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Abstract

Motivated by the evident success of context–tree based methods in lossless data
compression, we explore, in this paper, methods of the same spirit in universal prediction
of individual sequences. By context–tree prediction, we refer to a family of prediction
schemes, where at each time instant t, after having observed all outcomes of the data
sequence x1, . . . , xt−1, but not yet xt, the prediction is based on a “context” (or a state)
that consists of the k most recent past outcomes xt−k, . . . , xt−1, where the choice of k
may depend on the contents of a possibly longer, though limited, portion of the observed
past, xt−kmax , . . . , xt−1. This is different from the study reported in [1], where general
finite–state predictors as well as “Markov” (finite–memory) predictors of fixed order,
where studied in the regime of individual sequences.

Another important difference between this study and [1] is the asymptotic regime.
While in [1], the resources of the predictor (i.e., the number of states or the memory
size) were kept fixed regardless of the length N of the data sequence, here we investigate
situations where the number of contexts, or states, is allowed to grow concurrently with
N . We are primarily interested in the following fundamental question: What is the
critical growth rate of the number of contexts, below which the performance of the best
context–tree predictor is still universally achievable, but above which it is not? We
show that this critical growth rate is linear in N . In particular, we propose a universal
context–tree algorithm that essentially achieves optimum performance as long as the
growth rate is sublinear, and show that, on the other hand, this is impossible in the
linear case.

Index Terms: context–tree algorithm, universal prediction, finite–state machine,
finite–memory machine, predictability, individual sequence.

1 Introduction

The problem of universal prediction of stochastic processes as well as individual sequences

has received considerable attention throughout the years, in the literature pertaining to a

large variety of disciplines, such as information theory, statistics, control theory, finance,

and others (see [4] for a survey of some of the results on the theoretical aspects).
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In [1], the problem of universal prediction of individual sequences relative to the class

of finite–state predictors was investigated. Given an infinitely long binary sequence x =

(x1, x2, . . .), the finite–state predictability, π(x), was defined as

π(x) = lim
S→∞

lim sup
N→∞

πS(x1, . . . , xN ), (1)

where πS(x1, . . . , xN ) is the minimum relative frequency of prediction errors achieved among

all finite–state (FS) predictors with no more than S states, when operating on the first N

bits, x1, . . . , xN , of the infinite sequence x. An FS predictor with S states, or, an S–

state predictor for short, is in turn defined by a next–state function st+1 = g(xt, st) ∈ S,

|S| ≤ S, which recursively updates the state upon receiving a new input, xt, and by an

output function x̂t+1 = f(st), which provides the prediction of xt+1. The main contribution

in [1] was in proposing a universal (randomized) prediction scheme that achieves π(x) for

every x. This scheme was based on the incremental parsing procedure of the Lempel–Ziv

algorithm [10]. Note that since π(x) is defined by taking the limit of S →∞ after the limit

supremum over of N → ∞, the regime of the asymptotics dictates that N is very large

compared to S.

The present study differs from [1] in two main aspects. The first is that we confine

attention to context–tree prediction, which means that the current state, st, does not

necessarily evolve recursively according to a particular next–state function g, but may

rather correspond to a certain context, that is, a certain portion of the most recent past

(xt−k, xt−k+1, . . . , xt−1), where k may vary dynamically according to a certain suffix tree,

which is subjected to design. The motivation for exploring context–tree strategies stems

from their relative simplicity and their success in lossless data compression applications

(see, e.g., [3],[5],[6],[7],[8],[9] and references therein). Quite recently, a context–tree ap-

proach was analyzed also in universal prediction of stochastic processes under certain regu-

larity conditions [2],[11],[12]. Also, as was shown in [1], the FS predictability is attainable

by finite–memory predictors (also referred to as “Markov predictors” therein), where k is

fixed, a–fortiori, it is attainable by the more general class of context–tree predictors, where

k is allowed to vary.

