z(β) + β · E, (5)

and the free energy is given by

F (β) = − lnZ(β)
β

. (6)

From eq. (5), one readily obtains the well known relationship

F = E − ST.

Thus, any change in the internal energy, along a fixed temper-
ature (isothermal) process, is given by

∆E = ∆F + T∆S,

in other words, it consists of two components: the first is the
change in the free energy, ∆F , and the second pertains to
entropy production, T∆S. By the first law of thermodynamics,
which is actually, the law of energy conservation,

∆E = ∆Q + ∆W,

namely, the origins of any change in the internal energy may
be a combination of the heat ∆Q transferred into the system
and the work ∆W applied to it. According to the thermody-
namical definition, the entropy difference, ∆S, between two
macroscopic states A and B, is defined as

∫ B

A
dQ/T , where

the integration is along a quasi–static or reversible process,
i.e., a process that is slow enough such that, along the way,
the system is kept always very close to equilibrium. By the
Clausius theorem (cf. e.g., [2, p. 13]), in the above described
isothermal process, ∆S is never smaller than ∆Q/T , with
equality when the process is reversible. Thus, by comparing
the two expressions of ∆E, we immediately observe that
∆W ≥ ∆F .

The free energy is then given a meaning of crucial im-
portance in thermodynamics and statistical physics: The dif-
ference, ∆F , between the free energies associated with two
equilibirium points pertaining to the same temperature (but
with two different values of some other control parameter, such
as pressure or magnetic field) has the physical meaning of the
minimum amount of work that should be applied to the system
in order to transfer it between these two equilibria along an
isothermal process, and this minimum is attained when the
process is reversible.3 Equivalently, the negative free–energy
difference, −∆F , is the maximum amount of work that can be
exploited from the system in an isothermal process, and this
maximum is achieved, again, if the process is reversible. The
second law of thermodynamics, as mentioned earlier, asserts
that the entropy of an isolated system cannot decrease.

3This fact is also known as the minimum work principle.



III. THE DATA PROCESSING THEOREM AND
FUNDAMENTAL LIMITS

As mentioned earlier, our observations apply to any
fundamental limit, or converse theorem, that makes use of the
information inequality, in one way or another. However, even
if we confine our attention only to those that use it explicitely
in the form of the DPT, it is not difficult to appreciate the
fact that we already cover many of the fundamental limits, if
not all of them. Here are just a few examples.

Lossy/lossless source coding: Consider a source vector
UN = (U1, . . . UN ) compressed into a bitstream
Xn = (X1, . . . , Xn) from which the decoder generates
a reproduction V N = (V1, . . . , VN ) with distortion∑N

i=1 E{d(Ui, Vi)} ≤ ND. Then, by the DPT,
I(UN ;V N ) ≤ I(Xn;V N ) ≤ H(Xn), where I(UN ;V N ) is
further lower bounded by NR(D) and H(Xn) ≤ n, which
together lead to the converse to the lossy data compression
theorem, asserting that the compression ratio n/N cannot be
less than R(D). Lossless compression is obtained, of course,
as a special case where D = 0.

Channel coding under bit error probability: Let
UN = (U1, . . . UN ) be drawn from the binary symmetric
course (BSS), designating M = 2N equiprobable messages
of length N . The encoder maps UN into a channel input
vector Xn, which in turn, is sent across the channel. The
receiver observes Y n, a noisy version of Xn, and decodes
the message as V N . Let Pb = 1

N

∑N
i=1 Pr{Vi 6= Ui}

designate the bit error probability. Then, by the DPT,
I(UN ;V N ) ≤ I(Xn;Y n), where I(Xn;Y n) is further
upper bounded by nC, C being the channel capacity,
and I(UN ;V N ) = H(UN ) − H(UN |V N ) ≥ N −∑N

i=1 H(Ui|Vi) ≥ N−
∑

i h2(Pr{Vi 6= Ui}) ≥ N [1−h2(Pb)].
Thus, for Pb to vanish, the coding rate, N/n should not
exceed C.

