
Efficient On-line Schemes for Encoding Individual
Sequences with Side Information at the Decoder

Avraham Reani and Neri Merhav
Department of Electrical Engineering

Technion - Israel Institute of Technology
Technion City, Haifa 32000, Israel

Emails: [avire@tx,merhav@ee].technion.ac.il

Abstract—”THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD” We present adaptive on-line schemes for lossy
encoding of individual sequences, under the conditions of the
Wyner-Ziv (WZ) problem, i.e., the decoder has access to side
information whose statistical dependency on the source is known.
Both the source sequence and the side information consist of
symbols taking on values in a finite alphabet X . A set of fixed-rate
scalar source codes with zero delay is presented. We propose a
randomized on-line coding scheme, which achieves asymptotically
(and with high probability), the performance of the best source
code in the set, uniformly over all source sequences. The scheme
uses the same rate and has zero delay. We then present an efficient
algorithm for implementing our on-line coding scheme in the case
of a relatively small set of encoders. We also present an efficient
algorithm for the case of a larger set of encoders with a structure,
using the method of the weighted graph and the Weight Pushing
Algorithm (WPA). The complexity of these algorithms is no more
than linear in the sequence length.

I. INTRODUCTION

Consider a setting which has the following components:
an individual source sequence, a discrete memoryless channel
(DMC) with known statistics, a noiseless channel with rate
constraint R, and a decoder. The encoder transforms the source
sequence x1, x2, . . . , xn into channel symbols z1, z2, . . . , zn,
taking values in {1, 2, . . . ,M}, M = 2R, which is transmitted
to the decoder via a noiseless channel. The decoder, in addition
to the encoded data arriving from the noiseless channel, has
access to a side information sequence y1, y2, . . . , yn, created
by transmitting the source sequence over the DMC. Using the
data from the encoder and the side information, the decoder
produces the reconstructed sequence x̂1, x̂2, . . . , x̂n. The goal
is to minimize the distortion between the source and the re-
constructed signals by optimally designing an encoder-decoder
pair. This is a variation of the problem of rate-distortion
coding with decoder side information, which is well known
as the WZ coding problem, first introduced in [6]. Like the
ordinary rate-distortion problem, without side information, the
problem of finding practical schemes that perform arbitrarily
close to the rate-distortion curve is still largely open. The case
of scalar source codes for the WZ problem was handled in
several papers, e.g. [7] and [8]. In contrast to our case, these
schemes operate under specific assumptions of known source
statistics. WZ coding of a source with unknown statistics
was also considered, e.g. in [9], and existence of universal
schemes was established. However, these schemes are based

on block coding or assume the knowledge of the source and
side information sequences in advance, thus are irrelevant to
the case of on-line encoding we handle.

A coding scheme is said to have an overall delay of no more
than d if each channel symbol at time t, zt, depends only on
x1, . . . , xt+d1 , each reconstructed symbol x̂n depends only on
z1, . . . , zt+d2 and y1, . . . , yt+d2 , and d ≥ d1 + d2. Weissman
and Merhav [3], following Linder and Lugosi [2], constrcuted
a randomized limited delay lossy coding scheme for individual
sequences using methods based on prediction theory. These
schemes perform, for any given set of source codes (called
experts, this is the reference class), almost as well as the
best source code in the set, for all individual sequences. The
performance of the scheme is measured by the distortion
redundancy, defined as the difference between the normalized
cumulative distortion of the scheme and that of the best source
code in the set, matched to the source sequence. The scheme
is based on random choices of source codes from the set. The
random choices are done according to exponential weights
attached to each code. The weight of each sources code, each
time we choose a code, depends on its past performance and
has to be calculated. Thus, implementing this scheme for a
large set of source codes requires efficient methods, to prevent
prohibitive complexity. György, Linder and lugosy offered
efficient algorithms for implementing this scheme for sets of
scalar quantizers [4],[5] without side information.

In this paper, a fixed-rate, zero-delay adaptive coding
schemes for individual sequences under the WZ conditions
is presented. We define a set of scalar source codes for
the WZ problem. Then, the scheme of [3] is extended for
the case of the WZ problem w.r.t. the Hamming distortion
measure. For any given set of WZ source codes, this scheme
performs asymptotically as well as the best source code in the
set, for all source sequences. We then demonstrate efficient
implementations of this scheme. First, it is shown that the
scheme can be implemented efficiently for any relatively small
set of encoders, even though the set of decoders is large.
Then, using graph-theoretic methods similarly to [5], we show
that we can implement the scheme for large sets of scalar
encoders with a structure. In the end, the implementations are
generalized to any distortion measure, at the price of increased
complexity.