The second aspect of the difference between this work and [1] is that here we no longer

confine ourselves to the regime where N >> S. By allowing S to grow with N at a

certain rate, the performance analysis pertaining to the relative effectiveness of context–tree
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predictors may become more refined and informative in the sense that it has the potential to

reveal their advantage over ordinary finite–memory predictors, which under the regime of [1],

are asymptotically as good as general FS predictors anyway, as mentioned above. Context–

tree predictors are intuitively superior to finite–memory predictors of fixed order because,

as in data compression, they allow the flexiblility to allocate more memory resources (longer

contexts) to the “typical” patterns, that occur more often than others, and less resources

(shorter contexts) to the non–typical ones.

The question that we pose then is the following: What is the critical growth rate of

S = SN as function of N , such that below this rate, the asymptotic optimum context–

tree prediction performance of every sequence is still universally achievable, but above this

rate, it is not? The answer turns out to be that this critical rate is linear in N . More

precisely, if SN = aN , (a – positive constant), then no universal predictor (deterministic or

randomized) can attain the optimum context–tree prediction performance corresponding to

aN contexts, simulatenously for all sequences. Furthermore, for a = 1, it is easy to show

that the value of this optimum prediction performance (in terms of the relative error rate)

is zero for any sequence. For a sublinear growth rate of SN , on the other hand, we propose

a universal context–based prediction algorithm, whose number of contexts grows slightly

faster than SN , and which asymptotically attains the context–tree predictability pertaining

to SN states, for every (x1, . . . , xN ).

The outline of the paper is as follows. In Section 2, we give a formal definition of the

problem and state the main result. Sections 3 and 4 are devoted to proofs.

2 Problem Formulation and Main Result

Let xN = (x1, x2, . . . , xN ), xt ∈ {0, 1}, t = 1, . . . , N , designate a binary data sequence to

be sequentially predicted. A context–tree predictor with S contexts (or, with S leaves) is

defined as follows. The output function, f(·), of the predictor is given by

x̂t+1 = f(st), (2)

where x̂t+1 ∈ {0, 1} is the predicted value for xt+1 and st is the current context (or, state),

which takes on values in a finite set S, |S| ≤ S, S being a positive integer. We allow also

randomized output functions, namely, random selection of x̂t+1 ∈ {0, 1} with respect to

(w.r.t.) a conditional probability distribution given st. The context st is determined from
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the past, (. . . , xt−1, xt), by the choice of a context tree, which is a complete1 binary tree

with S leaves. At time t, after having observed xt, the context st is determined by reading

off the most recent data symbols in reversed order (first xt, then xt−1, etc.) and traversing

along the tree according to these symbols, starting at the root and ending at a leaf, unless

the depth of this leaf is larger than t (which may happen at the beginning of the sequence),

in which case we stop at x1. Denoting the resulting depth by k = k(. . . , xt−1, xt), the

context will then be given by st = (xt−k+1, . . . , xt).2 Thus, the context–tree is used as a

suffix tree. A context–tree predictor with S contexts is then defined by a combination of

a context–tree with a context set S and an output function f : S → {0, 1} (or a set of

conditional distributions {P (·|s), s ∈ S} in the randomized case). We denote by PS the

class of all context–tree predictors with S contexts.

Let us now expand the class of predictors PS according to the following model: Given

a total budget of S states, we have the freedom to split it into two subsets of states. One

subset of states, of size SC ∈ {1, 2, . . . , S}, is dedicated to a context–tree of SC leaves,

as before (with S being replaced by SC). The states in this subset will be referred to as

context–tree states. The other subset of states, of size ST ≤ S − SC , is dedicated to a

finite–state machine induced by a prefix tree, which is a complete binary tree with a total

of ST nodes (including the root and the internal nodes, but not the leaves). The states in

this subset will be referred to as transient states, and each one of the ST transient states

corresponds to the root or to an internal node in the prefix tree. The system then works

as follows: It begins at the subset of transient states, and the initial state, s1, is always the

root of the prefix tree. As long as st is an internal node (or the root) of this tree, the next

state st+1 = g(xt, st) is the child of st corresponding to the binary value of xt, provided that

this child is an internal node as well, otherwise (i.e., if this child is a leaf), then the system

passes to the subset of context–tree states, and then st+1 will be the context pertaining to

time t+1. From this point onward, the system remains in the subset of context states, and

operates as described in the previous paragraph. Thus, the transient states are used only

at the beginning of the sequence, but at certain time t (that may depend on the contents of

