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~ Abstract—The problem of universal simulation given a train- C1. The probability distribution of the output sequence is
ing sequence is studied both in a stochastic setting and for exactlythe n-dimensional marginal of the probability law
individual sequences. In the stochastic setting, the training se- P corresponding to the training sequence forRlE P.

guence is assumed to be emitted by a Markov source of unknown . . L
order, extending previous work where the order is assumed C2. The mutual information between the training sequence

known and leading to the notion of twice-universal simulation. and the output sequence is as small as possible (or
A simulation scheme, which partitions the set of sequences of a equivalently, under Condition C1, the conditional entropy
given length into classes, is proposed for this setting and shown of the output sequence given the training sequence is as

to be asymptotically optimal. This partition extends the notion large as possible), simultaneously for Blic P (so as to
of type classes to the twice-universal setting. In the individual '

sequence scenario, the same simulation scheme is shown to make the generated sample path as “original” as possible).
generate sequences which are statistically similar, in a strong In [8], the smallest achievable value of the mutual information
sense, to the training sequence, for statistics of any order, while as a function ofs, ¢, r, and the entropy rat& of the sourceP
essentially maximizing the uncertainty on the output. is characterized, and simulation schemes that asymptotically
I. INTRODUCTION achieve these bounds are presented. For a broad class of fami-

The problem of simulating random processes with a prBQ_S P, it is shown in [8] that in order to s_atisfy Condition C1,
scribed probability law has been extensively investigated, sddS Necessary that the outpyt be a prefix of a sequenag
e.g., [11, 121, [3], [4], [5], [6], [7]. In all these works, perfect having the sameype[12] asz” with respect tdP. Moreover,
knowledge of the desired probability law is assumed. Mofk S shown that forr large enough, the optimal simulation
recently, universal versions of this problem were studied in [gjcheéme essentially takes the firstsymbols of a randomly
[9], [10], and [11]. In [8], [10], the target sourc® to be Selected sequence of the same t_ype_’aszor unI|m|teQr and
simulated is assumed to belong to a certain parametric fanfity= ¢ (Which will be our assumption in the rest of this paper),
P (like the family of finite—alphabet Markov sources of a givei€ resulting optimal mutual information betwedrt andy'*,
order) but is otherwise unknown, and a training sequerice ~ after normalization, vanishes withas =2, wherem is the
(z1,...,x¢) that has emerged fronP is available. In [11], Number of free parameters def!n'fﬂg; .
¢ is assumed to be an individual sequence not originatingThe above rate prompts similar “model cost” issues as the

from any probabilistic source. In both cases, the simulatigftiversal source coding problem [13], in the sense that the
schemes are also provided with a streamr gfurely random

larger the clas$P, the larger the cost of universality (which
bits u” = (u1,...,u,) that are statistically independent ofn data compression takes the form of an analogous rate of

the training sequence. While, as explained below, the goalsG@vergence to the source entropy). A natural question that has
the simulation schemes differ in each case, this paper cantBgn Peen asked in data compression is thataofle univer-
viewed as extending the results of both [8] and [11]. sality [14]: Assumlng a nested famlly 01_‘ mode'l classes (g.g.,
Specifically, the goal in [8], [10] is to generate an outpLMarkOV models of different orders), is it possible to achieve
sequencey” = (yi,...,yn), n < {, corresponding to the the optimal convergence rate corresponding to sheallest
simulated process7suéhntr;g’[‘ - (b’($z ur), where g is a Class containing thectual source, without prior knowledge
deterministic function that does not depend on the unknov9tf| the class? The answer to this question is well known to be

sourceP, and which satisfies the following two conditions: POSItIVE, giving rise to the notion dfvice-universalschemes.
In this paper, we start by addressing the problem of double
* Work supported by grant CSIC 05 PDT 63. universality in the simulation setting of [8] wheR is a class
t This work was done while N. Merhav was visiting Hewlett—Packargyf Markov models of unknown (fixed) order. Extensions to the
Laboratories, Palo Alto, CA, U.S.A. . . .
Packard Laboratories, Palo AltH1OT€ general tree models [15] are under investigation.
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for otherwise the condition that® andy™ be of the same type the (LZ-based) class of the training sequenéeis a faithful

for everyMarkov order would imply that the two sequencesimulator. Moreover, it is shown in [11] that no other faithful
must coincide, leading to a single, trivial simulatoks it turns  simulator can produce significantly more uncertainty than the
out, it suffices to allow simulators such that, for edéle P, proposed one, in the spirit of Condition C2.