It should be pointed out that the development of our efficient

on-line scheme is not a straightforward extension of those in
[4][5] because of the following reasons: (i) because of the side
information, the optimal partition of the source alphabet does
not necessarily correspond to intervals. (ii) unlike in [4] and
[5], for every given encoder in the reference class, there might
be many possible decoders.

II. DEFINITION OF AN ON-LINE ADAPTIVE WZ SCHEME

Throughout this paper, for any integer n, we let an denote
the sequence a1, a2, . . . , an.

Given a source sequence xn, the encoder transforms xn

into a sequence zn whose symbols {zi} take on values in
the set {1, 2, . . . ,M}. The decoder, in addition to zn, has
access to a sequence yn, dependent on xn via a known DMC,
defined by the single-letter transition probability PY |X(yi|xi)
which is the probability of yi, given xi. Based on zn and
yn, the decoder produces the reconstructed sequence x̂n. For
convenience, we assume that xi, yi and x̂i take on values in
the same finite alphabet X with cardinality |X |. All the results
can be generalized straightforwardly to the case of different
alphabets. The distortion between two symbols is defined to
be the Hamming distortion:

ρ(x, x̂) =
{

0 if x = x̂
1 elsewhere. (1)

We define the distortion for the input symbol at time t, xt, as:

∆t(xt) = Eρ(xt, x̂t(zt, yt)) (2)

where the expectation is taken with respect to yt.

A. Definition of the reference set of encoders
In this part, we define the general set of scalar source codes,

here referred to as experts. Each expert is a source code with
a fixed rate, R = logM . Practically, each expert partitions
X into M disjoint subsets (m1,m2, . . . ,mM). The encoder e
for each expert is given by a function e : X →{1, 2, . . . ,M}
that is, zi = e(xi). The decoder d receives zi, and together
with the side information yi, decides on x̂i, using a decoding
function d : {1, 2, . . . ,M} × X → X , i.e., x̂i = d(zi, yi).
The definition above is not complete. It is easy to see that
different encoders may actually implement the same partition.
For example: if X ={1, 2, 3} and M = 2, consider the two
encoders:
e1 : e1(1) = 1, e1(2) = 2, e1(2) = 2
e2 : e2(1) = 2, e2(2) = 1, e2(2) = 1
It is easy to see that they have the same functionality. In
our definition we treat these encoders as the same encoder,
otherwise, the same expert will be taken into account several
times. The number of times depends on the specific partition,
so we will get an unbalanced set of experts.

1) Definition of the encoders using the partition matrix:
To define an encoder uniquely, and to get bounds on the
cardinality of the general set of encoders, let us define the
partition matrix:

PMj,l =
{

1 if xj and xl belongs to the same subset.
0 else.

(3)

where j, l ∈ {1, 2, . . . , |X |}, are the indexes of the alphabet
letters, xj , xl ∈ X , given that we ordered the alphabet in some
arbitrary order. Using properties of this matrix, we can derive
bounds on the number of encoders:

2|X |−1 ≤ Number of PM ′s ≤ 2|X | log M (4)

so the number of encoders is exponential in |X |. Therefore,
using the general set of encoders is a challenge from a
computational complexity point of view.

2) Definition of the decoders: We limit our discussion to
decoders which satisfy:

d(zi, yi) = x̂i, where e(x̂i) = zi (5)

From the above definition, we see that every encoder defines a
set of possible decoders. This set consists of all combinations
of choices of x̂ from the set z, for different pairs (z, y). Using
the Hamming distortion measure, it is easy to see that there
is no point to choose x̂i outside the subset mzi

, hence this
set of decoders is sufficient. For other distortion measures, the
results can be generalized straightforwardly to the set of all
possible decoders.

3) The set of scalar source codes: We define FWZ(M) as
the set of all scalar WZ source codes with rate R = logM , i.e.
all the pairs of scalar encoder and one of its possible decoders,
as defined in (5).
Remark. In contrast to our case, when there is a known joint
distribution P (xi, yi) , then given the encoder and yi, the best
strategy for minimizing the Hamming distortion is, of course,
maximum likelihood, i.e., choose the most probable x from
the subset mzi

, given yi.

x̂ = arg max
x∈mzi

PX|Y (x|yi) (6)

However, in our case, PX|Y (x|y) is unknown or non-existent
since P (x), the source statistics, is unknown or non-existent.
Therefore, knowing the encoder is not sufficient for determin-
ing the best decoder.

