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Abstract

The partition function pertaining to finite–temperature decoding of a (typical) randomly
chosen code is known to have three types of behavior, corresponding to three phases in the
plane of rate vs. temperature: the ferromagnetic phase, corresponding to correct decoding, the
paramagnetic phase, of complete disorder, which is dominated by exponentially many incorrect
codewords, and the glassy phase (or the condensed phase), where the system is frozen at mini-
mum energy and dominated by subexponentially many incorrect codewords. We show that the
statistical physics associated with the two latter phases are intimately related to random coding
exponents. In particular, the exponent associated with the probability of correct decoding at
rates above capacity is directly related to the free energy in the glassy phase, and the exponent
associated with probability of error (the error exponent) at rates below capacity, is strongly
related to the free energy in the paramagnetic phase. In fact, we derive alternative expressions
of these exponents in terms of the corresponding free energies, and make an attempt to obtain
some insights from these expressions. Finally, as a side result, we also compare the phase di-
agram associated with a simple finite–temperature universal decoder, for discrete memoryless
channels, to that of the finite–temperature decoder that is aware of the channel statistics.

Index Terms: random coding, free energy, partition function, random energy model (REM),
phase transitions, error exponents.
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1 Introduction

In the last few decades it has become apparent that many problems in Information Theory, and

the channel coding problem in particular, can be mapped onto (and interpreted as) analogous

problems in the area of statistical physics of disordered systems (such as spin glass models). Such

analogies are useful because physical insights, as well as statistical mechanical tools and analysis

techniques (like the replica method), can be harnessed in order to advance the knowledge and the

understanding with regard to the information–theoretic problem under discussion. A very small,

and by no means exhaustive, sample of works along this line includes references [1]–[29].

In this paper, we shall also adopt the statistical mechanical viewpoint on channel coding. We

focus on the classical random code ensemble (RCE) for communicating over a discrete memoryless

channel (DMC), in the same setting as described in [19, Chap. 6] and [24], which in a nutshell, is

as follows: Consider a DMC, P (y|x) =
∏n

i=1 p(yi|xi), fed by an input n–vector that belongs to a

codebook C = {x1,x2, . . . ,xM}, M = enR, with uniform priors, where R is the coding rate in nats

per channel use. The induced posterior, for x ∈ C, is then:

P (x|y) =
P (y|x)

∑

x′∈C P (y|x′)

=
e− ln[1/P (y|x)]

∑

x′∈C e− ln[1/P (y|x′)]
. (1)

Here, the second line is written in a form that resembles the Boltzmann distribution of statistical

physics, according to which the probability of a certain ‘state’ (or ‘configuration’) of the system,

designated by x, is given by

P (x) =
e−βE(x)

Z(β)
(2)

where β = 1/(kT ) is the inverse temperature, k is Boltzmann’s constant,1 T is temperature, E(x)

is the energy associated with x, and Z(β) =
∑

x e−βE(x) is the partition function. In our case,

of course, β = 1 and the energy function (which depends on the given y) is E(x) = ln[1/P (y|x)].

But this analogy with the Boltzmann distribution (2) naturally suggests (cf. e.g., [19]) to consider,

1Here we will adopt the convention, customarily used in many papers and books, of redefining ‘temperature’

according to T ← kT , that is, in units of energy, and then β
∆
= 1/T .
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more generally, the posterior distribution parametrized by β, that is

Pβ(x|y) =
P β(y|x)

∑

x′∈C P β(y|x′)

=
e−β ln[1/P (y|x)]

∑

x′∈C e−β ln[1/P (y|x′)]

∆
=

e−β ln[1/P (y|x)]

Z(β|y)
. (3)

There are a few motivations for introducing the temperature parameter in (3). First, it allows

a degree of freedom in case there is some uncertainty regarding the channel noise level (small β

corresponds to high noise level). Second, it is inspired by the ideas behind simulated annealing

techniques: by sampling from Pβ while gradually increasing β (cooling the system), the minima of

the energy function (ground states) can be found. Third, by applying symbolwise MAP decoding,

i.e., decoding the `–th symbol of x as argmaxa Pβ(x` = a|y), where

Pβ(x` = a|y) =
∑

x∈C: x`=a

Pβ(x|y),

we obtain a family of finite–temperature decoders (originally proposed by Ruján [26]; see also [4],

[19, Section 6.3.3],[29],[27]) parametrized by β, where β = 1 corresponds to minimum symbol error

probability (with respect to the true channel) and β → ∞ corresponds to minimum block error

probability. Finally, and this is the motivation that drives the research reported in this paper: the

corresponding partition function, Z(β|y), namely, the sum of (conditional) probabilities raised to

some power β, is an expression frequently encountered in Rényi information measures as well as in

the analysis of random coding exponents using Gallager’s techniques. Since the partition function

plays a key role in statistical mechanics, as many physical quantities can be derived from it, then it

is natural to ask if it can also be used to gain some insights regarding the behavior of random codes

at various temperatures and coding rates. The main contribution of this paper is in exploring this

direction.

To sharpen the last point a little further, it is noted that when one considers the random

coding regime, as we do in this paper, then even if y is given, the energy levels pertaining to the

Boltzmann distribution (3) are themselves random variables since they depend on the randomly

chosen codevectors. As explained in [19], this then falls under the umbrella of the so called random

energy model (REM) in statistical physics, which was invented by Derrida [31] with the motivation
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to capture disorder in spin glass systems. The interesting fact about the REM is that it is typically

subjected to phase transitions, and then so is the model (3) for random codes.

