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Abstract

The analysis of random coding error exponents pertaining to erasure/list decoding, due to
Forney, is revisited. Instead of using Jensen’s inequality as well as some other inequalities in the
derivation, we demonstrate that an exponentially tight analysis can be carried out by assessing
the relevant moments of a certain distance enumerator. The resulting bound has the following
advantages: (i) it is at least as tight as Forney’s bound, (ii) under certain symmetry conditions
associated with the channel and the random coding distribution, it is simpler than Forney’s
bound in the sense that it involves an optimization over one parameter only (rather than two),
and (iii) in certain special cases, like the binary symmetric channel (BSC), the optimum value
of this parameter can be found in closed form, and so, there is no need to conduct a numerical
search. We have not found yet a numerical example where this new bound is strictly better than
Forney’s bound and this may provide an additional evidence to support Forney’s conjecture that
his bound is tight for the average code. However, when applying the proposed analysis technique
to a certain universal decoder with erasures, we demonstrate that it may yield significantly
tighter exponential error bounds. We believe that this technique can be useful in simplifying
and improving exponential error bounds in other problem settings as well.

Index Terms: random coding, erasure, list, error exponent, distance enumerator.

1 Introduction

In his celebrated paper [6], Forney extended Gallager’s bounding techniques [5] and found exponen-

tial error bounds for the ensemble performance of optimum generalized decoding rules that include

∗This research was supported by the Israel Science Foundation (ISF), grant no. 223/05.
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the options of erasure, variable size lists, and decision feedback (see also later studies, e.g., [1],

[8],[9], [11], [14], and [17]).

Stated informally, Forney [6] considered a communication system where a code of block length n

and size M = enR (R being the coding rate), drawn independently at random under a distribution

{P (x)}, is used for a discrete memoryless channel (DMC) {P (y|x)} and decoded with an erasure/list

option. For the erasure case, in which we focus hereafter, an optimum tradeoff was sought between

the probability of erasure (no decoding) and the probability of undetected decoding error. This

tradeoff is optimally controlled by a threshold parameter T of the function enT to which one

compares the ratio between the likelihood of each hypothesized message and the sum of likelihoods

of all other messages. If this ratio exceeds enT for some message, a decision is made in favor of that

message, otherwise, an erasure is declared.

Forney’s main result is a lower bound E1(R,T ) to the exponent of the probability of the event

E1 of not making the correct decision, namely, either erasing or making the wrong decision. This

lower bound is given by

E1(R,T ) = max
0≤s≤ρ≤1

[E0(s, ρ) − ρR − sT ] (1)

where

E0(s, ρ) = − ln

[

∑

y

(

∑

x

P (x)P 1−s(y|x)

)

·

(

∑

x′

P (x′)P s/ρ(y|x′)

)ρ]

. (2)

The probability of the undetected error event E2 (i.e., the event of not erasing but making a

wrong estimate of the transmitted message) is given by E2(R,T ) = E1(R,T ) + T . As is seen, the

computation of E1(R,T ) involves an optimization over two parameters, ρ and s, which in general

requires a two–dimensional search by some method. This is different from Gallager’s random coding

2



error exponent for ordinary decoding (without erasures), which is given by:

Er(R) = max
0≤ρ≤1

[E0(ρ) − ρR], (3)

with E0(ρ) being defined as

E0(ρ) = − ln





∑

y

(

∑

x

P (x)P 1/(1+ρ)(y|x)

)1+ρ


 , (4)

where there is only one parameter to optimize. In [6], one of the steps in the derivation involves

the inequality (
∑

i ai)
r ≤

∑

i ar
i , which holds for r ≤ 1 and non–negative {ai} (cf. eq. (90) in [6]),

and another step (eq. (91e) therein) applies Jensen’s inequality. The former inequality introduces

an additional parameter, denoted ρ, to be optimized together with s.

Here, we offer a different technique for deriving a lower bound to the exponent of Pr{E1},

which avoids the use of these inequalities. Instead, an exponentially tight evaluation of the relevant

expression is derived by assessing the moments of a certain distance enumerator, and so, the

resulting bound is at least as tight as Forney’s bound. Since the first above–mentioned inequality

is bypassed, there is no need for the parameter ρ, and so, under certain symmetry conditions

(that often hold) on the random coding distribution and the channel, the resulting bound is also

simpler in the sense that there is only one parameter to optimize rather than two. Moreover,

this optimization can be carried out in closed form at least in some special cases like the binary

symmetric channel (BSC). We have not found yet a convincing numerical example where the new

bound is strictly better than Forney’s bound. This may serve as an additional evidence to support

Forney’s conjecture that his bound is tight for the average code. Nevertheless, when applying the

same analysis technique to a certain universal decoder with erasures, we demonstrate by numerical

examples that significantly tighter exponential error bounds can be obtained compared to the

technique used in [6].
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We wish to emphasize that the main message of this contribution, is not merely in the simpli-

fication or the improvement of the error exponent bound in this specific problem of decoding with

erasures, but more importantly, in the analysis technique we offer here, which is applicable to other

problem settings as well, e.g., the interference channel [7] and the degraded broadcast channel [10].

The underlying ideas behind this technique are inspired from the statistical mechanical point of

view on random code ensembles, offered in [15] and further developed in [12] (see also [2]).