B. An on-line WZ coding scheme

In this part, we describe an on-line adaptive scheme for the
WZ case based on the results of [3]. For any source sequence
xn, the distortion ∆n

(e,d)(x
n) of a source code (e, d) is defined

by:

∆n
(e,d)(x

n) =
n∑

i=1

∆i(xi) (7)

In the case of scalar source code we get ∆n
(e,d)(x

n) =∑n
i=1

∑
y∈X PY |X(y|xi)ρ(xi, d(e(xi), y)). Given any finite

set of scalar source codes (which we call experts) with rate R
and zero delay, this scheme (which has the same rate R and
zero delay) achieves asymptotically the distortion ∆n

(e,d)(x
n)

of the best source code in the set, for all source sequences xn.
To be more specific, from [3], we know that for any bounded
distortion measure (d(x, x̂) < B,∀x, x̂ ∈ X for some positive
real number B), the following result holds:

Theorem [3]. 1: Let A be a finite subset of FWZ(M).
Then there exists a sequential source code (ẽ, d̃) such that
for all xn ∈ Xn:

E{ 1
n [∆n

(ẽ,d̃)
(xn)−min(e′,d′)∈A∆n

(e′,d′)(x
n)]} ≤

3B

(2R)
1
3

[log |A|] 2
3n−

1
3

(8)

where the expectation is taken w.r.t. to a certain randomization
of the algorithm which will be described below. For the
Hamming distortion measure, we have B = 1. The scheme
works as follows: Assume that we have some reference set
A of WZ scalar source codes. We divide the time axis,
i = 1, 2, . . . , n, into K = n/l consecutive non-overlapping
blocks (assuming l divides n). The value of l was opti-
mized in [3] to get minimal redundancy and is equal to
2{log(|A|)n/R2} 1

3 . At the beginning of each block, i.e., at
times t = (k − 1)l, k ∈ {1, 2, . . . ,K}, we randomly choose
an expert according to the exponential weighting probability
distribution:

Pr{next expert = (e, d)} =
exp{−η∆t

(e,d)(x
t)}∑

(e′,d′)∈A exp{−η∆t
(e′,d′)(x

t)}
(9)

where η > 0 is a parameter that was optimized in [3] to
get minimal redundancy and is equal to {8 log(|A|)/lB2n} 1

2 .
After choosing the expert (e, d), the encoder dedicates the
first dlog |A|/Re channel symbols, at the begining of the k-th
block, to inform the decoder the identity of d. At the remainder
of the block, the encoder produces the channel symbols zi =
e(xi). At the same time, at the decoder side, at the begining
of the block, at times i = (k − 1)l + 1, . . . , dlog |A|/Re, the
decoder outputs arbitrary sequence of xi’s. At the rest of the
block, knowing d, it reproduces x̂i = d(zi, yi).
Remark. Throughout this paper we assume that n is known
in advance. Generalizing the scheme to the case where the
length is unknown is straightforward, as explained in [3].

III. EFFICIENT IMPLEMENTATION FOR SETS OF SCALAR
SOURCE CODES

In this section, we present an efficient implementation of the
scheme described, for sets of scalar source codes. Each one of
these sets of source codes consists of all the pairs (e, d) where
e is one of the encoders in some small set of encoders, and
d is one of its possible decoders, as defined in section A. By
”small set” we mean that the random choice of the encoder can
by done directly (as will be explained below). This definition
depends of course on the computational resources we allocate.
Remember that given a specific encoder, the decoder, for each
(z, y), chooses some x from the subset of source letters mz .
Thus, for each pair (z, y) there are |mz| possible x̂’s. Hence,
given an encoder, the number of possible decoders is:∏

y∈X

M∏
z=1

|mz| = (|m1||m2| . . . |mM |)|X | ≥ 2|X | (10)

where |mz| is the cardinality of the subset of letters mz . The
lower bound is derived from the fact that in the lossy encoding

case M < |X | so the product above is at least 2. Thus, given
a set of encoders, the number of possible WZ source codes
is ≥ |E|2|X | where |E| is the number of encoders. Given
a set of experts A, we follow the scheme of the previous
subsection. We divide the time axis, i = 1, 2, . . . , n, into K =
n/l consecutive non-overlapping blocks. We randomly choose
the next expert at the beginning of each block according to the
exponential weighting probability distribution. The distortion
of an expert (e, d) at time t is given by:

