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Abstract

We propose an information–theoretic approach to the watermark embedding and detec-
tion under limited detector resources. First, we present asymptotically optimal decision
regions in the Neyman–Pearson sense. We expand these results to the case of zero-mean
i.i.d. Gaussian covertext distribution with unknown variance. For this case, we propose a
lower bound on the exponential decay rate of the false–negative probability and prove that
the optimal embedding and detecting strategy is superior to the customary linear, additive
embedding strategy in the exponential sense.

1 Introduction

Information embedding and watermarking have become a very active field of research in the

last decade, both in the academic community and in the industry, due to the need of protect-

ing the vast amount of digital information available over the Internet and other data storage

media and devices (see, e.g.,[1]–[5], and references therein). Watermarking (WM) is a form of

embedding information secretly in a host data set (e.g., image, audio signal, video, etc.). In this

work, we raise and examine certain fundamental questions with regard to customary methods

of embedding and detection and suggest some new ideas for the most basic setup.

The most popular approach to watermark embedding and detection has been the following

(see, e.g., [2],[6],[4, sec. 4.2] and references therein): Denoting by x = (x1, . . . , xn) a block from

the covertext source and by w = (w1, . . . , wn) the independent binary (±1) watermark vector,
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the watermark embedding rule is normally taken to be additive (linear), i.e., the stegotext vector

y = (y1, . . . , yn) is given by

y = x + γw (1)

or multiplicative, where each component of y is given by

yi = xi(1 + γwi), i = 1, . . . , n, (2)

where in both cases, the choice of γ controls the tradeoff between quality of the stego–signal (in

terms of the distortion relative to the covertext signal x) and the detectability of the watermark

- the “signal–to–noise” ratio.

Once the linear embedder (1) is adopted, elementary detection theory tells us that the

optimal likelihood–ratio detector, assuming a zero–mean, Gaussian, i.i.d. covertext distribution,

is a correlation detector, which decides positively (H1: y = x+γw) if the correlation,
∑n

i=1 wiyi,

exceeds a certain threshold, and negatively (H0: y = x) otherwise. The reason is that in this

case, x simply plays the role of additive noise. In a similar manner, the optimal test for the

multiplicative embedder (2) is based on the different variances of the yi’s corresponding to

wi = +1 relative to those corresponding to wi = −1, the former being σ2
x(1+ γ)2, and the latter

being σ2
x(1 − γ)2, where σ2

x is the variance of each component of x.

While in classical detection theory, the additivity (1), (or somewhat less commonly, the

multiplicativity (2)) of the noise is part of the channel model, and hence cannot be controlled,

this is not quite the case in watermark embedding, where one has, at least in principle, the

freedom to design an arbitrary embedding function y = f(x,w), trading off the quality of y

and the detectability of w. Clearly, for an arbitrary choice of f , the above described detectors

are no longer optimal in general.

The problem of finding the optimum watermark embedder f , for reliable WM detection,

is not trivial: The probabilities of errors of the two kinds (false positive and false negative)

corresponding to the likelihood–ratio detector induced by a given f , are, in general, hard to

compute, and a–fortiori hard to optimize in closed form. Thus, instead of striving to seek

the strictly optimum embedder, we take the following approach: Suppose that one would like

to limit the complexity of the detector by confining its decision to depend on a given set of

statistics computed from y and w. For example, the energy of y,
∑n

i=1 y2
i , and the correlation

∑n
i=1 wiyi, which are the sufficient statistics used by the above described correlation detector.

Other possible statistics are those corresponding to the likelihood–ratio detector of (2), namely,

the energies
∑

i: wi=+1 y2
i , and

∑

i: wi=−1 y2
i , and so on.
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While many papers in the literature addressed the problem of computing the performance of

different embedding and detection strategies and plotting their receiver operating characteristics

(ROC) for different values of the problem dimension n (see, e.g.,[7]–[9] and references therein), to

the best of our knowledge, no reported work deals with the asymptotic behavior of the two kinds

of error probabilities, i.e., the exponential decay rate of the two kind of the error probabilities

as n tends to infinity.

Within the class of detectors based on a given set of statistics, we present the optimal (in the

Neyman–Pearson sense) embedder and its corresponding detector. In doing so, we will extend

the techniques, presented in [10] and references therein, to devising the optimal embedder. For

the sake of simplicity, we will analyze the performance of the attack free scenario. Nevertheless,

this analysis can easily be extended to certain classes of attacks (e.g., attacks that can be

represented as a memoryless channel) as will be explained later.

The remainder of the paper is organized as follows: In the next section, the problem is

formulated and the main results are presented. In Section 3, we discuss some aspects and

different scenarios of the problem. In Section 4, we address the Gaussian case where we present

the optimal embedder and suggest a lower-bound on the false-negative error exponent. In

addition, we show that the optimum embedder is superior to the linear embedder, by analyzing

their error exponents.

2 Basic Derivation

We begin with some notations and definitions. Throughout this work, capital letters represent

scalar random variables (RVs), and specific realizations of them are denoted by the corresponding

lowercase letters. Random vectors of dimension n will be denoted by bold-face letters. The

notation 1{A}, where A is an event, will designate the indicator function of A (i.e.,1{A} = 1 if

A occurs and 1{A} = 0 otherwise). The notion an
.
= bn for two positive sequences {an}n≥1 and

{bn}n≥1 expresses asymptotic equality in the logarithmic scale, i.e.,

lim
n→∞

1

n
ln

(

an

bn

)

= 0.

For two vectors, a, b ∈ R
n, the Euclidean inner product is defined as 〈a, b〉 =

∑n
i=1 ai · bi and

the L2-norm of a vector is defined as ‖a‖ =
√

〈a,a〉.
For the sake of simplicity, let us assume, temporarily, that the components of x and y take

on values in a finite alphabet A. In the sequel, this assumption will be relaxed, and A will be
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allowed to be an infinite set, like the real line. The components of the watermark w will always

take on values in B = {+1,−1}, as mentioned earlier. Let us further assume that x is drawn

from a given memoryless source P .

For a given w, we would like to devise a decision rule that partitions the space An of

sequences {y}, observed by the detector, into two complementary regions, Λ and Λc, such that

for y ∈ Λ, we decide in favor of H1 (watermark w is present) and for y ∈ Λc, we decide in favor

of H0 (watermark absent: y = x). Consider the Neyman–Pearson criterion of minimizing the

false negative probability

Pfn =
∑

x: f(x,w)∈Λc

P (x) (3)

subject to the following constraints:

(1) Given a certain distortion measure d(·, ·) and distortion level D, the distortion between x

and y, d(x,y) = d
(

x, f(x,w)
)

, does not exceed nD.

