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Abstract— The problem of universal simulation given a train-
ing sequence is studied both in a stochastic setting and for
individual sequences. In the stochastic setting, the training se-
quence is assumed to be emitted by a Markov source of unknown
order, extending previous work where the order is assumed
known and leading to the notion of twice-universal simulation.
A simulation scheme, which partitions the set of sequences of a
given length into classes, is proposed for this setting and shown
to be asymptotically optimal. This partition extends the notion
of type classes to the twice-universal setting. In the individual
sequence scenario, the same simulation scheme is shown to
generate sequences which are statistically similar, in a strong
sense, to the training sequence, for statistics of any order, while
essentially maximizing the uncertainty on the output.

I. I NTRODUCTION

The problem of simulating random processes with a pre-
scribed probability law has been extensively investigated, see,
e.g., [1], [2], [3], [4], [5], [6], [7]. In all these works, perfect
knowledge of the desired probability law is assumed. More
recently, universal versions of this problem were studied in [8],
[9], [10], and [11]. In [8], [10], the target sourceP to be
simulated is assumed to belong to a certain parametric family
P (like the family of finite–alphabet Markov sources of a given
order) but is otherwise unknown, and a training sequencex` =
(x1, . . . , x`) that has emerged fromP is available. In [11],
x` is assumed to be an individual sequence not originating
from any probabilistic source. In both cases, the simulation
schemes are also provided with a stream ofr purely random
bits ur = (u1, . . . , ur) that are statistically independent of
the training sequence. While, as explained below, the goals of
the simulation schemes differ in each case, this paper can be
viewed as extending the results of both [8] and [11].

Specifically, the goal in [8], [10] is to generate an output
sequenceyn = (y1, . . . , yn), n ≤ `, corresponding to the
simulated process, such thatyn = φ(x`, ur), where φ is a
deterministic function that does not depend on the unknown
sourceP , and which satisfies the following two conditions:
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C1. The probability distribution of the output sequence is
exactlythen-dimensional marginal of the probability law
P corresponding to the training sequence for allP ∈ P.

C2. The mutual information between the training sequence
and the output sequence is as small as possible (or
equivalently, under Condition C1, the conditional entropy
of the output sequence given the training sequence is as
large as possible), simultaneously for allP ∈ P (so as to
make the generated sample path as “original” as possible).

In [8], the smallest achievable value of the mutual information
as a function ofn, `, r, and the entropy rateH of the sourceP
is characterized, and simulation schemes that asymptotically
achieve these bounds are presented. For a broad class of fami-
liesP, it is shown in [8] that in order to satisfy Condition C1,
it is necessary that the outputyn be a prefix of a sequencey`

having the sametype [12] asx` with respect toP. Moreover,
it is shown that forr large enough, the optimal simulation
scheme essentially takes the firstn symbols of a randomly
selected sequence of the same type asx`. For unlimitedr and
n = ` (which will be our assumption in the rest of this paper),
the resulting optimal mutual information betweenXn andY n,
after normalization, vanishes withn as m

2
log n

n , wherem is the
number of free parameters definingP.

The above rate prompts similar “model cost” issues as the
universal source coding problem [13], in the sense that the
larger the classP, the larger the cost of universality (which
in data compression takes the form of an analogous rate of
convergence to the source entropy). A natural question that has
then been asked in data compression is that ofdouble univer-
sality [14]: Assuming a nested family of model classes (e.g.,
Markov models of different orders), is it possible to achieve
the optimal convergence rate corresponding to thesmallest
class containing theactual source, without prior knowledge
of the class? The answer to this question is well known to be
positive, giving rise to the notion oftwice-universalschemes.
In this paper, we start by addressing the problem of double
universality in the simulation setting of [8] whenP is a class
of Markov models of unknown (fixed) order. Extensions to the
more general tree models [15] are under investigation.