∆t
(e,d)(x

t) =
∑t

i=1 ∆(xi)
=

∑t
i=1

∑
y PY |X(y|xi)ρ(xi, x̂(xi, y))

=
∑t

i=1

∑
y PY |X(y|xi)I(xi,y)∈A

=
∑

x,y∈X nt(x)PY |X(y|xi)I(xi,y)∈A

(11)
where A is the set of all pairs (x, y) which contribute to the
distortion, i.e., d(e(x), y) 6= x, IB is the indicator function for
an event B, and nt(x) is the number of times x appeared in xt.
For a more convenient form of (9), we multiply the numerator
and denominator with exp{η

∑
x,y∈X nt(x)PY |X(y|x)} and

we get:

Pr{next expert = (e, d)} =
λ(e,d),t∑

(e′,d′)∈A λ(e′,d′),t
(12)

where:

λ(e,d),t = exp{η
∑

x,y∈X
nt(x)PY |X(x, y)I(x,y)∈Ā} (13)

where Ā is the complementary set of A, i.e. all pairs (x, y)
such that d(e(x), y) = x. Given a set of experts, the random
choice of an expert at the beginning of each block is done in
two steps. First, we choose an encoder randomly according to:

Pr{next encoder = e} =
Fe∑

e′∈E Fe′
(14)

where E is the set of encoders, and:

Fe =
∑

(e,d)∈Ae

λ(e,d),t (15)

is the sum of the exponential weights of all experts in Ae,
where Ae is the subset of all experts which use the encoder
e. Fe can be calculated efficiently in the following way: For
each pair (x, y) calculate λx,y,t where:

λx,y,t = exp{ηnt(x)PY |X(y|x)} (16)

and then for each (z, y), calculate the sum
∑

x:e(x)=z λx,y,t

where e(x) is the encoding of x. The product of all these sums
is Fe:

Fe =
M∏

z=1

∏
y∈X

 ∑
x:e(x)=z

λx,y,t

 (17)

The proof of this will be given in the full version of this paper
[10]. In the second step, we choose the decoder randomly
according to:

Pr{decoder = d | encoder = e} =
λ(e,d),t

Fe
(18)

The random choice of the decoder can be implemented effi-
ciently in the following way: For each pair (z, y), choose the
decoder output d(z, y) randomly, according to the probability
distribution:

Pr{d(z, y) = x} =
λx,y,t∑

x′:e(x′)=z λx′,y,t
(19)

where x ∈ {x : e(x) = z}.
We demonstrated an efficient random choice of a pair (e, d).

The proof that this random choice is actually implementing (9)
will be given in [10]. Below is a formal description of the on-
line algorithm:

1) Calculate l, the optimal length of a data block, and let
K = n/l.

2) Initialize k to 0, and all the weights λx,y,0 to 1.
3) At the beginning of each of the next data blocks, update

the weights in the following way:
λx,y,tk

= λx,y,tk−1 exp(η
∑kl

i=(k−1)l+1 Ixi=xPY |X(x, y))
tk = kl + 1, 1 ≤ k ≤ K − 1

4) For each (e, z, y), calculate the sums:∑
x:e(x)=z λx,y,tk

5) Calculate Fe, for each e ∈ E, according to (17).
6) Choose an encoder ek randomly according to (14).
7) For each pair (z, y), choose the decoder function dk

randomly according to (19).
8) Use the first dlog(N)/Re channel symbols at the be-

ginning of the kth block to inform the decoder the
identity of dk, chosen in the previous step, where N
is the number of experts.

9) Encode the next block using the chosen expert ek:
zi = ek(xi), kl + log(N)/R+ 1 ≤ i ≤ (k + 1)l − 1

10) If k < K, increment k and go to 3.

The total complexity of the algorithm is O(n/l·|X |2)+O(n/l·
|E||X |M)+O(n). The complexity depends on |E|, which thus
should be small as was mentioned above.

A. Large set of encoders with structure

As was shown, we can choose a pair (e, d) randomly, in
two steps. In the first step, we choose the encoder according
to (14). In the second step, we choose randomly one of its
possible decoders according to (18). In the previous part, we
assumed that the set of encoders is small, so we can implement
(14) directly, i.e., calculate Fe for each encoder separately. In
this part, we use a large structured set of encoders. Using
the structure, we can efficiently implement (14). We assume
that the input alphabet X is ordered. We enumerate the source
symbols according to that order. By Num(x), 1 ≤ Num(x) ≤
|X |, we denote the serial number of the symbol x.