Channel coding under block error probability – Fano’s
inequality: This is the same as in the previous item, except
that the error performance is the block error probability
PB = Pr{V N 6= UN}. This time, H(UN |V N ), which is
identical to H(UN , E|V N ), with E

4
= I{V N 6= UN}

(I being the indicator function), is decomposed as
H(E|V N ) + H(UN |V N , E), where the first term is
upper bounded by 1 and the second term is upper bounded by
PB log(2N − 1) < NPB , owing to the fact that the maximum
of H(UN |V N , E = 1) is obtained when UN is distributed
uniformly over all V N 6= UN . Putting these facts all together,
we obtain Fano’s inequality PB ≥ 1 − 1/n − C/R, where
R = N/n is the coding rate. Thus, the DPT directly supports
Fano’s inequality, which in turn is the main tool for proving
converses to channel coding theorems in a large variety of
communication situations, including network configurations.

Joint source–channel coding and the separation principle:

In a joint source–channel situation, where the source vector
UN is mapped into a channel input vector Xn and the
channel output vector Y n is decoded into a reconsdtruction
V N , the DPT gives rise to the chain of inequalities
NR(D) ≤ I(UN ;V N ) ≤ I(Xn;Y n) ≤ nC, which is the
converse to the joint source–channel coding theorem, whose
direct part can be achieved by separate source- and channel
coding. The first two examples above are special cases of this.

Conditioning reduces entropy: Perhaps even more often than
the term “data processing theorem” can be found as part of a
proof of a converse theorem, one encounters an equivalent of
this theorem under the slogan “conditioning reduces entropy”.
This in turn is part of virtually every converse proof in the
literature. Indeed, if (X, U, V ) is a triple of RV’s, then this
statement means that H(X|V ) ≥ H(X|U, V ). If, in addition,
X → U → V is a Markov chain, then H(X|U, V ) =
H(X|U), and so, H(X|V ) ≥ H(X|U), which in turn is
equivalent to the more customary form of the DPT, I(X;U) ≥
I(X;V ), obtained by subtracting H(X) from both sides of the
entropy inequality. In fact, as we shall see shortly, it is this
entropy inequality that lends itself more naturally to a physical
interpretation. Moreover, we can think of the conditioning–
reduces–entropy inequality as another form of the DPT even in
the absence of the aforementioned Markov condition, because
X → (U, V ) → V is always a Markov chain.

IV. PHYSICS OF THE INFORMATION INEQUALITY & DPT
We consider two forms of the information inequality an the

DPT, one corresponding to an isothermal process and one –
to an adiabatic process (fixed amount of heat).

A. Isothermal Version

Consider a system, with a microstate x, which may have two
possibile Hamiltonians – E0(x) and E1(x). Let Zi(β), denote
the partition function pertaining to Ei(·), that is, Zi(β) =∑

x e−βEi(x), i = 0, 1, where β = 1/(kT ) is the inverse
temperature. Since β is fixed throughout this section, we will
also use the shorthand notation Zi for the partition function.
Let Pi(x) denote the Boltzmann–Gibbs distribution (cf. eq.
(2)) pertaining to Zi, i = 0, 1 (both for the same given value
of β). Applying the information inequality to P0 and P1, we
get:

0 ≤ D(P0‖P1) =
∑
x

P0(x) ln
[
e−βE0(x)/Z0

e−βE1(x)/Z1

]
= lnZ1 − lnZ0 + βE0{E1(X)− E0(X)} (7)

where E0{·} denotes the expectation operator w.r.t. P0. After
a minor algebraic rearrangement, this becomes:

E0{E1(X)− E0(X)} ≥ kT lnZ0 − kT lnZ1

≡ F1 − F0, (8)

where Fi is the free energy pertaining to Pi, i = 0, 1 (cf. eq.
6)).

We now offer the following physical interpretation to this
inequality: Imagine that a system with Hamiltoinan E0(x) is



in equilibrium for all t < 0,4 but then, at time t = 0, the
Hamitonian changes abruptly from the E0(x) to E1(x) (e.g.,
by suddenly applying a force, like pressure or a magnetic
field, to the system), which means that if the system is found
at state x at time t = 0, additional energy of W (x) =
E1(x) − E0(x) is suddenly ‘injected’ into it. This additional
energy can be thought of as work performed on the system,
or as supplementary potential energy. Of course, W (x) is
a random variable due to the randomness of x. Since this
passage between E0 and E1 is abrupt, and the microstate x
does not change instantaneously, the expectation of W (X)
should be taken w.r.t. P0, and this average is exactly what
we have at the left–hand side eq. (8). The Gibbs’ inequality
tells us then that this average work is at least as large as
∆F = F1 − F0, the increase in free energy, in compliance to
the explanation in Section II. The difference

E0{W (X)} −∆F = kT ·D(P0‖P1) ≥ 0

is due to the irreversible nature of this abrupt energy
injection, and this irreversibility means an increase of the
total entropy of the system and its environment.5 Thus, the
Gibbs’ inequality is, in fact, a version of the second law of
thermodynamics, and the relative entropy is given a very
simple physical significance. We next consider two examples.