First, we notice that a relaxation of Condition C1 is needed,
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for otherwise the condition thatxn andyn be of the same type
for everyMarkov order would imply that the two sequences
must coincide, leading to a single, trivial simulator.1 As it turns
out, it suffices to allow simulators such that, for eachP ∈ P,
Condition C1 is violated only by a fraction of sequences whose
total mass (under the simulated probability, or equivalently,
under P ) is at most a vanishing functionε(n). In fact, a
simulator exists such thatε(n) decreases exponentially fast,
while achieving per-symbol mutual information which decays
essentially asm2

log n
n for any Markov classP and anyP ∈ P,

where m is the number of parameters corresponding toP.
This simulator follows a “plug-in” approach:

a. Based onxn, estimate an orderi of the Markov source;
b. Draw uniformly at random from the set of sequences

having the same Markov type (of orderi) asxn and for
which the estimated order is alsoi.

We show that the total mass of the sequences which do
not satisfy Condition C1 is upper-bounded by the probability
of underestimating the model order, whereas the conditional
entropy achieved by this scheme differs from the one achieved
by the optimal scheme that knows the “true” order by a
quantity that depends on the overestimation probability. With
a proper choice of the order estimator (in the spirit of those
used in, e.g., [17], [18], [19], [15], and [20]) both the mass
of those sequences violating Condition C1, and the deviation
from optimal conditional entropy, can be made negligible.

The above simulation scheme is based on a partition of the
set ofn-tuples, where two sequences are in the same class if
and only if they both estimate the same Markov order, and
have the same Markov type for that order. This partition is
in the same spirit as the one giving rise to the simulation
scheme in [11], which also extends the conventional notion
of type. In the partition of [11], two sequences belong to the
same class if and only if their Lempel-Ziv (LZ) parsing [21]
yields the same tree. Any pair of sequences that belong to the
same class in this partition has the following property, which
parallels conventional types in an individual sequence setting:

P1. For any fixed integerj, the L1 distance between the
empirical distributions ofj-tuples corresponding to the
two sequences is a vanishing function ofn.

The rate of convergence of theL1 distance demonstrated
in [11] is O(1/ log n). It is easy to see that Property P1 implies
that, for any fixed Markov source, the normalized logarithm
of the ratio between the probabilities of two sequences in
the same class is alsoO(1/ log n), provided the sequences
have positive probability. In [11], a sequence of lengthn is
said to be afaithful reproduction of another sequence of the
same length if the pair satisfies Property P1. It is further
claimed that, for simulation purposes, faithfulness parallels
Condition C1 in an individual sequence setting. Thus, the
simulator that draws a sequence uniformly at random from

1The relaxation of Condition C1 was precisely the motivation for the indi-
vidual sequence setting of [11]. Relaxation in the stochastic sense discussed
here is also discussed in [10] and [16], where universal simulation with a
fidelity criterion is studied, in analogy with the (non-universal) scenario of [4].

the (LZ-based) class of the training sequencexn is a faithful
simulator. Moreover, it is shown in [11] that no other faithful
simulator can produce significantly more uncertainty than the
proposed one, in the spirit of Condition C2.

In this paper, we extend the results of [11] by showing
that the equivalence classes defined for the twice-universal
simulation scheme for Markov sources possess similar prop-
erties in the individual sequence setting as those shown
for the LZ parsing-based scheme, but the distance between
empirical distributions (as defined in Property P1) exhibits
a faster convergence rate. Moreover, the class of competing
simulators for the converse result turns out to be surprisingly
broad. Notice that a “slow” rate of convergence is typical of
other applications of the LZ parsing. On the other hand, the
improvement has a complexity cost, which we discuss.

In the remainder of this extended abstract, Section II intro-
duces the main concepts and tools. Our results in the stochastic
setting are then presented in Section III. In Section IV we
study the individual sequence setting.

II. PRELIMINARIES

Throughout the paper, random variables will be denoted by
capital letters and specific values they may take will be denoted
by the corresponding lower case letters. The same convention
will apply to random vectors, with an additional superscript
denoting their dimension. Thus,xn andyn will denote specific
values of the random vectorsXn and Y n, respectively. The
(finite) source alphabet will be denoted byA.

A Markov sourceP of orderk overA, with transition prob-
abilities P (ak+1|ak, ak−1, . . . , a1), ai ∈ A, i = 1, . . . , k + 1,
draws a sequencexn with probability

P (xn) =
n∏

i=1

P (xi|xi−1, xi−2, . . . , xi−k)

where we arbitrarily assumex0, x−1, . . . , x−k+1 to be equal
to a fixed symbol inA. The family of Markov sources of order
k overA is denotedPk. The entropy ofn-tuples emitted by
P is denotedH(Xn).