(x1, . . . , xt)), there is a transition into the context state set. We refer to these two modes

of operation of the system as the transient mode and the context–tree mode, respectively.
1By complete binary tree, we refer to a binary tree where every node that is not a leaf has two children.
2Note that k cannot exceed S − 1, and so, the context is actually determined by no more than the S − 1

most recent symbols.
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Let us define P∗S as the union, over all pairs of positive integers {(ST , SC) : ST +SC ≤ S},

of all sets of combinations of a prefix tree with ST states and a suffix (context) tree with

SC leaves. The S–th order context predictability of xN , denoted κ(xN , S), is defined as the

minimum fraction of errors3 achieved over xN among all predictors in P∗S .

This structure, of a transient mode followed by the context–tree mode, can be motivated

by the following consideration: Note that in the transient mode, which is active at the

beginning of the sequence, the predictor is actually using the entire past, (x1, . . . , xt), as

its context. This usage of the entire past can be attributed, in a real-life situation, to

“training,” or “learning.” During this training time, in addition to providing predictions,

the system “learns,” from the whole data available thus far, what are the “typical” patterns

and then, on the basis of this study, it designs the context–tree predictor to be used in the

context–tree mode, which will remain fixed thereafter. Since the total memory resources

(given by S) are limited, they have to be divided between the training and the size of the

context dictionary to be used in the context–tree mode. Thus, there is a tradeoff, but the

definition of the class P∗S allows the full freedom with regard to the partition between ST

transient states and SC context–tree states. On the one extreme, we can take ST = 0 and

SC = S, which is a pure context–tree predictor in PS , with no transient mode at all. On

the other extreme, we have ST = S − 1 and SC = 1, where resources are all devoted to the

transient mode, and the context–tree has a root only, which means that the prediction x̂t+1

is constant, independently of past data.

Having defined P∗S , let us now allow S grow with N , and accordingly, redefine the

notation of the total number of states by SN . For a monotonically non–decreasing sequence

{SN}N≥1 of positive integers, we say that the context predictability is universally achievable

w.r.t. {SN}N≥1 if there exists a randomized predictor (not necessarily a context predictor),

x̂t = ft(x1, . . . , xt−1), t = 1, 2, . . ., such that for every infinite sequence x = (x1, x2, . . .)

lim sup
N→∞

[
1
N

N∑
t=1

Pr{x̂t 6= xt} − κ(xN , SN )

]
≤ 0, (3)

where the probabilities, Pr{x̂t 6= xt}, are w.r.t. the randomization. We say that a predictor

achieves the context predictability w.r.t. {SN}N≥1 uniformly rapidly if the convergence in

3When randomized output functions are allowed, this should be redefined as the minimum expected
fraction of errors, where the expectation is w.r.t. the randomization. However, it is easy to see that the best
output function is always deterministic.
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eq. (3) is uniform, i.e.,

lim sup
N→∞

max
xN∈{0,1}N

[
1
N

N∑
t=1

Pr{x̂t 6= xt} − κ(xN , SN )

]
≤ 0. (4)

The questions we address are the following:

1. What is the fastest growth rate of {SN} such that the context predictability is still

universally achievable w.r.t. {SN}N≥1 uniformly rapidly?

2. Whenever the context predictability is universally achievable, can we propose a (sim-

ple) universal predictor?

Theorem 1 answers both questions and tells us that this critical growth rate is linear.

Theorem 1 The context predictability w.r.t. {SN}N≥1 is universally achievable uniformly

rapidly if and only if limN→∞ SN/N = 0.