Condition C1 is violated only by a fraction of sequences whoseln this paper, we extend the results of [11] by showing
total mass (under the simulated probability, or equivalentlhat the equivalence classes defined for the twice-universal
under P) is at most a vanishing functioa(n). In fact, a simulation scheme for Markov sources possess similar prop-
simulator exists such thatn) decreases exponentially fasterties in the individual sequence setting as those shown
while achieving per-symbol mutual information which decayfor the LZ parsing-based scheme, but the distance between
essentially aégk’% for any Markov clas$? and anyP € P, empirical distributions (as defined in Property P1) exhibits
where m is the number of parameters corresponding™o a faster convergence rate. Moreover, the class of competing
This simulator follows a “plug-in” approach: simulators for the converse result turns out to be surprisingly

a. Based o™, estimate an order of the Markov source; Pbroad. Notice that a “slow” rate of convergence is typical of
b. Draw uniformly at random from the set of sequencedher applications of the LZ parsing. On the other hand, the
having the same Markov type (of ordérasz™ and for improvement has a complexity cost, which we discuss.
which the estimated order is also In the remainder of this extended abstract, Section Il intro-
We show that the total mass of the sequences which %ces the main concepts and tools. Our results in the stochastic

not satisfy Condition C1 is upper-bounded by the probabiligttlng are thgn presented in Seguon lll. In Section IV we

of underestimating the model order, whereas the conditio épdy the individual sequence setting.

entropy achieved by this scheme differs from the one achieved I

by the optimal scheme that knows the “true” order by a i )

quantity that depends on the overestimation probability. With Throughout the paper, random variables will be denoted by

a proper choice of the order estimator (in the spirit of tho&apital letters and ;pecmc values they may take will be denotgd

used in, e.g., [17], [18], [19], [15], and [20]) both the masQY the corresponding lower case letters. Thg same convenuon

of those sequences violating Condition C1, and the deviati§fil @PPly to random vectors, with an additional superscript

from optimal conditional entropy, can be made negligible. denoting their dimension. Thus! andy™ will denotg specific
The above simulation scheme is based on a partition of tf@lues of the random vectos™ and Y™, respectively. The

set of n-tuples, where two sequences are in the same clas§/iit€) source alphabet will be denoted by -

and only if they both estimate the same Markov order, and” Markov source?” of orderk over.A, with transition prob-

have the same Markov type for that order. This partition Roilities Playyilar, ar—1,...,a1), ai € A i=1,... . k+1,

in the same spirit as the one giving rise to the simulatidif@Ws @ sequence” with probability

. PRELIMINARIES

scheme in [11], which also extends the conventional notion n

of type. In the partition of [11], two sequences belong to the P(a") = [[ P(ilzi-1,2i2, ... mi)

same class if and only if their Lempel-Ziv (LZ) parsing [21] i=1

yields the same tree. Any pair of sequences that belong to thigere we arbitrarily assumey, z_1, . .. ,T_p+1 to be equal

same class in this partition has the following property, whicfp a fixed symbol ind. The family of Markov sources of order
parallels conventional types in an individual sequence settingover A is denotedP;,. The entropy ofa-tuples emitted by
P1. For any fixed integey, the L, distance between the P is denotedH (X™).
empirical distributions ofj-tuples corresponding to the Thek-th order Markovtype clas§12] T, (z") of a sequence
two sequences is a vanishing functionrof 2™ is the set of all sequenceg' € A™ such thatP(z") =