Thek-th order Markovtype class[12] Tk(xn) of a sequence
xn is the set of all sequences̃xn ∈ An such thatP (x̃n) =
P (xn) for every sourceP ∈ Pk. The set of allk-th order
Markov type classes of sequences inAn will be denoted by
T n

k , with |T n
k | = Nn,k. Clearly, Tk(xn) is the set of all

sequences having the same composition asxn with respect
to the k-th order Markov model [12], [22], i.e., each state
transition occurs as many times iñxn ∈ Tk(xn) as in xn,
starting from the fixed initial state(x−k+1, x−k+2, . . . , x0).
Equivalently, the type is given by the number of occurrences
in xn of each strings ∈ Ak+1, denotednxn(s), namely

nxn(s) = |{i : 0 < i ≤ n, (xi−k, . . . , xi−1, xi) = s}|

where | · | denotes cardinality. Thus, thek-th order empirical
Markov source defined by the transition counts ofxn depends
on xn only throughTk(xn)=T , and is denoted̂P (k)

T . Its con-
ditional entropyĤk(xn), namely thek-th order empirical con-
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ditional entropy forxn, satisfiesnĤk(xn) = − log P̂
(k)
T (xn),

where, throughout, logarithms are taken in base2.
All simulation schemes considered in this paper are assumed

to have access to an unlimited budget of random bits, and
output sequencesyn of the same lengthn as the training
sequencexn. The resulting conditional distribution onyn

given xn is regarded as a channel, denotedW (yn|xn), with
entropyH(Y n|xn). In casexn is assumed to emerge from a
probabilistic sourceP ∈ Pk, the conditional entropy achieved
by the channelW and the mutual information betweenXn and
Y n that is induced byP andW will be denotedH(Y n|Xn)
andI(Xn;Y n), respectively. In this case, we seek a simulation
scheme that, without knowledge ofk (which may take on
any nonnegative integer value), achieves essentially the same
mutual information as the optimal universal scheme that
knows k (Condition C2 in Section I), while deviating from
Condition C1 for just a negligible fraction of the sequences,
for anyP ∈ Pk. As discussed in Section I, by [8], the optimal
scheme that knowsk draws yn uniformly at random from
Tk(xn), with mutual information

I(Xn;Y n) = H(Xn)−E log |Tk(Xn)| ≈ |A|k(|A|−1)
log n

2
where the expectation is with respect toP , and the approxima-
tion is to the main asymptotic term. Thus, the deviation from
the optimal mutual information must beo(log n) in order to
leave the asymptotic behavior unaffected.

In both the stochastic and the individual sequence setting,
our simulation scheme will rely on the existence of Markov
order estimators with certain properties, which are specified in
Lemma 1 below. For concreteness, we will focus on a specific
estimator, namely a penalized maximum-likelihood estimator
that, given a samplexn from the source, chooses orderk(xn)
such that

k(xn) = arg min
k≥0

{Ĥk(xn) + |A|kf(n)} (1)

where f(n) is a vanishing function ofn, and ties are re-
solved with some fixed policy. For example,f(n) = (|A| −
1)(log n)/(2n) corresponds to the asymptotic version of the
MDL criterion [13]. In the classical estimation problem,f(n)
governs the trade-off between the probabilities of underesti-
mating and overestimating the model order. In the simulation
problem for individual sequences,f(n) will be shown to
govern a trade-off between faithfulness and entropy of the
simulator. To state Lemma 1 we define, for a distribution
P ∈ Pk, the overestimation probability

Pover(n)
4
= Pr(k(Xn) > k)

and, similarly, the underestimation probability

Punder(n)
4
= Pr(k(Xn) < k) .

Lemma 1:For anyk ≥ 0 and anyP ∈ Pk, the estimator
of Equation (1) satisfies
(a) Nn,kPover(n) vanishes polynomially fast (uniformly in

P andk) providedf(n) > β(log n)/n for a sufficiently
large constantβ.

(b) Punder(n) vanishes exponentially fast providedf(n) =
o(1).