Example 1 – Fixed–to-variable compression and the Ising
model. A natural information–theoretic example for this can
be easily motivated by the interpretation of the relative en-
tropy as the rate loss (or, the redundancy) due to mismatch
in fixed–to–variable lossless data compression: Suppose that
X ∈ {−1,+1}n emerges from a first–order Markov source
P0(x) =

∏n
i=1 P0(xi|xi−1), where

P0(x|x′) =
exp{Jx · x′}

Z0
, x, x′ ∈ {−1,+1},

and where J is a given constant and

Z0 = 2 cosh(J).

However, the code designer designs a Shannon code according
to P1(x) =

∏n
i=1 P1(xi|xi−1), where

P1(x|x′) =
exp{Jx · x′ + Kx}

ζ(x′)
, x, x′ ∈ {−1,+1}

where K is another given constant and ζ(x) is the appropriate
normalization factor given by

ζ(x) =
{

2 cosh(J + K) x = +1
2 cosh(J −K) x = −1

4Since the information inequality applies to any pair of distributions, it is
conceivable that the interpretation we offer may remain relevant even beyond
the realm of systems in equilibirium. Indeed, even if the system is away
from equilibrium, when it is nevertheless in steady state (in the sense that
macroscopic physical quantities are time–invariant), the negative logarithm of
the density function can be given the meaning of an effective Hamiltonian
[3]. This, however, is beyond the scope of this work.

5See also [4], [5], [6] and references therein, where the same conclusions
are reached from a more general perspective of irrreversible processes, but
under certain limiting assumptions on the physical system.

Considering the fact that x ∈ {−1,+1}, ζ(x) can also be
written in a unified way as

ζ(x) = Z1 ·
[
cosh(J + K)
cosh(J −K)

]x/2

.

where
Z1 = 2

√
cosh(J + K) cosh(J −K).

From the physics point of view, both P0 and P1 can be thought
of as Boltzmann–Gibbs distributions with inverse temperature
β = 1: For the former, we define the Hamiltonian as

E0(x)
4
= −n lnZ0 −

n∑
i=1

lnP0(xi|xi−1)

= −J ·
∑

i

xi−1xi (9)

which can be thought of as the energy pertaining to nearest–
neighbor interactions between spins in a one–dimensional
array, that is, the one–dimensional Ising model (see, e.g., [7,
Sect. 1.8]) with a coupling coefficient J , in the absence of a
magnetic field. On the other hand, for P1 we define:

E1(x)
4
= −n lnZ1 −

n∑
i=1

lnP1(xi|xi−1)

= −J
∑

i

xi−1xi −K
∑

i

xi −

1
2

[
ln

cosh(J −K)
cosh(J + K)

]
·
∑

i

xi−1

≈ −J
∑

i

xi−1xi −(
K +

1
2

ln
cosh(J −K)
cosh(J + K)

)
·
∑

i

xi

4
= −J

∑
i

xi−1xi −B
∑

i

xi (10)

where in the approximate equality we neglected “edge effects”
that make the (relatively) small difference between

∑
i xi and∑

i xi−1 (for large n). This is the same Ising model as before,
but now also with a magnetic field B. Thus,

E1(x)− E0(x) = −B
∑

i

xi

is the energy injected by an abrupt application of the magnetic
field B. We have therefore demonstrated that the entropy
production due to the irreversiblilty of this abrupt magnetic
field is (within the additive constant, ∆F = 1 ·(lnZ0− lnZ1))
proportional to the redundancy of the mismatched code.

Example 2 – Run–length coding and the grand–canonical
ensemble. The Boltzmann–Gibbs distribution of eq. (2), a.k.a.
the canonical distribution, is the equilibrium distribution of
a system that is allowed to exchange heat energy with its
environment at a fixed temperature T . It also assumes that the
system has a fixed number of particles n, and a fixed volume
V , whenever the volume is a relevant factor.