The outline of this paper is as follows. In Section 2, we establish notation conventions and give

some necessary background. In Section 3, we present the main result and discuss it. In Section 4,

we derive the new bound, first for the special case of the BSC, and then more generally. Finally,

in Section 5, we analyze a universal decoder as described above.

2 Notation and Preliminaries

Throughout this paper, scalar random variables (RV’s) are denoted by capital letters, their sample

values are denoted by the respective lower case letters, and their alphabets are denoted by the

respective calligraphic letters. A similar convention applies to random vectors of dimension n and

their sample values, which will be denoted with same symbols in the bold face font. The set of all

n–vectors with components taking values in a certain finite alphabet, will be denoted as the same

alphabet superscripted by n. Sources and channels will be denoted generically by the letter P or Q.

Information theoretic quantities like entropies and conditional entropies, will be denoted following

the usual conventions e.g., H(X), H(X|Y ), etc. When we wish to emphasize the dependence of the

entropy on a certain underlying probability distribution Q we subscript it by Q, i.e., use HQ(X),

HQ(X|Y ), etc. The expectation operator will be denoted by E{·}, and again, when we wish to

emphasize the dependence on Q, we denote it by EQ{·}. The cardinality of a finite set A is denoted
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by |A|. The indicator function of an event E is denoted by 1{E}. For a given sequence y ∈ Yn,

Y being a finite alphabet, P̂y denotes the empirical distribution on Y extracted from y, in other

words, P̂y is the vector {P̂y(y), y ∈ Y}, where P̂y(y) is the relative frequency of the letter y in

the vector y. For two sequences of positive numbers, {an} and {bn}, the notation an
·
= bn means

that 1
n ln an

bn
→ 0 as n → ∞. Similarly, an

·
≤ bn means that lim supn→∞

1
n ln an

bn
≤ 0, and so on.

Consider a discrete memoryless channel (DMC) with a finite input alphabet X , finite output

alphabet Y, and single–letter transition probabilities {P (y|x), x ∈ X , y ∈ Y}. As the channel is

fed by an input vector x ∈ X n, it generates an output vector y ∈ Yn according to the sequence

conditional probability distributions P (yi|x1, . . . , xi, y1, . . . , yi−1) = P (yi|xi), i = 1, 2, . . . , n, where

for i = 1, (y1, . . . , yi−1) is understood as the null string. A rate–R block code of length n consists of

M = enR n–vectors xm ∈ X n, m = 1, 2, . . . ,M , which represent M different messages. We assume

that all messages are equiprobable.

A decoder with an erasure option is a partition of Yn into (M + 1) regions, R0,R1, . . . ,RM .

This decoder works as follows: If y falls into Rm, m = 1, 2, . . . ,M , a decision is made in favor of

message m. If y ∈ R0, no decision is made and an erasure is declared. We will refer to R0 as the

erasure event. Given a code C = {x1, . . . ,xM} and a decoder R = (R0,R1, . . . ,Rm), we define two

additional undesired events. The event E1 is the event of not making the right decision. This event

is the disjoint union of the erasure event and the it undetected error event E2, namely, the event of

making the wrong decision. The probabilities of these events are as follows:

Pr{E1} =
M
∑

m=1

∑

y∈Rc
m

P (xm,y) =
1

M

M
∑

m=1

∑

y∈Rc
m

P (y|xm) (5)

Pr{E2} =
M
∑

m=1

∑

y∈Rm

∑

m′ 6=m

P (xm′ ,y) =
1

M

M
∑

m=1

∑

y∈Rm

∑

m′ 6=m

P (y|xm′) (6)

Pr{R0} = Pr{E1} − Pr{E2}. (7)

5



Forney [6] shows that the best tradeoff between Pr{E1} and Pr{E2} is attained by the decoder

R∗ = (R∗
0,R

∗
1, . . . ,R

∗
M ) defined by

R∗
m =

{

y :
P (y|xm)

∑

m′ 6=m P (y|xm′)
≥ enT

}

, m = 1, 2, . . . ,M

R∗
0 =

M
⋂

m=1

(R∗
m)c, (8)

where (R∗
m)c is the complement of R∗

m, and where T ≥ 0 is a parameter, henceforth referred to as

the threshold, which controls the balance between the probabilities of E1 and E2. Forney devotes the

remaining part of his paper [6] to derive lower bounds, as well as to investigate properties, of the

random coding exponents (associated with R∗), E1(R,T ) and E2(R,T ), of Pr{E1} and Pr{E2}, the

average probabilities of E1 and E2, respectively, (w.r.t.) the ensemble of randomly selected codes,

drawn independently according to an i.i.d. distribution P (x) =
∏n

i=1 P (xi).

3 Main Result

Our main result in this paper is the following:

Theorem 1 Assume that the random coding distribution {P (x), x ∈ X} and the channel transition

matrix {P (y|x), x ∈ X , y ∈ Y} are such that for every real s,

γy(s)
∆
= − ln

[

∑

x∈X

P (x)P s(y|x)

]

(9)

is independent of y, in which case, it will be denoted by γ(s). Let sR be the solution to the equation

γ(s) − sγ′(s) = R, (10)

where γ′(s) is the derivative of γ(s). Finally, let

E∗
1(R,T, s) = Λ(R, s) + γ(1 − s) − sT − ln |Y| (11)
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where

Λ(R, s) =

{

γ(s) − R s ≥ sR

sγ′(sR) s < sR
(12)

Then,

Pr{E1}
·
≤ e−nE∗

1 (R,T ) (13)

where E∗
1(R,T ) = sups≥0 E∗

1(R,T, s) and

Pr{E2}
·
≤ e−nE∗

2 (R,T ) (14)

where E∗
2(R,T ) = E∗

1(R,T ) + T . Also, E∗
1(R,T ) ≥ E1(R,T ), where E1(R,T ) is given in (1).