1) Definition of the set of encoders: The Input Alphabet
Axis (IAA) is defined as the |X |-sized vector (1, 2, . . . , |X |).
A division of the IAA is given by the (M−1)-sized increasing
sequence r = (z1, . . . , zM−1), zi ∈ {1, 2, . . . |X |}. Each
division r represents a specific encoder in the following way:

e(x) = i : zi−1 ≤ Num(x) < zi, i ∈ {1, . . . ,M} (20)

We define E as the set of all such encoders. The cardinality

of the set of encoders is
(
|X |

M − 1

)
.

2) Graphical representation of the set of encoders: The
random choice of the encoders can be done efficiently using
an a-cyclic directed graph. We denote:
V - The set of all vertices:
{1, 2, . . . ,M − 1} × {1, 2, . . . , |X |} ∪ (0, 0) ∪ (M, |X |+ 1)
E - The set of all edges:
{((z, j − 1), (ẑ, j)) : z, ẑ ∈ {0, 1, 2, . . . ,M + 1}, ẑ > z, j ∈
{1, 2, . . . , |X |+ 1}}
s - The starting point in the bottom left, i.e. (0, 0)
u - The end point in the top right, i.e. (M + 1, |X |+ 1)
Ez - The set of all edges starting from vertex z.
The graph is described in Fig.1. The horizontal axis represents
the ordered input alphabet. The vertical axis represents the
M −1 choices needed for dividing the IAA into M segments.
A path composed of the edges {(0, 0), (z1, 1) . . . , (zM−1,M−
1), (|X |+1,M)} represents M−1 consecutive choices of M−
1 x’s (z1, . . . , zM−1) which divide the IAA into M segments,
creating M subsets of the input alphabet. Each edge on a
path represents one choice, the choice of the next point on
the vertical axis, which defines the next segment. An edge
((z, j−1), (ẑ, j)) matches to the segment [z, ẑ) on the vertical
axis, thus equivalent to the subset {x : z ≤ x < ẑ}. There are
O(M |X |2) edges. For each edge a ∈ E and time t we assign

Fig. 1. The graph representing all possible partitions of the input alphabet
into M subsets given the alphabet is ordered in some specific order. For
example, the left dashed arrow defines the subset {1, 2}, the middle and right
dashed arrows define the subsets {3} and {|X |−2, |X |−1, |X |} respectively.

a weight δa,t:

δa,t =
∏

y∈X
∑

x∈[z,ẑ) λx,y,t, a = ((z, j − 1), (ẑ, j))
(21)

where λx,y,t is given by (16). It can be seen from (21) that
a weight δa,t depends only on the vertical coordinates of the
edge a, thus we can denote it as δ(z,ẑ),t. The cumulative weight
of a path r = {(0, 0), (z1, 1) . . . , (zM−1,M−1), (|X |+1,M)}
at time t is defined as the product of its edges’ weights:

Λr,t =
∏
a∈r

δa,t (22)

It will be shown in [10] that Λr,t = Fe. Following the WPA,
also used in [5] we define:

Gt(z) =
∑

r∈Rz

∏
a∈r

δa,t (23)

where z is a vertex on the graph, Rz is the set of all paths
from z to u and a is an edge on the path r.
It is easy to see that:

Gt(s) =
∑
r∈R

Λr,t =
∑
e∈E

Fe (24)

The function Gt(z) can be computed recursively:

Gt(u) = 1, Gt(z) =
∑

ẑ:(z,ẑ)∈E δ(z,ẑ),tGt(ẑ) (25)

Because each edge is taken exactly once, calculating Gt(z)
for all z’s requires O(|E|) computations given the weights
δa,t. The function Gt(z) offers an efficient way to choose an
encoder randomly according to probability distribution in (14).
We define for each ẑ ∈ Ez:

Pt(ẑ|z) = δ(z,ẑ),tGt(ẑ)/Gt(z) (26)

It is easy to see that Pt(ẑ|z) is indeed a probability distribu-
tion, i.e.,

∑
ẑ:(z,ẑ)∈Ez

Pt(ẑ|z) = 1. We also have:

M∏
m=1

Pt(zm,r|zm−1,r) =
M∏

m=1

δ(zm−1,r,zm,r),t
Gt(zm,r)
Gt(zm−1,r)

=
Gt(u)
Gt(s)

·
M∏

m=1

δ(zm−1,r, zm,r) = Pr{next encoder = r}

and we get exactly the probability in (14).
Therefore, the encoder can be chosen randomly in the
following sequential manner: Starting from z0 = s, in each
step m = 1, 2, . . . ,M − 1 choose the next vertex zm ∈ Ezm−1

with probability Pt(zm|zm−1). The procedure stops when
zm = u.