When the system is allowed to exchange with the envi-
ronment, not only energy, but also matter, namely, particles,
then eq. (2) is extended to the grand–canonical distribution
[2, Sect. 4.9], whose microstate is defined as (x, n), where n
is now a random variable, and x is defined as before for the
given n. According to this distribution,

P (x, n) =
eβ(µn−E(x))

Ξ(β, µ)

where

Ξ(β, µ) =
∑
n≥0

eβµn
∑
x

e−βE(x) 4=
∑
n≥0

eβµnZ(β, n)

is the grand partition function. The parameter µ, which is
called the chemical potential, controls the average number of
particles in the system. Note that P (x, n) can be thought of as
P (n) ·P (x|n) where P (x|n) obeys the canonical distribution
for the given n and P (n) is proportional to eβµnZ(β, n).
It is well known (see, e.g., [2]) that kT ln Ξ(β, µ) gives the
equilibrium pressure–volume product of the system, PV . Now
let P0(x, n) and P1(x, n) be two grand–canonical distribu-
tions that differ only in the chemical potentials, µi, i = 0, 1,
respectively. Applying the information inequality, we get

0 ≤ D(P0‖P1)
= lnΞ(β, µ1)− ln Ξ(β, µ0) +

β(µ0 − µ1)E0{N} (11)

where N designates the random number of particles. Dividing
by β and rearranging terms, this becomes:

P 1V ≥ P 0V + (µ1 − µ0)E0{N},

and after dividing by V (which is assumed fixed), we get:

P 1 ≥ P 0 + (µ1 − µ0)E0{ρ},

where ρ = N/V is the density of particles.
A natural information–theoretic analogue of this is run–

length coding: Given a 0–1 binary memoryless source with
a very high probability of ‘0’, which we shall designate by
eµ (µ < 0, β = 1), the idea is to encode the number N
of successive zeroes between every two consecutive ones.
Clearly, the distribution of N is exponential

Pr{N = n} =
eµn

Ξ(µ)

where, with a slight abuse of notation, we define

Ξ(µ) =
1

1− eµ
,

and where we have assumed E(x) = − lnP (x|n), and so,
Z(1, n) = 1 for all n. Thus, when applying run–length
coding, the price of mismatch in µ is parallel to the difference
between the two sides of the above pressure inequality,
where the ‘pressure’ in run–length coding is proportional to
− ln(1 − eµ). As µ ↑ 0, the pressure increases, and more
‘particles’ (i.e., runs of zeroes) enter into the system, which
means that the runlengths becomes larger. Thus, we have

demonstrated an analogy between run–length coding and the
physics of the grand–canonical ensemble: the log–probability
of ‘0’ plays the role the chemical potential whereas the
log–probability of ‘1’ is associated with pressure. This
concludes Example 2.

Returning to the general framework, let us now see how
the Gibbs’ inequality is related to the DPT. Consider a triple
of random variables (X, U, V ) which form a Markov chain
X → U → V . The DPT asserts that I(X;U) ≥ I(X;V ). We
can obtain the DPT as a special case of the Gibbs’ inequality
because

I(X;U)− I(X;V ) = H(X|V )−H(X|U)
= E{D(PX|U,V (·|U, V )‖PX|V (·|V ))}

where the expectation is w.r.t. the randomness of (U, V ).
Thus, For a given realization (u, v) of (U, V ), consider the
Hamiltonians E0(x) = − lnP (x|u) = − lnP (x|u, v) and
E1(x) = − lnP (x|v), pertaining to a single ‘particle’ whose
state is x. Let us also set β = 1. Thus, for a given (u, v):

E0{W (X)} =
∑

x

P (x|u, v)[ln P (x|u)− lnP (x|v)]

= H(X|V = v)−H(X|U = u) (12)

and after further averaging w.r.t. (U, V ), the average work be-
comes H(X|V )−H(X|U) = I(X;U)−I(X;V ). Concerning
the free energies, we have

Z0(1) =
∑

x

exp{−1 · [− lnP (x|u, v)]}

=
∑

x

P (x|u, v) = 1 (13)

and similarly,
Z1(1) =

∑
x

P (x|v) = 1

which means that F0(1) = F1(1) = 0, and so ∆F =
0 as well. So by the Gibbs’ inequality, the average work,
I(X;U) − I(X;V ), cannot be smaller than the free–energy
difference, which in this case vanishes, namely, I(X;U) −
I(X;V ) ≥ 0, which is the DPT. Note that in this case,
there is a maximum degree of irreversibility: The identity
I(X;U)− I(X;V ) = H(X|V )−H(X|U) means that whole
average work, W = I(X;U) − I(X;V ), goes for entropy
increase T∆Σ = 1 · [H(X|V ) −H(X|U)], whereas the free
energy remains unchanged, as mentioned earlier. Moreover,
the entire entropy increase goes to the system under discussion,
and none of it goes to the environment.