(2) The false positive probability is upper bounded by

Pfp
∆
=
∑

y∈Λ

P (y) ≤ e−λn, (4)

where λ > 0 is a prescribed constant.

In other words, we would like to choose f and Λ so as to minimize Pfn subject to a distortion

constraint and the constraint that the exponential decay rate of Pfp would be at least as large

as λ.

As explained in the Introduction, this problem does not appear to be trivial. We therefore

make the additional assumption regarding the statistics employed by the detector. Suppose, for

example, that we are interested in the class of all detectors which base their decisions on the

empirical joint distribution of y and w:

P̂wy =
{

P̂wy(w, y), w ∈ B, y ∈ A
}

(5)

where

P̂wy(w, y) =
1

n

n
∑

i=1

1{wi = w, yi = y
}

, w ∈ B, y ∈ A (6)

i.e, P̂wy(w, y) is the relative frequency of the pair (w, y) along the pair sequence (w,y). Fol-

lowing standard terminology in the information theory literature [11], we define the conditional

type class of y given w, and denote it by T (y|w), as the set of all sequences y′ ∈ An such that
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P̂wy′ = P̂wy, that is, the set of all y′ which have the same empirical joint distribution with w

that y has. The requirement that the decision of the detector depends solely on P̂wy means

that Λ and Λc are unions of conditional types classes of y given w. Now, let T (y|w) ⊆ Λ. Then,

we have

e−λn ≥
∑

y′∈Λ

P (y′)

≥
∑

y′∈T (y|w)

P (y′)

≥ |T (y|w)| · P (y)

≥ (n + 1)−|A|enĤwy(Y |W ) · P (y). (7)

A few words of explanation are in order at this point: The first inequality is by the assumed

false positive constraint, the second inequality is since T (y|w) ⊆ Λ, and the third inequality is

due to the fact that all sequences within T (y|w) are equiprobable under P as they all have the

same empirical distribution, which form the sufficient statistics for the memoryless source P .

In the fourth inequality, we use the well known lower bound on the cardinality of a conditional

type class in terms of the empirical conditional entropy [11], defined as:

Ĥwy(Y |W ) = −
∑

w,y

P̂wy(w, y) ln P̂wy(y|w) , (8)

where P̂wy(y|w) is the empirical conditional probability of Y given W . Defining now

Λ∗ =
{

y : ln P (y) + nĤwy(Y |W ) + λn − |A| ln(n + 1) ≤ 0
}

, (9)

we have actually shown that every T (y|w) in Λ is also in Λ∗, in other words, if Λ satisfies

the false positive constraint (4), it must be a subset of Λ∗. This means that Λc
∗ ⊂ Λc and so

the probability of Λc
∗ is smaller than the probability of Λc, i.e., Λc

∗ minimizes Pfn among all

Λc corresponding to detectors that satisfy (4). To establish the asymptotic optimality of Λ∗, it

remains to show that Λ∗ itself has a false positive exponent at least λ, which is very easy to show

using the techniques of [10, eq. (6)] and references therein. Therefore, we will not include the

proof of this fact here. Finally, note also that Λ∗ bases its decision solely on P̂wy , as required.

While this solves the problem of the optimal detector for a given f , we still have to specify

the optimal embedder f∗. Defining Γc
∗(f) to be the inverse image of Λc

∗ given w, i.e.,

Γc
∗(f) =

{

x : f(x,w) ∈ Λc
∗
}

=
{

x : ln P (f(x,w)) + nĤw,f(x,w)(Y |W ) + λn − |A| ln(n + 1) > 0
}

, (10)
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then following eq. (3), Pfn can be expressed as

Pfn =
∑

x∈Γc
∗(f)

P (x). (11)

Consider now the following embedder:

f∗(x,w) = argminy: d(x,y)≤nD

[

ln P (y) + nĤwy(Y |W )
]

, (12)

where ties are resolved in an arbitrary fashion. Then, it is clear by definition, that Γc
∗(f

∗) ⊆ Γc
∗(f)

for any other competing f that satisfies the distortion constraint, and thus f∗ minimizes Pfn

subject to the constraints.

3 A Few Important Comments

In this section, we pause to discuss a few important aspects of our basic results, as well as

possible modifications that might be of theoretical and practical interest.

3.1 Implementability of the Embedder (12)

The first impression might be that the minimization in (12) is prohibitively complex as it appears

to require an exhaustive search over the sphere {y : d(x,y) ≤ nD}, whose complexity is

exponential in n. A closer look, however, reveals that the situation is not that bad. Note that

for a memoryless source P ,

ln P (y) = −n
[

Ĥy(Y ) + D(P̂y‖P )
]

, (13)

where Ĥy(Y ) is the empirical entropy of y and D(P̂y‖P ) is the divergence between the em-

pirical distribution of y, P̂y, and the source P . Moreover, if d(·, ·) is an additive distortion

measure, i.e., d(x,y) =
∑n

i=1 d(xi, yi), then d(x,y)/n can be represented as the expected dis-

tortion with respect to the empirical distribution of x and y, P̂xy. Thus, the minimization in

(26) becomes equivalent to maximizing [Îwy(W ;Y ) + D(P̂y‖P )] subject to Êxyd(X,Y ) ≤ D,

where Îwy(W ;Y ) denotes the empirical mutual information induced from the joint empirical

distribution P̂wy and Êxy denotes the aforementioned expectation with respect to P̂xy. Now,

observe that for given x and w, both [Îwy(W ;Y ) + D(P̂y‖P )] and Êxyd(X,Y ) ≤ D depend

on y only via its conditional type class given (x,w), namely, the conditional empirical dis-

tribution P̂wxy(y|x,w). Once the optimal P̂wxy(y|x,w) has been found, it does not matter

which vector y is chosen from the corresponding conditional type class T (y|x,w). Therefore,
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the optimization across n–vectors in (26) boils down to optimization over empirical conditional

distributions, and since the total number of empirical conditional distributions of n–vectors

increases only polynomially with n, the search complexity reduces from exponential to poly-

nomial as well. In practice, one may not perform such an exhaustive search over the discrete

set of empirical distributions, but apply an optimization procedure in the continuous space of

conditional distributions {P (y|x,w)} (and then approximate the solution by the closest feasible

empirical distribution). At any rate, this optimization procedure is carried out in a space of

fixed dimension, that does not grow with n.