The rate of convergence of ths, distance demonstrated?(z") for everysourceP € P;. The set of allk-th order
in [11]is O(1/log n). It is easy to see that Property P1 implied/arkov type classes of sequencesAft will be denoted by
that, for any fixed Markov source, the normalized logarithife'» With | 7| = Ny . Clearly, Ty (z") is the set of all
of the ratio between the probabilities of two sequences §igduences having the same compositionz‘aswith respect
the same class is alsO(1/logn), provided the sequencest© the k-th order Markov model [12], [22], i.e., each state
have positive probability. In [11], a sequence of lengtlis transition occurs as many times @t € Tj(z") as in 2",
said to be daithful reproduction of another sequence of thétarting from the fixed initial stater 1,2 k12, .., o).
same length if the pair satisfies Property P1. It is furth&auivalently, the type is given by the number of occurrences
claimed that, for simulation purposes, faithfulness parallefd " Of each strings A1, denotedn (s), namely
Condition C1 in an individual sequence setting. Thus, the N () = |{i
simulator that draws a sequence uniformly at random from

where| - | denotes cardinality. Thus, theth order empirical

1The relaxation of Condition C1 was precisely the motivation for the indiparkov source defined by the transition countsctfdepends
vidual sequence setting of [11]. Relaxation in the stochastic sense discussed ,, ny__ . (k)
here is also discussed in [10] and [16], where universal simulation with ! only throthTk(m )_T' and is denoteCPT . Its con-

fidelity criterion is studied, in analogy with the (non-universal) scenario of [4Hitional entropyf]k (z™), namely thek-th order empirical con-

c0<i<n, (Tick,y ooy Tim1,X;) = S}



ditional entropy forz™, satisfiesnH,(z") = — log P}k)(x"), (b) Punder(n) vanishes exponentially fast providedn) =
where, throughout, logarithms are taken in base o(1).

All simulation schemes considered in this paper are assumég) If 2" € Ty ,n)(z™) thenk(z") > k(z™).
to have access to an unlimited budget of random bits, arfd) |A*(*") = O(1/f(n)) for any 2™ € A™.

output sequenceg” of the same lengtln as the training h ¢ of . : in thi
sequencex™. The resulting conditional distribution op™ The proo 0 }:I)arts (al) a;:d (b) is omr:tted |fnt |s.extendfeg'
given 2" is regarded as a channel, denotédy”|z"), with abstract, as similar results have been shown for variants of this

entropy H(Y"|z"). In cases” is assumed to emerge from aestimator. Part (a) implies, fortiori, a similar convergence for

probabilistic sourceP € Py, the conditional entropy achievedthe overestimation probability;_this case i_s_ handled with the
by the channeli” and the mutual information betweef and Method of types as in [15], with the additional factdf,

Y™ that is induced byP and W will be denotedH (Y| X™) requiring on!y a larger va!ueT of. Underestlmauqn, on thg
andI(X™;Y™), respectively. In this case, we seek asimulatioﬂther hand, is a large deviations event. Part (c) is an obvious
scheme that, without knowledge @f (which may take on Consedquence of the fact thaf;(z") = H;(z") for all i <

any nonnegative integer value), achieves essentially the sdhi - Finally, Part (d) follows from the fact that the penalized

mutual information as the optimal universal scheme thmaxmum-likelihood for model ordef(2") is not larger than

knows & (Condition C2 in Section 1), while deviating from the one for model 9“3'“" _Whi_Ch is cIea_rIyQ(l). '!'he estimate
Condition C1 for just a negligible fraction of the sequence&(¢") can be obtained in time that |snl|near inby use of
for any P € Py. As discussed in Section I, by [8], the optimaPU{fiX trees as in [23]. The set eftuplesz™ such thak(a") =

scheme that knows drawsy™ uniformly at random from ¢ Will be denotedA,, ;. _ _ o
Ty, (z™), with mutual information We consider the simulation scheme that, given a training

sequencez”, draws y™ uniformly at random from the set

9 M(z™) = Tho(zmy (™) N Ay i(2n)- A key lemma in the analysis
Lo . of this simulation scheme, for both the stochastic and the
where the expectation is with respect®pand the approxima- . _ . . .