Discussion: The proof of Theorem 1 consists of the sufficieny part, where a particu-

lar universal (horizon–dependent) predictor is proposed (Section 3) and the necessity part

(Section 4). As we shall see, the universal predictor proposed in Section 3, bases its pre-

dictions on no more than 2N/MN contexts, where {MN}N≥1 is a sequence of positive

integers tending to infinity such that limN→∞ SNMN/N = 0, and so, the number of con-

texts used by the algorithm must increase slightly faster than {SN}. As will be seen

in Section 3, the best choice of MN , in the sense of minimizing (the upper bound on)

maxxN∈{0,1}N [(1/N)
∑N

t=1 Pr{x̂t 6= xt} − κ(xN , SN )] is of the order of (N/SN )2/3, which

yields a redundancy of the order of (SN/N)1/3. It should be noted that it is also possible

to obtain a redundancy rate of O((SN logSN )/N), which may be better in some cases, by

using the expert–advice methodology (cf. the relevant references in [4]), where the “experts”

are all the members of P∗SN
. However, the implementation of the expert–advice algorithm is

extremely complex because it needs to apply all predictors of P∗SN
in parallel. The proposed

horizon–dependent algorithm is next modified to be horizon–independent.

As for the necessity part of Theorem 1, we assume that SN = aN + 1 for some positive

constant a ≤ 1, and demonstrate that there is a set of sequences {xN} for which, on the

one hand, κ(xN , aN + 1) = 0, but on the other hand, for every universal predictor (which

may be deterministic or randomized, and with unlimited resources), at least one of these
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sequences would yield no less than aN/2 errors. Stated in the mathematical language, we

have:

max
xN∈{0,1}N

[
1
N

N∑
t=1

Pr{x̂t 6= xt} − κ(xN , aN + 1)

]
≥ a

2
(5)

for all N , and so, when limN→∞ SN/N = a > 0, the context predictability is not universally

achievable uniformly rapidly. The question of universal achievability which is not uniformly

rapid, in the linear case, remains open.

3 A Universal Prediction Scheme – Proof of Sufficiency

For a given N , choose a positive integer MN , and consider the following recursive definition

of prediction context, which also defines the proposed algorithm.

Let k0 = k0(x1, . . . , xt) denote the largest positive integer k such that the following two

conditions hold at the same time:

1. The string (xt−k+1, . . . , xt) appears (possibly, with overlaps) at least MN times along

(x1, . . . , xt).

2. The string (xt−k+2, . . . , xt) has already been used as the prediction context at least

MN times in the past.

If no such k exists, define k0 = 0. The string (xt−k0+1, . . . , xt) is referred to as the prediction

context used at time t, and in the case k0 = 0, the context st is defined as “null,” i.e., “no

context.”

Next, consider the prediction scheme of [1], defined w.r.t. the prediction context st =

(xt−k0+1, . . . , xt). In particular, at each time instant t, determine the context using the

above described rule, and randomly draw the prediction x̂t+1 according to the conditional

distribution pt(x̂t+1 = 1|st) = φ(p̂t(1|st), N(st)), where φ is defined as follows:

φ(α, n) =


0 α < 1

2 − εn
1

2εn
(α− 1

2) + 1
2

1
2 − εn ≤ α ≤ 1

2 + εn
1 α > 1

2 + εn

(6)

with εn
∆= 1/(2

√
n+ 2), and where p̂t(1|s) = [Nt(s, 1) + 1/2]/[Nt(s) + 1], Nt(s) being the

number of occurrences of the context s (w.r.t. the above rule) along (x1, . . . , xt−1) and

Nt(s, 1) is the number of times these appearances of context s were followed by “1”.