More specifically, as described in [19, Chap. 6], [25], and as will be briefly reviewed in the next

section, the partition function pertaining to finite–temperature decoding of a (typical) randomly

chosen code is known to have three types of behavior, corresponding to three phases in the plane

of rate vs. temperature: the ferromagnetic phase, corresponding to correct decoding, the paramag-

netic phase, of complete disorder, which is dominated by exponentially many incorrect codewords,

and the glassy phase (or the condensed phase), where the system is frozen at minimum energy and

dominated by subexponentially many incorrect codewords. We show that the statistical physics

associated with the two latter phases are intimately related to random coding exponents. In par-

ticular, the exponent associated with the probability of correct decoding at rates above capacity is

directly related to the free energy in the glassy phase, and the exponent associated with probability

of error (the error exponent) at rates below capacity, is strongly related to the free energy in the

paramagnetic phase. In fact, we derive alternative expressions of these exponents in terms of the

corresponding free energies, and make an attempt to obtain some insights from these expressions.

An additional interesting byproduct of the statistical mechanical point of view that we adopt in

this work, is that it suggests a more refined analysis technique, as an alternative to the customary

use of Jensen’s inequality, for which it is clear that the resulting expressions are exponentially tight,

and not just bounds. Another way to look at this is to observe that the analysis technique, inspired

by statistical mechanical point of view, provides us with insights with regard to the conditions under

which Jensen’s inequality provides a tight bound in this context. We believe that this technique

may be useful in other applications as well. We shall elaborate more on this in the sequel.

As a side result, we also compare the phase diagram associated with a certain universal decoder

(namely, the minimum conditional entropy universal decoder) for discrete memoryless channels, to

that of the finite–temperature decoder that is aware of the channel statistics, and show that in

spite of the fact that this universal decoder is asymptotically optimum, in the sense of attaining

optimum random coding error exponents [30], its phase diagram is substantially different.

The outline of the remaining part of this paper is as follows. In Section 3, we provide some

background, which mostly follows the presentation in [19] (with a few missing details filled in), but
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will be useful here to keep this paper self contained. Section 3 also includes a subsection with the

phase diagram for universal decoding, as described in the previous paragraph. In Section 4, we

derive the alternative formula for the exponent of correct decoding above capacity, and in Section

5, we do the same regarding the random coding exponent at rates below capacity.

2 Notation Conventions, Background and Preliminaries

2.1 Notation Conventions

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters, like X

and Y , their sample values will be denoted by the respective lower case letters, and their alphabets

will be denoted by the respective calligraphic letters. A similar convention will apply to random

vectors and their sample values, which will be denoted with the same symbols in the boldface font.

Thus, for example, X will denote a random n-vector (X1, . . . ,Xn), and x = (x1, ..., xn) is a specific

vector value in X n, the n-th Cartesian power of X .

Sources and channels will be denoted generically by the letters P and Q. Specific letter prob-

abilities corresponding to a source Q will be denoted by the corresponding lower case letters, e.g.,

q(x) is the probability of a letter x ∈ X . A similar convention will be applied to the channel P and

the corresponding transition probabilities, p(y|x), x ∈ X , y ∈ Y. The expectation operator will be

denoted by E{·}.

The empirical distribution pertaining to a vector x ∈ X n will be denoted by P̂x. In other

words, P̂x = {p̂x(a), a ∈ X}, where px(a) = nx(a)/n, nx(a) being the number of occurrences of

the letter a in x. Similar conventions will apply to empirical joint distributions of pairs of letters,

(a, b) ∈ X ×Y, extracted from the corresponding pairs of vectors (x,y), that is, the joint empirical

distribution P̂xy is the vector of relative frequencies of joint occurrences of xi = a and yi = b, i =

1, . . . , n. Similarly, p̂x|y(a|b) = p̂xy(a, b)/p̂y(b) will denote the empirical conditional probability of

X = a given Y = b (with convention that 0/0 = 0), and P̂x|y will denote {p̂x|y(a|b), a ∈ X , b ∈ Y}.

The expectation w.r.t. the empirical distribution of (x,y) will be denoted by Êxy{·}, i.e., for a

given function f : X × Y → IR, we define Êxy{f(X,Y )} as
∑

(a,b)∈X×Y p̂xy(a, b)f(a, b), where

in this notation, X and Y are understood to be random variables jointly distributed according to

P̂xy.
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The cardinality of a finite set A will be denoted by |A|. For two positive sequences {an} and

{bn}, the notation an
·
= bn means that an and bn are asymptotically of the same exponential

order, that is, limn→∞
1
n ln an

bn
= 0. Information theoretic quantities like entropies and mutual

informations will be denoted following the usual conventions of the Information Theory literature.

When we wish to make it clear that such an information theoretic quantity is induced by a certain

probability distribution, say Q, we use this probability distribution as a subscript, e.g., IQ(X;Y ),

HQ(X|Y ), etc. When the underlying probability distribution is an empirical distribution, we will

subscript it by the sequences(s) from which the empirical distribution is extracted, and we will use

hats, e.g., Îxy(X;Y ), Ĥxy(X|Y ).

2.2 Background and Preliminaries

Consider a DMC with a finite input alphabet X and a finite output alphabet Y, which when fed

by an input vector x ∈ X n, it generates an output vector y ∈ Yn distributed according to

P (y|x) =
n
∏

i=1

p(yi|xi),

where {p(y|x), x ∈ X , y ∈ Y} are given single–letter transition probabilities. Let

C = {x1,x2, . . . ,xM} ⊆ X n

be a codebook of M = enR codewords, where R is the coding rate (in nats per channel use). Next

consider the posterior distribution (3) and the corresponding partition function

Z(β|y) =
∑

x∈C

P β(y|x) =
∑

x∈C

e−βd(x,y), (4)

where d(x,y) = − ln P (y|x) = −
∑n

i=1 ln P (yi|xi). We shall think of Z(β|y) as the sum of two

contributions, the first is Zc(β|y) = e−βd(x0,y), pertaining to the correct codeword x0 (that was

actually transmitted across the channel), and the second is associated with the remaining (incorrect)

codewords,

Ze(β|y) =
∑

x∈C−{x0}

e−βd(x,y).