S ; . - individual sequence setting, states that for afiythe number
tion is to the main asymptotic term. Thus, the deviation fron(;]c sequences it (z") is essentially T, («™)|. By Part (c)
the optimal mutual information must h&logn) in order to q ke )1 BY

leave the asymptotic behavior unaffected. of Lemma 1, the remaining sequences arg i }i>k(x»)-

In both the stochastic and the individual sequence settir@, state the lemma, we d?f”j_%yef(") as the maximum value
our simulation scheme will rely on the existence of Marko§! fover(n) over all distributionsP € P; such thatP is
order estimators with certain properties, which are specified i empirical distribution of 3 Markov type class of order
Lemma 1 below. For concreteness, we will focus on a specifi@nd lengthn. Notice that Pove:(n) is independent of any
estimator, namely a penalized maximum-likelihood estimatBfobabilistic assumption and, by Part (a) of Lemma 1, it is
that, given a sample” from the source, chooses orde(:") upper-bounded by a function that decays polynomially fast

logn

I(X™Y") = H(X")~Elog |Ti(X")| = |A*(|A]-1)

such that with n, uniformly in 1.
N A i Lemma 2:For any: > 0, let T" € 7,* and assumé&' N
k(a") = argmin{Hy(2") + |A[f(n)} () A4, + ¢ Then,
where f(n) is a vanishing function ofr, and ties are re- TN Al

solved with some fixed policy. For examplé(n) = (|A| — o >1— N, ;Pl).(n).
1)(logn)/(2n) corresponds to the asymptotic version of the

MDL criterion [13]. In the classical estimation problerfyn) Sketch of proofBy Whittle’s formula for the size of a type
governs the trade-off between the probabilities of underesglass [24], and lower-bounding the cofactor in the formula as
mating and overestimating the model order. In the simulatién [25], it is easy to see thab\’/(T") > 1/N,, ;. Since P\ ()
problem for individual sequenceg,(n) will be shown to is uniform overT, we then have

govern a trade-off between faithfulness and entropy of the

simulator. To state Lemma 1 we define, for a distribution 1 . A}i)(TmAm.) 7|T‘_
P € Py, the overestimation probability Npi — TN Al
A N _ _
Poyer(n) = Pr(k(X™) > k) where the complement of a stis denotedS. By Lemma 1,
and, similarly, the underestimation probability Part (c), sincel’ N A’L;i(i')s nonempty, we(i)havé(z”) 2 i for
all z" € T, implying P;’ (TN A, ;) < Pover(n). O

A n
Pander(n) = PICR(X™) < k). Lemma 2 is valid for any model ordérand any type class
Lemma 1:For anyk > 0 and anyP € P, the estimator containing sequences that do estimate oigesgardless of any
of Equation (1) satisfies probabilistic assumption. It should be noticed, however, that
(@) Ny, Pover(n) vanishes polynomially fast (uniformly in the assumption of equal weight for counting all sequences in
P and k) provided f(n) > S(logn)/n for a sufficiently T can be regarded as implicitly implying that these sequences
large constants. are drawn from a Markov source of ordepr less.



I1l. THE STOCHASTIC SETTING k(y™) > k, for which Q(y™) = P(y™), and one for the rest,

Theorem 1 below states the properties, in the stochadficWhich we apply Jensen's inequality. U
setting, of the simulator that drawg® uniformly at random  From a complexity standpoint, enumeration of the inter-
from M(z"). Let Q(-) denote the output distribution. Sincesection of the type class af* for the estimated order with
y"* € M(2™) if and only if 2 € M(y"), we have A, k() May be a challenging problem. We can circumvent

PM(™) the problem by drawing uniformly at random from the type
QY™ = Z P(z™W (y"|z") = LY ) (2) class, until a sequence that estimates the same order is drawn.
she AR [M(y™) By Lemma 2, with very high probability only one draw
will be needed. Another approach consists of modifying the
simulation scheme to draw from the type class, instead of
drawing from the intersection. Clearly, the conditional entropy