We next analyze the performance of this prediction scheme in comparison to the best

reference predictor in P∗SN
, with a set ST

N of ST
N transient states, and a set SC

N of SC
N
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context states, ST
N + SC

N ≤ SN . An upper bound on the redundancy, [(1/N)
∑N

t=1 Pr{x̂t 6=

xt} − κ(xN , SN )], will be obtained by bounding (1/N)
∑N

t=1 Pr{x̂t 6= xt} from above, and

bounding κ(xN , SN ) from below. We begin with the latter by counting only errors that

occur during the context–tree mode of the reference predictor, which lasts at least N − ST
N

time units, as the transient mode cannot last longer than ST
N instants. For the given xN ,

let (s1, . . . , sN ) be the sequence of states that would have been obtained had only the

context–tree machine of the reference predictor been used, from t = 1 to t = N . As is

shown in [1], the number of errors made by such a (pure context–tree) predictor is given

by
∑

s∈SC
N

min{N(s, 0), N(s, 1)}, where N(s, x), s ∈ SC
N , x ∈ {0, 1}, is the number of joint

occurrences of st = s and xt+1 = x along the pair of sequences (sN , xN ). The joint count

of st = s and xt+1 = x, during the context–tree mode only, cannot then be smaller than

N(s, x)− ST
N , and so,

κ(xN , SN ) ≥ 1
N

 ∑
s∈SC

N

min{N(s, 0), N(s, 1)} − ST
N


≥ 1

N

 ∑
s∈SC

N

min{N(s, 0), N(s, 1)} − SN

 . (7)

As was also shown in [1], when the predictor (6) is applied, the contribtution of each state

s to the expected number of prediction errors, ENe(s)
∆=
∑

t:st=s Pr{x̂t 6= xt}, is upper

bounded by

ENe(s) ≤ min{N(s, 0), N(s, 1)}+
√
N(s) + 1 +

1
2
, (8)

where N(s) = N(s, 0) +N(s, 1) is the number of occurrences of s.

Consider the above described universal prediction scheme applied to xN , and let us

denote now the sequence of contexts, generated by this algorithm, as ŝN = (ŝ1, . . . , ŝN ) (to

distinguish from the contexts of the context–tree component of the reference predictor of

P∗SN
), and let ŜN denote the set of contexts generated this way.

We first observe that there are at most 2MNS
C
N times instants where ŝt is a suffix of

st ∈ SC
N . This follows from the following consideration. In a full binary tree with SC

N leaves,

like the tree corresponding to the reference predictor, there are always SC
N−1 internal nodes

(including the root), pertaining to all possible states which are suffixes of some state in SC
N .

Now, by construction of the algorithm, every such internal node s′ is used as a prediction

context no more than 2MN times. This is because upon the (2MN + 1)–st time, either
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the pattern (0, s′) or (1, s′) has appeared at least MN times, and thus both conditions for

extending the prediction context by one bit are satisfied. Thus, the total number of times

that suffixes of contexts in SC
N are used as prediction contexts cannot exceed 2MN (SC

N −1).

We will further upper bound this number by 2MNSN , for simplicity.

In the remaining time instants, of course, either ŝt = st or st becomes a suffix of ŝt.

Correspondingly, for a given s ∈ SC
N , let Ts denote the sub–tree of prediction contexts,

rooted at s, that are generated by the algorithm, i.e., all generated contexts {ŝ} suffixed

by s (including s itself as the root). Following eq. (8), the expected number of errors is

bounded by

1
N

N∑
t=1

Pr{x̂t 6= xt} ≤ 2MNSN +
∑

s∈SC
N

∑
ŝ∈Ts

[
min{N(ŝ, 0), N(ŝ, 1)}+

√
N(ŝ) + 1 +

1
2

]
, (9)

where the first term, 2MNSN , accounts for worst case of totally erroneous prediction at all

2MNSN visits at states {ŝ} that are suffixes of some states in SC
N , and the second term is an

upper bound on the expected number of errors at all other times. Now, let us decompose

the second term into

A
∆=
∑

s∈SC
N

∑
ŝ∈Ts

min{N(ŝ, 0), N(ŝ, 1)} (10)

and

B
∆=
∑

s∈SC
N

∑
ŝ∈Ts

[√
N(ŝ) + 1 +

1
2

]
. (11)