Formal description of the on-line algorithm: Using the set
of encoders described above, we now have the following
algorithm:

1) Calculate l, the optimal length of a data block, and let
K = n/l.

2) Initialize k to 0, and all the weights λx,y,0 to 1.
3) Build the encoders graph as described in this section.
4) Initialize all the weights δa,0 to 1.
5) At the beginning of each of the next data blocks, i.e. at

times tk = kl + 1, k = {1, . . . ,K} update the weights
in the following way:
λx,y,tk

= λx,y,tk−1 exp(η
∑kl

i=(k−1)l+1 Ixi=xPY |X(x, y))

6) At the beginning of each of the next data blocks,
calculate δz,ẑ,tk

for each pair (z, ẑ) according to (21).
7) Update the weights of all edges to the new δ(z,ẑ),tk

’s.
8) Calculate Gtk

(z) recursively, for all z, according to (25).
9) Choose the encoder ek randomly as described above,

using (26).

10) For each pair (z, y), choose the decoder function dk

randomly according to (18).
11) Use the first dlog(N)/Re channel symbols at the be-

ginning of the kth block to inform the decoder the
identity of dk, chosen in the previous step, where N
is the number of experts.

12) Encode the next block, using the chosen expert ek:
zi = ek(xi), kl + log(N)/R+ 1 ≤ i ≤ (k + 1)l − 1

13) If k < K, increment k and go to 3.
The total complexity of the algorithm is O(n/l·|X |3)+O(n/l·
M |X |2) +O(n/l|X |2) +O(n).

B. General distortion measures

Let ρ(x, x̂) be some bounded distortion measure (d(x, x̂) <
B, ∀x, x̂ ∈ X for some positive real number B). Given an
encoder e, we define:

λx,y,e,t =
exp

{
−η
∑
{x′:x′ 6=x,e(x)=e(x′)} nt(x′)PY |X(y|x′)ρ(x, x′)

}
(27)

It is easy to see that given some possible decoder d, the
distortion of the pair r = (e, d) is:

λr,t =
∏
y∈X

M∏
m=1

λd(z,y),y,e,t (28)

using the generalized λ’s we defined, we can continue exactly
as in the Hamming case. It will be shown in [10] that the cost
of using the generalized λ is increased complexity by a factor
of |X |.

ACKNOWLEDGMENT

This research is supported by the Israeli Science Foundation
(ISF), grant no. 208/08.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pt. I, pp. 379–423, 1948; pt. II, pp. 623–656, 1948.

[2] T. Linder and G. Lugosi, “A zero-delay sequential scheme for lossy
coding of individual sequences,” IEEE Trans. Inform. Theory, vol. 46,
pp. 2533–2538, Sept. 2001.

[3] T. Weissman and N. Merhav, “On limited-delay lossy coding and filtering
of individual sequences,” IEEE Trans. Inform. Theory, vol. 48, pp. 721–
733, Mar. 2002.

[4] A. György, T. Linder and G. Lugosi, “Efficient adaptive algorithms and
minimax bounds for zero-delay lossy source coding,” IEEE Trans. Signal.
Proc., vol. 52, pp. 2337–2347, Aug. 2004.

[5] A. György, T. Linder and G. Lugosi, “Tracking the best quantizer,” IEEE
Trans. Inform. Theory, vol. 54, pp. 1604–1625, April. 2008.

[6] A. Wyner and J. Ziv, “The rate-distortion function for source coding with
side information at the decoder,” IEEE Trans. Inform. Theory, vol. IT-22,
pp. 1–10, Jan. 1976.

[7] D. Muresan and M Effros, “Quantization as histogram segmentation:
Optimal scalar quantizer design in network systems,” IEEE Trans. Inform.
Theory, vol. 54, pp. 344–366, Jan. 2008.

[8] J. Kusuma, L. Doherty and K. Ramchandran, “Distributed compression
for sensor networks,” ICIP conf., vol. 1, pp. 82–85, 2001.

[9] N. Merhav and J. Ziv, “On the WynerZiv Problem for Individual Se-
quences,” IEEE Trans. Inform. Theory, vol. 52, pp. 867-873, Mar. 2006.

[10] A. Reani and N. Merhav, “Efficient on-line schemes for encoding
individual sequences with side information at the decoder,” in preperation.