(c) If zn ∈ Tk(xn)(xn) thenk(zn) ≥ k(xn).
(d) |A|k(xn) = O(1/f(n)) for any xn ∈ An.

The proof of parts (a) and (b) is omitted in this extended
abstract, as similar results have been shown for variants of this
estimator. Part (a) implies,a fortiori, a similar convergence for
the overestimation probability; this case is handled with the
method of types as in [15], with the additional factorNn,k

requiring only a larger value ofβ. Underestimation, on the
other hand, is a large deviations event. Part (c) is an obvious
consequence of the fact that̂Hi(xn) = Ĥi(zn) for all i ≤
k(xn). Finally, Part (d) follows from the fact that the penalized
maximum-likelihood for model orderk(xn) is not larger than
the one for model order0, which is clearlyO(1). The estimate
k(xn) can be obtained in time that is linear inn by use of
suffix trees as in [23]. The set ofn-tuplesxn such thatk(xn) =
i will be denotedAn,i.

We consider the simulation scheme that, given a training
sequencexn, draws yn uniformly at random from the set

M(xn)
4
= Tk(xn)(xn)∩An,k(xn). A key lemma in the analysis

of this simulation scheme, for both the stochastic and the
individual sequence setting, states that for anyxn the number
of sequences inM(xn) is essentially|Tk(xn)(xn)|. By Part (c)
of Lemma 1, the remaining sequences are in{An,i}i>k(xn).

To state the lemma, we defineP (i)
over(n) as the maximum value

of Pover(n) over all distributionsP ∈ Pi such thatP is
the empirical distribution of a Markov type class of order
i and lengthn. Notice thatP (i)

over(n) is independent of any
probabilistic assumption and, by Part (a) of Lemma 1, it is
upper-bounded by a function that decays polynomially fast
with n, uniformly in i.

Lemma 2:For any i ≥ 0, let T ∈ T n
i and assumeT ∩

An,i 6= φ. Then,

|T ∩ An,i|
|T |

≥ 1−Nn,iP
(i)
over(n) .

Sketch of proof.By Whittle’s formula for the size of a type
class [24], and lower-bounding the cofactor in the formula as
in [25], it is easy to see that̂P (i)

T (T ) ≥ 1/Nn,i. SinceP̂
(i)
T (·)

is uniform overT , we then have

1
Nn,i

≤ P̂
(i)
T (T ∩ Ān,i)

|T |
|T ∩ Ān,i|

where the complement of a setS is denotedS̄. By Lemma 1,
Part (c), sinceT ∩ An,i is nonempty, we havek(zn) ≥ i for
all zn ∈ T , implying P̂

(i)
T (T ∩ Ān,i) ≤ P

(i)
over(n).

Lemma 2 is valid for any model orderi and any type class
containing sequences that do estimate orderi, regardless of any
probabilistic assumption. It should be noticed, however, that
the assumption of equal weight for counting all sequences in
T can be regarded as implicitly implying that these sequences
are drawn from a Markov source of orderi or less.
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III. T HE STOCHASTIC SETTING

Theorem 1 below states the properties, in the stochastic
setting, of the simulator that drawsyn uniformly at random
from M(xn). Let Q(·) denote the output distribution. Since
yn ∈M(xn) if and only if xn ∈M(yn), we have

Q(yn) =
∑

xn∈An

P (xn)W (yn|xn) =
P (M(yn))
|M(yn)|

. (2)

Theorem 1:For anyk ≥ 0 and anyP ∈ Pk we have

(a) The output distribution satisfies

Q(Q(yn) 6= P (yn)) ≤ Punder(n) .

(b) The conditional entropy of the simulator satisfies

H(Y n|Xn) ≥ E log |Tk(Xn)| − nPover

+ min
i≤k

log(1−Nn,iP
(i)
over(n))

andH(Y n) ≤ H(Xn) + Punder(n)[n− log Punder(n)].
By Lemma 1, Part (a) states that the simulator preserves

the probability law, except for an exponentially negligible
fraction of the output sequences, whereas Part (b) states that,
with proper choice off(n), the conditional entropy deviates
from the optimal one (obtained with knowledge ofk) by
an amount that does not affect the asymptotic behavior of
E log |Tk(Xn)|. Part (b) also states thatH(Y n) cannot surpass
H(Xn) by more than a negligible amount, implying that no
knowledge ofk is necessary to achieve the optimal rate of
decay ofI(Xn;Y n)/n. Thus, the proposed scheme is twice
universal. The cost of double universality is a deviation in the
probability law for a fraction of the sequences. In principle, it
is conceivable that such a deviation, if allowed for a scheme
that knowsk, would lead to a faster decay of the per-symbol
mutual information. We conjecture that this is not the case.