Let us focus on Ze(β|y) first. As mentioned in the Introduction, when the codebook C is selected at

random, this is a disordered system in the framework of the REM, which exhibits phase transitions.
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To describe these phase transitions, it is instructive to begin with the relatively simple special

case of the binary symmetric channel (BSC), as we do in Subsection 2.2.1, and then extend the

scope to general DMC’s, as in Subsection 2.2.2.2 Finally, Subsection 2.2.3 (which is not included

in [19]) is about a phase diagram pertaining to universal decoding (cf. second to the last paragraph

of the Introduction). This subsection can be skipped without loss of continuity.

2.2.1 The Binary Symmetric Channel

For the BSC with a crossover parameter p, we have P (y|x) = pdH(x,y)(1 − p)n−dH(x,y), where

dH(x,y) is the Hamming distance between x and y. Defining B = ln 1−p
p , we then have P (y|x) =

(1 − p)ne−BdH (x,y), and so

Ze(β|y) =
∑

x∈C

P β(y|x)

= (1 − p)βn
∑

x∈C

e−βBdH (x,y)

= (1 − p)βn
n
∑

d=0

Ny(d)e−βBd, (5)

where Ny(d) is the number of incorrect codewords at Hamming distance d from y. As argued in

[19], when the codewords are chosen independently at random (say, by fair coin tossing), {Ny(d)}

concentrate very rapidly,3 as n → ∞, about their expectations:

E{Ny(δn)}
·
= en[R−ln 2+h(δ)], 0 ≤ δ ≤ 1 (6)

where h(δ)
∆
= −δ ln δ−(1−δ) ln(1−δ). Defining the normalized Gilbert–Varshamov (GV) distance,

δGV (R), as the solution, δ, to the equation h(δ) = ln 2−R, it is apparent that for δ < δGV (R) and

δ > 1 − δGV (R), E{Ny(δn)} has a negative exponent, and thus typically, these distances are not

populated by codewords. Therefore, for a typical random code,

Ze(β|y)
·
= (1 − p)βn · en(R−ln 2)

∫ 1−δGV (R)

δGV )
dδ · enh(δ) · e−βBδ

·
= (1 − p)βn · en(R−ln 2) exp

{

n · max
δ∈[δGV (R),1−δGV (R)]

[h(δ) − βBδ]

}

∆
= e−nβFe(β) (7)

2This extension to general DMC’s in outlined in [19, Chap. 6], but here we provide some more details.
3Note that Ny(d) =

PenR

i=1
1{dH (xi, y) = d}, i.e., it is the sum of exponentially many i.i.d. (given y) random

variables, and so, its large deviations behavior is exponential in enR, which is double–exponential in n (see also
Appendix, Subsection A.2.).
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where Fe(β) is the free energy density associated with the incorrect codewords, which is given by

Fe(β) =

{

δGV (R) ln 1
p + (1 − δGV (R)) ln 1

1−p pβ ≤ δGV (R)
1
β [ln 2 − R − ln(pβ + (1 − p)β)] pβ > δGV (R)

(8)

where

pβ =
pβ

pβ + (1 − p)β
,

and where the distinction between the two different expressions is due to the constraint δ ∈

[δGV (R), 1 − δGV (R)], which becomes active (i.e., achieved with equality) when pβ ≤ δGV (R).

We observe then that when p and R are held fixed, and β varies, the above expression exhibits a

phase transition at temperature Tc(R) = 1/βc(R) for which pβ = δGV (R), i.e.,

βc(R) =
ln[(1 − δGV (R))/δGV (R)]

ln[(1 − p)/p]
.

For β > βc (low temperature), the free energy density Fe(β) = δGV (R) ln 1
p +(1− δGV (R)) ln 1

1−p is

independent of β hence the entropy (which is related to the derivative of Fe(β) w.r.t. β) vanishes,

and the system is frozen in the sense that the thermodynamics are dominated by a subexponential

number of configurations of the minimum energy which is nδGV (R). This phase is referred to as

condensed phase or glassy phase, and henceforth we denote

Fg
∆
= δGV (R) ln

1

p
+ (1 − δGV (R)) ln

1

1 − p
.

For β > βc, the thermodynamics are dominated by an exponential number of states at distance npβ,

which is larger than nδGV (R), and the entropy is strictly positive. This is called the paramagnetic

phase and henceforth we denote

Fp(β)
∆
=

1

β
[ln 2 − R − ln(pβ + (1 − p)β)].