3.2 Universality in the Covertext Distribution

Thus far we have assumed that the distribution P is known. In practice, even if it is fine to

assume a certain model class, like the model of a memoryless source, the assumption that the

exact parameters of P are known is rather questionable. Suppose then that P is known to be

memoryless but is otherwise unknown. How should we modify our results? First observe, that

it would then make sense to insist on the constraint (4) for every memoryless source, to be on

the safe side. Equivalently, eq. (4) would be replaced by

max
P

∑

y∈Λ

P (y) ≤ e−λn (14)

where the maximization over P is across all memoryless sources with alphabet A. It is then easy

to see that our earlier derivation goes through as before except that P (y) should be replaced by

maxP P (y) in all places (see also [10]). Since lnmaxP P (y) = −nĤy(Y ), this means that the

modified version of Λ∗ compares the empirical mutual information Îwy(W ;Y ) to the threshold

λn − |A| ln(n + 1) (the divergence term now disappears). By the same token, and in light of

the discussion in the previous paragraph, the modified version of the optimal embedder (26)

maximizes Îwy(W ;Y ) subject to the distortion constraint. Both the embedding rule and the

detection rule are then based on the idea of maximum mutual information, which is intuitively

appealing. For more on this idea and its use as a universal decoding rule see [11, Sec. 2.5].

3.3 Other Detector Statistics

In the previous section, we focused on the class of detectors that base their decision on the

empirical joint distribution of pairs of letters {(w, y)}. What about classes of detectors that base

their decisions on larger (and more refined) sets of statistics? It turns out that such extensions

are possible as long as we are able to assess the cardinality of the corresponding conditional
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type class. For example, suppose that the stegotext is suspected to undergo a desynchronization

attack that cyclically shifts the data by k points, where k lies in some uncertainty region, say,

{−K,−K + 1, . . . ,−1, 0, 1, . . . ,K}. Then, it would make sense to allow the detector depend on

the joint distribution of 2K + 2 vectors: y, w, and all the 2K corresponding cyclic shifts of w.

Our earlier analysis will carry over provided that the above definition of Ĥwy(Y |W ) would be

replaced the conditional empirical entropy of y given w and all its cyclic shifts. This is different

from the exhaustive search (ES) approach (see, e.g., [12]) to confront such desynchronization

attacks. Note, however, that this works as long as K is fixed and does not grow with n.

3.4 Random Watermarks

Thus far, our model assumption was that x emerges from a probabilistic source P , whereas the

watermark w is fixed, and hence can be thought of as being deterministic. Another possible

setting assumes that w is random as well, in particular, being drawn from another source Q,

independently of x, normally, the binary symmetric source (BSS). This situation may arise, for

example, when security is an issue and then the watermark is encrypted. In such a case, the

randomness of w is induced by the randomness of the key. In this case, the decision regions

Λ and Λ∗ will be defined as subsets of An × Bn and the probabilities of errors Pfn and Pfp

will be defined, of course, as the corresponding summations of products P (x)Q(w). Although

this model is somewhat weaker, it can be analyzed for more general classes of detectors. This

is because the role of the conditional type class T (y|w) would be replaced by the joint type

class T (w,y), namely, the set of all pairs of sequences {(w′,y′)} that have the same empirical

distribution as (w,y) (as opposed to the conditional type class which is defined as the set of all

such y’s for a given w). Thus, the corresponding version of Λ∗ would be

Λ∗ =
{

(w,y) : ln P (y) + ln Q(w) + nĤwy(W,Y ) + λn − |A| ln(n + 1) ≤ 0
}

, (15)

where Ĥwy(W,Y ) is the empirical joint entropy induced by (w,y), and the derivation of the

optimal embedder is accordingly.1 The advantage of this model, albeit somewhat weaker, is that

it is easier to assess |T (w,y)| in more general situations than it is for |T (y|w)|. For example, if

x is a first order Markov source, rather than i.i.d., and one is then naturally interested in the

statistics formed by the frequency counts of triples {wi = w, yi = y, yi−1 = y′}, then there

is no known expression for the cardinality of the corresponding conditional type class, but it is

1Note that in the universal case (where both P and Q are unknown), this leads again to the same empirical
mutual information detector as before.
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still possible to assess the size of the joint type class in terms of the empirical first-order Markov

entropy of the pairs {(wi, yi)}.
It should be also pointed out that once w is assumed random (say, drawn from a BSS), it

is possible to devise a decision rule that it asymptotically optimum for an individual covertext

sequence, i.e., to drop the assumption that x emerges from a probabilistic source of a known

model. The resulting decision rule, obtained using a similar technique, accepts H1 whenever

Ĥwy(W |Y ) ≤ 1 − λ, and the embedder minimizes Ĥwy(W |Y ) subject to the distortion con-

straint accordingly.

3.5 Attacks

Let us now extend the setup to include attacks. We first discuss attacks in general and then

confine our attention to memoryless attacks.

The case of attack is characterized by the fact that the input to the detector is no longer

the vector y as before, but another vector, z = (z1, . . . , zn), that is the output of a channel fed

by y, which we shall denote by W (z|y). For convenience, we will assume that the components

of z take on values in the same alphabet A. Thus, the operation of the attack, which in

general may be stochastic, is thought of as a channel. Denoting the channel output marginal

Q(z) =
∑

y P (y)W (z|y), the analysis of this case is, in principle, the same as before. Assuming,

for example, that Q is memoryless (which is the case when by P and W are memoryless), then

Λ∗ is as in Section 2, except that P , Y , and y, should be replaced by Q, Z and z, respectively.

The optimal embedder then becomes

f∗(x,w) = argmin{y: d(x,y)≤nD}
∑

z∈Λc
∗

W (z|y), (16)

for the redefined version of Λc
∗ which is given by:

Λc
∗ =

{

z : lnQ(z) + nĤzw(Z|W ) + nλ − |A| ln(n + 1) > 0
}

(17)

=
{

z : −nÎzw(Z;W ) − nD
(

P̂z‖Q
)

+ nλ − |A| ln(n + 1) > 0
}

, (18)

where P̂z is the empirical distribution of z. Evidently, this is not a convenient formula to work

with. Therefore, let us try to simplify (16). For a given y let us rewrite (16) as follows:

∑

z∈Λc
∗

W (z|y) =
∑

T (z|y,w)⊆Λc
∗

∑

z′∈T (z|y,w)

W (z′|y)

=
∑

T (z|y,w)⊆Λc
∗

∣

∣T (z|y,w)
∣

∣W (z|y) (19)
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It is easy to show that for a given z′ ∈ T (z|y,w) and a memoryless channel W (z|y) the

probability of z′ given y is given by the following expression:

W (z′|y) = e
−n

h
Ĥzy(Z|Y )+

P
a∈A P̂y(a)D

(

P̂zy(Z|Y =a)‖W (Z|Y =a)
)i

(20)

Using the fact that the cardinality of T (z|y,w) is given by

|T (z|y,w)| .
= enĤzyw(Z|Y,W ), (21)

we conclude that f∗(x,w) ∈ T ∗(y|x,w), where T ∗(y|x,w) corresponds to the following condi-

tional empirical distribution:

P̂ ∗
yxw(Y |X,W ) = arg max

P̂yxw(Y |X,W ):

Êxyd(X,Y )≤D

{

min
P̂zyw(Z|Y,W ):

Îzw(Z;W )+D(P̂z‖Q)≤λ

[

Îzwy(Z;W |Y )

+
∑

a∈A
P̂y(a)D

(

P̂zy(Z|Y = a)
∥

∥W (Z|Y = a)
)

]

}

(22)

i.e., for a given w and x we search for the empirical distribution P̂yxw(Y |X,W ) which maxi-

mize the exponent of the false negative probability dictated by the dominating conditional type

T (z|y,w) in Λc
∗. Once the optimal empirical distribution P̂ ∗

yxw(Y |X,W ) has been found, it

does not matter which vector y is chosen the corresponding conditional type T ∗(y|x,w).