Three comments are in order regarding the condition that γy(s) of eq. (9) is independent of y.

First, observe that this condition is obviously satisfied when {P (x)} is uniform and the columns

of the matrix {axy} = {P (y|x)} are permutations of each other, because then the summations

∑

x P (x)P s(y|x), for the various y’s, consist of exactly the same terms, just in a different order.

This is the case, for example, when X = Y is a group endowed with an addition/subtraction

operation (e.g., addition/subtraction modulo the alphabet size), and the channel is additive in the

sense that the ‘noise’ (Y − X) is statistically independent of X. Somewhat more generally, the

condition γy(s) = γ(s) for all y holds when the different columns of the matrix {P (y|x)} are formed

by permutations of each other subject to the following rule: P (y|x) can be permuted with P (y|x′)

if P (x) = P (x′).

Second, the derivation of the bound can be carried out, in principle, even without this condition.

In this case, one obtains an exponential expression that depends, for each y, on the empirical

distribution P̂y , and its summation over y can then be handled using the method of types, which

involves optimization over {P̂y}. But then we are loosing the simplicity of the bound.
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Finally, even when the condition holds, it is not apparent that the expression of Forney’s bound

E1(R,T ) can be simplified directly in a trivial manner, nor can we see how the optimum parameters

ρ and s can be found analytically in closed form.

4 Derivation of the New Bound

4.1 Background

The first few steps of the derivation are similar to those in [6]: For a given code and for every s ≥ 0,

Pr{E1} =
1

M

M
∑

m=1

∑

y∈(R∗
m)c

P (y|xm)

=
1

M

M
∑

m=1

∑

y∈Yn

P (y|xm) · 1

{

enT ∑

m′ 6=m P (y|xm′)

P (y|xm)
≥ 1

}

≤
1

M

M
∑

m=1

∑

y∈Yn

P (y|xm)

(

enT ∑

m′ 6=m P (y|xm′)

P (y|xm)

)s

=
ensT

M

M
∑

m=1

∑

y∈Yn

P 1−s(y|xm)





∑

m′ 6=m

P (y|xm′)





s

. (15)

As for E2, we have similarly,

Pr{E2} ≤ e−n(1−s)T
∑

y∈Yn

P 1−s(y|Xm)





∑

m′ 6=m

P (y|Xm′)





s

. (16)

Since this differs from the bound on Pr{E1} only by the constant factor e−nT , it will be sufficient

to focus on E1 only. Taking now the expectation w.r.t. the ensemble of codes, and using the fact

that Xm is independent of all other codewords, we get:

Pr{E1} ≤ ensT
∑

y∈Yn

E{P 1−s(y|Xm)} · E











∑

m′ 6=m

P (y|Xm′)





s




. (17)

The first factor of the summand is easy to handle:

E{P 1−s(y|Xm)} =
∑

x∈Xn

P (x)P 1−s(y|x) =
n
∏

i=1

[
∑

x∈X

P (x)P 1−s(yi|x)] = e−nγ(1−s). (18)
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Concerning the second factor, Forney’s approach is to use the inequality (
∑

i ai)
r ≤

∑

i ar
i , which

holds when {ai} are positive and r ≤ 1, in order to upper bound E{(
∑

m′ 6=m P (y|Xm′))s} by

E{(
∑

m′ 6=m P (y|Xm′)s/ρ)ρ} for ρ ≥ s, and then use Jensen’s inequality to insert the expectation

into the brackets, which is allowed by limiting ρ to lie in [0, 1]. In other words, the above expression

is further upper bounded in [6] by (
∑

m′ 6=m E{P (y|Xm′)s/ρ})ρ, 0 ≤ ρ ≤ 1.

We will use a different route, where all steps of the derivation will be clearly exponentially tight,

and without introducing the additional parameter ρ. To simplify the exposition and make it easier

to gain some geometrical insight, it will be instructive to begin with the special case of the BSC

and the uniform random coding distribution. The extension to more general DMC’s and random

coding distributions will be given in Subsection 4.3.