When the contribution of Zc(β) = e−nβFc is taken into account, and we consider the total

partition function Z(β), the situation changes: Since dH(x0,y) is typically about the level of np,

and thus the corresponding free energy density is Fc = h(p), we have yet another phase referred to

as the ordered phase or the ferromagnetic phase. This phase exists whenever Z(β) is dominated by

Zc(β), i.e., Fc = h(p) < Fe(β). For β > βc, this is the case whenever p < δGV (R), or equivalently,

R < ln 2 − h(p)
∆
= C, where C is the capacity of the BSC. For β < βc the boundary between the
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ferromagnetic phase and the paramagnetic phase is given by the solution β0(R) = 1/T0(R) to the

equation

βh(p) = ln 2 − R − ln[pβ + (1 − p)β ]. (9)

To summarize, while there are only two phases (glassy and paramagnetic) pertaining to Ze(β),

there is a third, additional phase (ferromagnetic) associated with Zc(β). In the ferromagnetic phase,

the system is dominated by one state corresponding to the correct codeword. Thus, similarly as

in the glassy phase, the entropy of the ferromagnetic phase is zero. The boundaries between the

three phases in the plane defined by R and T = 1/β, are as follows (see Fig. 1): The ferro–glassy

boundary is the straight line R = C, the glassy–paramagnetic boundary is the curve T = Tc(R),

and the and the ferro–paramagnetic boundary T = T0(R) is given by eq. (9). The triple point

where all boundaries intersect is the point (R,T ) = (C, 1).

paramagnetic

glassy

fe
rr

om
ag

ne
tic

C R

T = 1/β

1

T = Tc(R)

T = T0(R)

Figure 1: Phase diagram of the finite–temperature MAP decoder.

In spite of the fact that in the glassy phase there are only few configurations that dominate

the behavior, it is no different from the paramagnetic phase in terms of the typical ranking of the

likelihood of the correct codeword among all codewords: In both phases, the typical location of
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the correct codeword in the list of descending likelihoods, {P (y|xi)}, is about 2n(R−C) (R > C).

Although the glassy phase exhibits less uncertainty, or equivalently, more certainty, (sublinear

conditional entropy given y about the channel input), this relative certainty is misleading because

the posterior probability mass is captured mostly by incorrect codewords. In this sense, the glassy

phase is even more problematic than the paramagnetic one: Since the certainty is fictitious, it is

more difficult to detect errors.

2.2.2 Extension to General DMC’s

The extension to general DMC’s is essentially quite straightforward. Consider a DMC parametrized

by {P (y|x), x ∈ X , y ∈ Y}. For the sake of simplicity, let us consider the uniform random

coding distribution4 according to which each codeword is selected independently at random with

probability distribution Q(x) = 1/|X |n for all x ∈ X n. For a given channel output vector y,

the probability of selecting a random codeword x whose conditional empirical distribution with

y is P̂x|y is of the exponential order of e−n[ln |X |−Ĥxy(X|Y )], [32], thus the expected number of

codewords with this conditional distribution is exponentially

E{Ny(P̂x|y)}
·
= en[R−ln |X |+Ĥxy(X|Y )].

In analogy to the explanation provided in the previous subsection (and in [19]), in the context of

the BSC, those conditional distributions {P̂x|y} for which the exponent on the right–hand side is

negative, are typically not populated. Thus, for a typical random code

Ze(β|y) =
∑

x∈C−{x0}

P β(y|x)

=
∑

x∈C−{x0}

e−β ln 1/P (y|x)

=
∑

{P̂x|y}

Ny(P̂x|y) · exp{−βÊxy ln[1/P (Y |X)]}

·
= exp

{

n

(

R − ln |X | + max
QX|Y : HQ(X|Y )≥ln |X |−R

[HQ(X|Y ) − βEQ{ln[1/P (Y |X]}]

)}

∆
= e−nβFe(β;Y ), (10)

4Other random coding distributions can be used as well, but will lead to somewhat more complicated expressions,
which we prefer to avoid in this description.
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where Y designates a RV distributed according to the empirical distribution P̂y of y.

A word on notation is now in order: here and throughtout the sequel, we adopt the common

abuse of notation, customarily used in the Information Theory literature, that when a RV appears

as an argument or a subscript of a certain function, this means that it is actually a functional of

its distribution, not a function of the value of the random variable itself. Whenever we wish to

emphasize the dependence of this quantity on the empirical distribution P̂y , we will replace Y by

P̂y or simply by y itself, provided that the context does not leave room for ambiguity. Similar

comments will apply to other quantities to be defined throughout this subsection and in the sequel.5

For some of these quantites, we will not denote the dependence on the distribution of Y explicitly,

in order to avoid cumbersome notation, but it will be made clear that they do depend on it in

general.

Consider now the expression

JY (β,R)
∆
= max

QX|Y :HQ(X|Y )≥ln |X |−R
[HQ(X|Y ) − βEQ{d(X,Y )}] ,

where d(x, y)
∆
= − ln p(y|x).

First, it is easy to prove (see Appendix, Subsection A.1) that for fixed β and y, the function

JY (β,R) is concave in R. This means that the inequality constraint HQ(X|Y ) ≥ ln |X | −R is met

with equality as long as R ≤ RY (β), where RY (β) = ln |X |−HQβ
(X|Y ) with Qβ being the achiever

of

JY (β, ln |X |) = max
QX|Y

[HQ(X|Y ) − βEQ{d(X,Y )}],

that is,

Qβ(x|y) =
e−βd(x,y)

∑

x′∈X e−βd(x′,y)
=

P β(y|x)
∑

x′∈X P β(y|x′)
.

We will also use the notation

DY (β) = EQβ
{d(X,Y )}

and

HY (β) = HQβ
(X|Y ),

5In Subsection 2.2.1, this issue did not arise since all relevant quantities happened to be independent of P̂y , due
to the symmetry of the BSC.
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thus RY (β) = ln |X| − HY (β). Let

βc(R)
∆
= inf{β : RY (β) ≥ R} = inf{β : HY (β) ≤ ln |X | − R}.

Obviously, βc(R) increases with R, or equivalently, Tc(R) = 1/βc(R) is decreasing with R (Tc(ln |X |) =

0). This forms the boundary curve between the glassy and the paramagnetic phases. Note that

when R = I(X;Y ), the mutual information induced by the uniform distribution on X and by

P (y|x), then βc(R) = 1. Thus, (I(X;Y ), 1) is a point on the curve T = Tc(R).