4 Continuous Alphabets – the Gaussian Case

In the previous sections, we considered, for convenience, the simple case where the components of

both x and y take on values in a finite alphabet. It is more common and more natural, however,

to model x and y as vectors in IRn. Beyond the fact that, summations should be replaced by

integrals, in the analysis of the previous section, this requires, in general, an extension of the

method of types [11], used above, to vectors with real–valued components (see, e.g., [13],[14],[15]).

In a nutshell, a conditional type class, in such a case, is the set of all y–vectors in IRn whose joint

statistics with w have (within infinitesimally small tolerance) prescribed values, and to have a

parallel analysis to that of the previous section, we have to be able to assess the exponential

order of the volume of the conditional type class.

Suppose that x is a zero–mean Gaussian vector whose covariance matrix is σ2I, I being

the n × n identity matrix, and σ2 is unknown (cf. Subsection 3.2). Let us suppose also that

the statistics to be employed by the detector are the energy of
∑n

i=1 y2
i and the correlation
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∑n
i=1 wiyi. These assumptions are the same as in many theoretical papers in the literature of

watermark detection. Then, the conditional empirical entropy Ĥwy(Y |W ) should be replaced

by the empirical differential entropy ĥwy(Y |W ), given by [14]:

ĥwy(Y |W ) =
1

2
ln

[

2πe · min
a

(

1

n

n
∑

i=1

(yi − awi)
2

)]

=
1

2
ln

[

2πe

(

1

n

n
∑

i=1

y2
i −

( 1
n

∑n
i=1 wiyi)

2

1
n

∑n
i=1 w2

i

)]

=
1

2
ln

[

2πe

(

1

n

n
∑

i=1

y2
i − (

1

n

n
∑

i=1

wiyi)
2

)]

. (23)

The justification of eq. (23) is as follows: as was done in the proof of Lemma 3 in [14], we

define an auxiliary channel y = aw + z where z ∼ N
(

0, σ2
zI
)

and σz is unknown. Then,

we calculate an upper and lower bounds on Tε(y|w) =
{

ỹ ∈ R
n : |∑n

i=1 y2
i − ∑n

i=1 ỹ2
i | ≤

nε, |∑n
i=1 yiwi −

∑n
i=1 ỹiwi| ≤ nε

}

. The value of limε→0 limn→∞
1
n ln Vol

{

Tε(y|w)
}

equals to

(23). Since 2

ĥy(Y ) =
1

2
ln

(

2πe · 1

n

n
∑

i=1

y2
i

)

, (24)

the optimal embedder maximizes

Îwy(W ;Y ) = −1

2
ln

(

1 − ( 1
n

∑n
i=1 wiyi)

2

1
n

∑n
i=1 y2

i

)

, (25)

or, equivalently, 3 maximizes (
∑n

i=1 wiyi)
2/
∑n

i=1 y2
i subject to the distortion constraint, which

in this case, will naturally be taken to be Euclidean,
∑n

i=1(xi−yi)
2 ≤ nD. While our discussion

in Subsection 3.1, regarding optimization over conditional distributions, does not apply directly

to the continuous case considered here, it can still be represented as optimization over a finite

dimensional space whose dimension is fixed, independently of n. In fact, this fixed dimension is

2. To see this, note that every y ∈ IRn can be represented as y = ax+bw+z, where a and b are

real valued coefficients and z is orthogonal to both x and w. Now, without loss of optimality, z

should be taken to be the zero vector. This is because any non-zero z contributes to the energy

of y (the denominator of (
∑n

i=1 wiyi)
2/
∑n

i=1 y2
i ) while improving neither the correlation with

2It is easy to show that ĥy(Y ) = limε→0 limn→∞
1
n
Vol{Tε(y)} where Tε(y) =�

ỹ ∈ R
n : |

P
n

i=1 y2
i −

P
n

i=1 ỹ2
i | ≤ nε

	
, and Vol{·} means the volume of a set in R

n.
3Note also that the corresponding detector, which compares Îwy(W ; Y ) to a threshold, is equivalent to a

correlation detector, which compares the (absolute) correlation to a threshold that depends on the energy of y,
rather than a fixed threshold (see, e.g., [12]).
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w (which is the numerator), nor the distance to x (which is the constraint). Thus, the optimal

embedding function should be of the form

f∗(x,w) = ax + bw, (26)

and so, it remains only to optimize over two parameters, a and b. Upon manipulating this

optimization problem, by taking advantage of its special structure, one can further reduce its

dimensionality and transform it into a search over one parameter only (the details are are in

Subsection 4.1).

Going back to the opening discussion in the Introduction, at first glance, this seems to be

very close to the linear embedder (1) that is so customarily used (with one additional degree of

freedom allowing also scaling of x). A closer look, however, reveals that this is not quite the case

because the optimal values of a and b depend here on x and w (via the joint statistics
∑n

i=1 x2
i

and
∑n

i=1 wixi) rather than being fixed. Therefore, this is not a linear embedder.

We note that this embedding and detection strategy is also optimal in the case of Gaussian

memoryless attack of the form Z = Y + N where N ∼ N
(

0, σ2
N In×n

)

and σN is unknown. The

detector should maximize the normalized-correlation between Z and W the embedder should

employ the embedding rule which will be presented in the following section.

4.1 Explicit Derivation of the Optimal Embedder

In this section, we present a closed-form expression for the optimal embedder. As was shown in

the previous section, the following optimization problem should be solved:

max

[

(

1
n

∑n
i=1 yiwi

)2

1
n

∑n
i=1 y2

i

]

.

subject to:

n
∑

i=1

(yi − xi)
2 ≤ nD (27)

Substituting y = ax + bw in eq. (27), gives:

max
a,b∈R

[

a2ρ2 + 2abρ + b2

a2α2 + 2abρ + b2

]

subject to: (a − 1)2α2 + 2(a − 1)bρ + b2 ≤ D (28)

where α2 4
= 1

n

∑n
i=1 x2

i and ρ
4
= 1

n

∑n
i=1 xiwi. We note that α2 ≥ ρ2 which stems from the

Cauchy-Schwartz inequality.