Theorem 1:For anyk > 0 and anyP € P, we have
(a) The output distribution satisfies

QQW™) # P(y™)) < Punder(n). can only improve, as we draw from a larger set, and the
- B _ o asymptotic mutual information remains unaffected. On the
(b) The conditional entropy of the simulator satisfies other hand, we can no longer claim the scheme to preserve the
nlvn n bability law in the strong sense of Part (a) of Theorem 1.
H(Y"X") > Elog|Tu(X™)| = nPoer pro . . \ .
(yex = 08 [T (X)] = nFove However, it can be shown that, with appropriate choice of

+ minlog(l— Ny P (n) f(n), for all but a vanishing fraction of the sequenggs the

" . ratio Q(y™)/P(y™) deviates froml by a vanishing quantity.
and H(Y") < H(X™) + Punder(n)[n —log Punder (n)]- This scheme does not lead to a partitionf.

By Lemma 1, Part (a) states that the simulator preserves
the probability law, except for an exponentially negligible IV. INDIVIDUAL SEQUENCES
fraction of the output sequences, whereas Part (b) states thatD this section we analyze the proposed simulation scheme
with proper choice off(n), the conditional entropy deviatesin the individual sequence setting of [11]. Theorem 2 below
from the optimal one (obtained with knowledge bj by establishes the statistical similarity between two sequences in
an amount that does not affect the asymptotic behavior {6 same class(-) in the implied partition ofA".
Elog |T},(X™)|. Part (b) also states thaf(Y™) cannot surpass ~ Theorem 2 (Direct):Let 2™ € A™ be arbitrary and fix a
H(X™) by more than a negligible amount, implying that n&onnegative integef. Let s be an arbitrary string iod’. Then,
knowledge ofk is necessary to achieve the optimal rate dPr anyy" € M(z"), we have
decay of I(X™;Y"™)/n. Thus, the proposed scheme is twice ngn (s)
universal. The cost of double universality is a deviation in the E—
probability law for a fraction of the sequences. In principle, it o
is conceivable that such a deviation, if allowed for a scherMOr€OVernan (s) = nyx (s) if j < k(x™) + 1.
that knowsk, would lead to a faster decay of the per-symbol If j < k(2™) + 1 thenn,n(s) = n,(s) by the definition
mutual information. We conjecture that this is not the caseof the type classes. For larger values jpf the proof of

We also observe that the choice fifn) governs the tension Theorem 2, which is omitted in this extended abstract due
between preservation of the probability law (which is onljo space limitations, relies on the fact that the occurrence
affected by underestimation) and conditional entropy (whigtounts for symbols following string in z" are “close” to
is reduced by overestimation). However, as longfés) > those corresponding to symbols following the suffix sobf
B(logn)/n, as stated in Lemma 1, the asymptotic behavior igngth k(z"), for otherwise the order estimate would have
independent off (n). been larger thark(z™). The same observation applies 4o,
Sketch of proof of Theorem To prove Part (a), notice that if and since the counts far™ and y" are identical at order
k(y™) > k, thenP(y") = P(z") for all 2" € M(y"). Thus, k(z") = k(y"), the result follows by transitivity. Since the

-2~ o7

n n

by (2), Q(y™) = P(y™). Furthermore, for aly™ € A", criterion for model order selection relies on empirical entropy,
an application of Pinsker's inequality is necessary, which

QQAW") #PW") = 1-Q(QY")=Pl")) explains theO(+/f(n)) rate.
1—P(Qy™) = P(y")) Theorem 2 corresponds to Property (P1) that was item-

= P(Q(y") # P(y")) < Punaer(n). 1z€d in Section | for the scheme in [11]. With a proper
N N choice of f(n), the preservation of empirical probabilities
As for Part (b), the lower bound on the conditional entropgor degree of “faithfulness”) withinM(z") is stronger than

follows from application of Lemma 2 to the one claimed for the LZ parsing-based types, for which
nx™) the convergence i®)(1/logn). As in [11, Corollary 1], for
H(Y"[X™) Z; w; ") log |Ti(z™) M Ap il any fixed Markov measurél € Py, if y" € M(2") then