We shall now bound each one of them separately. As for A, we have

A ≤
∑

s∈SC
N

min

∑
ŝ∈Ts

N(ŝ, 0),
∑
ŝ∈Ts

N(ŝ, 1)


≤

∑
s∈SC

N

min{N(s, 0), N(s, 1)}

≤ N · κ(xN , SN ) + SN . (12)

Regarding B, we have the following consideration: As mentioned earlier, for internal nodes

in Ts (and a–fortiori for the leaves), we know that N(ŝ) cannot exceed 2MN , and so,

B ≤
∑

s∈SC
N

∑
ŝ∈Ts

(√
2MN + 1 +

1
2

)
=
(√

2MN + 1 +
1
2

)
·
∑

s∈SC
N

|Ts|. (13)

Now,
∑

s∈SC
N
|Ts| is of course, upper bounded by the total number of contexts generated

by the proposed universal predictor. As every internal node of the context–tree generated
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appears at least MN times (by the second condition that defines the algorithm), the total

number of internal nodes of ŜN cannot exceed N/MN , and so, the total number of nodes

(including the leaves) cannot exceed 2N/MN + 1. Thus,
∑

s∈SC
N
|Ts| ≤ 2N/MN + 1, and we

can further upper bound B by

B ≤
(√

2MN + 1 +
1
2

)
·
(

2N
MN

+ 1
)
, (14)

which upon normalizing by N becomes

B

N
≤
(

2

√
2
MN

+
1
M2

N

+
1
MN

)
·
(

1 +
MN

2N

)
. (15)

The total expected excess frequency of errors (redundancy) is thus

1
N

N∑
t=1

Pr{x̂t 6= xt} − κ(xN , SN ) ≤
(

2

√
2
MN

+
1
M2

N

+
1
MN

)
·
(

1 +
MN

2N

)
+

(2MN + 1)SN

N
, (16)

where the additional term comes from the first term of the r.h.s. of eq. (9) and the right–

most side of eq. (12). The conditions for vanishing redundancy are then MN → ∞ and

MNSN/N → 0. Both conditions can be satisfied at the same time as long as SN is sublinear

in N . As the r.h.s. is independent of xN , the convergence to zero is uniformly fast. This

completes the proof of the sufficiency part. 2

Two comments are in order at this point:

1. Note that the asymptotically optimum growth rate of MN (in the sense of minimizing

the r.h.s.) is MN = O((N/SN )2/3), which yields B/N ≤ O((SN/N)1/3).

2. The above algorithm is horizon–dependent, i.e., the length of the sequence, N , has

to be known ahead of time in order to determine the value of MN . It is not difficult,

however, to modify this algorithm so as to be horizon–independent. One way to do

that is the following: Instead of defining the required number of context repetitions,

in conditions 1 and 2 of the algorithm, to depend directly on N , let us define it as

depending on k, the length of the examined context. More specifically, let us replace

MN by M(k) and by M(k−1) in conditions 1 and 2, respectively, where {M(k)}k≥1 is

a certain monotonic sequence of positive integers that tends to infinity. The reader is

referred to the appendix for more details on the redundancy analysis and the consid-

erations regarding the choice of the sequence {M(k)}. It is also demonstrated, in the
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appendix, that the (upper bound on the) redundancy term of this algorithm decays

faster than that of the LZ–based algorithm proposed in [1].

4 Proof of Necessity

Let a ∈ (0, 1] be given, and let SN = aN + 1, assuming without essential loss of generality

that aN is integer. Consider the recursive generation of a sequence xN by xt = f(st),

t = 1, 2, ..., N , where st is the state associated with previously generated symbols, and f

is the output function, corresponding to a certain member in P∗aN+1. Clearly, when this

predictor is applied to the very same sequence that it has generated, then there are no

prediction errors, and so, κ(xN , aN + 1) = 0 for every such sequence.