12



Theorem 1. The optimal values of (a, b) are:

• If D ≥ α2 − ρ2:

(a∗, b∗) = (0, ρ +
√

ρ2 − α2 + D) (29)

• If D < α2 − ρ2:

a∗ = arg max
{

t(a)
∣

∣ a ∈ {a1, a2, a3, a4}
⋂

R
}

b∗ = a∗ · t(a∗) (30)

where t(a) =
(1−a)ρ+sgn(ρ)

√
D−(a−1)2(α2−ρ2)

a , R =
[

1 −
√

D
α2−ρ2 , 1 +

√

D
α2−ρ2

]

,

a1,2 =
(α2−ρ2)(α2−D)±

√
Dρ2

√
(α2−ρ2)(α2−D)

α2(α2−ρ2)
and a3,4 = 1 ±

√

D
α2−ρ2 .

The proof is purely technical and therefore is deferred to the Appendix. We note that in the

case where D � α2−ρ2, the value of a∗ tends to 1, and the value of b∗ tends to sgn(ρ)
√

D. Hence,

the linear embedder is not optimal even in the case where D � α2. We will next use the above

values to devise a lower bound on the exponential decay rate of the false-negative probability of

the optimal embedder, and then compare it to an upper bound on the false negative exponent

of the linear embedder.

4.2 Lower Bound to the False Negative Error Exponent of the Optimal Em-
bedder

We derive the lower-bound on the exponent of the false-negative probability of the optimum em-

bedder by exploring the performance of a sub-optimal embedder of the form y = x+sgn(ρ)
√

Dw,

which we name the sign embedder. This embedder is obtained by setting a = 1 in (26), where

this value is in the allowable range R of a. We assume that X ∼ N
(

0, σ2I
)

. First, we calculate

a threshold value T which always guarantees a false-positive exponent not smaller than λ. Using

the proposed detector (25), the false-positive probability can be expressed as

Pfp = Pr
{

Îwy(W ;Y ) > T
∣

∣ H0

}

= Pr
{

ρ̂2
wy > 1 − e−2T

∣

∣ H0

}

= 2Pr
{

ρ̂wy >
√

1 − e−2T
∣

∣ H0

}

where ρ̂wy = 〈w,y〉
‖w‖·‖y‖ is the normalized correlation between w and y. Because Y = X under

H0 and because of the radial symmetry of the PDF of X, we can conclude that for large n [16,

pp. 295]:

Pfp = 2
An(θ)

An(π)

.
= en ln(sin θ) ,

13



where An(θ) 4 is the surface area of the n-dimensional spherical cap cut from a unit spare about

the origin by a right circular cone of half angle θ = arccos
(
√

1 − e−2T
)

(0 < θ ≤ π/2). Since we

required that Pfp ≤ e−nλ, then ln(sin θ) must not exceed −λ, which means that

−λ ≥ ln(sin θ) (31)

T ≥ −1

2
ln
[

1 − cos2
(

arcsin(e−λ)
)]

= λ (32)

where the last equality was obtained using the fact that cos
(

arcsin(x)
)

=
√

1 − x2. Hence,

setting T = λ ensures a false positive probability not greater than e−nλ for large n. Note that

for every λ > 0, T is non-negative and does not depend on a specific embedder, since, under H0,

Y does not contain any watermark. Define the false-negative exponent of the sign-embedder

Ese
fn

4
= lim

n→∞
− 1

n
lnPfn (33)

where the false-negative probability is given by

Pfn = Pr
{

Îwy(W ;Y ) ≤ λ
∣

∣ H1

}

= Pr
{

ρ̂2
wy ≤ 1 − e−2λ

∣

∣ H1

}

. (34)

Theorem 2. The false-negative exponent of the sign-embedder is given by

Ese
fn(λ,D) =

{

0 , De−2λ

1−e−2λ ≤ σ2

1
2

[

De−2λ

σ2(1−e−2λ)
− ln

(

De−2λ

σ2(1−e−2λ)

)

− 1
]

, else
(35)

The proof, which is mainly technical, is deferred to the Appendix. Let us explore some

of the properties of Ese
fn(λ,D). First, is is clear that Ese

fn(0,D) = ∞ (the detector output is

constantly H1) since Ese
fn(λ,D) is monotonically increasing in e−2λ

1−e−2λ . In addition, Ese
fn(λ, 0) = 0

(y = x and therefore does not contain any information on w). For a given D, Ese
fn(λ,D) = 0

for λ ≥ 1
2 ln

(

1 + D
σ2

)

.

The exact value of the optimal exponent achieved when the optimal embedder is employed is

too involved to calculate. However, we can use some of the properties of the optimal embedder

to improve the lower bound on the optimal exponent. According to Theorem 1, in the case

where D ≥ α2 − ρ2, the optimal embedder can completely “erase” the covertext and therefore

achieves a zero false negative probability. We use this property to improve the performance of

the sign embedder. This leads to the following embedding rule: y = ax + bw where

(a, b) =

{

(0, ρ +
√

ρ2 − α2 + D) , D ≥ α2

(1, sgn(ρ)
√

D) , else
(36)

This embedder, which is an improved version of the sign embedder, erases the covertext in the

cases where D ≥ α2. Its performance are presented in the following Corollary:

4It is well-known [16, pp. 293] that An(θ) = (n−1)π(n−1)/2

Γ(n+1
2 )

R
θ

0
sin(n−2)(ϕ)dϕ and An(π) = 2An(π/2).
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Corollary 1. For λ > 1
2 ln 2, the false negative exponent of the improved sign embedder is given

by:

E(λ,D) =

{

0 , D ≤ σ2

1
2 [D − ln(D) − 1] , else

(37)

otherwise, the false-negative exponent equals to Ese
fn(λ,D).

The proof is deferred to the Appendix. The fact that the optimal embedder can offer a

positive false-negative exponent for every value of λ is not surprising due to its ability to erase

the covertext, which leads to zero probability of false-negative. Although the improved sign

embedder can offer a tighter lower bound, the improvement is made only in the case where

D ≥ σ2 (though it is not known a priori to the embedder). Nevertheless, it emphasizes the true

potential of the optimal embedder and the fact that the sign embedder is truly inferior to the

optimal embedder. In Figure 1, the false negative exponent of the sign embedder and the false

negative exponent of the improved embedder are plotted as functions of λ for a given values of

D and σ. The point where the two graphs break apart is λ = 1/2 ln(2). From this point on, the

improved sign embedder achieves a fixed value of 0.5(D − ln(D) − 1).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5
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2.5

3
Ese

fn

Eimproved
fn

λ

Figure 1: Error exponents of the sign-embedder and its improved version for σ2 = 1 and D = 2.