(1/n)|log(II(z™)/T(y™))| is alsoO(+/ f(n)), provided both
and the fact thaiT;(z")| > |Tx(z™)| for all ¢ < k. The TII(«") andII(y™) are positive. Moreover, the set of sequences
upper bound o (Y™) follows from splitting the summation =™ for which there exists a sequeng& < M(z") such
defining the entropy into two partial summations: one fdhat II(z") # II(y"™) has measure at mogt,,q..(n) under
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II. Thus, for “most” sequences™, II(x")
y"r e M(z™).
Yet, the entropy H(Y™|z") = log|M(z™)| of the pro-

II(y™) for all

Whittle’s formula [24], which reflects the fact that enumeration
of Markov types does not reduce to independent enumerations
of the state sub-sequences for memoryless types. In contrast,

posed simulator is essentially optimal when compared tie elegant parsing process in [11] reduces to independent sub-
any competing faithful simulator, even if we are extremelgequences of draws at each node of the LZ tree.

“generous” in the definition of faithfulness for the competitor,

provided the type classes are defined for an estimator such that

logn = o(nf(n)). Specifically, giveru™ € A, ;, let aweakly 1]
faithful simulator W(Y™|z™) be only constrained to output
sequenceg™ such thatH;(y") < H;(z") +~(n), wherey(n)  [2]
is some vanishing function of. Notice that the condition
is required only for model ordef, and does not necessarily 3l
imply closeness in terms of counts (on the other hand, a
scheme that approximately preserves counts will obviousli#
be faithful in this relaxed sense for some functigin)).
Moreover, we further relax this condition by assuming that gs5]
setB(z™) of potential output sequencg8 may not satisfy it, 6]
with W (B(z™)|z™) < §(n) for some vanishing functioi(n).
The following theorem asserts that no other weakly faithful
simulator can achieve a much larger value of the conditionall
entropy than the proposed one.

Theorem 3 (Converse)et W(Y™|2™) be a weakly faith-
ful simulator, and assumieg n = o(nf(n)). Then,

(8]

logn E]

) +ny(n) + nﬁ(n)) .
Sketch of prooffFor brevity, and to avoid obscuring the mairj10]
ideas, we assum&n) = 0. Let k(™) =4 and IethL’”i) (™)
denote the number of sequencg$ satisfying Hi(y™) < 1
H;(z™)+~(n) (namely, the potential output sequences). Usin?

classical tools from the method of types, we have [12]

Nn,i > Z 2—nﬁi(y") > Nf;yl)(x"ﬂ_"m?(”“n)+"’(”)] ) [13]

ynEAN
L

H(Y"|z") <log|M(z™)|+ O <

Therefore 4l
HY"|2") < log NT(L:YZ-) (™) < n]’-fli(x”) +nvy(n) +log N, ;.
Proceeding as in the proof of Lemma 2 we ha¥gz")| >
2nHi(=") /N, ;. By Lemma 2 we conclude that

H(Y™z™) log |[M(z™)| + 2log N, ; + ny(n)
log[1 — Ny, i P8 (n)] .

Sincelog N,,; < (JA| — 1)|A|* logn, the result follows from
Lemma 1, parts (a) and (d). U 19
Theorems 2 and 3 unveil the trade-off in the choice of

f(n): A larger f(n) implies a slower convergence of the
statistics (Theorem 2), but on the other hand it allows a smalle®]
deviation from the performance of a competing simulat3£1]
(Theorem 3). Unlike the converse in [11], Theorem 3 holas
for everysequence:”, and a rate of convergence is provided.
The advantages of the type classk$(-) over those based [22]
on LZ parsing, however, have a complexity cost. Indeefhg
even if the draw fromM (2") is implemented by drawing
uniformly at random fromTj,,.»)(2™) until a sequence that
estimates ordek(z") is picked, enumeration dfj,,n)(z")
is more cumbersome than enumeration of the LZ parsings]
based type class. The reason is linked to the cofactor in

[15]

(16]

< (17]

(18]

(24]
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