For R ≤ RY (β), or equivalently, β ≥ βc(R), the constraint HQ(X;Y ) ≥ ln |X | − R is attained

with equality. Thus, in this range of low rates,

JY (β,R) = max
{QX|Y :HQ(X|Y )=ln |X |−R}

[ln |X | − R − βEQ{d(X,Y )}]

= ln |X | − R − β · min
{QX|Y :HQ(X|Y )=ln |X |−R}

EQ{d(X,Y )}

= ln |X | − R − βDY (βR) (11)

where βR is the solution to the equation HY (β) = ln |X | − R. We will also use the notation

δY (R) = DY (βR).6 It follows then that Fe(β, Y ) = Fg(Y ) = δY (R), which is the glassy phase.

For R > RY (β),

JY (β,R) = JY (β, ln |X |) = max
QX|Y

[HQ(X|Y ) − βEQ{d(X,Y )}] = HY (β) − βDY (β)

Thus, for β < βc(R),

Fe(β, Y ) = Fp(β, Y ) = DY (β) +
ln |X | − R − HY (β)

β
,

which is the paramagnetic phase. It should be pointed out that for a general decoding metric

d(x, y) (not necessarily ML matched to the channel), the boundary between the paramagnetic and

the glassy phases depends only on the random coding distribution and this decoding metric d(x, y),

not on the channel itself (cf. Subsection 2.2.3). The boundaries with the ferromagnetic phase are

the ones that depend on the channel.

In the ordered (ferromagnetic) phase, the free energy density is given by F (β) = H(Y |X), where

X is uniform and Y given X is distributed according to the channel. As long as R < I(X;Y ),

6The quantity δY (R) is the generalization of the GV distance that was defined in Subsection 2.2.1. for the BSC.
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we have H(Y |X) < δY (R). In fact, the line connecting the points (R = I(X;Y ), T = 1) and

(R = I(X;Y ), T = 0) forms the boundary between the ordered ferromagnetic phase and the glassy

phase.

For R < I(X;Y ), the boundary between the ferromagnetic and paramagnetic phases is given

by the solution β0(R) (or T0(R) = 1/β0(R)) to the equation

βH(Y |X) = βDY (β) + ln |X | − R − HY (β),

which is above the curve T = Tc(R) for R < I(X;Y ). It should be emphasized that βc(R), β0(R),

and βR all depend on the (distribution of the) RV Y , namely, the empirical distribution of y.

2.2.3 Phase Diagram for Universal Decoding

It is instructive to compare the phase diagram of finite–temperature MAP decoding to those of

finite–temperature universal decoders. One simple example of a universal decoder for which it

is especially easy to derive the phase diagram is the minimum conditional entropy decoder [30],

which given y, selects the codeword xm for which Ĥxmy(X|Y ) is minimum.7 It is well known that

this universal decoder is asymptotically optimum in the random coding sense, in that it achieves

the same random coding error exponent as the ML decoder, provided that the random coding

distribution is uniform over X n.

The partition function corresponding to this universal decoder is the same as before, except

that Êxy{d(X,Y )} is replaced by Ĥxy(X|Y ). In this case,

Ze(β|y) =
∑

{P̂x|y}

Ny(P̂x|y) · e−βĤxy (X|Y )

·
= exp

{

n

(

R − ln |X | + max
QX|Y : HQ(X|Y )≥ln |X |−R

[(1 − β)HQ(X|Y )]

)}

∆
= e−nβFe(β,Y ) (12)

Now, it is easy to see how phase transitions behave (see Fig. 2): If β < 1, then the maximum is

ln |X | and we get

Ze(β)
·
= en[R−β ln |X |],

7This is a variant of the well–known maximum mutual information (MMI) decoder. In the case of constant
composition codes, these two decoders are identical.
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thus Fe(β, Y ) = Fp(β) = ln |X | − R/β. If β > 1, we get

Ze(β)
·
= e−nβ[ln |X |−R],

thus, Fe(β, Y ) = Fg = ln |X |−R. Therefore, the boundary between the two phases is the horizontal

line Tc = 1/βc = 1 (independently of R). This means that the glassy region here is larger than in ML

decoding for R > C. The boundary between the ferromagnetic and the glassy phases continues to be

R = I(X;Y ) as before. The ferromagnetic–paramagnetic boundary is now H(X|Y ) = ln |X |−R/β,

or, equivalently, T = 1/β = I(X;Y )/R, which is below the ferromagnetic–paramagnetic boundary

of the MAP decoder. This can easily be shown by setting R = βI(X;Y ) (which is this boundary)

in the r.h.s. of the equation defining T0(R) and showing that the resulting expression is larger than

βH(Y |X) (for β ≤ 1), which is the l.h.s. of this equation (thus, we are still in the ferromagnetic

phase of MAP decoding): Specifically, the l.h.s. of the equation defining T0(R) is:

βDY (β) + ln |X | − R − HY (β)

= βDY (β) + ln |X | − βI(X;Y ) − HY (β)

= βH(Y |X) + βEQβ
ln

1

P (Y |X)
+ ln |X | − βH(Y ) − HQβ

(X|Y )

= βH(Y |X) + βEQβ
ln

1

P (Y |X)
− βH(Y ) + IQβ

(X;Y )

≥ βH(Y |X) + βHQβ
(Y |X) − βH(Y ) + IQβ

(X;Y )

≥ βH(Y |X) − βIQβ
(X;Y ) + IQβ

(X;Y )

≥ βH(Y |X) (13)

where the first equality is since R = βI(X;Y ) on the boundary, and the last equality is since β ≤ 1.