4.3 Comparison to the Additive Embedder

Our next goal is to calculate the exponent of the false-negative probability of the linear additive

embedder y = x +
√

Dw, where a normalized correlation detector is employed. Again, we first
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calculate a threshold value used by the detector which ensures a false-positive probability not

greater than e−nλ. The false positive probability is given by

Pfp = Pr
{

ρ̂wy > T
∣

∣H0

}

= Pr

{ 〈w,x〉
‖w‖ · ‖x‖ > T

}

=
An(θ)

An(π)

.
= en ln(sin θ) , (38)

where θ = arccos(T ) (0 < θ ≤ π/2). The second equality is due to the fact that Y = X under

H0 and the third equality is due to the radial symmetry of the PDF of X. Then, ln(sin θ) ≤ −λ

implies:

T ≥ cos
[

arcsin
(

e−λ
)]

=
√

1 − e−2λ (39)

and therefore, by letting T =
√

1 − e−2λ ensures a false-positive probability not greater than

e−nλ. Note that λ ≥ 0 implies that T must be non-negative. Define the false-negative exponent

of the additive-embedder

Eae
fn

4
= lim

n→∞
− 1

n
ln Pfn, (40)

where the false-negative probability is given by

Pfn = Pr
{

ρ̂wy ≤
√

1 − e−2λ
∣

∣H1

}

. (41)

Theorem 3. The false negative exponent of the additive embedder is given by

Eae
fn(λ,D) = min

{

E1(λ,D), E2(λ,D)
}

(42)

where,

E1(λ,D) = min
De−2λ<r≤ De−2λ

1−e−2λ

1

2

[

r

σ2
− ln

( r

σ2

)

− 2 ln sin
(

Ψ1(r)
)

− 1

]

E2(λ,D) =

{

0 , De−2λ

1−e−2λ ≤ σ2

1
2

[

De−2λ

(1−e−2λ)σ2 − ln
(

De−2λ

(1−e−2λ)σ2

)

− 1
]

, else
(43)

and Eae
fn(λ,D) < Ese

fn(λ,D) for De−2λ

1−e−2λ > σ2.

Let us examine some of the properties of Eae
fn(λ,D). It is easy to see that Eae

fn(λ,D) ≤
E2(λ,D) = Ese

fn(λ,D), i.e., the upper bound on the additive-embedder exponent serves as a

lower bound on the optimal-embedder exponent. It is clear that Eae
fn(λ, 0) = 0 since Eae

fn(λ, 0) ≤
Ese

fn(λ, 0) = 0. In contrast to the sign-embedder, it turns out that Eae
fn(0,D) < ∞. To see why

this is the case let us look at

E1(0,D) = min
r>D

f(r) (44)
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where f(r) = 1
2

[

r
σ2 − ln

(

r
σ2

)

− 2 ln sin
(

Ψ1(r)
)

− 1
]

. Now, since f(r) is finite for r > D the

minimum value of f(r) must be finite too. This is the case where the threshold value equals to

zero and the probability that there is an embedded vector Y with negative correlation to w is

not zero. Clearly, for a given D, Eae
fn(λ,D) = 0 for λ ≥ 1

2 ln
(

1 + D
σ2

)

. Numerical calculations

show that this happens even from smaller values of λ, however, the exact smallest value of λ for

which Eae
fn(λ,D) = 0 is hard to find. In Figure 2, Figure 3 and Figure 4, we compare the two

embedding strategies by plotting their exponents for different values of σ2/D.

4.4 Discussion

When we take a closer look at the results, the fact the sign embedder achieves a better perfor-

mance should not surprise us. Clearly, when the correlation between x and w is non-negative,

the additive embedder and the sign embedder achieve the same performance. However, when

the correlation between x and w is negative (this happens in probability 1/2 due to the radial

symmetry of the PDF of the covertext) this is not true anymore. In this case, the additive em-

bedder tries to maximize the correlation ρ between the covertext x and the watermark w (while

the detector compares the normalized correlation ρ̂yw between y and w to a given threshold),

however, the efforts are turned to the wrong direction. Contrary to the additive embedding

scheme, the sign embedder tries to maximize the absolute value of the correlation ρ while the

detector compares the absolute value of the normalized correlation to a given threshold. In this

case, the sign embedder tries to minimize the correlation ρ. This difference is best exemplified

in the case where the λ = 0. In this case, the sign embedder achieves Ese
fn(0,D) = ∞ while

Eae
fn(0,D) is finite since the probability of embedded vectors Y for which ρ̂yw < 0 is not zero.

We note that although the sign embedder is suboptimal, it achieves a much better perfor-

mance than the additive embedder with a slight increase in its complexity which is due to the

calculation of sgn(x,w).

Appendix

Proof of Theorem 1. First, we explore the case where a = 0, i.e., y = bw. Substituting a = 0

in the constraint of eq. (28), we get that b2 − 2ρb + (α2 − D) ≤ 0. The fact that b is a real

number implies that the discriminant of (b2 − 2ρb + (α2 − D)) is non-negative which leads to

ρ2 − (α2 − D) ≥ 0, or D ≥ α2 − ρ2. This corresponds to the case where the stegotext includes

only a fraction of w without violating the distortion constraint. In this case, the false-negative
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Figure 2: Error exponents of the two embedding strategies (σ2/D = .1)
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Figure 3: Error exponents of the two embedding strategies (σ2/D = 1)

probability is zero (the distortion constraint is so loose, it allows to “erase” the covertext). In

the following case, we can choose b∗ = ρ+
√

ρ2 − α2 + D as the optimal solution. From now on,

we assume that D < α2 −ρ2 which means that a = 0 is not a legitimate solution. Let us assume

that ρ ≥ 0. Define t
4
= b/a, and rewrite (28) by dividing the numerator and denominator by a2:

max
t∈R

f(t)

subject to: a2t2 + 2(a − 1)aρt + (a − 1)2α2 ≤ D (A-1)
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Figure 4: Error exponents of the two embedding strategies (σ2/D = 10)

where

f(t) =
(t + ρ)2

(t + ρ)2 + (α2 − ρ2)

It is easy to show that maximizing f(t) is equivalent to maximizing t. Since t is a real number,

the discriminant of
[

a2t2 + 2(a − 1)aρt + (a − 1)2α2 − D
]

must be non-negative, i.e.,

∆ = 4a2
[

D − (a − 1)2(α2 − ρ2)
]

≥ 0 (A-2)

which leads to

1 −
√

D

α2 − ρ2
≤ a ≤ 1 +

√

D

α2 − ρ2
. (A-3)