At this point a comment is in order: The rate loss of a
suboptimal communication system, when viewed from the
DPT perspective, may be attributed to two possible factors:
one factor comes from a possible mismatch between actual
distributions and optimum distributions in the information–
theoretic sense, for example, the encoder may not induce
the capacity–achieving channel input distribution or the test
channel of the rate–distortion function. The other factor is a



possible gap between mutual informations along the Markov
chain (I(X;U) may be strictly larger than I(X;V )), which
actually means information loss, and which is irreversible (U
cannot be retreived from V ). It is the latter kind of loss that
is parallel to the irreversible free energy loss and dissipation.

From a more general physical perspective, we can think of
the Hamiltonian

Eλ(x) = E0(x) + λ[E1(x)− E0(x)]

as a linear interpolation between the two extremes, λ = 0
and λ = 1, pertaining to E0 and E1, and then λ can be
thought of as a control parameter or a ‘force’ that influences
the system. The Jarzynsky equality (cf. e.g., [4] and references
therein) tells that under certain conditions on the system and
the environment, and given any protocol for a temporal change
in λ, designated by {λt}, for which λt = 0 for all t < 0, and
λt = 1 for all t ≥ τ (τ ≥ 0), the work W applied to the
system is a RV that satisfies

E{e−βW } = e−β∆F .

By Jensen’s inequality,

E{e−βW } ≥ exp(−βE{W}),

which then gives E{W} ≥ ∆F , for an arbitrary protocol
{λt}. The Gibbs’ inequality is then a special case, where λt

is given by the unit step function, but it applies regardless
of the assumptions of [4]. At the other extreme, when λt

changes very slowly, corresponding to a reversible process, W
approaches determinism, and then Jensen’s inequality becomes
tight. In the limit of an arbitrarily slow process, this yields
W = ∆F , with no increase in entropy.

B. Adiabatic Version

Thus far, we discussed an isothermal process, where the
change was attributed to the Hamiltonian – a transition from
E0 to E1. In the special case where the two Hamiltonians are
proportional to one another, namely, when E1(x)/E0(x) =
const., independent of x, one can, of course, still consider it as
an isothermal process and refer the change in the Hamiltonian
to that of a multiplicative control parameter λ, as before (e.g.,
the harmonic potential λ

2 x2). But perhaps even more natural,
in this case, is to refer the change to temperature. In this
case, there is no external mechanical work, and the change
in the internal energy of the system comes solely from heat:
We replace a heat bath (large environement) with temperature
T0 = 1/(kβ0) by a heat bath with a higher temperature
T1 = 1/(kβ1). If we apply the Gibbs’ inequality to this special
case, this amounts to

lnZ(β1) ≥ lnZ(β0) + (β0 − β1)E0{E0(X)}

which is easily shown (cf. eq. (5)) to be equivalent to

∆Σ ≡ Σ(β1)− Σ(β0)

≥ β1[E1{E0(X)} −E0{E0(X)}] ≡ ∆Q

kT1
, (14)

where Σ(β0) and Σ(β1) are the equilibrium entropies (in units
of k) pertaining to β0 and β1, respectively, and ∆Q is the
amount of heat injected into the system, assuming there is
no mechanical work. This inequality is a special case of the
Clausius theorem (mentioned earlier), which in its general
form, asserts that ∆S = k∆Σ is never smaller than

∫
dQ/T

for any process, with equality in the case of a reversible
process. The expression ∆Q/T1 is the result of this integral
when the heat bath of temperature T0 is abruptly replaced by
one with temperature T1. An alternative interpretation of this
inequality is, again, as an instance of the second law: The
entropy of our system increases by ∆S and the entropy of the
(new) heat bath decreases by ∆Q/T1, thus the net entropy
change of the combined system (which is assumed isolated),
∆S −∆Q/T1, must be non–negative.