We also observe that the choice off(n) governs the tension
between preservation of the probability law (which is only
affected by underestimation) and conditional entropy (which
is reduced by overestimation). However, as long asf(n) >
β(log n)/n, as stated in Lemma 1, the asymptotic behavior is
independent off(n).
Sketch of proof of Theorem 1.To prove Part (a), notice that if
k(yn) ≥ k, thenP (yn) = P (xn) for all xn ∈ M(yn). Thus,
by (2), Q(yn) = P (yn). Furthermore, for allyn ∈ An,

Q(Q(yn) 6= P (yn)) = 1−Q(Q(yn) = P (yn))
= 1− P (Q(yn) = P (yn))
= P (Q(yn) 6= P (yn)) ≤ Punder(n) .

As for Part (b), the lower bound on the conditional entropy
follows from application of Lemma 2 to

H(Y n|Xn) =
∑
i≥0

∑
xn∈An,i

P (xn) log |Ti(xn) ∩ An,i|

and the fact that|Ti(xn)| ≥ |Tk(xn)| for all i ≤ k. The
upper bound onH(Y n) follows from splitting the summation
defining the entropy into two partial summations: one for

k(yn) ≥ k, for which Q(yn) = P (yn), and one for the rest,
to which we apply Jensen’s inequality.

From a complexity standpoint, enumeration of the inter-
section of the type class ofxn for the estimated order with
An,k(xn) may be a challenging problem. We can circumvent
the problem by drawing uniformly at random from the type
class, until a sequence that estimates the same order is drawn.
By Lemma 2, with very high probability only one draw
will be needed. Another approach consists of modifying the
simulation scheme to draw from the type class, instead of
drawing from the intersection. Clearly, the conditional entropy
can only improve, as we draw from a larger set, and the
asymptotic mutual information remains unaffected. On the
other hand, we can no longer claim the scheme to preserve the
probability law in the strong sense of Part (a) of Theorem 1.
However, it can be shown that, with appropriate choice of
f(n), for all but a vanishing fraction of the sequencesyn, the
ratio Q(yn)/P (yn) deviates from1 by a vanishing quantity.
This scheme does not lead to a partition ofAn.

IV. I NDIVIDUAL SEQUENCES

In this section we analyze the proposed simulation scheme
in the individual sequence setting of [11]. Theorem 2 below
establishes the statistical similarity between two sequences in
the same classM(·) in the implied partition ofAn.

Theorem 2 (Direct):Let xn ∈ An be arbitrary and fix a
nonnegative integerj. Let s be an arbitrary string inAj . Then,
for any yn ∈M(xn), we have∣∣∣∣nxn(s)

n
− nyn(s)

n

∣∣∣∣ = O(
√

f(n) ) .

Moreover,nxn(s) = nyn(s) if j ≤ k(xn) + 1.

If j ≤ k(xn) + 1 then nxn(s) = nyn(s) by the definition
of the type classes. For larger values ofj, the proof of
Theorem 2, which is omitted in this extended abstract due
to space limitations, relies on the fact that the occurrence
counts for symbols following strings in xn are “close” to
those corresponding to symbols following the suffix ofs of
length k(xn), for otherwise the order estimate would have
been larger thank(xn). The same observation applies toyn,
and since the counts forxn and yn are identical at order
k(xn) = k(yn), the result follows by transitivity. Since the
criterion for model order selection relies on empirical entropy,
an application of Pinsker’s inequality is necessary, which
explains theO(

√
f(n)) rate.