4.2 The BSC with the uniform random coding distribution

Consider the case where X = Y = {0, 1}, the channel is a BSC with a crossover probability p, and

the random coding distribution is P (x) = 2−n for all x ∈ {0, 1}n. First, concerning the first factor

in the summand of (17), we have, in this special case:

γ(1 − s) = − ln

[

1

2
p1−s +

1

2
(1 − p)1−s

]

= ln 2 − ln[p1−s + (1 − p)1−s]. (19)

As for the second factor, we proceed as follows. Define α = ln 1−p
p and for a given y, let Ny(d)

denote distance enumerator relative to y, that is, the number of incorrect codewords {xm′ , m′ 6= m}

at Hamming distance d from y. We then have:

E











∑

m′ 6=m

P (y|Xm′)





s




= E

{[

(1 − p)n
n
∑

d=0

Ny(d)e−αd

]s}

·
= E

{[

(1 − p)n max
d

Ny(d)e−αd
]s}

·
= (1 − p)nsE

{

max
d

N s
y(d)e−αsd

}
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·
= (1 − p)nsE

{

n
∑

d=0

N s
y(d)e−αsd

}

·
= (1 − p)ns

n
∑

d=0

E{N s
y(d)}e−αsd. (20)

The exponential equalities form the first main point in our approach: They hold, even before taking

the expectations, because the summation over d consists of a subexponential number of terms (as

opposed to the exponential number of terms in the original summation over the codewords). Thus,

the key issue here is how to assess the power–s moments of the distance enumerator Ny(d). To

this end, we have to distinguish between two ranges of d, or equivalently, δ = d/n. Let δGV (R)

denote the normalized Gilbert–Varshamov (GV) distance, δGV = dGV /n, i.e., the smaller solution,

δ, to the equation h(δ) = ln 2 − R, where h(δ) = −δ ln δ − (1 − δ) ln(1 − δ), δ ∈ [0, 1].

Now, the second main point of the proposed approach is that E{N s
y(d)} behaves differently1 for

the case δGV (R) ≤ δ ≤ 1 − δGV (R) and for the case δ < δGV (R) or δ > 1 − δGV (R). Let us define

then GR = {δ : δGV (R) ≤ δ ≤ 1 − δGV (R)}. In particular, using the large deviations behavior of

Ny(nδ), δ ∈ [0, 1], as the sum of enR − 1 binary i.i.d. RV’s, it is easily seen2 that

E{N s
y(nδ)}

·
=

{

ens[R+h(δ)−ln 2] δ ∈ GR

en[R+h(δ)−ln 2] δ ∈ Gc
R.

(21)

Thus,

E











∑

m′ 6=m

P (y|Xm′)





s




·
= (1 − p)ns





∑

δ∈GR

ens[R+h(δ)−ln 2] · e−αsnδ +
∑

δ∈Gc
R

en[R+h(δ)−ln 2] · e−αsnδ





1The intuition behind this different behavior is that when h(δ) + R − ln 2 > 0, the RV Ny(d), which is the sum
of enR − 1 many i.i.d. binary RV’s, 1{d(Xm′ , y) = d}, concentrates extremely (double–exponentially) rapidly around
its expectation en[R+h(δ)−ln 2], whereas for h(δ) + R− ln 2 < 0, Ny(d) is typically zero, and so, the dominant term of

E{Ns
y(d)} is 1s · Pr{Ny(d) = 1} ≈ en[R+h(δ)−ln 2]. This is analogous to the behavior observed in the random energy

model (REM) of spin glasses (cf. [4]) where this change in behavior yields a phase transition.
2See the Appendix of the ArXiv version [13] of this paper, which is omitted here for the sake of brevity.
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·
= (1 − p)ns

[

ens(R−ln 2) · exp{ns max
δ∈GR

[h(δ) − αδ]} + en(R−ln 2) · exp{n max
δ∈Gc

R

[h(δ) − αsδ]}

]

(22)

As we are considering rates below capacity, p < δGV (R) or p > 1 − δGV (R). We also assume

that p < 1/2, which will leave us only with the first possibility of p < δGV (R). Therefore, the

global (unconstrained) maximum of h(δ)−αδ, which is attained at δ = p, falls outside GR, and so,

maxδ∈GR
[h(δ) − αδ] is attained at δ = δGV (R) which yields

max
δ∈GR

[h(δ) − αδ] = h(δGV (R)) − αδGV (R) = ln 2 − R − αδGV (R).

Thus, the first term in the large square brackets of the r.h.s. of (22) is of the exponential order

of e−nsαδGV (R). As for the second term, the unconstrained maximum of h(δ) − αsδ is obtained at

δ = ps
∆
= ps

ps+(1−p)s , which can be either larger or smaller than δGV (R), depending on s. Specifically,

max
δ∈Gc

R

[h(δ) − αsδ] =

{

h(ps) − αsps ps ≤ δGV (R)
ln 2 − R − αsδGV (R) ps > δGV (R)

(23)

The condition ps ≤ δGV (R) is equivalent to s ≥ sR
∆
= (ln[(1 − δGV (R))/δGV (R)])/α. Thus, the

second term in the square brackets of the r.h.s. of eq. (22) is of the order of e−nµ(s,R), where

µ(s,R) =

{

µ0(s,R) s ≥ sR

αsδGV (R) s < sR
(24)

and where

µ0(s,R) = αsps − h(ps) + ln 2 − R

= s ln(1 − p) − ln[ps + (1 − p)s] + ln 2 − R. (25)

Next, observe that the second term, e−nµ(s,R), is always the dominant term: For s < sR, this is

trivial as both terms behave like e−nαsδGV (R). For s ≥ sR (namely, ps ≤ δGV (R)), as δ = ps achieves

the global minimum of the function f(δ)
∆
= αsδ − h(δ) + ln 2 − R, we have

µ0(s,R) = f(ps) ≤ f(δGV (R)) = αsδGV (R).