In the information–theoretic context, the relevant situa-
tion is one where P (x|u, v) = P (x|u) and P (x|v) =∫

duP (x|u, v)P (u|v) can be represented as Boltzmann dis-
tributions with the same Hamiltonian, but which may differ in
temperature and possibly in shifts (by u or v). I.e.,

P (x|u, v) = P (x|u) =
e−β0E(x−u)

Z(β0)
;

P (x|v) =
e−β1E(x−v)

Z(β1)
β1 < β0

This turns out to be the case when X , U and V are related
by a cascade of two additive channels of the same family
(e.g., a degraded broadcast channel), one from V to U and
the other from U to X (or in the other direction). Two clas-
sical examples are those when both channels are binary and
symmetric (with possibly two different crossover parameters),
and when they are both Gaussian (with possibly different noise
variances). Other examples of these properties could pertain to
any choice of an infinitely divisible random variable as a noise
model in both channels, like the Poisson RV, the binomial RV,
and so on.

Using again the Gibbs’ inequality as before, we now get,
for given u and v:

lnZ(β1) ≥ lnZ(β0) + β0Eβ0,u,v{E(X − u)} −
β1Eβ0,u,vE(X − v), (15)

where Eβ0,u,v denotes expectation w.r.t. P (x|u, v) as defined
above. Now, assuming shift–invariance of integrals over x
(as is the case in the BSC and Gaussian examples men-
tioned above), Eβ0,u,v{E(X − u)} = Eβ0,0,0{E(X)} 4

=
Eβ0{E(X)}, independently of u and v. As for the third term,
from the above relation between P (x|u, v) and P (x|v), it is
apparent that after averaging Eβ0,u,v{E(X − v)} (which is
independent of u) w.r.t. P (u|v), it becomes Eβ1,v{E(X −
v)} = Eβ1,0{E(X)} 4= Eβ1{E(X)}. Thus, we get

Σ(β1) ≡ lnZ(β1) + β1Eβ1E(X)}
≥ lnZ(β0) + β0Eβ0{E(X)} ≡ Σ(β0) (16)

This is then a special case of the inequality ∆Σ ≥ ∆Q/(kT1),
where ∆Q = 0, namely, an adiabatic process, and then ∆Σ ≥



0, or ∆S ≥ 0. The information loss due to the DPT again has
the physical interpretation of entropy increase, but this time it
is purely due to temperature increase, rather than the dissipated
work that we have seen before.

We end this section with two simple examples, namely,
the Gaussian broadcast channel and the binary symmetric
broadcast channel. In both examples, we view the mutual
information difference, which is the entropy increase, as an
integral of temperature, and thereby identify the corresponding
heat capacity from the integrand.

Example 3 – Gaussian degraded broadcast channel: Consider
a Gaussian degraded broadcast channel, i.e., a cascade of two
independent additive white Gaussian noise (AWGN) channels,
given by:

X = U +
N1√
β0

and

U = V + N2

√
1
β1
− 1

β0
, β1 < β0,

where N1 and N2 are both zero–mean, unit–variance Gaussian
RV’s, independent of each other as well as of V , which in turn
has an arbitrary density with E{V 2} < ∞. In this case,

∆Σ = I(X;U)− I(X;V )
= h(X|V )− h(X|U)

=
1
2

ln
(

2πe

β1

)
− 1

2
ln
(

2πe

β0

)
=

1
2

ln
β0

β1

=
1
2

∫ β0

β1

dβ

β

=
∫ T1

T0

dT

2T
,

where in the last step, we changed the integration variable
from β to T = 1/(βk). As mentioned in Section II, in the
thermodynamical definition, an entropy change is given by

∆S = k∆Σ =
∫

dQ

T

along a reversible process, but dQ = C(T )dT , where C(T )
is the heat capacity (at constant volume), and so,

∆S =
∫ T1

T0

dTC(T )
T

.

Thus, we identify the heat capacity pertaining the Gaussian
broadcast channel as C(T ) = k/2, independently of T , which
is exactly the same as the heat capacity (per degree of freedom)
of an ideal gas without gravitation (cf. e.g., [2, Sect. 4.4, p.
106]).6 This is because the Gaussian channel, considered in

6The classical heat capacity per particle of an ideal gas at constant volume
is actually C = 3k/2. The extra factor of 3 accounts for three degrees of
freedom per particle, owing to the three dimensions of space.

this example, induces a quadratic Hamiltonian, just like that
of the ideal gas (cf. the first term of eq. (1)).