Hence, a must be in the range R
4
=
[

1 −
√

D
α2−ρ2 , 1 +

√

D
α2−ρ2

]

. Let us rewrite the constraint

as follows,

[at + (a − 1)ρ]2 + (a − 1)2(α2 − ρ2) − D ≤ 0 (A-4)

consequently,

(1 − a)ρ −
√

D − (a − 1)2(α2 − ρ2)

a
≤ t ≤ (1 − a)ρ +

√

D − (a − 1)2(α2 − ρ2)

a
(A-5)

Our next step will be to maximize the upper bound on t in the allowable range of a.

arg max
a∈R

t(a) (A-6)
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where

t(a) =
(1 − a)ρ +

√

D − (a − 1)2(α2 − ρ2)

a
. (A-7)

Differentiating with respect to a and equating to zero, we get

a1,2 =
(α2 − ρ2)(α2 − D) ±

√

Dρ2
√

(α2 − ρ2)(α2 − D)

α2(α2 − ρ2)
. (A-8)

Accordingly, the optimal value of a and b are

(a∗, b∗) =
(

arg max
{

t(a)|a ∈ {a1, a2, a3, a4}
⋂

R
}

, a∗ · t(a∗)
)

(A-9)

where a3,4 = 1 ±
√

D
α2−ρ2 . The same results are obtained for the case where ρ < 0.

Proof of Theorem 2. It is easy to show that under H1

ρ̂2
wy =

(

|ρ| +
√

D
)2

(

|ρ| +
√

D
)2

+ (α2 − ρ2)
, (A-10)

where α2 and ρ are functions of the random vector X . By conditioning on α2, we can express

the false-negative probability as

Pfn =

∫ ∞

0
Pr
{

ρ̂2
wy ≤ 1 − e−2λ

∣

∣

∣
H1, α

2 = r
}

· pα2(r)dr, (A-11)

where (nα2/σ2) is χ2 distributed with n degrees of freedom and the probability density function

for the χ2 distribution with n degrees of freedom is given by

pχ2
n
(z) =

(1/2)n/2

Γ(n/2)
zn/2−1e−n/2, z ≥ 0

where Γ(·) denotes the Gamma function. Now, given α2, D and a threshold value τ
4
= 1− e−2λ,

let us find the range of ρ for which ρ̂2
wy ≤ τ :

ρ̂2
wy(ρ) =

(|ρ| +
√

D)2

(|ρ| +
√

D)2 + (α2 − ρ2)
≤ τ

ρ2 + 2|ρ|
√

D(1 − τ) + (D − τD − τα2) ≤ 0

the function ρ̂2
wy(ρ) is symmetric with respect to the ρ axis, monotonically increasing in ρ and

attains its minimum value D
D+α2 at ρ = 0. Hence, for α2 < D(1−τ)

τ , ρ̂2
wy is greater than τ . After

solving the equation with respect to ρ and using the fact that τ ≤ 1, we get that |ρ̂wy| ≤
√

τ

implies that |ρ| ≤
√

D(τ − 1) +
√

Dτ2 + τα2 − τD as long as α2 ≥ D(1−τ)
τ . Define

Θ(r)
4
= arccos

[√
D(τ − 1) +

√
Dτ2 + τr − τD√
r

]

(A-12)
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It follows that

Pr
{

ρ̂2
wy ≤ τ

∣

∣

∣
H1, α

2 = r
}

= Pr

{

ρ2 ≤
[√

D(τ − 1) +
√

Dτ2 + τα2 − τD
]2 ∣
∣

∣
H1, α

2 = r

}

= 1 − Pr

{

ρ2 >
[√

D(τ − 1) +
√

Dτ2 + τα2 − τD
]2 ∣
∣

∣
H1, α

2 = r

}

= 1 − 2
An

(

Θ(r)
)

An(π)

.
= 1 − en ln sin

(

Θ(r)
)

.

We note that Pr
{

ρ̂2
wy ≤ τ

∣

∣H1, α
2
}

= 0 for α2 in the range
[

0, D(1−τ)
τ

]

. Therefore,

P
(n)
fn =

(1/2)n/2

Γ(n/2)

∫ ∞

D(1−τ)
τ

[

1 − en ln sin
(

Θ(r)
)

]

e−
nr

2σ2

(

nr

σ2

)
n−2

2

dr

=
(1/2)

n

2 n
n−2

2

Γ(n/2)

[

∫ ∞

D(1−τ)
τ

σ2

r
e−

nr

2σ2 e
n

2
ln(r/σ2)dr −

∫ ∞

D(1−τ)
τ

en ln sin Θ(r)e−
nr

2σ2 e
n

2
ln(r/σ2)dr

]

(A-13)

Our next step is to evaluate the exponential decay rate of (A-13). It is easy to see that the

first integral of (A-13) has a slower exponential decay rate and therefore dictates the overall

decay rate. To evaluate the exponential decay rate of P
(n)
fn as n → ∞ we use Laplace’s method

for integrals [17, Ch.4]. Therefore, we need to find the slowest exponential decay rate of the

integrant in the limits of the integral. It is easy to show that

lim
n→∞

1

n
ln

[

(1/2)
n

2 n
n−2

2

Γ(n/2)

]

=
1

2
(A-14)

and therefore the overall exponent is given by

Ese
fn(τ,D) = min

r≥D(1−τ)
τ

1

2

[

r

σ2
− ln(r/σ2) − 1

]

. (A-15)

Since
[

r/σ2−ln(r/σ2)−1
]

is monotonically increasing in r in the range [D(1−τ)
τ ,∞) the minimum

of (A-15) is obtained at r = D(1−τ)
τ . Hence, the false-negative exponent of the sign-embedder is

given by

Ese
fn(τ,D) =

{

0 , D(1−τ)
τ ≤ σ2

1
2

[

D(1−τ)
τσ2 − ln

(

D(1−τ)
τσ2

)

− 1
]

, else
(A-16)

Setting τ = 1 − e−2λ achieves (35).

Proof of Corollary 1. Since the false-negative probability of the improved embedder (36) is zero

for α2 ≤ D we can rewrite the integral (A-13) for the case where 1−τ
τ ≤ 1 (or λ ≥ 1/2 ln 2)
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where the lower limit equals to D (and does not depend on λ) as following:

P
(n)
fn =

(1/2)n/2

Γ(n/2)

∫ ∞

D

[

1 − en ln sin
(

Θ(r)
)

]

e−
nr

2σ2

(

nr

σ2

)
n−2

2

dr (A-17)

optimizing using Laplace method as done in the proof of Theorem 2 leads to (37).