11



Therefore, we have established that

E











∑

m′ 6=m

P (y|Xm′)





s




·
= exp

{

−n

[

s ln
1

1 − p
+ µ(s,R)

]}

(26)

independently of y. Finally, we get:

Pr{E1}
·
≤ ensT · 2n · e−n[ln 2−ln(p1−s+(1−p)1−s)] · exp

{

−n

[

s ln
1

1 − p
+ µ(s,R)

]}

= e−nE1(R,T,s) (27)

where

E1(R,T, s)
∆
= µ(s,R) + s ln

1

1 − p
− ln[p1−s + (1 − p)1−s] − sT.

We next derive closed form expressions for the optimum value of s, denoted sopt, using the

following consideration: We have seen that E∗
1(R,T, s) is given by

F (s)
∆
= µ0(s,R) + s ln

1

1 − p
− ln[p1−s + (1 − p)1−s] − sT

for s ≥ sR, and by

G(s)
∆
= αsδGV (R) + s ln

1

1 − p
− ln[p1−s + (1 − p)1−s] − sT

for s < sR. Both F (s) and G(s) are concave functions and hence have a unique maximum each.

We have also seen that F (s) ≤ G(s) for all s, with equality at s = sR and only at that point.

This means that F (s) and G(s) are tangential to each other at s = sR, i.e., F (sR) = G(sR) and

F ′(sR) = G′(sR), where F ′ and G′ are the derivatives of F and G, respectively. Now, there are three

possibilities: If F ′(sR) = G′(sR) = 0, then sopt = sR. If F ′(sR) = G′(sR) < 0, then sopt < sR

is found by solving the equation G′(s) = 0. If F ′(sR) = G′(sR) > 0, then sopt > sR is found by

solving the equation F ′(s) = 0.

Assume first that sopt < sR. Then, the equation G′(s) = 0 is equivalent to:

αδGV (R) + ln
1

1 − p
+ p1−s ln p + (1 − p1−s) ln(1 − p) − T = 0

12



or αp1−s = αδGV (R) − T whose solution is:

s∗ = 1 −
1

α
ln

α(1 − δGV (R)) + T

αδGV (R) − T
. (28)

Of course, if the r.h.s. of (28) turns out to be negative, then sopt = 0. Thus, overall

sopt = s1(p,R, T )
∆
=

[

1 −
1

α
ln

α(1 − δGV (R)) + T

αδGV (R) − T

]

+

, (29)

where [x]+
∆
= max{x, 0}.

Next, assume that sopt > sR. In this case,

E1(R,T, s) = F (s)

= ln 2 − ln[ps + (1 − p)s] − ln[p1−s + (1 − p)1−s] − R − sT. (30)

Thus, the optimum s minimizes the convex function

f(s) = ln[ps + (1 − p)s] + ln[p1−s + (1 − p)1−s] + sT

= ln

[

1 + (1 − p)

(

p

1 − p

)s

+ p

(

1 − p

p

)s]

+ sT. (31)

Equating the derivative to zero, we get:

f ′(s) ≡
−
(

p
1−p

)s
· (1 − p)α +

(

1−p
p

)s
· pα

1 + (1 − p)
(

p
1−p

)s
+ p

(

1−p
p

)s + T = 0 (32)

or equivalently, defining z = eαs as the unknown, we get:

−(1 − p)/z + pz

1 + (1 − p)/z + pz
= −

T

α
,

which is a quadratic equation whose relevant (positive) solution is:

z = z0
∆
=

√

T 2 + 4p(1 − p)(α2 − T 2) − T

2p(T + α)

13



provided3 that T < α, and so the derivative vanishes at

sopt = s2(p, T )
∆
=

1

α
ln

[
√

T 2 + 4p(1 − p)(α2 − T 2) − T

2p(T + α)

]

.

It is not difficult to verify that sopt never exceeds unity. Also, sopt is always positive (z0 ≥ 1)

since the condition F ′(sR) > 0, which is equivalent to the condition T < α(psR
− p1−sR

), implies

T < α/2, which in turn is the condition for sopt > 0. Note that for T = 0, we obtain s2(p, 0) = 1/2,

in agreement with the Bhattacharyya bound.

In summary, the behavior of the solution can be described as follows: As R increases from 0 to

C = ln 2 − h(p), sR increases correspondingly from 0 to 1, and so, the expression α(psR
− p1−sR

)

(which is positive as long as R < ln 2 − h(p1/2)) decreases. As long as this expression is still larger

than T , we have F ′(sR) > 0 and the relevant expression of E∗
1(R,T, s) is F (s), which is maximized

at s = s2(p, T ) independently of R. At this range, the slope of E∗
1(R,T ), as a function of R, is −1.

As R continues to increase, we cross the point where F ′(sR) = 0 (a point which can be thought of

as an analogue to the critical rate of ordinary decoding) and enter into the region where F ′(sR) < 0,

for which E∗
1(R,T ) = G(s1(p,R, T )).