It is instructive to examine also the case where the directions
of the additive channels are reversed, or equivalently, to exam-
ine the difference I(U ;V )−I(X;V ) for the original channels
defined above. Adopting the latter definition, and using the
main results of [8], concerning the relation between I(U ;V )
and the minimum mean square error (MMSE), mmse(V |U),
in estimating V from U (and of course, similar relations for
X and V ), we find that the increase in entropy is:

I(U ;V )− I(X;V ) =
1
2

∫ β0

0

mmse
(

V

∣∣∣∣V +
N√
β

)
dβ −

1
2

∫ β1

0

mmse
(

V

∣∣∣∣V +
N√
β

)
dβ

=
1
2

∫ β0

β1

mmse
(

V

∣∣∣∣V +
N√
β

)
dβ

=
∫ T1

T0

mmse(V |V + N
√

kT )
2kT 2

dT(17)

where N ∼ N (0, 1). Thus, now we identify the heat capacity
as

C(T ) =
mmse(V |V + N

√
kT )

2T
.

If, in addition, V is zero–mean, Gaussian, with variance σ2
V ,

then

C(T ) =
kσ2

V

2(σ2
V + kT )

.

In the high–SNR regime (σ2
V � kT ), this gives C(T ) ≈ k/2,

which is the same as before.

Example 4 – binary symmetric degraded broadcast channel:
In a similar manner, consider the binary symmetric degraded
broadcast channel, that is, a cascade of two binary symmetric
channels,

X = U ⊕N1; U = V ⊕N2,

where all RV’s are binary {0, 1}, ⊕ designates addition
modulo 2, and (X, N1, N2) are independent. In this case,
the Hamiltonian is E(x) = E0x, x ∈ {0, 1}, where E0 is
a constant (having the units of energy), and we have

Pr{N1 = x} =
e−β0E0x

1 + e−β0E0x
x ∈ {0, 1}

and similarly,

Pr{N1 ⊕N2 = x} =
e−β1E0x

1 + e−β1E0x
.

Here the heat capacity can be shown to be given by:

C(T ) =
E2

0

kT 2
· e−E0/(kT )

[1 + e−E0/(kT )]2
,

which agrees with the heat capacity of a system of two–level
non–interacting particles (see, e.g. [2, Sect. 4.3, eq. (4.22)]).



V. ERROR EXPONENTS AND REVERSIBLE PROCESSES

We mentioned the notion of a reversible process, and the
question that might naturally arise, at this point, concerns the
information–theoretic analogue of this term. This seems to
have a direct relationship to the behavior of error exponents
of hypothesis testing and the Neyman–Pearson lemma: Let
P0(x) and P1(x) be two probability distributions (or densities,
in the continuous case) of a random variable X , taking values
in an alphabet X . Given an observation x ∈ X , one would
like to decide whether it emerged from P0 or P1. A decision
rule is a partition of X into two complementary regions X0

and X1, such that whenever X ∈ Xi one decides in favor
of the hypothesis that X has emerged from Pi, i = 0, 1.
Associated with any decision rule, there are two kinds of error
probabilities: P0(X1) is the probability of deciding in favor
of P1 while x has actually generated by P0, and P1(X0) is
the opposite kind of error. The Neyman–Pearson problem is
about the quest for the optimum decision rule in the sense of
minimizing P1(X0) subject to the constraint that P0(X1) ≤ α
for a prescribed constant α ∈ [0, 1]. The Neyman–Pearson
lemma asserts that the optimum decision rule, in this sense,
is given by the likelihood ratio test (LRT) X ∗

0 = (X ∗
1 )c =

{x : P0(x)/P1(x) ≥ µ}, where the threshold µ = µ(α) is
tuned so as to meet the constraint P0(X1) ≤ α with equality
(assuming that this is possible).