Thus, although this decoder achieves the optimum random coding error exponent, it has a phase

diagram which is worse than that of MAP decoding, as the ferromagnetic region is smaller and the

glassy region is larger.

3 The Correct Decoding Exponent

We now proceed to establish relationships between the phase diagram of a random code, decoded

by a finite temperature MAP decoder, and the exponent of correct decoding at rates above capacity,

14



paramagnetic

glassyfe
rr

om
ag

ne
tic

I(X; Y ) R

T = 1/β

T = 1

T = I(X; Y )/R

Figure 2: Phase diagram for universal decoding.

or to be more precise, rates above I(X;Y ), the mutual information induced by the uniform input

distribution and the channel.

Arimoto [33] begins the derivation of his bound on the probability of correct decoding by using

the inequality

Pc =
1

M

∑

y∈Yn

max
1≤i≤M

P (y|xi) ≤
1

M

∑

y∈Yn

[

M
∑

i=1

P β(y|xi)

]1/β

, β > 0 (14)

which becomes tight when β → ∞. We will also use this inequality, but we shall proceed somewhat

differently than Arimoto. First, observe that for a randomly selected code, where the average

probability of correct decoding is upper bounded by

P̄c ≤
1

M

∑

y∈Yn

E







[

M
∑

i=1

P β(y|xi)

]1/β






, (15)

the expression in the square brackets is exactly Ze(β) (just with M codewords instead of M − 1),

because the interpretation of this expression, is that the codewords are drawn under Q regardless
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of y. Since we are interested in β → ∞ (in addition to the assumption that R > I(X;Y )), then we

are actually carrying out this calculation in the glassy regime.

The above upper bound to P̄c can be also written as:

P̄c ≤
1

M

∑

y∈Yn

E















∑

d∈Dn

Ny(d) · e−βd





1/β










, (16)

where here Ny(d) denotes the number of codewords xi for which − ln P (y|xi) = d, and Dn is the

set of values that the function d(x,y) = − lnP (y|x) can take on for a given y, as x exhausts the

codebook C. Note that as d(x,y) depends only on the empirical joint distribution of x and y, then

|Dn| cannot exceed the number of empirical conditional distributions (or conditional type classes)

corresponding to pairs of n–sequences, and so, |Dn| is upper bounded by a polynomial in n.

Now, when a random code is considered, then instead of applying Jensen’s inequality for β ≥ 1

(as was done in [33]), and thereby insert the expectation operator into the square brackets, let us

adopt another approach. Consider the following events:

B =
{

C : Ny(d) ≥ exp{n[R − ln |X | + h0(d/n|y)]+ + ε]} for some d ∈ Dn

}

,

where [t]+
∆
== max{0, t} and where h0(δ|y) is defined as the maximum of HQ(X|Y ) subject to the

constraints that EQ{d(X,Y )} = δ and that Y is distributed according to P̂y . Also, define

Wi =
{

C : min{d : Ny(d) ≥ 1} = i
}

, i ≤ d0(y)
∆
= nδY (R),

where we recall that δY (R) is the solution to the equation h0(δ|y) = ln |X | − R. Note that {Wi}

are disjoint events. Now, for β > βc(R):

E















∑

d∈Dn

Ny(d) · e−βd





1/β










≤ Pr{B} · [enR · e−β·0]1/β +

+
∑

d≤d0(y)

Pr{Wd ∩ Bc} ·
[

enεe−βd
]1/β

+

+Pr{Wc
0 ∩Wc

1 ∩ . . . ∩Wc
d0(y) ∩ Bc} · e−nFg(Y ) · enε/β, (17)

This inequality calls for some explanation: We are dividing the set of configurations of the RV’s

{Ny(d)}d∈Dn
into three classes, defined by the events B and {Wi}. In the first class, correspond-

ing to the first term on the right–hand side, {Ny(d)} fall in B, where there is at least one value
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of d for which Ny(d) is exponentially larger (by at least ε) than its expectation. We bound the

value of [
∑

d∈Dn
Ny(d) · e−βd]1/β , in this class, very “generously”, by the maximum possible value

it can possibly take, that is, when all enR codewords are at zero distance from y, but this quan-

tity is weighted by Pr{B}, which as is shown in the Appendix (Subsection A.2), decays double–

exponentially rapidly, at least as fast as e−enε

, and so this first term is negligible. The other two

classes correspond to Bc, where for all d ∈ Dn, Ny(d) does not exceed its expectation times enε.

Here we distinguish between two cases (corresponding to the two other classes): In one of them,

(at least) one of the distances below the generalized GV distance d0(y) = nδY (R) is populated

by subexponentially8 many codewords. Since we are operating in the glassy regime, the dominant

contribution to [
∑

d∈Dn
Ny(d) ·e−βd]1/β will be due to these minimum distance codewords, and the

weighting of the event of minimum distance d is, of course, according to Pr{Wd ∩Bc}. In the other

case, which captures most of the probability mass (since it is the typical configuration of {Ny(d)}),

none of the distances below the generalized GV distance is populated by codewords, whereas for

larger distances, {Ny(d)} are all (within a factor of enε) about their expectations. In this case,

our expression again behaves according to the glassy regime, where the generalized GV distance

dominates the partition function.