4.3 More General DMC’s and Random Coding Distributions

Assume now a general DMC {P (y|x), x ∈ X , y ∈ Y} and a general i.i.d. random coding distribution

P (x) =
∏n

i=1 P (xi) that satisfy the condition of Theorem 1. As for the second factor of the

summand of (17), we have the following:

E











∑

m′ 6=m

P (y|Xm′)





s




= E











∑

Qx|y

Ny(Qx|y) · exp{nEQ ln P (Y |X)}





s




·
=

∑

Qx|y

E{N s
y(Qx|y)} · exp{nsEQ ln P (Y |X)}, (33)

3Note that if T > α, the decoder will always erase (even for R = 0) since for p < 1/2, we have
P (y|xm)/[

∑

m′ 6=m
P (y|xm′ )] ≤ (1 − p)n/pn = eαn < enT .
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where Ny(Qx|y) is the number of incorrect codewords whose conditional empirical distribution4

with y is Qx|y and EQ is the expectation operator associated with P̂y × Qx|y. Define

GR = {Qx|y : R + HQ(X|Y ) + EQ ln P (X) ≥ 0},

where HQ(X|Y ) is the conditional entropy induced by P̂y × Qx|y. Analogously to the case of the

BSC (see also [13, Appendix]), we have:

E{N s
y(Qx|y)}

·
=

{

exp{ns[R + HQ(X|Y ) + EQ ln P (X)]} Qx|y ∈ GR

exp{n[R + HQ(X|Y ) + EQ ln P (X)]} Qx|y ∈ Gc
R

(34)

Thus,

E











∑

m′ 6=m

P (y|Xm′)





s




·
=

∑

Qx|y∈GR

exp{ns[R + HQ(X|Y ) + EQ ln P (X)]} ×

exp{nsEQ ln P (Y |X)} +

∑

Qx|y∈G
c
R

exp{n[R + HQ(X|Y ) + EQ ln P (X)]} ×

exp{nsEQ ln P (Y |X)}

∆
= A + B. (35)

As for A, we obtain:

A
·
= exp{ns[R + max

Qx|y∈GR

(HQ(X|Y ) + EQ ln[P (X)P (Y |X)])]}. (36)

Note that without the constraint Qx|y ∈ GR, the maximum of (HQ(X|Y ) + EQ ln[P (X)P (Y |X)])

is attained at

Qx|y(x|y) = Px|y(x|y)
∆
=

P (x)P (y|x)
∑

x∈X P (x′)P (y|x′)
.

But since R < I(X;Y ), then Px|y is in Gc
R. We argue then that the optimum Qx|y in GR is on the

boundary of GR, i.e., it satisfies R + HQ(X|Y ) + EQ ln P (X) = 0. To see why this is true, consider

4By “conditional empirical distribution” we mean the relative frequency of the various symbols of x that appear
as channel inputs for a given channel output symbol y.
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the following argument: Let Q0
x|y be any internal point in GR and consider the conditional pmf

Qt = (1 − t)Q0
x|y + tPx|y, t ∈ [0, 1]. Define f(t) = HQt(X|Y ) + EQt ln[P (X)P (Y |X)]. Obviously,

f is concave and f(0) ≤ f(1). Now, since Q0 ∈ GR and Q1 = Px|y ∈ Gc
R, then by the continuity

of the function R + HQt(X|Y ) + EQt ln P (X), there must be some t = t0 for which Qt0 is on the

boundary of GR. By the concavity of f , f(t0) ≥ (1 − t0)f(0) + t0f(1) ≥ f(0). Thus, any internal

point of GR can be improved by a point on the boundary between GR and Gc
R. Therefore, we have

max
Qx|y∈GR

(HQ(X|Y ) + EQ ln[P (X)P (Y |X)])]

= max
{Qx|y: HQ(X|Y )+EQ ln P (X)=−R}

[HQ(X|Y ) + EQ ln P (X) + EQ ln P (Y |X)]

= max
{Qx|y: HQ(X|Y )+EQ ln P (X)=−R}

[−R + EQ ln P (Y |X)]

= −R + max
{Qx|y: HQ(X|Y )+EQ lnP (X)=−R}

EQ ln P (Y |X)

= −R + max
Qx|y∈GR

EQ ln P (Y |X) (37)

which means that A
·
= e−ns∆(R), where

∆(R) = min
Qx|y∈GR

EQ ln[1/P (Y |X)].

The achiever of ∆(R) is of the form

Q(x|y) =
P (x)P sR(y|x)

∑

x′∈X P (x′)P sR(y|x′)
,

where sR is such that HQ(X|Y ) + EQ ln P (X) = −R, or equivalently, sR is the solution 5 to the

equation sγ′(s) − γ(s) = R. In other words,

∆(R) =

∑

x∈X P (x)P sR(y|x) ln[1/P (y|x)]
∑

x∈X P (x)P sR(y|x)
= γ′(sR).

5Observe that for s = 0, HQ(X|Y ) + EQ ln P (X) = 0 and for s = 1, HQ(X|Y ) + EQ ln P (X) = −I(X;Y ) < −R.
Thus for R < I(X; Y ), sR ∈ [0, 1).
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Considering next the expression of B, we have:

B
·
= exp{n[R + max

Qx|y∈G
c
R

(HQ(X|Y ) + EQ ln P (X) + sEQ ln P (Y |X))]}.

The unconstrained maximizer of (HQ(X|Y ) + EQ ln P (X) + sEQ ln P (Y |X)) is

Q
(s)
x|y(x|y) =

P (x)P s(y|x)
∑

x′∈X P (x′)P s(y|x′)
.