Next, consider a subset of 2aN pure transient–state predictors from P∗aN+1, i,e., pre-

dictors with ST
N = aN and SC

N = 1, whose associated x-sequences (generated as above)

start with all 2aN possible binary strings of length aN correspondingly. That is, the first

predictor generates a sequence that begins with aN zeroes, the second predictor gen-

erates a sequence whose first aN bits are (0, 0, ..., 0, 1), and so on. Clearly, there are

enough degrees of freedom to do that: Given any desired binary string (x1, . . . , xaN ) of

the first aN bits of xN , consider the finite–state (transient) machine corresponding to a

prefix tree whose internal nodes are ∅ (the null string), {x1}, {x1, x2}, . . . , {x1, ..., xaN},

and whose leaves are {x̄1}, {x1, x̄2}, {x1, x2, x̄3}, . . . , {x1, x2, . . . , xaN−1, x̄aN}, x̄i being the

complement of xi, i = 1, . . . , aN . Now, apply to each of the internal nodes an out-

put function that will give the next desired outcome, i.e., f(∅) = x1, f({x1}) = x2,

f({x1, x2}) = x3, . . . , f({x1, x2, . . . , xaN−1}) = xaN . This construction guarantees that

each one of the 2aN context–tree predictors will generate a different sequence because all

these sequences differ from each other even in their first aN bits.

Finally, define a random vector XN , which is distributed uniformly across all these

2aN N–vectors. Now, for any randomized predictor, with no matter how many states, the

expected fraction of errors (where the expectation is both w.r.t. the ensemble of XN and

w.r.t. possible randomization) is lower bounded as follows:

1
N

N∑
t=1

Pr{x̂t 6= Xt} ≥
1
N

aN∑
t=1

Pr{x̂t 6= Xt} =
a

2
, (17)

where the last equality is due to the fact that (X1, . . . , XaN ) is, in fact, governed by the

memoryless binary symmetric source (independent, fair coin tosses) since the distribution is
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uniform over all 2aN strings on length aN . Clearly, every predictor makes exactly 50% errors

on the binary symmetric source. It therefore follows that for any randomized predictor, there

exists at least one vector xN , out of the above defined ensemble of 2aN vectors, for which

the expected fraction of errors is not below a/2. This completes the proof of the necessity

part.

Note that for the case a = 1, we have κ(xN , N + 1) = 0 for every sequence, but any

predictor would perform at least as bad as random guessing (50% errors) on some sequence.

Appendix

In this appendix, we show how the performance analysis of Section 3 should be modified

if the horizon–dependent algorithm is replaced by the the horizon–independent algorithm

described in the second comment at the end of Section 3.

In analogy to eq. (9), we have two main redundancy terms: The first term is the

summation of 2M(ds) over all internal nodes {s} of the context–tree SC
N (replacing the

term 2MNSN ), where ds stands for the depth of state s in the context–tree, i.e., the dis-

tance from of s from the root. This term is further bounded by 2SN maxs∈SC
N
M(ds) =

2SNM(maxs∈SC
N
ds) ≤ 2SNM(SN ), where we have used the fact that the deepest leaf in a

compete tree with SN leaves cannot be more than SN branches away from the root. The

second term is B, which is now upper bounded as follows:

B =
∑

s∈SC
N

∑
ŝ∈Ts

(√
N(ŝ) + 1 +

1
2

)

=
∑

s∈SC
N

|Ts|
∑
ŝ∈Ts

1
|Ts|

·
(√

N(ŝ) + 1 +
1
2

)

≤
∑

s∈SC
N

|Ts|

√√√√ 1
|Ts|

∑
ŝ∈Ts

N(ŝ) + 1 +
1
2


≤

∑
s∈SC

N

|Ts|
(√

N(s)
|Ts|

+ 1 +
1
2

)