Theorem 2 corresponds to Property (P1) that was item-
ized in Section I for the scheme in [11]. With a proper
choice of f(n), the preservation of empirical probabilities
(or degree of “faithfulness”) withinM(xn) is stronger than
the one claimed for the LZ parsing-based types, for which
the convergence isO(1/ log n). As in [11, Corollary 1], for
any fixed Markov measureΠ ∈ Pk, if yn ∈ M(xn) then
(1/n)| log(Π(xn)/Π(yn))| is alsoO(

√
f(n)), provided both

Π(xn) andΠ(yn) are positive. Moreover, the set of sequences
xn for which there exists a sequenceyn ∈ M(xn) such
that Π(xn) 6= Π(yn) has measure at mostPunder(n) under
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Π. Thus, for “most” sequencesxn, Π(xn) = Π(yn) for all
yn ∈M(xn).

Yet, the entropyH(Y n|xn) = log |M(xn)| of the pro-
posed simulator is essentially optimal when compared to
any competing faithful simulator, even if we are extremely
“generous” in the definition of faithfulness for the competitor,
provided the type classes are defined for an estimator such that
log n = o(nf(n)). Specifically, givenxn ∈ An,i, let aweakly
faithful simulator W (Y n|xn) be only constrained to output
sequencesyn such thatĤi(yn) < Ĥi(xn) + γ(n), whereγ(n)
is some vanishing function ofn. Notice that the condition
is required only for model orderi, and does not necessarily
imply closeness in terms of counts (on the other hand, a
scheme that approximately preserves counts will obviously
be faithful in this relaxed sense for some functionγ(n)).
Moreover, we further relax this condition by assuming that a
setB(xn) of potential output sequencesyn may not satisfy it,
with W (B(xn)|xn) <δ(n) for some vanishing functionδ(n).
The following theorem asserts that no other weakly faithful
simulator can achieve a much larger value of the conditional
entropy than the proposed one.

Theorem 3 (Converse):Let W (Y n|xn) be a weakly faith-
ful simulator, and assumelog n = o(nf(n)). Then,

H(Y n|xn) ≤ log |M(xn)|+ O

(
log n

f(n)
+ nγ(n) + nδ(n)

)
.

Sketch of proof.For brevity, and to avoid obscuring the main
ideas, we assumeδ(n) = 0. Let k(xn) = i and letN (γ)

n,i (xn)
denote the number of sequencesyn satisfying Ĥi(yn) <
Ĥi(xn)+γ(n) (namely, the potential output sequences). Using
classical tools from the method of types, we have

Nn,i ≥
∑

yn∈An

2−nĤi(y
n) ≥ N

(γ)
n,i (xn)2−n[Ĥi(x

n)+γ(n)] .

Therefore,

H(Y n|xn) ≤ log N
(γ)
n,i (xn) ≤ nĤi(xn) + nγ(n) + log Nn,i .

Proceeding as in the proof of Lemma 2 we have|Ti(xn)| ≥
2nĤi(x

n)/Nn,i. By Lemma 2 we conclude that

H(Y n|xn) ≤ log |M(xn)|+ 2 log Nn,i + nγ(n)

− log[1−Nn,iP
(i)
over(n)] .

Since log Nn,i ≤ (|A| − 1)|A|i log n, the result follows from
Lemma 1, parts (a) and (d).

Theorems 2 and 3 unveil the trade-off in the choice of
f(n): A larger f(n) implies a slower convergence of the
statistics (Theorem 2), but on the other hand it allows a smaller
deviation from the performance of a competing simulator
(Theorem 3). Unlike the converse in [11], Theorem 3 holds
for everysequencexn, and a rate of convergence is provided.
The advantages of the type classesM(·) over those based
on LZ parsing, however, have a complexity cost. Indeed,
even if the draw fromM(xn) is implemented by drawing
uniformly at random fromTk(xn)(xn) until a sequence that
estimates orderk(xn) is picked, enumeration ofTk(xn)(xn)
is more cumbersome than enumeration of the LZ parsing-
based type class. The reason is linked to the cofactor in

Whittle’s formula [24], which reflects the fact that enumeration
of Markov types does not reduce to independent enumerations
of the state sub-sequences for memoryless types. In contrast,
the elegant parsing process in [11] reduces to independent sub-
sequences of draws at each node of the LZ tree.
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