Now, there are two cases, depending on the value of s: If s is such that Q
(s)
x|y ∈ Gc

R, or equivalently,

s > sR, then B
·
= e−n[γ(s)−R]. If Q

(s)
x|y ∈ GR, namely, s ≤ sR, then once again, the optimum is

attained at the boundary between GR and Gc
R, and then B

·
= e−nsγ′(sR). In summary, B

·
= e−nΛ(R,s),

where

Λ(R, s) =

{

γ(s) − R s > sR

sγ′(sR) s ≤ sR

The dominant term between A and B is obviously always B because it is either of the same

exponential order of A, in the case s ≤ sR, or has a slower exponential decay, when s > sR, as then

the global (unconstrained) maximum of [HQ(X|Y ) + EQ ln P (X) + sEQ ln P (Y |X)] is achieved.

Thus, putting it all together, we get:

Pr{E1}
·
≤ ensT · |Y|n · e−nγ(1−s) · e−nΛ(R,s) = e−nE∗

1 (R,T,s) (38)

and the optimum s ≥ 0 gives E∗
1(R,T ). The fact that E∗

1(R,T ) ≥ E1(R,T ) stems from the fact

that for the former, the evaluation of the exponential order is tight starting from the r.h.s. of eq.

(17), whereas for the latter there are two inequalities for which the tightness of the exponential

order is not obvious.

5 Comparing the Analysis Techniques for a Universal Decoder

In the section, we demonstrate that the proposed analysis technique sometimes gives strictly better

exponential error bounds than the alternative route of using Jensen’s inequality, as described earlier.
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Consider the BSC with p < 1/2, as in Subsection 4.2, but this time, the channel is unknown

and one employs a universal detector that operates according to the following decision rule: Select

the message m if

e−nβĥ(xm⊕y)

∑

m′ 6=m e−nβĥ(xm′⊕y)
≥ enT (39)

where β > 0 is a free parameter and ĥ(x⊕y) is the binary entropy pertaining to the relative number

of 1’s in the vector resulting from bit–by–bit XOR of x and y, namely, the binary entropy function

computed at the normalized Hamming distance between x and y. If no message m satisfies (39),

then an erasure is declared.

We have no optimality claims regarding this decision rule, but arguably, it is a reasonable de-

cision rule (and hence there is motivation to analyze it): The minimization of ĥ(xm ⊕ y) among

all codevectors {xm}, namely, the minimum conditional entropy decoder is a well–known universal

decoding rule in the ordinary decoding regime, without erasures, which in the simple case of the

BSC, is equivalent to the maximum mutual information (MMI) decoder [3] and to the generalized

likelihood ratio test (GLRT) decoder, which jointly maximizes the likelihood over both the mes-

sage and the unknown parameter. Here we adapt the minimum conditional entropy decoder to

the structure proposed by an optimum decoder with erasures (see also [14]), where the unknown

likelihood of each xm is replaced by its maximum e−nĥ(xm⊕y), but with an additional degree of

freedom of scaling the exponent by β, a design parameter that controls the relative importance

of the codeword with the second highest score. For example, when β → ∞,6 only the first and

the second highest scores count in the decision. From the statistical–mechanical point of view, the

parameter β plays the role of the inverse temperature. In fact, the notion of finite–temperature

decoding is not new even in ordinary decoding without erasures – it is due to Ruján [16].

6As β varies it is plausible to let T scale linearly with β.
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To demonstrate the advantage of the proposed analysis technique, we now apply it in comparison

to the approach of using Jensen’s inequality and supplementing the parameter ρ in the bound. Let

us analyze the probability of the event E1 of this decoder, namely, the event that the transmitted

codeword xm does not satisfy (39). We then have the following chain of inequalities, similarly as

the analysis in Subsection 4.2, where the first few steps are common to the two analysis methods

to be compared:

Pr{E1} =
1

M

M
∑

m=1

∑

y
P (y|xm) · 1







enT ∑

m′ 6=m e−nβĥ(xm′⊕y)

e−nβĥ(xm⊕y)
≥ 1







≤
1

M

M
∑

m=1

∑

y
P (y|xm) ·





enT ∑

m′ 6=m e−nβĥ(xm′⊕y)

e−nβĥ(xm⊕y)





s

=
ensT

M

M
∑

m=1

∑

y
P (y|xm) · enβsĥ(xm⊕y) ·





∑

m′ 6=m

e−nβĥ(xm′⊕y)





s

(40)

Considering now the ensemble of codewords drawn indepedently by fair coin tossing, we have:

Pr{E1} ≤ ensT
∑

y
E
{

P (y|X1) · exp[nβsĥ(X1 ⊕ y)]
}

· E

{[

∑

m>1

exp[−nβĥ(Xm ⊕ y)]

]s}

∆
= ensT

∑

y
A(y) · B(y) (41)

The computation of A(y) is as follows: Denoting the Hamming weight of a binary sequence z by

w(z), we have:

A(y) =
∑

x
2−n(1 − p)n ·

(

p

1 − p

)w(x⊕y)

exp[nβsĥ(x ⊕ y)]

=

(

1 − p

2

)n
∑

z
exp

[

n

(

w(z) ln
p

1 − p
+ βsĥ(z)

)]

·
=

(

1 − p

2

)n
∑

δ

enh(δ) · exp

[

n

(

βsh(δ) − δ ln
1 − p

p

)]