Now, regarding the second term, for δ = d/n < δY (R),

Pr{Wd ∩ Bc} ≤ Pr{Wd} ≤ Pr{Ny(d) ≥ 1}, (18)

where the latter expression is shown (Appendix, Subsection A.2) to decay at the exponential rate

8The event Bc guarantees that there are only subexponentially many codewords at distances below d0(y).
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of e−n[ln |X |−R−h0(δ|y)]. Thus,

E















∑

d∈Dn

Ny(d) · e−βd





1/β










≤ e−enε

· [enR]1/β +

+
∑

δ≤δY (R)

e−n[ln |X |−R−h0(δ|y)] ·
[

enεe−βnδ
]1/β

+ e−nFg(Y ) · enε/β

·
= en(R−ln |X |) · enε/β exp{n max

δ≤δY (R)
[h0(δ|y) − δ]} + e−nFg(Y ) · enε/β

·
= en(R−ln |X |) · enε/β exp{n[h0(δY (R)|y) − δY (R)]} + e−nFg(Y ) · enε/β

·
= en(R−ln |X |) exp{n[ln |X | − R − δY (R)]} · enε/β + e−nFg(Y ) · enε/β

·
= e−nFg(Y ) · enε/β. (19)

Since ε can be chosen arbitrarily small for large n (in fact, one may let ε vanish with n sufficiently

slowly), the exponential rate of the expression under discussion is actually bounded by e−nFg(Y ).

Note that whenever β ≥ βc, this expression no longer depends on β. Finally, substituting this

bound back into the bound on P̄c, we get:

P̄c ≤
1

M

∑

y∈Yn

e−nFg(Y )

·
= e−nR · en maxY [H(Y )−Fg(Y )]

= e−n(R−maxY [H(Y )−Fg(Y )]). (20)

This calculation can be shown to be exponentially tight: a lower bound can be obtained by confining

the calculation to the (high probability) event Wc
0 ∩ Wc

1 ∩ . . . ∩ Wc
d0(y) ∩ Bc with the additional

restriction that Ny(d) ≥ E{Ny(d)} · e−nε for all d ≥ d0(y) (i.e., the last term only in the above

derivation). Note that in Arimoto’s paper, where Jensen’s inequality is used, the expectation of
∑

d Ny(d)e−βd is computed, and this actually corresponds to the paramagnetic regime (without

the constraint HQ(X|Y ) ≥ ln |X | − R). The resulting bound might not be exponentially tight in

general.9 Finally, the optimization maxY [H(Y ) − Fg(Y )] can be carried out explicitly, yielding

ln
∑

y e−fg(y), where where fg(y) = EQβR
{d(X,Y )|Y = y}.

9Note that although the exact reliability function (for optimum codes) for rates above capacity was established
by Dueck and Körner [34], here we are only focusing on random codes drawn under an i.i.d. distribution.
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We have obtained then a random coding exponent formula in terms of the free energy density

in the glassy phase, from which we learn that the free energy density of the glassy phase plays

a central role in the calculation the exponent of correct decoding. To obtain some insight, it is

instructive to examine this expression in the special case of the BSC. Here, since Fg = Fg(Y ) does

not depend on the probability distribution of Y , we get:

P̄c ≤ en[ln 2−R−Fg ]

= en[h(δGV (R))−δGV (R) ln 1

p
−(1−δGV (R)) ln 1

1−p
]

= e−nD(δGV (R)‖p), (21)

where for a, b ∈ (0, 1), D(a‖b)
∆
= a ln a

b + (1 − a) ln 1−a
1−b . This result has the intuitively appealing

interpretation of the probability of the large deviations event that the channel makes nδGV (R) errors

or less, although p > δGV (R)), in which case the correct codeword ‘penetrates’ into the sphere of

radius nδGV (R), whose surface is populated by the codewords that dominate the glassy phase. Of

course, when such an event happens, the correct codeword dominates the partition function, and

thus the decoding is correct.

4 The Random Coding Error Exponent

Let us now examine rates below I(X;Y ). Consider Gallager’s upper bound on the error probability

for a given code [35]:

Pe ≤
1

M

M
∑

m=1

∑

y∈Yn

P (y|xm)1/(1+ρ) ·





∑

m′ 6=m

P (y|xm′)1/(1+ρ)





ρ

ρ ≥ 0. (22)

The bracketed term is once again identified with Ze(β) for β = 1
1+ρ ≤ 1, in contrast to the calcula-

tion of Pc, where we used large values of β. For each m, let us first take only the expectation w.r.t.

the incorrect codewords, referring to the random variables {Ny(d)}. Let this partial expectation

be denoted by P̃e. We will also denote 1
1+ρ by β. One way to carry out this calculation is to

use the same technique as we used in the previous section, by classifying the distance spectrum

{Ny(d)} to its various classes. However, here since we know already that the use of Jensen’s

inequality would not harm the exponential tightness [36], it will be simpler to apply Jensen’s in-

equality (for 0 ≤ ρ ≤ 1, that is, 0.5 ≤ β ≤ 1) and thereby essentially carry out the calculation in
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the paramagnetic regime. We proceed then as follows:

P̃e ≤
1

M

M
∑

m=1

∑

y∈Yn

P (y|xm)β · E











∑

d∈Dn

Ny(d)e−βd





ρ




≤
1

M

M
∑

m=1

∑

y∈Yn

P (y|xm)β ·





∑

d∈Dn

E{Ny(d)} · e−βd





ρ

·
=

1

M

M
∑

m=1

∑

y∈Yn

P (y|xm)β ·





∑

d∈Dn

en[R−ln |X |+h0(δ|y)] · e−βd





ρ

·
=

1

M

M
∑

m=1

∑

y∈Yn

P (y|xm)β · [e−nβFp(β,Y )]ρ. (23)

Next, we take the expectation w.r.t. the correct codeword xm: Define

Γ(y) = ln
∑

x∈X

P β(y|x) − ln |X |, y ∈ Y.