=
∑

s∈SC
N

√
|Ts| ·

√
N(s) + |Ts|+

1
2

∑
s∈SC

N

|Ts|

≤
√√√√∑

s∈SC
N

|Ts| ·
∑

s∈SC
N

[N(s) + |Ts|] +
1
2

∑
s∈SC

N

|Ts|
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≤
√√√√∑

s∈SC
N

|Ts| · (N +
∑

s∈SC
N

|Ts|) +
1
2

∑
s∈SC

N

|Ts|, (A.1)

where the first inequality follows from the concavity of the square–root function, and the

second to the last inequality follows from the Schwartz–Cauchy inequality. Now,
∑

s∈SC
N
|Ts|,

which is upper bounded by the total number of contexts generated by the algorithm, |ŜN |, is

in turn, upper bounded by the following consideration: Denoting by S̃N , the set of internal

nodes of ŜN , we have for every positive integer j:

N ≥
∑

ŝ∈S̃N

M(dŝ)

≥
∑

ŝ∈S̃N : dŝ≥j

M(dŝ)

≥
∑

ŝ∈S̃N : dŝ≥j

M(j)

≥ (|S̃N | − 2j + 1) ·M(j), (A.2)

where we have used the fact that the number of nodes with depth less than j cannot exceed∑j−1
i=0 2i = 2j − 1. We therefore have

|S̃N | ≤ 2j − 1 +
N

M(j)
, (A.3)

and so, ∑
s∈SC

N

|Ts| ≤ |ŜN | < 2j+1 +
2N
M(j)

, (A.4)

which follows from the fact that in a complete binary tree with m internal nodes, the total

number of nodes is 2m+ 1. Since this is true for every j, we can take the minimum over j.

Let us then denote

ψ(N) =
1
N

min
j

(
2j+1 +

2N
M(j)

)
. = 2min

j

(
2j

N
+

1
M(j)

)
. (A.5)

We therefore obtain the following upper bound to the redundancy:

1
N

N∑
t=1

Pr{x̂t 6= xt} − κ(xN , SN ) ≤ 2SN (M(SN ) + 1)
N

+
√
ψ(N)[1 + ψ(N)] +

ψ(N)
2

. (A.6)

The guidelines regarding the choice of the sequence {M(k)} are, in principle, aimed at

minimizing the r.h.s. of the last inequality. Obvioulsy, the faster is the growth rate of

{M(k)}, the faster ψ(N) decays, but on the other hand, the first term above is enlarged.

Moreover, this dictates an interesting tradeoff with regard to universal achievability. If

13



one wishes to compete with the context predictability for every sublinear growth rate of

{SN}, then M(k) should be a constant M0 (otherwise SNM(SN )/N may not tend to zero),

but then ψ(N) tends to a constant, which can be made arbitrarily small for large enough

M0. Thus, the context predictability is achieved within an arbitrarily small ε > 0, but

not strictly achieved. If, on the other hand, one is somewhat less ambitious, and is only

interested in achieving the context predictability for slower sequences {SN}, i.e., those for

which {SNM(SN )/N} still vanishes for a certain choice of the sequence {M(k)}, then this

is accomplished by the algorithm. For example, if M(k) = 2k, then ψ(N) = O(1/
√
N), but

then {SN} of the reference class is only allowed to grow slower than logarithmically in N ,

for the purpose of comparison.

Finally, it is interesting to compare the performance of the proposed horizon–independent

algorithm to that of the LZ–based algorithm of [1]. To this end, let us even assume that

SN = S = 2k is fixed (not growing with N), and that our reference predictor is a pure

context–tree algorithm (with no transient states), where the context–tree is the full binary

tree whose leaves are all the 2k binary k–tuples, in other words, a finite–memory (“Markov”)

predictor of order k. In [1, Theorem 4], it is asserted that the (upper bound on the) re-

dundancy of the LZ–based predictor w.r.t. this finite–memory predictor decays at the rate

of 1/
√

logN . Here, on the other hand, if we choose, for example, M(k) = 2k, as suggested

above, then the redundancy would decay at the rate of N−1/4, which is better. Moroever,

the choice M(k) = 2k may not even be the best possible choice. One can come close to the

rate of N−1/2 by letting {M(k)} grow sufficiently rapidly.
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