·
=

(

1 − p

2

)n

exp

[

n max
δ

(

(1 + βs)h(δ) − δ ln
1 − p

p

)]

. (42)

It is readily seen by ordinary optimization that

max
δ

[

(1 + βs)h(δ) − δ ln
1 − p

p

]

= (1 + βs) ln
[

p1/(1+βs) + (1 − p)1/(1+βs)
]

− ln(1 − p)
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and so upon substituting back into the the bound on Pr{E1}, we get:

Pr{E1} ≤ exp
[

n
(

sT + (1 + βs) ln
[

p1/(1+βs) + (1 − p)1/(1+βs)
]

− ln 2
)]

·
∑

y
B(y). (43)

It remains then to assess the exponential order of B(y) and this will now be done in two differ-

ent ways. The first is Forney’s way of using Jensen’s inequality and introducing the additional

parameter ρ, i.e.,

B(y) ≤ E

{(

∑

m>1

exp[nβsĥ(Xm ⊕ y)/ρ]

)ρ}

≤ enρR
(

E
{

exp[nβsĥ(Xm ⊕ y)/ρ]
})ρ

. (44)

Now,

E
{

exp[nβsĥ(Xm ⊕ y)/ρ]
}

= 2−n
∑

z
exp[nβsĥ(z)/ρ]

·
= 2−n

∑

δ

enh(δ) · enβsh(δ)/ρ

= exp[n([1 − βs/ρ]+ − 1) ln 2], (45)

where [u]+
∆
= max{u, 0}. Thus, we get B(y) ≤ exp(n[ρ(R − ln 2) + [ρ − βs]+]), which when

substituted back into the bound on Pr{E1}, yields an exponential rate of

Ẽ1(R,T ) = max
0≤s≤ρ≤1

{(ρ − [ρ − βs]+) ln 2−

−(1 + βs) ln
[

p1/(1+βs) + (1 − p)1/(1+βs)
]

− ρR − sT
}

. (46)

On the other hand, estimating B(y) by the alternative method, we have, similarly as in the analysis

of Subsection 4.2:

B(y) = E

{[

∑

m>1

exp[−nβĥ(Xm ⊕ y)]

]s}

= E

{[

∑

δ

Ny(nδ) exp[−nβh(δ)]

]s}
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·
=

∑

δ

E{N s
y(nδ)} · exp(−nβsh(δ))

·
=

∑

δ∈Gc
R

en[R+h(δ)−ln 2] · exp[−nβsh(δ)] +
∑

δ∈GR

ens[R+h(δ)−ln 2] · exp[−nβsh(δ)]

∆
= U + V. (47)

Now, U is dominated by the term δ = 0 if βs > 1 and δ = δGV (R) if βs < 1. It is then easy to see

that U
·
= exp[−n(ln 2−R)(1− [1− βs]+)]. Similarly, V is dominated by the term δ = 1/2 if β < 1

and δ = δGV (R) if β ≥ 1. Thus, V
·
= exp[−ns(β[ln 2 − R] − R[1 − β]+)]. Therefore, defining

φ(R,β, s) = min{(ln 2 − R)(1 − [1 − βs]+), s(β[ln 2 − R] − R[1 − β]+)},

the resulting exponent is

Ê1(R,T ) = max
s≥0

{

φ(R,β, s) − (1 + βs) ln
[

p1/(1+βs) + (1 − p)1/(1+βs)
]

− sT
}

.

To compare numerical values of Ẽ1(R,T ) and Ê1(R,T ), we have explored various values of

the parameters p, β, R and T . While there are many quadruples (p, β,R, T ) for which the two

exponents coincide, there are also situations where Ê1(R,T ) exceeds Ẽ1(R,T ). To demonstrate

these situations, consider the values p = 0.1, β = 0.5, T = 0.001, and let R vary from 0 to 0.06

in steps of 0.01. Table 1 summarizes numerical values of both exponents, where the optimizations

over ρ and s were conducted by an exhaustive search with a step size of 0.005 in each parameter.

In the case of Ê1(R,T ), where s ≥ 0 is not limited to the interval [0, 1] (since Jensen’s inequality

is not used), the numerical search over s was limited to the interval [0, 5].7

As can be seen (see also Fig. 1), the numerical values of the exponent Ê1(R,T ) are considerably

larger than those of Ẽ1(R,T ) in this example, which means that the analysis technique proposed in

7It is interesting to note that for some values of R, the optimum value s∗ of the parameter s was indeed larger
than 1. For example, at rate R = 0, we have s∗ = 2 in the above search resolution.
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R = 0.00 R = 0.01 R = 0.02 R = 0.03 R = 0.04 R = 0.05 R = 0.06

Ẽ1(R,T ) 0.1390 0.1290 0.1190 0.1090 0.0990 0.0890 0.0790

Ê1(R,T ) 0.2211 0.2027 0.1838 0.1642 0.1441 0.1231 0.1015

Table 1: Numerical values of Ẽ1(R,T ) and Ê1(R,T ) as functions of R for p = 0.1, β = 0.5, and
T = 0.001.

this paper, not only simplifies exponential error bounds, but sometimes leads also to significantly

tighter bounds.
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Figure 1: Graphs of Ê1(R,T ) (solid line) and Ẽ1(R,T ) (dashed line) as functions of R for p = 0.5,
T = 0.001 and β = 0.5.
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