Then, the average error probability P̄e is upper bounded by

P̄e ≤
∑

y∈Yn

e
Pn

i=1
Γ(yi) · e−nρβFp(β,Y )

=
∑

y∈Yn

exp{n[ÊyΓ(y) − ρβFp(β, Y )]}

·
= exp{n · max

Y
[H(Y ) +

∑

y∈Y

P (y)Γ(y) − ρβFp(β, Y )]}

= exp{−n · min
Y

[ρβFp(β, Y ) −
∑

y∈Y

P (y)Γ(y) − H(Y )]}. (24)

Note that Γ(y) is also related to a free energy expression, corresponding to the uniform prior over

the entire input space X n, not only the codebook. Thus, we have two free energy expressions, one

pertaining to the contribution of the correct codeword, and the other is related to the contributions

of the incorrect codewords.

In the special case of the BSC, where Fp(β, Y ) and does not depend on Y and Γ = Γ(y) does
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not depend on y, we get the exponential rate of

min
Y

[βρFp(β) − Γ − H(Y )]

= βρFp(β) − (ln[pβ + (1 − p)β] − ln 2) − ln 2

= ρ(ln 2 − R) − (1 + ρ) ln[pβ + (1 − p)β ]

= ρ ln 2 − (1 + ρ) ln[p1/(1+ρ) + (1 − p)1/(1+ρ)] − ρR

= E0(ρ) − ρR

∆
= E0(ρ,R) (25)

which is, as expected, Gallager’s reliability function for the BSC. The optimum choice of ρ depends

on R. As is shown in [35, pp. 151-152], in the range R ≤ ln 2− h(p1/2), that is, p1/2 < δGV (R), we

have ρ = 1, which means β = 1
2 . For R ∈ [ln 2 − h(p1/2), ln 2 − h(p)], the optimum ρ is in [0, 1),

and it satisfies R = ln 2 − h(p1/(1+ρ)) = ln 2 − h(pβ), or, equivalently, pβ = δGV (R), which means

that we move along the boundary between the the glassy phase and the paramagnetic phases of

Ze(β|y).
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Appendix

A.1 Proof of the Concavity of JY (β, ·)

Let Q1 and Q2 achieve JY (β,R1) and JY (β,R2), respectively. Now, let Q = αQ1 + (1 − α)Q2 for

some α ∈ (0, 1). First, observe that by the concavity of the conditional entropy in QX|Y for fixed

QY , we have

HQ(X|Y ) ≥ αHQ1
(X|Y ) + (1 − α)HQ2

(X|Y ) ≥ ln |X | − αR1 − (1 − α)R2.

It follows then that HQ(X|Y ) − βEQd(X,Y ) ≤ J(β, αR1 + (1 − α)R2|y). But, on the other hand

HQ(X|Y ) − βEQd(X,Y ) ≥ α[HQ1
(X|Y ) − βEQ1

d(X,Y )] + (1 − α)[HQ2
(X|Y ) − βEQ2

d(X,Y )]

= αJY (β,R1) + (1 − α)JY (β,R2). (26)

Thus,

JY (β, αR1 + (1 − α)R2) ≥ αJY (β,R1) + (1 − α)JY (β,R2).

A.2 Large Deviations Behavior of Ny(d)

For a, b ∈ [0, 1], consider the binary divergence

D(a‖b)
∆
= a ln

a

b
+ (1 − a) ln

1 − a

1 − b

= a ln
a

b
+ (1 − a) ln

[

1 +
b − a

1 − b

]

(27)

To derive a lower bound to D(a‖b), let us use the inequality

ln(1 + x) = − ln
1

1 + x
= − ln

(

1 −
x

1 + x

)

≥
x

1 + x
,

and then

D(a‖b) ≥ a ln
a

b
+ (1 − a) ·

(b − a)/(1 − b)

1 + (b − a)/(1 − b)

= a ln
a

b
+ b − a

> a
(

ln
a

b
− 1
)

. (28)

Now, let Ny(d) denote the number of codewords for which − lnP (y|xi) = d. As mentioned earlier,

Ny(d) is the sum of the enR independent binary random variables 1{d(X i,y) = d}, where the
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probability that d(X i,y) = d is exponentially b = e−n[ln |X |−h0(δ|y)], h0(δ|y) being the maximum

of HQ(X|Y ) subject to the constraints that EQ{d(X,Y )} = δ, δ = d/n, and that Y is distributed

according to P̂y. The event Ny(d) ≥ enA, for d = δn and A ∈ [0, R), means that the relative

frequency of the event 1{d(X i,y) = d} is at least a = e−n(R−A). Thus, by the Chernoff bound:

Pr{Ny(d) ≥ enA} ≤ exp
{

−enRD(e−n(R−A)‖e−n[ln |X |−h0(δ|y)])
}

≤ exp
{

−enR · e−n(R−A)(n[(ln |X | − R − h0(δ|y) + A] − 1)
}

≤ exp
{

−enA(n[ln |X | − R − h0(δ|y) + A] − 1)
}

. (29)

Now, for A = [R − ln |X | + h0(δ|y)]+ + ε, the term in the square brackets is at least ε > 0,

and thus Pr{Ny(d) ≥ enA} decays double–exponentially rapidly, not slower than e−enε

. The

probability of the union of the (polynomially many) events {Ny(d) ≥ enA}d∈Dn
, which is upper

bounded by the sum of the probabilities, is still double–exponentially small. Thus, Pr{B} decays

double–exponentially rapidly. Now, the event {Ny(d) ≥ 1} corresponds to the choice A = 0.

For δ < δY (R), δY (R) being the solution to the equation ln |X | − R = h0(δ|y), which means that

ln |X |−R−h0(δ|y) > 0, this gives an ordinary exponential decay at the rate of e−n[ln |X |−R−h0(δ|y)].
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