Assume now that instead of one observation x, we have a
vector x of n i.i.d. observations (x1, . . . , xn), emerging either
all from P0, or all from P1. In this case, the error probabilities
of the two kinds, pertaining to the LRT, P0(x)/P1(x) ≥ α,
can decay asymptotically exponentially, provided that α = αn

is chosen to decay exponentially with n (though not too fast),
and the asymptotic exponents, e0 = limn→∞[− 1

n lnP0(X ∗
1 )]

and e1 = limn→∞[− 1
n lnP1(X ∗

0 )] can be easily found (e.g.,
by using the method of types) to be

ei(λ) = D(Pλ‖Pi) =
∑
x∈X

Pλ(x) ln
Pλ(x)
Pi(x)

; i = 0, 1

where

Pλ(x) =
P 1−λ

0 (x)Pλ
1 (x)

Z(λ)

with
Z(λ) =

∑
x∈X

P 1−λ
0 (x)Pλ

1 (x)

and λ ∈ [0, 1] being a parameter (depending on µ) that controls
the tradeoff between the error exponents of the two kinds: For
λ = 0, e0(0) = 0 and e1(0) = D(P0‖P1). As λ grows from 0
to 1, e0(λ) increases and e1(λ) decreases. Finally, for λ = 1,
e0(1) = D(P1‖P0) and e1(1) = 0.

From the physics point of view, given P0 and P1, let us
define the Hamiltonians, E0(x) = − lnP0(x) and E1(x) =
− lnP1(x), and let the inverse temperature be set to β = 1.
Let Pλ(x) be defined as above, which can be referred to as
the Boltzmann distribution with Hamiltonian Eλ(x) = (1 −
λ)E0(x) + λE1(x) and β = 1. Let λt, t ∈ [0, τ ], be a function
that starts from λ0 = 0 and ends at λτ = 1. Now, assuming

that the conditions for the Jarzynsky equality hold in this case,
the average work along the process, which is

E{W} =
∫ τ

0

dλt ·Eλt{E1(X)− E0(X)},

cannot be smaller than ∆F , which in this case vanishes. As
said, equality E{W} = ∆F ≡ 0 is attained for a reversible
process.

Indeed, these relations can easily be seen to hold here
and also be related to the error exponents of Neyman–
Pearson testing, and even from a direct derivation, without
recourse to physical considerations: Considering the Hamilto-
nians Ei(x) = − lnPi(x), i = 0, 1, as mentioned above, we
have:

E{W} =
∫ τ

0

dλtEλt
ln

P0(X)
P1(X)

=
∫ τ

0

dλt

∑
x∈X

Pλt
(x) ln

P0(x)
P1(x)

=
∫ τ

0

dλt[D(Pλt‖P1)−D(Pλt‖P0)]

=
∫ τ

0

dλt[e1(λt)− e0(λt)] (18)

On the other hand, we can also rewrite the second line of the
last chain of equalities as:

E{W} = −
∫ τ

0

dλt ·
[
∂ lnZ(λ)

∂λ

]
λ=λt

. (19)

Now, if {λt} is everywhere differentiable (which is analogue
to a reverisble process), this amounts to

E{W} = −
∫ τ

0

dtλ̇t ·
[
∂ lnZ(λ)

∂λ

]
λ=λt

= −
∫ τ

0

dt · d lnZ(λt)
dt

= ln Z(λ0)− lnZ(λτ )
= ln Z(0)− lnZ(1)
= ln 1− ln 1 = 0. (20)

If, on the other hand, {λt} contains jump–discontinuities, then
every such jump, say, from λ1 to λ2, contributes to the integral
a term of the form

dλt ·
[
∂ lnZ(λ)

∂λ

]
λ=λt

= (λ2 − λ1) ·
[
∂ lnZ(λ)

∂λ

]
λ=λ1

,

which is smaller than lnZ(λ2)−lnZ(λ1), due to the convexity
of the function lnZ(λ). Consequently, because of the minus
sign, each such discontiuity increases E{W } above zero.
Thus, we indeed see that,∫ τ

0

dλte1(λt) ≥
∫ τ

0

dλte0(λt)

with equality in the differentiable (reversible) case. This in
turn means that in this case,∫ τ

0

dtλ̇te0(λt) =
∫ τ

0

dtλ̇te1(λt).



The left– (resp. right–) hand side is simply
∫ 1

0
dλe0(λ) (resp.∫ 1

0
dλe1(λ)) which means that the areas under the graphs of

the functions e0 and e1 are always the same.
While these integral relations between the error exponent

functions have actually been derived without recourse to any
physical considerations, it is the physical point of view that
gives the trigger to point out these relations.
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