Proof of Theorem 3. Given λ > 0, the false-negative probability is given by

Pfn = Pr
{

ρ̂wy ≤
√

1 − e−2λ
∣

∣H1

}

, (A-18)

where the normalized correlation, under H1, is given by

ρ̂wy =
ρ +

√
D

√

α2 + 2
√

Dρ + D
< T . (A-19)

The function ρ̂wy(ρ) achieves its minimum at ρ = − α2√
D

. Since ρ ∈ [−α,α] we conclude that in

the case where α2 ≥ D, ρ̂wy < T implies that ρ <
√

D(T 2 − 1) + T
√

α2 − D(1 − T 2) (ρ̂wy(ρ)

is monotonically increasing in ρ, and ρ̂wy(−α) = −1). If (1 − T 2)D ≤ α2 < D, ρ̂wy < T

implies that
√

D(T 2 − 1) − T
√

α2 − D(1 − T 2) ≤ ρ ≤
√

D(T 2 − 1) + T
√

α2 − D(1 − T 2). For

α2 < (1 − T 2)D, ρ̂wy ≥ T for all ρ ∈ [−α,α]. Define

Ψ1(r)
4
= arccos

[√
D(T 2 − 1) + T

√

r − D(1 − T 2)√
r

]

(A-20)

Ψ2(r)
4
= arccos

[√
D(T 2 − 1) − T

√

r − D(1 − T 2)√
r

]

(A-21)

We need to pay attention to the point r0 = D(1−T 2)
T 2 in which Ψ1(r0) = π/2. Beyond that

point (r > r0), the probability of false-negative given α2 = r goes to one as n tends to infinity.

Therefore, the false-negative probability can be written as follows: In the case where 1−T 2

T 2 > 1

(or λ < 1
2 ln(2))

P
(n)
fn =

(1/2)
n

2 n
n−2

2

Γ(n/2)

[

∫ D

D(1−T 2)

σ2

r

(

en ln sin
(

Ψ1(r)
)

− en ln sin
(

Ψ2(r)
)

)

e−
nr

2σ2 e
n

2
ln(r/σ2)dr

+

∫
D(1−T

2)

T2

D

σ2

r
en ln sin

(

Ψ1(r)
)

e−
nr

2σ2 e
n

2
ln(r/σ2)dr

+

∫ ∞

D(1−T2)

T2

σ2

r

(

1 − en ln sin
(

Ψ1(r)
)

)

e−
nr

2σ2 e
n

2
ln(r/σ2)dr

]

(A-22)

The first integral in (A-22) represent the false-negative probability when both Ψ1(r) and Ψ2(r)

are greater than π/2. In this case, we need to subtract the areas of two caps, i.e., An(π−Ψ1(r))−An(π−Ψ2(r))
An(π) .
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The second integral in (A-22) stems from the fact that for r ≥ D the false-negative probability

(given α2 = r) equals to An(π−Ψ1(r))
A(π) . The last integral in (A-22) stems from the fact that the

false-negative probability (given α2 = r) equals to 1 − A(Ψ1(r))
A(π) . In a similar way, in the case

where 1−T 2

T 2 ≤ 1 (or λ ≥ 1
2 ln(2))

P
(n)
fn =

(1/2)
n

2 n
n−2

2

Γ(n/2)

[

∫
D(1−T

2)

T2

D(1−T 2)

σ2

r

(

en ln sin
(

Ψ1(r)
)

− en ln sin
(

Ψ2(r)
)

)

e−
nr

2σ2 e
n

2
ln(r/σ2)dr

+

∫ D

D(1−T2)

T2

σ2

r

(

1 − en ln sin
(

Ψ1(r)
)

− en ln sin
(

Ψ2(r)
)

)

e−
nr

2σ2 e
n

2
ln(r/σ2)dr

+

∫ ∞

D

σ2

r

(

1 − en ln sin
(

Ψ1(r)
)

)

e−
nr

2σ2 e
n

2
ln(r/σ2)dr

]

(A-23)

Since we are interested in the exponential decay rate (to the first order), the slowest exponent

dictates the overall exponential behavior. Therefore, the fact that sin
(

Ψ1(r)
)

> sin
(

Ψ2(r)
)

for

D(1 − T 2) ≤ r ≤ D(1 − T 2)/T 2 implies that

Pfn
.
=

(1/2)
n

2 n
n−2

2

Γ(n/2)

[

∫
D(1−T

2)

T2

D(1−T 2)

σ2

r
en ln sin

(

Ψ1(r)
)

e−
nr

2σ2 e
n

2
ln(r/σ2)dr

+

∫ ∞

D(1−T2)

T2

σ2

r
e−

nr

2σ2 e
n

2
ln(r/σ2)dr

]

.

(A-24)

Again, using the Laplace’s method for integrals [17, Ch.4] we can conclude that

Eae
fn(T,D) = min

{

E1(T,D), E2(T,D)
}

, (A-25)

where,

E1(T,D) = min
D(1−T 2)<r≤D(1−T2)

T2

1

2

[

r

σ2
− ln

( r

σ2

)

− 2 ln sin
(

Ψ1(r)
)

− 1

]

(A-26)

E2(T,D) = min
r>

D(1−T2)

T2

1

2

[

r

σ2
− ln

( r

σ2

)

− 1

]

. (A-27)

E2(T,D) is given by

E2(T,D) =

{

0 , D(1−T 2)
T 2 ≤ σ2

1
2

[

D(1−T 2)
T 2σ2 − ln

(

D(1−T 2)
T 2σ2

)

− 1
]

, else
(A-28)

Since T 2 = 1−e−2λ, then E2(λ,D) = Ese
fn(λ,D) and therefore Eae

fn(λ,D) ≤ Ese
fn(λ,D). Our next

step will be to prove that E1(T,D) < E2(T,D) when D(1−T 2)
T 2 > σ2 (otherwise, Eae

fn(T,D) = 0).

Define

f(r) =
r

2σ2
− 1

2
ln
( r

σ2

)

− ln sin
(

Ψ1(r)
)

− 1

2
(A-29)
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f(r) is a continuous, non-negative function in the range D(1 − T 2) < r ≤ D(1−T 2)
T 2 . Clearly,

E1(T,D) ≤ f

(

D(1 − T 2)

T 2

)

= E2(T,D). (A-30)

In addition, f ′(r) is continuous in the above range. It can easily be shown that

f ′
(

D(1 − T 2)

T 2

)

=
1

2

[

1 − T 2σ2

D(1 − T 2)

]

> 0 (A-31)

hence, f(r) is monotonically increasing in small neighborhood of D(1−T 2)
T 2 , and therefore E1(T,D) <

E2(T,D). This fact leads to the conclusion that Eae
fn(λ,D) < Ese

fn(λ,D). The exact value of

E1(T,D) is cumbersome and therefore will not be presented.
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